xref: /openbsd-src/sys/uvm/uvm_fault.c (revision 335383c917d172233bc08e83a000fa4d494d7cdc)
1 /*	$OpenBSD: uvm_fault.c,v 1.151 2024/12/04 09:19:11 mpi Exp $	*/
2 /*	$NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
29  */
30 
31 /*
32  * uvm_fault.c: fault handler
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/percpu.h>
39 #include <sys/proc.h>
40 #include <sys/malloc.h>
41 #include <sys/mman.h>
42 #include <sys/tracepoint.h>
43 
44 #include <uvm/uvm.h>
45 
46 /*
47  *
48  * a word on page faults:
49  *
50  * types of page faults we handle:
51  *
52  * CASE 1: upper layer faults                   CASE 2: lower layer faults
53  *
54  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
55  *    read/write1     write>1                  read/write   +-cow_write/zero
56  *         |             |                         |        |
57  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
58  * amap |  V  |       |  ---------> new |          |        | |  ^  |
59  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
60  *                                                 |        |    |
61  *      +-----+       +-----+                   +--|--+     | +--|--+
62  * uobj | d/c |       | d/c |                   |  V  |     +----+  |
63  *      +-----+       +-----+                   +-----+       +-----+
64  *
65  * d/c = don't care
66  *
67  *   case [0]: layerless fault
68  *	no amap or uobj is present.   this is an error.
69  *
70  *   case [1]: upper layer fault [anon active]
71  *     1A: [read] or [write with anon->an_ref == 1]
72  *		I/O takes place in upper level anon and uobj is not touched.
73  *     1B: [write with anon->an_ref > 1]
74  *		new anon is alloc'd and data is copied off ["COW"]
75  *
76  *   case [2]: lower layer fault [uobj]
77  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78  *		I/O takes place directly in object.
79  *     2B: [write to copy_on_write] or [read on NULL uobj]
80  *		data is "promoted" from uobj to a new anon.
81  *		if uobj is null, then we zero fill.
82  *
83  * we follow the standard UVM locking protocol ordering:
84  *
85  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86  * we hold a PG_BUSY page if we unlock for I/O
87  *
88  *
89  * the code is structured as follows:
90  *
91  *     - init the "IN" params in the ufi structure
92  *   ReFault: (ERESTART returned to the loop in uvm_fault)
93  *     - do lookups [locks maps], check protection, handle needs_copy
94  *     - check for case 0 fault (error)
95  *     - establish "range" of fault
96  *     - if we have an amap lock it and extract the anons
97  *     - if sequential advice deactivate pages behind us
98  *     - at the same time check pmap for unmapped areas and anon for pages
99  *	 that we could map in (and do map it if found)
100  *     - check object for resident pages that we could map in
101  *     - if (case 2) goto Case2
102  *     - >>> handle case 1
103  *           - ensure source anon is resident in RAM
104  *           - if case 1B alloc new anon and copy from source
105  *           - map the correct page in
106  *   Case2:
107  *     - >>> handle case 2
108  *           - ensure source page is resident (if uobj)
109  *           - if case 2B alloc new anon and copy from source (could be zero
110  *		fill if uobj == NULL)
111  *           - map the correct page in
112  *     - done!
113  *
114  * note on paging:
115  *   if we have to do I/O we place a PG_BUSY page in the correct object,
116  * unlock everything, and do the I/O.   when I/O is done we must reverify
117  * the state of the world before assuming that our data structures are
118  * valid.   [because mappings could change while the map is unlocked]
119  *
120  *  alternative 1: unbusy the page in question and restart the page fault
121  *    from the top (ReFault).   this is easy but does not take advantage
122  *    of the information that we already have from our previous lookup,
123  *    although it is possible that the "hints" in the vm_map will help here.
124  *
125  * alternative 2: the system already keeps track of a "version" number of
126  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
127  *    mapping) you bump the version number up by one...]   so, we can save
128  *    the version number of the map before we release the lock and start I/O.
129  *    then when I/O is done we can relock and check the version numbers
130  *    to see if anything changed.    this might save us some over 1 because
131  *    we don't have to unbusy the page and may be less compares(?).
132  *
133  * alternative 3: put in backpointers or a way to "hold" part of a map
134  *    in place while I/O is in progress.   this could be complex to
135  *    implement (especially with structures like amap that can be referenced
136  *    by multiple map entries, and figuring out what should wait could be
137  *    complex as well...).
138  *
139  * we use alternative 2.  given that we are multi-threaded now we may want
140  * to reconsider the choice.
141  */
142 
143 /*
144  * local data structures
145  */
146 struct uvm_advice {
147 	int nback;
148 	int nforw;
149 };
150 
151 /*
152  * page range array: set up in uvmfault_init().
153  */
154 static struct uvm_advice uvmadvice[MADV_MASK + 1];
155 
156 #define UVM_MAXRANGE 16	/* must be max() of nback+nforw+1 */
157 
158 /*
159  * private prototypes
160  */
161 static void uvmfault_amapcopy(struct uvm_faultinfo *);
162 static inline void uvmfault_anonflush(struct vm_anon **, int);
163 void	uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t);
164 void	uvmfault_update_stats(struct uvm_faultinfo *);
165 
166 /*
167  * inline functions
168  */
169 /*
170  * uvmfault_anonflush: try and deactivate pages in specified anons
171  *
172  * => does not have to deactivate page if it is busy
173  */
174 static inline void
175 uvmfault_anonflush(struct vm_anon **anons, int n)
176 {
177 	int lcv;
178 	struct vm_page *pg;
179 
180 	for (lcv = 0; lcv < n; lcv++) {
181 		if (anons[lcv] == NULL)
182 			continue;
183 		KASSERT(rw_lock_held(anons[lcv]->an_lock));
184 		pg = anons[lcv]->an_page;
185 		if (pg && (pg->pg_flags & PG_BUSY) == 0) {
186 			uvm_lock_pageq();
187 			if (pg->wire_count == 0) {
188 				pmap_page_protect(pg, PROT_NONE);
189 				uvm_pagedeactivate(pg);
190 			}
191 			uvm_unlock_pageq();
192 		}
193 	}
194 }
195 
196 /*
197  * normal functions
198  */
199 /*
200  * uvmfault_init: compute proper values for the uvmadvice[] array.
201  */
202 void
203 uvmfault_init(void)
204 {
205 	int npages;
206 
207 	npages = atop(16384);
208 	if (npages > 0) {
209 		KASSERT(npages <= UVM_MAXRANGE / 2);
210 		uvmadvice[MADV_NORMAL].nforw = npages;
211 		uvmadvice[MADV_NORMAL].nback = npages - 1;
212 	}
213 
214 	npages = atop(32768);
215 	if (npages > 0) {
216 		KASSERT(npages <= UVM_MAXRANGE / 2);
217 		uvmadvice[MADV_SEQUENTIAL].nforw = npages - 1;
218 		uvmadvice[MADV_SEQUENTIAL].nback = npages;
219 	}
220 }
221 
222 /*
223  * uvmfault_amapcopy: clear "needs_copy" in a map.
224  *
225  * => called with VM data structures unlocked (usually, see below)
226  * => we get a write lock on the maps and clear needs_copy for a VA
227  * => if we are out of RAM we sleep (waiting for more)
228  */
229 static void
230 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
231 {
232 	for (;;) {
233 		/*
234 		 * no mapping?  give up.
235 		 */
236 		if (uvmfault_lookup(ufi, TRUE) == FALSE)
237 			return;
238 
239 		/*
240 		 * copy if needed.
241 		 */
242 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
243 			amap_copy(ufi->map, ufi->entry, M_NOWAIT,
244 				UVM_ET_ISSTACK(ufi->entry) ? FALSE : TRUE,
245 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
246 
247 		/*
248 		 * didn't work?  must be out of RAM.   unlock and sleep.
249 		 */
250 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
251 			uvmfault_unlockmaps(ufi, TRUE);
252 			uvm_wait("fltamapcopy");
253 			continue;
254 		}
255 
256 		/*
257 		 * got it!   unlock and return.
258 		 */
259 		uvmfault_unlockmaps(ufi, TRUE);
260 		return;
261 	}
262 	/*NOTREACHED*/
263 }
264 
265 /*
266  * uvmfault_anonget: get data in an anon into a non-busy, non-released
267  * page in that anon.
268  *
269  * => Map, amap and thus anon should be locked by caller.
270  * => If we fail, we unlock everything and error is returned.
271  * => If we are successful, return with everything still locked.
272  * => We do not move the page on the queues [gets moved later].  If we
273  *    allocate a new page [we_own], it gets put on the queues.  Either way,
274  *    the result is that the page is on the queues at return time
275  */
276 int
277 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
278     struct vm_anon *anon)
279 {
280 	struct vm_page *pg;
281 	int error;
282 
283 	KASSERT(rw_lock_held(anon->an_lock));
284 	KASSERT(anon->an_lock == amap->am_lock);
285 
286 	/* Increment the counters.*/
287 	counters_inc(uvmexp_counters, flt_anget);
288 	if (anon->an_page) {
289 		curproc->p_ru.ru_minflt++;
290 	} else {
291 		curproc->p_ru.ru_majflt++;
292 	}
293 	error = 0;
294 
295 	/*
296 	 * Loop until we get the anon data, or fail.
297 	 */
298 	for (;;) {
299 		boolean_t we_own, locked;
300 		/*
301 		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
302 		 */
303 		we_own = FALSE;
304 		pg = anon->an_page;
305 
306 		/*
307 		 * Is page resident?  Make sure it is not busy/released.
308 		 */
309 		if (pg) {
310 			KASSERT(pg->pg_flags & PQ_ANON);
311 			KASSERT(pg->uanon == anon);
312 
313 			/*
314 			 * if the page is busy, we drop all the locks and
315 			 * try again.
316 			 */
317 			if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0)
318 				return 0;
319 			counters_inc(uvmexp_counters, flt_pgwait);
320 
321 			/*
322 			 * The last unlock must be an atomic unlock and wait
323 			 * on the owner of page.
324 			 */
325 			if (pg->uobject) {
326 				/* Owner of page is UVM object. */
327 				uvmfault_unlockall(ufi, amap, NULL);
328 				uvm_pagewait(pg, pg->uobject->vmobjlock,
329 				    "anonget1");
330 			} else {
331 				/* Owner of page is anon. */
332 				uvmfault_unlockall(ufi, NULL, NULL);
333 				uvm_pagewait(pg, anon->an_lock, "anonget2");
334 			}
335 		} else {
336 			/*
337 			 * No page, therefore allocate one.
338 			 */
339 			pg = uvm_pagealloc(NULL, 0, anon, 0);
340 			if (pg == NULL) {
341 				/* Out of memory.  Wait a little. */
342 				uvmfault_unlockall(ufi, amap, NULL);
343 				counters_inc(uvmexp_counters, flt_noram);
344 				uvm_wait("flt_noram1");
345 			} else {
346 				/* PG_BUSY bit is set. */
347 				we_own = TRUE;
348 				uvmfault_unlockall(ufi, amap, NULL);
349 
350 				/*
351 				 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
352 				 * the uvm_swap_get() function with all data
353 				 * structures unlocked.  Note that it is OK
354 				 * to read an_swslot here, because we hold
355 				 * PG_BUSY on the page.
356 				 */
357 				counters_inc(uvmexp_counters, pageins);
358 				error = uvm_swap_get(pg, anon->an_swslot,
359 				    PGO_SYNCIO);
360 
361 				/*
362 				 * We clean up after the I/O below in the
363 				 * 'we_own' case.
364 				 */
365 			}
366 		}
367 
368 		/*
369 		 * Re-lock the map and anon.
370 		 */
371 		locked = uvmfault_relock(ufi);
372 		if (locked || we_own) {
373 			rw_enter(anon->an_lock, RW_WRITE);
374 		}
375 
376 		/*
377 		 * If we own the page (i.e. we set PG_BUSY), then we need
378 		 * to clean up after the I/O.  There are three cases to
379 		 * consider:
380 		 *
381 		 * 1) Page was released during I/O: free anon and ReFault.
382 		 * 2) I/O not OK.  Free the page and cause the fault to fail.
383 		 * 3) I/O OK!  Activate the page and sync with the non-we_own
384 		 *    case (i.e. drop anon lock if not locked).
385 		 */
386 		if (we_own) {
387 			if (pg->pg_flags & PG_WANTED) {
388 				wakeup(pg);
389 			}
390 
391 			/*
392 			 * if we were RELEASED during I/O, then our anon is
393 			 * no longer part of an amap.   we need to free the
394 			 * anon and try again.
395 			 */
396 			if (pg->pg_flags & PG_RELEASED) {
397 				KASSERT(anon->an_ref == 0);
398 				/*
399 				 * Released while we had unlocked amap.
400 				 */
401 				if (locked)
402 					uvmfault_unlockall(ufi, NULL, NULL);
403 				uvm_anon_release(anon);	/* frees page for us */
404 				counters_inc(uvmexp_counters, flt_pgrele);
405 				return ERESTART;	/* refault! */
406 			}
407 
408 			if (error != VM_PAGER_OK) {
409 				KASSERT(error != VM_PAGER_PEND);
410 
411 				/* remove page from anon */
412 				anon->an_page = NULL;
413 
414 				/*
415 				 * Remove the swap slot from the anon and
416 				 * mark the anon as having no real slot.
417 				 * Do not free the swap slot, thus preventing
418 				 * it from being used again.
419 				 */
420 				uvm_swap_markbad(anon->an_swslot, 1);
421 				anon->an_swslot = SWSLOT_BAD;
422 
423 				/*
424 				 * Note: page was never !PG_BUSY, so it
425 				 * cannot be mapped and thus no need to
426 				 * pmap_page_protect() it.
427 				 */
428 				uvm_lock_pageq();
429 				uvm_pagefree(pg);
430 				uvm_unlock_pageq();
431 
432 				if (locked) {
433 					uvmfault_unlockall(ufi, NULL, NULL);
434 				}
435 				rw_exit(anon->an_lock);
436 				/*
437 				 * An error occurred while trying to bring
438 				 * in the page -- this is the only error we
439 				 * return right now.
440 				 */
441 				return EACCES;	/* XXX */
442 			}
443 
444 			/*
445 			 * We have successfully read the page, activate it.
446 			 */
447 			pmap_clear_modify(pg);
448 			uvm_lock_pageq();
449 			uvm_pageactivate(pg);
450 			uvm_unlock_pageq();
451 			atomic_clearbits_int(&pg->pg_flags,
452 			    PG_WANTED|PG_BUSY|PG_FAKE);
453 			UVM_PAGE_OWN(pg, NULL);
454 		}
455 
456 		/*
457 		 * We were not able to re-lock the map - restart the fault.
458 		 */
459 		if (!locked) {
460 			if (we_own) {
461 				rw_exit(anon->an_lock);
462 			}
463 			return ERESTART;
464 		}
465 
466 		/*
467 		 * Verify that no one has touched the amap and moved
468 		 * the anon on us.
469 		 */
470 		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
471 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
472 
473 			uvmfault_unlockall(ufi, amap, NULL);
474 			return ERESTART;
475 		}
476 
477 		/*
478 		 * Retry..
479 		 */
480 		counters_inc(uvmexp_counters, flt_anretry);
481 		continue;
482 
483 	}
484 	/*NOTREACHED*/
485 }
486 
487 /*
488  * Update statistics after fault resolution.
489  * - maxrss
490  */
491 void
492 uvmfault_update_stats(struct uvm_faultinfo *ufi)
493 {
494 	struct vm_map		*map;
495 	struct proc		*p;
496 	vsize_t			 res;
497 
498 	map = ufi->orig_map;
499 
500 	/*
501 	 * If this is a nested pmap (eg, a virtual machine pmap managed
502 	 * by vmm(4) on amd64/i386), don't do any updating, just return.
503 	 *
504 	 * pmap_nested() on other archs is #defined to 0, so this is a
505 	 * no-op.
506 	 */
507 	if (pmap_nested(map->pmap))
508 		return;
509 
510 	/* Update the maxrss for the process. */
511 	if (map->flags & VM_MAP_ISVMSPACE) {
512 		p = curproc;
513 		KASSERT(p != NULL && &p->p_vmspace->vm_map == map);
514 
515 		res = pmap_resident_count(map->pmap);
516 		/* Convert res from pages to kilobytes. */
517 		res <<= (PAGE_SHIFT - 10);
518 
519 		if (p->p_ru.ru_maxrss < res)
520 			p->p_ru.ru_maxrss = res;
521 	}
522 }
523 
524 /*
525  *   F A U L T   -   m a i n   e n t r y   p o i n t
526  */
527 
528 /*
529  * uvm_fault: page fault handler
530  *
531  * => called from MD code to resolve a page fault
532  * => VM data structures usually should be unlocked.   however, it is
533  *	possible to call here with the main map locked if the caller
534  *	gets a write lock, sets it recursive, and then calls us (c.f.
535  *	uvm_map_pageable).   this should be avoided because it keeps
536  *	the map locked off during I/O.
537  * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
538  */
539 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
540 			 ~PROT_WRITE : PROT_MASK)
541 struct uvm_faultctx {
542 	/*
543 	 * the following members are set up by uvm_fault_check() and
544 	 * read-only after that.
545 	 */
546 	vm_prot_t enter_prot;
547 	vm_prot_t access_type;
548 	vaddr_t startva;
549 	int npages;
550 	int centeridx;
551 	boolean_t narrow;
552 	boolean_t wired;
553 	paddr_t pa_flags;
554 	boolean_t promote;
555 };
556 
557 int		uvm_fault_check(
558 		    struct uvm_faultinfo *, struct uvm_faultctx *,
559 		    struct vm_anon ***, vm_fault_t);
560 
561 int		uvm_fault_upper(
562 		    struct uvm_faultinfo *, struct uvm_faultctx *,
563 		    struct vm_anon **);
564 boolean_t	uvm_fault_upper_lookup(
565 		    struct uvm_faultinfo *, const struct uvm_faultctx *,
566 		    struct vm_anon **, struct vm_page **);
567 
568 int		uvm_fault_lower(
569 		    struct uvm_faultinfo *, struct uvm_faultctx *,
570 		    struct vm_page **);
571 int		uvm_fault_lower_io(
572 		    struct uvm_faultinfo *, struct uvm_faultctx *,
573 		    struct uvm_object **, struct vm_page **);
574 
575 int
576 uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type,
577     vm_prot_t access_type)
578 {
579 	struct uvm_faultinfo ufi;
580 	struct uvm_faultctx flt;
581 	boolean_t shadowed;
582 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
583 	struct vm_page *pages[UVM_MAXRANGE];
584 	int error;
585 
586 	counters_inc(uvmexp_counters, faults);
587 	TRACEPOINT(uvm, fault, vaddr, fault_type, access_type, NULL);
588 
589 	/*
590 	 * init the IN parameters in the ufi
591 	 */
592 	ufi.orig_map = orig_map;
593 	ufi.orig_rvaddr = trunc_page(vaddr);
594 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
595 	flt.access_type = access_type;
596 	flt.narrow = FALSE;		/* assume normal fault for now */
597 	flt.wired = FALSE;		/* assume non-wired fault for now */
598 
599 	error = ERESTART;
600 	while (error == ERESTART) { /* ReFault: */
601 		anons = anons_store;
602 
603 		error = uvm_fault_check(&ufi, &flt, &anons, fault_type);
604 		if (error != 0)
605 			continue;
606 
607 		/* True if there is an anon at the faulting address */
608 		shadowed = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
609 		if (shadowed == TRUE) {
610 			/* case 1: fault on an anon in our amap */
611 			error = uvm_fault_upper(&ufi, &flt, anons);
612 		} else {
613 			struct uvm_object *uobj = ufi.entry->object.uvm_obj;
614 
615 			/*
616 			 * if the desired page is not shadowed by the amap and
617 			 * we have a backing object, then we check to see if
618 			 * the backing object would prefer to handle the fault
619 			 * itself (rather than letting us do it with the usual
620 			 * pgo_get hook).  the backing object signals this by
621 			 * providing a pgo_fault routine.
622 			 */
623 			if (uobj != NULL && uobj->pgops->pgo_fault != NULL) {
624 				KERNEL_LOCK();
625 				rw_enter(uobj->vmobjlock, RW_WRITE);
626 				error = uobj->pgops->pgo_fault(&ufi,
627 				    flt.startva, pages, flt.npages,
628 				    flt.centeridx, fault_type, flt.access_type,
629 				    PGO_LOCKED);
630 				KERNEL_UNLOCK();
631 
632 				if (error == VM_PAGER_OK)
633 					error = 0;
634 				else if (error == VM_PAGER_REFAULT)
635 					error = ERESTART;
636 				else
637 					error = EACCES;
638 			} else {
639 				/* case 2: fault on backing obj or zero fill */
640 				error = uvm_fault_lower(&ufi, &flt, pages);
641 			}
642 		}
643 	}
644 
645 	return error;
646 }
647 
648 /*
649  * uvm_fault_check: check prot, handle needs-copy, etc.
650  *
651  *	1. lookup entry.
652  *	2. check protection.
653  *	3. adjust fault condition (mainly for simulated fault).
654  *	4. handle needs-copy (lazy amap copy).
655  *	5. establish range of interest for neighbor fault (aka pre-fault).
656  *	6. look up anons (if amap exists).
657  *	7. flush pages (if MADV_SEQUENTIAL)
658  *
659  * => called with nothing locked.
660  * => if we fail (result != 0) we unlock everything.
661  * => initialize/adjust many members of flt.
662  */
663 int
664 uvm_fault_check(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
665     struct vm_anon ***ranons, vm_fault_t fault_type)
666 {
667 	struct vm_amap *amap;
668 	struct uvm_object *uobj;
669 	int nback, nforw;
670 
671 	/*
672 	 * lookup and lock the maps
673 	 */
674 	if (uvmfault_lookup(ufi, FALSE) == FALSE) {
675 		return EFAULT;
676 	}
677 	/* locked: maps(read) */
678 
679 #ifdef DIAGNOSTIC
680 	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0)
681 		panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)",
682 		    ufi->map, ufi->orig_rvaddr);
683 #endif
684 
685 	/*
686 	 * check protection
687 	 */
688 	if ((ufi->entry->protection & flt->access_type) != flt->access_type) {
689 		uvmfault_unlockmaps(ufi, FALSE);
690 		return EACCES;
691 	}
692 
693 	/*
694 	 * "enter_prot" is the protection we want to enter the page in at.
695 	 * for certain pages (e.g. copy-on-write pages) this protection can
696 	 * be more strict than ufi->entry->protection.  "wired" means either
697 	 * the entry is wired or we are fault-wiring the pg.
698 	 */
699 	flt->enter_prot = ufi->entry->protection;
700 	flt->pa_flags = UVM_ET_ISWC(ufi->entry) ? PMAP_WC : 0;
701 	if (VM_MAPENT_ISWIRED(ufi->entry) || (fault_type == VM_FAULT_WIRE)) {
702 		flt->wired = TRUE;
703 		flt->access_type = flt->enter_prot; /* full access for wired */
704 		/*  don't look for neighborhood * pages on "wire" fault */
705 		flt->narrow = TRUE;
706 	}
707 
708 	/* handle "needs_copy" case. */
709 	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
710 		if ((flt->access_type & PROT_WRITE) ||
711 		    (ufi->entry->object.uvm_obj == NULL)) {
712 			/* need to clear */
713 			uvmfault_unlockmaps(ufi, FALSE);
714 			uvmfault_amapcopy(ufi);
715 			counters_inc(uvmexp_counters, flt_amcopy);
716 			return ERESTART;
717 		} else {
718 			/*
719 			 * ensure that we pmap_enter page R/O since
720 			 * needs_copy is still true
721 			 */
722 			flt->enter_prot &= ~PROT_WRITE;
723 		}
724 	}
725 
726 	/*
727 	 * identify the players
728 	 */
729 	amap = ufi->entry->aref.ar_amap;	/* upper layer */
730 	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
731 
732 	/*
733 	 * check for a case 0 fault.  if nothing backing the entry then
734 	 * error now.
735 	 */
736 	if (amap == NULL && uobj == NULL) {
737 		uvmfault_unlockmaps(ufi, FALSE);
738 		return EFAULT;
739 	}
740 
741 	/*
742 	 * for a case 2B fault waste no time on adjacent pages because
743 	 * they are likely already entered.
744 	 */
745 	if (uobj != NULL && amap != NULL &&
746 	    (flt->access_type & PROT_WRITE) != 0) {
747 		/* wide fault (!narrow) */
748 		flt->narrow = TRUE;
749 	}
750 
751 	/*
752 	 * establish range of interest based on advice from mapper
753 	 * and then clip to fit map entry.   note that we only want
754 	 * to do this the first time through the fault.   if we
755 	 * ReFault we will disable this by setting "narrow" to true.
756 	 */
757 	if (flt->narrow == FALSE) {
758 
759 		/* wide fault (!narrow) */
760 		nback = min(uvmadvice[ufi->entry->advice].nback,
761 		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
762 		flt->startva = ufi->orig_rvaddr - ((vsize_t)nback << PAGE_SHIFT);
763 		nforw = min(uvmadvice[ufi->entry->advice].nforw,
764 		    ((ufi->entry->end - ufi->orig_rvaddr) >> PAGE_SHIFT) - 1);
765 		/*
766 		 * note: "-1" because we don't want to count the
767 		 * faulting page as forw
768 		 */
769 		flt->npages = nback + nforw + 1;
770 		flt->centeridx = nback;
771 
772 		flt->narrow = TRUE;	/* ensure only once per-fault */
773 	} else {
774 		/* narrow fault! */
775 		nback = nforw = 0;
776 		flt->startva = ufi->orig_rvaddr;
777 		flt->npages = 1;
778 		flt->centeridx = 0;
779 	}
780 
781 	/*
782 	 * if we've got an amap then lock it and extract current anons.
783 	 */
784 	if (amap) {
785 		amap_lock(amap, RW_WRITE);
786 		amap_lookups(&ufi->entry->aref,
787 		    flt->startva - ufi->entry->start, *ranons, flt->npages);
788 	} else {
789 		*ranons = NULL;	/* to be safe */
790 	}
791 
792 	/*
793 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
794 	 * now and then forget about them (for the rest of the fault).
795 	 */
796 	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
797 		/* flush back-page anons? */
798 		if (amap)
799 			uvmfault_anonflush(*ranons, nback);
800 
801 		/*
802 		 * flush object?
803 		 */
804 		if (uobj) {
805 			voff_t uoff;
806 
807 			uoff = (flt->startva - ufi->entry->start) + ufi->entry->offset;
808 			rw_enter(uobj->vmobjlock, RW_WRITE);
809 			(void) uobj->pgops->pgo_flush(uobj, uoff, uoff +
810 			    ((vsize_t)nback << PAGE_SHIFT), PGO_DEACTIVATE);
811 			rw_exit(uobj->vmobjlock);
812 		}
813 
814 		/* now forget about the backpages */
815 		if (amap)
816 			*ranons += nback;
817 		flt->startva += ((vsize_t)nback << PAGE_SHIFT);
818 		flt->npages -= nback;
819 		flt->centeridx = 0;
820 	}
821 
822 	return 0;
823 }
824 
825 /*
826  * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
827  *
828  * iterate range of interest:
829  *	1. check if h/w mapping exists.  if yes, we don't care
830  *	2. check if anon exists.  if not, page is lower.
831  *	3. if anon exists, enter h/w mapping for neighbors.
832  *
833  * => called with amap locked (if exists).
834  */
835 boolean_t
836 uvm_fault_upper_lookup(struct uvm_faultinfo *ufi,
837     const struct uvm_faultctx *flt, struct vm_anon **anons,
838     struct vm_page **pages)
839 {
840 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
841 	struct vm_anon *anon;
842 	struct vm_page *pg;
843 	boolean_t shadowed;
844 	vaddr_t currva;
845 	paddr_t pa;
846 	int lcv, entered = 0;
847 
848 	/* locked: maps(read), amap(if there) */
849 	KASSERT(amap == NULL ||
850 	    rw_write_held(amap->am_lock));
851 
852 	/*
853 	 * map in the backpages and frontpages we found in the amap in hopes
854 	 * of preventing future faults.    we also init the pages[] array as
855 	 * we go.
856 	 */
857 	currva = flt->startva;
858 	shadowed = FALSE;
859 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
860 		/*
861 		 * unmapped or center page.   check if any anon at this level.
862 		 */
863 		if (amap == NULL || anons[lcv] == NULL) {
864 			pages[lcv] = NULL;
865 			continue;
866 		}
867 
868 		/*
869 		 * check for present page and map if possible.
870 		 */
871 		pages[lcv] = PGO_DONTCARE;
872 		if (lcv == flt->centeridx) {	/* save center for later! */
873 			shadowed = TRUE;
874 			continue;
875 		}
876 
877 		anon = anons[lcv];
878 		pg = anon->an_page;
879 
880 		KASSERT(anon->an_lock == amap->am_lock);
881 
882 		/*
883 		 * ignore busy pages.
884 		 * don't play with VAs that are already mapped.
885 		 */
886 		if (pg && (pg->pg_flags & (PG_RELEASED|PG_BUSY)) == 0 &&
887 		    !pmap_extract(ufi->orig_map->pmap, currva, &pa)) {
888 			uvm_lock_pageq();
889 			uvm_pageactivate(pg);	/* reactivate */
890 			uvm_unlock_pageq();
891 			counters_inc(uvmexp_counters, flt_namap);
892 
893 			/* No fault-ahead when wired. */
894 			KASSERT(flt->wired == FALSE);
895 
896 			/*
897 			 * Since this isn't the page that's actually faulting,
898 			 * ignore pmap_enter() failures; it's not critical
899 			 * that we enter these right now.
900 			 */
901 			(void) pmap_enter(ufi->orig_map->pmap, currva,
902 			    VM_PAGE_TO_PHYS(pg) | flt->pa_flags,
903 			    (anon->an_ref > 1) ?
904 			    (flt->enter_prot & ~PROT_WRITE) : flt->enter_prot,
905 			    PMAP_CANFAIL);
906 			entered++;
907 		}
908 	}
909 	if (entered > 0)
910 		pmap_update(ufi->orig_map->pmap);
911 
912 	return shadowed;
913 }
914 
915 /*
916  * uvm_fault_upper: handle upper fault.
917  *
918  *	1. acquire anon lock.
919  *	2. get anon.  let uvmfault_anonget do the dirty work.
920  *	3. if COW, promote data to new anon
921  *	4. enter h/w mapping
922  */
923 int
924 uvm_fault_upper(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
925    struct vm_anon **anons)
926 {
927 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
928 	struct vm_anon *oanon, *anon = anons[flt->centeridx];
929 	struct vm_page *pg = NULL;
930 	int error, ret;
931 
932 	/* locked: maps(read), amap, anon */
933 	KASSERT(rw_write_held(amap->am_lock));
934 	KASSERT(anon->an_lock == amap->am_lock);
935 
936 	/*
937 	 * no matter if we have case 1A or case 1B we are going to need to
938 	 * have the anon's memory resident.   ensure that now.
939 	 */
940 	/*
941 	 * let uvmfault_anonget do the dirty work.
942 	 * if it fails (!OK) it will unlock everything for us.
943 	 * if it succeeds, locks are still valid and locked.
944 	 * also, if it is OK, then the anon's page is on the queues.
945 	 * if the page is on loan from a uvm_object, then anonget will
946 	 * lock that object for us if it does not fail.
947 	 */
948 	error = uvmfault_anonget(ufi, amap, anon);
949 	switch (error) {
950 	case 0:
951 		break;
952 
953 	case ERESTART:
954 		return ERESTART;
955 
956 	default:
957 		return error;
958 	}
959 
960 	KASSERT(rw_write_held(amap->am_lock));
961 	KASSERT(anon->an_lock == amap->am_lock);
962 
963 	/*
964 	 * if we are case 1B then we will need to allocate a new blank
965 	 * anon to transfer the data into.   note that we have a lock
966 	 * on anon, so no one can busy or release the page until we are done.
967 	 * also note that the ref count can't drop to zero here because
968 	 * it is > 1 and we are only dropping one ref.
969 	 *
970 	 * in the (hopefully very rare) case that we are out of RAM we
971 	 * will unlock, wait for more RAM, and refault.
972 	 *
973 	 * if we are out of anon VM we wait for RAM to become available.
974 	 */
975 
976 	if ((flt->access_type & PROT_WRITE) != 0 && anon->an_ref > 1) {
977 		/* promoting requires a write lock. */
978 		KASSERT(rw_write_held(amap->am_lock));
979 
980 		counters_inc(uvmexp_counters, flt_acow);
981 		oanon = anon;		/* oanon = old */
982 		anon = uvm_analloc();
983 		if (anon) {
984 			anon->an_lock = amap->am_lock;
985 			pg = uvm_pagealloc(NULL, 0, anon, 0);
986 		}
987 
988 		/* check for out of RAM */
989 		if (anon == NULL || pg == NULL) {
990 			uvmfault_unlockall(ufi, amap, NULL);
991 			if (anon == NULL)
992 				counters_inc(uvmexp_counters, flt_noanon);
993 			else {
994 				anon->an_lock = NULL;
995 				anon->an_ref--;
996 				uvm_anfree(anon);
997 				counters_inc(uvmexp_counters, flt_noram);
998 			}
999 
1000 			if (uvm_swapisfull())
1001 				return ENOMEM;
1002 
1003 			/* out of RAM, wait for more */
1004 			if (anon == NULL)
1005 				uvm_anwait();
1006 			else
1007 				uvm_wait("flt_noram3");
1008 			return ERESTART;
1009 		}
1010 
1011 		/* got all resources, replace anon with nanon */
1012 		uvm_pagecopy(oanon->an_page, pg);	/* pg now !PG_CLEAN */
1013 		/* un-busy! new page */
1014 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE);
1015 		UVM_PAGE_OWN(pg, NULL);
1016 		ret = amap_add(&ufi->entry->aref,
1017 		    ufi->orig_rvaddr - ufi->entry->start, anon, 1);
1018 		KASSERT(ret == 0);
1019 
1020 		KASSERT(anon->an_lock == oanon->an_lock);
1021 
1022 		/* deref: can not drop to zero here by defn! */
1023 		KASSERT(oanon->an_ref > 1);
1024 		oanon->an_ref--;
1025 
1026 #if defined(MULTIPROCESSOR) && !defined(__HAVE_PMAP_MPSAFE_ENTER_COW)
1027 		/*
1028 		 * If there are multiple threads, either uvm or the
1029 		 * pmap has to make sure no threads see the old RO
1030 		 * mapping once any have seen the new RW mapping.
1031 		 * uvm does it by inserting the new mapping RO and
1032 		 * letting it fault again.
1033 		 * This is only a problem on MP systems.
1034 		 */
1035 		if (P_HASSIBLING(curproc)) {
1036 			flt->enter_prot &= ~PROT_WRITE;
1037 			flt->access_type &= ~PROT_WRITE;
1038 		}
1039 #endif
1040 
1041 		/*
1042 		 * note: anon is _not_ locked, but we have the sole references
1043 		 * to in from amap.
1044 		 * thus, no one can get at it until we are done with it.
1045 		 */
1046 	} else {
1047 		counters_inc(uvmexp_counters, flt_anon);
1048 		oanon = anon;
1049 		pg = anon->an_page;
1050 		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1051 			flt->enter_prot = flt->enter_prot & ~PROT_WRITE;
1052 	}
1053 
1054 	/*
1055 	 * now map the page in .
1056 	 */
1057 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1058 	    VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot,
1059 	    flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1060 		/*
1061 		 * No need to undo what we did; we can simply think of
1062 		 * this as the pmap throwing away the mapping information.
1063 		 *
1064 		 * We do, however, have to go through the ReFault path,
1065 		 * as the map may change while we're asleep.
1066 		 */
1067 		uvmfault_unlockall(ufi, amap, NULL);
1068 		if (uvm_swapisfull()) {
1069 			/* XXX instrumentation */
1070 			return ENOMEM;
1071 		}
1072 		/* XXX instrumentation */
1073 		uvm_wait("flt_pmfail1");
1074 		return ERESTART;
1075 	}
1076 
1077 	/*
1078 	 * ... update the page queues.
1079 	 */
1080 	uvm_lock_pageq();
1081 	if (flt->wired) {
1082 		uvm_pagewire(pg);
1083 	} else {
1084 		uvm_pageactivate(pg);
1085 	}
1086 	uvm_unlock_pageq();
1087 
1088 	if (flt->wired) {
1089 		/*
1090 		 * since the now-wired page cannot be paged out,
1091 		 * release its swap resources for others to use.
1092 		 * since an anon with no swap cannot be PG_CLEAN,
1093 		 * clear its clean flag now.
1094 		 */
1095 		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1096 		uvm_anon_dropswap(anon);
1097 	}
1098 
1099 	/*
1100 	 * done case 1!  finish up by unlocking everything and returning success
1101 	 */
1102 	uvmfault_unlockall(ufi, amap, NULL);
1103 	pmap_update(ufi->orig_map->pmap);
1104 	return 0;
1105 }
1106 
1107 /*
1108  * uvm_fault_lower_lookup: look up on-memory uobj pages.
1109  *
1110  *	1. get on-memory pages.
1111  *	2. if failed, give up (get only center page later).
1112  *	3. if succeeded, enter h/w mapping of neighbor pages.
1113  */
1114 
1115 struct vm_page *
1116 uvm_fault_lower_lookup(
1117 	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1118 	struct vm_page **pages)
1119 {
1120 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1121 	struct vm_page *uobjpage = NULL;
1122 	int lcv, gotpages, entered;
1123 	vaddr_t currva;
1124 	paddr_t pa;
1125 
1126 	rw_enter(uobj->vmobjlock, RW_WRITE);
1127 
1128 	counters_inc(uvmexp_counters, flt_lget);
1129 	gotpages = flt->npages;
1130 	(void) uobj->pgops->pgo_get(uobj,
1131 	    ufi->entry->offset + (flt->startva - ufi->entry->start),
1132 	    pages, &gotpages, flt->centeridx,
1133 	    flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1134 	    PGO_LOCKED);
1135 
1136 	/*
1137 	 * check for pages to map, if we got any
1138 	 */
1139 	if (gotpages == 0) {
1140 		return NULL;
1141 	}
1142 
1143 	entered = 0;
1144 	currva = flt->startva;
1145 	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1146 		if (pages[lcv] == NULL ||
1147 		    pages[lcv] == PGO_DONTCARE)
1148 			continue;
1149 
1150 		KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0);
1151 
1152 		/*
1153 		 * if center page is resident and not
1154 		 * PG_BUSY, then pgo_get made it PG_BUSY
1155 		 * for us and gave us a handle to it.
1156 		 * remember this page as "uobjpage."
1157 		 * (for later use).
1158 		 */
1159 		if (lcv == flt->centeridx) {
1160 			uobjpage = pages[lcv];
1161 			continue;
1162 		}
1163 
1164 		if (pmap_extract(ufi->orig_map->pmap, currva, &pa))
1165 			goto next;
1166 
1167 		if (pages[lcv]->wire_count == 0) {
1168 			uvm_lock_pageq();
1169 			uvm_pageactivate(pages[lcv]);
1170 			uvm_unlock_pageq();
1171 		}
1172 		counters_inc(uvmexp_counters, flt_nomap);
1173 
1174 		/* No fault-ahead when wired. */
1175 		KASSERT(flt->wired == FALSE);
1176 
1177 		/*
1178 		 * Since this page isn't the page that's
1179 		 * actually faulting, ignore pmap_enter()
1180 		 * failures; it's not critical that we
1181 		 * enter these right now.
1182 		 */
1183 		(void) pmap_enter(ufi->orig_map->pmap, currva,
1184 		    VM_PAGE_TO_PHYS(pages[lcv]) | flt->pa_flags,
1185 		    flt->enter_prot & MASK(ufi->entry), PMAP_CANFAIL);
1186 		entered++;
1187 
1188 		/*
1189 		 * NOTE: page can't be PG_WANTED because
1190 		 * we've held the lock the whole time
1191 		 * we've had the handle.
1192 		 */
1193 next:
1194 		atomic_clearbits_int(&pages[lcv]->pg_flags, PG_BUSY);
1195 		UVM_PAGE_OWN(pages[lcv], NULL);
1196 	}
1197 	if (entered > 0)
1198 		pmap_update(ufi->orig_map->pmap);
1199 
1200 	return uobjpage;
1201 }
1202 
1203 /*
1204  * uvm_fault_lower: handle lower fault.
1205  *
1206  *	1. check uobj
1207  *	1.1. if null, ZFOD.
1208  *	1.2. if not null, look up unnmapped neighbor pages.
1209  *	2. for center page, check if promote.
1210  *	2.1. ZFOD always needs promotion.
1211  *	2.2. other uobjs, when entry is marked COW (usually MAP_PRIVATE vnode).
1212  *	3. if uobj is not ZFOD and page is not found, do i/o.
1213  *	4. dispatch either direct / promote fault.
1214  */
1215 int
1216 uvm_fault_lower(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1217    struct vm_page **pages)
1218 {
1219 	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1220 	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1221 	int dropswap = 0;
1222 	struct vm_page *uobjpage, *pg = NULL;
1223 	struct vm_anon *anon = NULL;
1224 	int error;
1225 
1226 	/*
1227 	 * now, if the desired page is not shadowed by the amap and we have
1228 	 * a backing object that does not have a special fault routine, then
1229 	 * we ask (with pgo_get) the object for resident pages that we care
1230 	 * about and attempt to map them in.  we do not let pgo_get block
1231 	 * (PGO_LOCKED).
1232 	 */
1233 	if (uobj == NULL) {
1234 		/* zero fill; don't care neighbor pages */
1235 		uobjpage = NULL;
1236 	} else {
1237 		uobjpage = uvm_fault_lower_lookup(ufi, flt, pages);
1238 	}
1239 
1240 	/*
1241 	 * note that at this point we are done with any front or back pages.
1242 	 * we are now going to focus on the center page (i.e. the one we've
1243 	 * faulted on).  if we have faulted on the bottom (uobj)
1244 	 * layer [i.e. case 2] and the page was both present and available,
1245 	 * then we've got a pointer to it as "uobjpage" and we've already
1246 	 * made it BUSY.
1247 	 */
1248 
1249 	/*
1250 	 * locked:
1251 	 */
1252 	KASSERT(amap == NULL ||
1253 	    rw_write_held(amap->am_lock));
1254 	KASSERT(uobj == NULL ||
1255 	    rw_write_held(uobj->vmobjlock));
1256 
1257 	/*
1258 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1259 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1260 	 * have a backing object, check and see if we are going to promote
1261 	 * the data up to an anon during the fault.
1262 	 */
1263 	if (uobj == NULL) {
1264 		uobjpage = PGO_DONTCARE;
1265 		flt->promote = TRUE;		/* always need anon here */
1266 	} else {
1267 		KASSERT(uobjpage != PGO_DONTCARE);
1268 		flt->promote = (flt->access_type & PROT_WRITE) &&
1269 		     UVM_ET_ISCOPYONWRITE(ufi->entry);
1270 	}
1271 
1272 	/*
1273 	 * if uobjpage is not null then we do not need to do I/O to get the
1274 	 * uobjpage.
1275 	 *
1276 	 * if uobjpage is null, then we need to ask the pager to
1277 	 * get the data for us.   once we have the data, we need to reverify
1278 	 * the state the world.   we are currently not holding any resources.
1279 	 */
1280 	if (uobjpage) {
1281 		/* update rusage counters */
1282 		curproc->p_ru.ru_minflt++;
1283 	} else {
1284 		error = uvm_fault_lower_io(ufi, flt, &uobj, &uobjpage);
1285 		if (error != 0)
1286 			return error;
1287 	}
1288 
1289 	/*
1290 	 * notes:
1291 	 *  - at this point uobjpage can not be NULL
1292 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1293 	 */
1294 	if (flt->promote == FALSE) {
1295 		/*
1296 		 * we are not promoting.   if the mapping is COW ensure that we
1297 		 * don't give more access than we should (e.g. when doing a read
1298 		 * fault on a COPYONWRITE mapping we want to map the COW page in
1299 		 * R/O even though the entry protection could be R/W).
1300 		 *
1301 		 * set "pg" to the page we want to map in (uobjpage, usually)
1302 		 */
1303 		counters_inc(uvmexp_counters, flt_obj);
1304 		if (UVM_ET_ISCOPYONWRITE(ufi->entry))
1305 			flt->enter_prot &= ~PROT_WRITE;
1306 		pg = uobjpage;		/* map in the actual object */
1307 
1308 		/* assert(uobjpage != PGO_DONTCARE) */
1309 
1310 		/*
1311 		 * we are faulting directly on the page.
1312 		 */
1313 	} else {
1314 		/*
1315 		 * if we are going to promote the data to an anon we
1316 		 * allocate a blank anon here and plug it into our amap.
1317 		 */
1318 #ifdef DIAGNOSTIC
1319 		if (amap == NULL)
1320 			panic("uvm_fault: want to promote data, but no anon");
1321 #endif
1322 
1323 		anon = uvm_analloc();
1324 		if (anon) {
1325 			/*
1326 			 * In `Fill in data...' below, if
1327 			 * uobjpage == PGO_DONTCARE, we want
1328 			 * a zero'd, dirty page, so have
1329 			 * uvm_pagealloc() do that for us.
1330 			 */
1331 			anon->an_lock = amap->am_lock;
1332 			pg = uvm_pagealloc(NULL, 0, anon,
1333 			    (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1334 		}
1335 
1336 		/*
1337 		 * out of memory resources?
1338 		 */
1339 		if (anon == NULL || pg == NULL) {
1340 			/*
1341 			 * arg!  must unbusy our page and fail or sleep.
1342 			 */
1343 			if (uobjpage != PGO_DONTCARE) {
1344 				uvm_lock_pageq();
1345 				uvm_pageactivate(uobjpage);
1346 				uvm_unlock_pageq();
1347 
1348 				if (uobjpage->pg_flags & PG_WANTED)
1349 					wakeup(uobjpage);
1350 				atomic_clearbits_int(&uobjpage->pg_flags,
1351 				    PG_BUSY|PG_WANTED);
1352 				UVM_PAGE_OWN(uobjpage, NULL);
1353 			}
1354 
1355 			/* unlock and fail ... */
1356 			uvmfault_unlockall(ufi, amap, uobj);
1357 			if (anon == NULL)
1358 				counters_inc(uvmexp_counters, flt_noanon);
1359 			else {
1360 				anon->an_lock = NULL;
1361 				anon->an_ref--;
1362 				uvm_anfree(anon);
1363 				counters_inc(uvmexp_counters, flt_noram);
1364 			}
1365 
1366 			if (uvm_swapisfull())
1367 				return (ENOMEM);
1368 
1369 			/* out of RAM, wait for more */
1370 			if (anon == NULL)
1371 				uvm_anwait();
1372 			else
1373 				uvm_wait("flt_noram5");
1374 			return ERESTART;
1375 		}
1376 
1377 		/*
1378 		 * fill in the data
1379 		 */
1380 		if (uobjpage != PGO_DONTCARE) {
1381 			counters_inc(uvmexp_counters, flt_prcopy);
1382 			/* copy page [pg now dirty] */
1383 			uvm_pagecopy(uobjpage, pg);
1384 
1385 			/*
1386 			 * promote to shared amap?  make sure all sharing
1387 			 * procs see it
1388 			 */
1389 			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1390 				pmap_page_protect(uobjpage, PROT_NONE);
1391 			}
1392 #if defined(MULTIPROCESSOR) && !defined(__HAVE_PMAP_MPSAFE_ENTER_COW)
1393 			/*
1394 			 * Otherwise:
1395 			 * If there are multiple threads, either uvm or the
1396 			 * pmap has to make sure no threads see the old RO
1397 			 * mapping once any have seen the new RW mapping.
1398 			 * uvm does it here by forcing it to PROT_NONE before
1399 			 * inserting the new mapping.
1400 			 */
1401 			else if (P_HASSIBLING(curproc)) {
1402 				pmap_page_protect(uobjpage, PROT_NONE);
1403 			}
1404 #endif
1405 
1406 			/* dispose of uobjpage. drop handle to uobj as well. */
1407 			if (uobjpage->pg_flags & PG_WANTED)
1408 				wakeup(uobjpage);
1409 			atomic_clearbits_int(&uobjpage->pg_flags,
1410 			    PG_BUSY|PG_WANTED);
1411 			UVM_PAGE_OWN(uobjpage, NULL);
1412 			uvm_lock_pageq();
1413 			uvm_pageactivate(uobjpage);
1414 			uvm_unlock_pageq();
1415 			rw_exit(uobj->vmobjlock);
1416 			uobj = NULL;
1417 		} else {
1418 			counters_inc(uvmexp_counters, flt_przero);
1419 			/*
1420 			 * Page is zero'd and marked dirty by uvm_pagealloc()
1421 			 * above.
1422 			 */
1423 		}
1424 
1425 		if (amap_add(&ufi->entry->aref,
1426 		    ufi->orig_rvaddr - ufi->entry->start, anon, 0)) {
1427 			if (pg->pg_flags & PG_WANTED)
1428 				wakeup(pg);
1429 
1430 			atomic_clearbits_int(&pg->pg_flags,
1431 			    PG_BUSY|PG_FAKE|PG_WANTED);
1432 			UVM_PAGE_OWN(pg, NULL);
1433 			uvmfault_unlockall(ufi, amap, uobj);
1434 			uvm_anfree(anon);
1435 			counters_inc(uvmexp_counters, flt_noamap);
1436 
1437 			if (uvm_swapisfull())
1438 				return (ENOMEM);
1439 
1440 			amap_populate(&ufi->entry->aref,
1441 			    ufi->orig_rvaddr - ufi->entry->start);
1442 			return ERESTART;
1443 		}
1444 	}
1445 
1446 	/* note: pg is either the uobjpage or the new page in the new anon */
1447 	/*
1448 	 * all resources are present.   we can now map it in and free our
1449 	 * resources.
1450 	 */
1451 	if (amap == NULL)
1452 		KASSERT(anon == NULL);
1453 	else {
1454 		KASSERT(rw_write_held(amap->am_lock));
1455 		KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
1456 	}
1457 	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1458 	    VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot,
1459 	    flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1460 		/*
1461 		 * No need to undo what we did; we can simply think of
1462 		 * this as the pmap throwing away the mapping information.
1463 		 *
1464 		 * We do, however, have to go through the ReFault path,
1465 		 * as the map may change while we're asleep.
1466 		 */
1467 		if (pg->pg_flags & PG_WANTED)
1468 			wakeup(pg);
1469 
1470 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1471 		UVM_PAGE_OWN(pg, NULL);
1472 		uvmfault_unlockall(ufi, amap, uobj);
1473 		if (uvm_swapisfull()) {
1474 			/* XXX instrumentation */
1475 			return (ENOMEM);
1476 		}
1477 		/* XXX instrumentation */
1478 		uvm_wait("flt_pmfail2");
1479 		return ERESTART;
1480 	}
1481 
1482 	uvm_lock_pageq();
1483 	if (flt->wired) {
1484 		uvm_pagewire(pg);
1485 		if (pg->pg_flags & PQ_AOBJ) {
1486 			/*
1487 			 * since the now-wired page cannot be paged out,
1488 			 * release its swap resources for others to use.
1489 			 * since an aobj page with no swap cannot be clean,
1490 			 * mark it dirty now.
1491 			 *
1492 			 * use pg->uobject here.  if the page is from a
1493 			 * tmpfs vnode, the pages are backed by its UAO and
1494 			 * not the vnode.
1495 			 */
1496 			KASSERT(uobj != NULL);
1497 			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
1498 			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1499 			dropswap = 1;
1500 		}
1501 	} else {
1502 		uvm_pageactivate(pg);
1503 	}
1504 	uvm_unlock_pageq();
1505 
1506 	if (dropswap)
1507 		uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1508 
1509 	if (pg->pg_flags & PG_WANTED)
1510 		wakeup(pg);
1511 
1512 	atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1513 	UVM_PAGE_OWN(pg, NULL);
1514 	uvmfault_unlockall(ufi, amap, uobj);
1515 	pmap_update(ufi->orig_map->pmap);
1516 
1517 	return (0);
1518 }
1519 
1520 /*
1521  * uvm_fault_lower_io: get lower page from backing store.
1522  *
1523  *	1. unlock everything, because i/o will block.
1524  *	2. call pgo_get.
1525  *	3. if failed, recover.
1526  *	4. if succeeded, relock everything and verify things.
1527  */
1528 int
1529 uvm_fault_lower_io(
1530 	struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1531 	struct uvm_object **ruobj, struct vm_page **ruobjpage)
1532 {
1533 	struct vm_amap * const amap = ufi->entry->aref.ar_amap;
1534 	struct uvm_object *uobj = *ruobj;
1535 	struct vm_page *pg;
1536 	boolean_t locked;
1537 	int gotpages;
1538 	int result;
1539 	voff_t uoff;
1540 
1541 	/* update rusage counters */
1542 	curproc->p_ru.ru_majflt++;
1543 
1544 	uvmfault_unlockall(ufi, amap, NULL);
1545 
1546 	counters_inc(uvmexp_counters, flt_get);
1547 	gotpages = 1;
1548 	pg = NULL;
1549 	uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1550 	result = uobj->pgops->pgo_get(uobj, uoff, &pg, &gotpages,
1551 	    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1552 	    PGO_SYNCIO);
1553 
1554 	/*
1555 	 * recover from I/O
1556 	 */
1557 	if (result != VM_PAGER_OK) {
1558 		KASSERT(result != VM_PAGER_PEND);
1559 
1560 		if (result == VM_PAGER_AGAIN) {
1561 			tsleep_nsec(&nowake, PVM, "fltagain2", MSEC_TO_NSEC(5));
1562 			return ERESTART;
1563 		}
1564 
1565 		if (!UVM_ET_ISNOFAULT(ufi->entry))
1566 			return (EIO);
1567 
1568 		pg = PGO_DONTCARE;
1569 		uobj = NULL;
1570 		flt->promote = TRUE;
1571 	}
1572 
1573 	/* re-verify the state of the world.  */
1574 	locked = uvmfault_relock(ufi);
1575 	if (locked && amap != NULL)
1576 		amap_lock(amap, RW_WRITE);
1577 
1578 	/* might be changed */
1579 	if (pg != PGO_DONTCARE) {
1580 		uobj = pg->uobject;
1581 		rw_enter(uobj->vmobjlock, RW_WRITE);
1582 	}
1583 
1584 	/*
1585 	 * Re-verify that amap slot is still free. if there is
1586 	 * a problem, we clean up.
1587 	 */
1588 	if (locked && amap && amap_lookup(&ufi->entry->aref,
1589 	      ufi->orig_rvaddr - ufi->entry->start)) {
1590 		if (locked)
1591 			uvmfault_unlockall(ufi, amap, NULL);
1592 		locked = FALSE;
1593 	}
1594 
1595 	/* didn't get the lock?   release the page and retry. */
1596 	if (locked == FALSE && pg != PGO_DONTCARE) {
1597 		uvm_lock_pageq();
1598 		/* make sure it is in queues */
1599 		uvm_pageactivate(pg);
1600 		uvm_unlock_pageq();
1601 
1602 		if (pg->pg_flags & PG_WANTED)
1603 			/* still holding object lock */
1604 			wakeup(pg);
1605 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_WANTED);
1606 		UVM_PAGE_OWN(pg, NULL);
1607 	}
1608 
1609 	if (locked == FALSE) {
1610 		if (pg != PGO_DONTCARE)
1611 			rw_exit(uobj->vmobjlock);
1612 		return ERESTART;
1613 	}
1614 
1615 	/*
1616 	 * we have the data in pg which is PG_BUSY
1617 	 */
1618 	*ruobj = uobj;
1619 	*ruobjpage = pg;
1620 	return 0;
1621 }
1622 
1623 /*
1624  * uvm_fault_wire: wire down a range of virtual addresses in a map.
1625  *
1626  * => map may be read-locked by caller, but MUST NOT be write-locked.
1627  * => if map is read-locked, any operations which may cause map to
1628  *	be write-locked in uvm_fault() must be taken care of by
1629  *	the caller.  See uvm_map_pageable().
1630  */
1631 int
1632 uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type)
1633 {
1634 	vaddr_t va;
1635 	int rv;
1636 
1637 	/*
1638 	 * now fault it in a page at a time.   if the fault fails then we have
1639 	 * to undo what we have done.   note that in uvm_fault PROT_NONE
1640 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1641 	 */
1642 	for (va = start ; va < end ; va += PAGE_SIZE) {
1643 		rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1644 		if (rv) {
1645 			if (va != start) {
1646 				uvm_fault_unwire(map, start, va);
1647 			}
1648 			return (rv);
1649 		}
1650 	}
1651 
1652 	return (0);
1653 }
1654 
1655 /*
1656  * uvm_fault_unwire(): unwire range of virtual space.
1657  */
1658 void
1659 uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end)
1660 {
1661 
1662 	vm_map_lock_read(map);
1663 	uvm_fault_unwire_locked(map, start, end);
1664 	vm_map_unlock_read(map);
1665 }
1666 
1667 /*
1668  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1669  *
1670  * => map must be at least read-locked.
1671  */
1672 void
1673 uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end)
1674 {
1675 	vm_map_entry_t entry, oentry = NULL, next;
1676 	pmap_t pmap = vm_map_pmap(map);
1677 	vaddr_t va;
1678 	paddr_t pa;
1679 	struct vm_page *pg;
1680 
1681 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1682 	vm_map_assert_anylock(map);
1683 
1684 	/*
1685 	 * we assume that the area we are unwiring has actually been wired
1686 	 * in the first place.   this means that we should be able to extract
1687 	 * the PAs from the pmap.
1688 	 */
1689 
1690 	/*
1691 	 * find the beginning map entry for the region.
1692 	 */
1693 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1694 	if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1695 		panic("uvm_fault_unwire_locked: address not in map");
1696 
1697 	for (va = start; va < end ; va += PAGE_SIZE) {
1698 		/*
1699 		 * find the map entry for the current address.
1700 		 */
1701 		KASSERT(va >= entry->start);
1702 		while (entry && va >= entry->end) {
1703 			next = RBT_NEXT(uvm_map_addr, entry);
1704 			entry = next;
1705 		}
1706 
1707 		if (entry == NULL)
1708 			return;
1709 		if (va < entry->start)
1710 			continue;
1711 
1712 		/*
1713 		 * lock it.
1714 		 */
1715 		if (entry != oentry) {
1716 			if (oentry != NULL) {
1717 				uvm_map_unlock_entry(oentry);
1718 			}
1719 			uvm_map_lock_entry(entry);
1720 			oentry = entry;
1721 		}
1722 
1723 		if (!pmap_extract(pmap, va, &pa))
1724 			continue;
1725 
1726 		/*
1727 		 * if the entry is no longer wired, tell the pmap.
1728 		 */
1729 		if (VM_MAPENT_ISWIRED(entry) == 0)
1730 			pmap_unwire(pmap, va);
1731 
1732 		pg = PHYS_TO_VM_PAGE(pa);
1733 		if (pg) {
1734 			uvm_lock_pageq();
1735 			uvm_pageunwire(pg);
1736 			uvm_unlock_pageq();
1737 		}
1738 	}
1739 
1740 	if (oentry != NULL) {
1741 		uvm_map_unlock_entry(oentry);
1742 	}
1743 }
1744 
1745 /*
1746  * uvmfault_unlockmaps: unlock the maps
1747  */
1748 void
1749 uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked)
1750 {
1751 	/*
1752 	 * ufi can be NULL when this isn't really a fault,
1753 	 * but merely paging in anon data.
1754 	 */
1755 	if (ufi == NULL) {
1756 		return;
1757 	}
1758 
1759 	uvmfault_update_stats(ufi);
1760 	if (write_locked) {
1761 		vm_map_unlock(ufi->map);
1762 	} else {
1763 		vm_map_unlock_read(ufi->map);
1764 	}
1765 }
1766 
1767 /*
1768  * uvmfault_unlockall: unlock everything passed in.
1769  *
1770  * => maps must be read-locked (not write-locked).
1771  */
1772 void
1773 uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap,
1774     struct uvm_object *uobj)
1775 {
1776 	if (uobj)
1777 		rw_exit(uobj->vmobjlock);
1778 	if (amap != NULL)
1779 		amap_unlock(amap);
1780 	uvmfault_unlockmaps(ufi, FALSE);
1781 }
1782 
1783 /*
1784  * uvmfault_lookup: lookup a virtual address in a map
1785  *
1786  * => caller must provide a uvm_faultinfo structure with the IN
1787  *	params properly filled in
1788  * => we will lookup the map entry (handling submaps) as we go
1789  * => if the lookup is a success we will return with the maps locked
1790  * => if "write_lock" is TRUE, we write_lock the map, otherwise we only
1791  *	get a read lock.
1792  * => note that submaps can only appear in the kernel and they are
1793  *	required to use the same virtual addresses as the map they
1794  *	are referenced by (thus address translation between the main
1795  *	map and the submap is unnecessary).
1796  */
1797 
1798 boolean_t
1799 uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock)
1800 {
1801 	vm_map_t tmpmap;
1802 
1803 	/*
1804 	 * init ufi values for lookup.
1805 	 */
1806 	ufi->map = ufi->orig_map;
1807 	ufi->size = ufi->orig_size;
1808 
1809 	/*
1810 	 * keep going down levels until we are done.   note that there can
1811 	 * only be two levels so we won't loop very long.
1812 	 */
1813 	while (1) {
1814 		if (ufi->orig_rvaddr < ufi->map->min_offset ||
1815 		    ufi->orig_rvaddr >= ufi->map->max_offset)
1816 			return FALSE;
1817 
1818 		/* lock map */
1819 		if (write_lock) {
1820 			vm_map_lock(ufi->map);
1821 		} else {
1822 			vm_map_lock_read(ufi->map);
1823 		}
1824 
1825 		/* lookup */
1826 		if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr,
1827 		    &ufi->entry)) {
1828 			uvmfault_unlockmaps(ufi, write_lock);
1829 			return FALSE;
1830 		}
1831 
1832 		/* reduce size if necessary */
1833 		if (ufi->entry->end - ufi->orig_rvaddr < ufi->size)
1834 			ufi->size = ufi->entry->end - ufi->orig_rvaddr;
1835 
1836 		/*
1837 		 * submap?    replace map with the submap and lookup again.
1838 		 * note: VAs in submaps must match VAs in main map.
1839 		 */
1840 		if (UVM_ET_ISSUBMAP(ufi->entry)) {
1841 			tmpmap = ufi->entry->object.sub_map;
1842 			uvmfault_unlockmaps(ufi, write_lock);
1843 			ufi->map = tmpmap;
1844 			continue;
1845 		}
1846 
1847 		/*
1848 		 * got it!
1849 		 */
1850 		ufi->mapv = ufi->map->timestamp;
1851 		return TRUE;
1852 
1853 	}	/* while loop */
1854 
1855 	/*NOTREACHED*/
1856 }
1857 
1858 /*
1859  * uvmfault_relock: attempt to relock the same version of the map
1860  *
1861  * => fault data structures should be unlocked before calling.
1862  * => if a success (TRUE) maps will be locked after call.
1863  */
1864 boolean_t
1865 uvmfault_relock(struct uvm_faultinfo *ufi)
1866 {
1867 	/*
1868 	 * ufi can be NULL when this isn't really a fault,
1869 	 * but merely paging in anon data.
1870 	 */
1871 	if (ufi == NULL) {
1872 		return TRUE;
1873 	}
1874 
1875 	counters_inc(uvmexp_counters, flt_relck);
1876 
1877 	/*
1878 	 * relock map.   fail if version mismatch (in which case nothing
1879 	 * gets locked).
1880 	 */
1881 	vm_map_lock_read(ufi->map);
1882 	if (ufi->mapv != ufi->map->timestamp) {
1883 		vm_map_unlock_read(ufi->map);
1884 		return FALSE;
1885 	}
1886 
1887 	counters_inc(uvmexp_counters, flt_relckok);
1888 	return TRUE;		/* got it! */
1889 }
1890