xref: /openbsd-src/sys/uvm/uvm_fault.c (revision 1a8dbaac879b9f3335ad7fb25429ce63ac1d6bac)
1 /*	$OpenBSD: uvm_fault.c,v 1.102 2020/09/29 11:47:41 mpi Exp $	*/
2 /*	$NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Charles D. Cranor and Washington University.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
29  */
30 
31 /*
32  * uvm_fault.c: fault handler
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/proc.h>
39 #include <sys/malloc.h>
40 #include <sys/mman.h>
41 #include <sys/tracepoint.h>
42 
43 #include <uvm/uvm.h>
44 
45 /*
46  *
47  * a word on page faults:
48  *
49  * types of page faults we handle:
50  *
51  * CASE 1: upper layer faults                   CASE 2: lower layer faults
52  *
53  *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
54  *    read/write1     write>1                  read/write   +-cow_write/zero
55  *         |             |                         |        |
56  *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
57  * amap |  V  |       |  ----------->new|          |        | |  ^  |
58  *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
59  *                                                 |        |    |
60  *      +-----+       +-----+                   +--|--+     | +--|--+
61  * uobj | d/c |       | d/c |                   |  V  |     +----|  |
62  *      +-----+       +-----+                   +-----+       +-----+
63  *
64  * d/c = don't care
65  *
66  *   case [0]: layerless fault
67  *	no amap or uobj is present.   this is an error.
68  *
69  *   case [1]: upper layer fault [anon active]
70  *     1A: [read] or [write with anon->an_ref == 1]
71  *		I/O takes place in top level anon and uobj is not touched.
72  *     1B: [write with anon->an_ref > 1]
73  *		new anon is alloc'd and data is copied off ["COW"]
74  *
75  *   case [2]: lower layer fault [uobj]
76  *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
77  *		I/O takes place directly in object.
78  *     2B: [write to copy_on_write] or [read on NULL uobj]
79  *		data is "promoted" from uobj to a new anon.
80  *		if uobj is null, then we zero fill.
81  *
82  * we follow the standard UVM locking protocol ordering:
83  *
84  * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
85  * we hold a PG_BUSY page if we unlock for I/O
86  *
87  *
88  * the code is structured as follows:
89  *
90  *     - init the "IN" params in the ufi structure
91  *   ReFault:
92  *     - do lookups [locks maps], check protection, handle needs_copy
93  *     - check for case 0 fault (error)
94  *     - establish "range" of fault
95  *     - if we have an amap lock it and extract the anons
96  *     - if sequential advice deactivate pages behind us
97  *     - at the same time check pmap for unmapped areas and anon for pages
98  *	 that we could map in (and do map it if found)
99  *     - check object for resident pages that we could map in
100  *     - if (case 2) goto Case2
101  *     - >>> handle case 1
102  *           - ensure source anon is resident in RAM
103  *           - if case 1B alloc new anon and copy from source
104  *           - map the correct page in
105  *   Case2:
106  *     - >>> handle case 2
107  *           - ensure source page is resident (if uobj)
108  *           - if case 2B alloc new anon and copy from source (could be zero
109  *		fill if uobj == NULL)
110  *           - map the correct page in
111  *     - done!
112  *
113  * note on paging:
114  *   if we have to do I/O we place a PG_BUSY page in the correct object,
115  * unlock everything, and do the I/O.   when I/O is done we must reverify
116  * the state of the world before assuming that our data structures are
117  * valid.   [because mappings could change while the map is unlocked]
118  *
119  *  alternative 1: unbusy the page in question and restart the page fault
120  *    from the top (ReFault).   this is easy but does not take advantage
121  *    of the information that we already have from our previous lookup,
122  *    although it is possible that the "hints" in the vm_map will help here.
123  *
124  * alternative 2: the system already keeps track of a "version" number of
125  *    a map.   [i.e. every time you write-lock a map (e.g. to change a
126  *    mapping) you bump the version number up by one...]   so, we can save
127  *    the version number of the map before we release the lock and start I/O.
128  *    then when I/O is done we can relock and check the version numbers
129  *    to see if anything changed.    this might save us some over 1 because
130  *    we don't have to unbusy the page and may be less compares(?).
131  *
132  * alternative 3: put in backpointers or a way to "hold" part of a map
133  *    in place while I/O is in progress.   this could be complex to
134  *    implement (especially with structures like amap that can be referenced
135  *    by multiple map entries, and figuring out what should wait could be
136  *    complex as well...).
137  *
138  * given that we are not currently multiprocessor or multithreaded we might
139  * as well choose alternative 2 now.   maybe alternative 3 would be useful
140  * in the future.    XXX keep in mind for future consideration//rechecking.
141  */
142 
143 /*
144  * local data structures
145  */
146 struct uvm_advice {
147 	int nback;
148 	int nforw;
149 };
150 
151 /*
152  * page range array: set up in uvmfault_init().
153  */
154 static struct uvm_advice uvmadvice[MADV_MASK + 1];
155 
156 #define UVM_MAXRANGE 16	/* must be max() of nback+nforw+1 */
157 
158 /*
159  * private prototypes
160  */
161 static void uvmfault_amapcopy(struct uvm_faultinfo *);
162 static inline void uvmfault_anonflush(struct vm_anon **, int);
163 void	uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t);
164 void	uvmfault_update_stats(struct uvm_faultinfo *);
165 
166 /*
167  * inline functions
168  */
169 /*
170  * uvmfault_anonflush: try and deactivate pages in specified anons
171  *
172  * => does not have to deactivate page if it is busy
173  */
174 static inline void
175 uvmfault_anonflush(struct vm_anon **anons, int n)
176 {
177 	int lcv;
178 	struct vm_page *pg;
179 
180 	for (lcv = 0 ; lcv < n ; lcv++) {
181 		if (anons[lcv] == NULL)
182 			continue;
183 		pg = anons[lcv]->an_page;
184 		if (pg && (pg->pg_flags & PG_BUSY) == 0) {
185 			uvm_lock_pageq();
186 			if (pg->wire_count == 0) {
187 				pmap_page_protect(pg, PROT_NONE);
188 				uvm_pagedeactivate(pg);
189 			}
190 			uvm_unlock_pageq();
191 		}
192 	}
193 }
194 
195 /*
196  * normal functions
197  */
198 /*
199  * uvmfault_init: compute proper values for the uvmadvice[] array.
200  */
201 void
202 uvmfault_init(void)
203 {
204 	int npages;
205 
206 	npages = atop(16384);
207 	if (npages > 0) {
208 		KASSERT(npages <= UVM_MAXRANGE / 2);
209 		uvmadvice[MADV_NORMAL].nforw = npages;
210 		uvmadvice[MADV_NORMAL].nback = npages - 1;
211 	}
212 
213 	npages = atop(32768);
214 	if (npages > 0) {
215 		KASSERT(npages <= UVM_MAXRANGE / 2);
216 		uvmadvice[MADV_SEQUENTIAL].nforw = npages - 1;
217 		uvmadvice[MADV_SEQUENTIAL].nback = npages;
218 	}
219 }
220 
221 /*
222  * uvmfault_amapcopy: clear "needs_copy" in a map.
223  *
224  * => if we are out of RAM we sleep (waiting for more)
225  */
226 static void
227 uvmfault_amapcopy(struct uvm_faultinfo *ufi)
228 {
229 
230 	/* while we haven't done the job */
231 	while (1) {
232 		/* no mapping?  give up. */
233 		if (uvmfault_lookup(ufi, TRUE) == FALSE)
234 			return;
235 
236 		/* copy if needed. */
237 		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
238 			amap_copy(ufi->map, ufi->entry, M_NOWAIT,
239 				UVM_ET_ISSTACK(ufi->entry) ? FALSE : TRUE,
240 				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
241 
242 		/* didn't work?  must be out of RAM.  sleep. */
243 		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
244 			uvmfault_unlockmaps(ufi, TRUE);
245 			uvm_wait("fltamapcopy");
246 			continue;
247 		}
248 
249 		/* got it! */
250 		uvmfault_unlockmaps(ufi, TRUE);
251 		return;
252 	}
253 	/*NOTREACHED*/
254 }
255 
256 /*
257  * uvmfault_anonget: get data in an anon into a non-busy, non-released
258  * page in that anon.
259  *
260  * => we don't move the page on the queues [gets moved later]
261  * => if we allocate a new page [we_own], it gets put on the queues.
262  *    either way, the result is that the page is on the queues at return time
263  */
264 int
265 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
266     struct vm_anon *anon)
267 {
268 	boolean_t we_own;	/* we own anon's page? */
269 	boolean_t locked;	/* did we relock? */
270 	struct vm_page *pg;
271 	int result;
272 
273 	result = 0;		/* XXX shut up gcc */
274 	uvmexp.fltanget++;
275         /* bump rusage counters */
276 	if (anon->an_page)
277 		curproc->p_ru.ru_minflt++;
278 	else
279 		curproc->p_ru.ru_majflt++;
280 
281 	/* loop until we get it, or fail. */
282 	while (1) {
283 		we_own = FALSE;		/* TRUE if we set PG_BUSY on a page */
284 		pg = anon->an_page;
285 
286 		/* page there?   make sure it is not busy/released. */
287 		if (pg) {
288 			KASSERT(pg->pg_flags & PQ_ANON);
289 			KASSERT(pg->uanon == anon);
290 
291 			/*
292 			 * if the page is busy, we drop all the locks and
293 			 * try again.
294 			 */
295 			if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0)
296 				return (VM_PAGER_OK);
297 			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
298 			uvmexp.fltpgwait++;
299 
300 			/*
301 			 * the last unlock must be an atomic unlock+wait on
302 			 * the owner of page
303 			 */
304 			uvmfault_unlockall(ufi, amap, NULL, NULL);
305 			tsleep_nsec(pg, PVM, "anonget2", INFSLP);
306 			/* ready to relock and try again */
307 		} else {
308 			/* no page, we must try and bring it in. */
309 			pg = uvm_pagealloc(NULL, 0, anon, 0);
310 
311 			if (pg == NULL) {		/* out of RAM.  */
312 				uvmfault_unlockall(ufi, amap, NULL, anon);
313 				uvmexp.fltnoram++;
314 				uvm_wait("flt_noram1");
315 				/* ready to relock and try again */
316 			} else {
317 				/* we set the PG_BUSY bit */
318 				we_own = TRUE;
319 				uvmfault_unlockall(ufi, amap, NULL, anon);
320 
321 				/*
322 				 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN
323 				 * page into the uvm_swap_get function with
324 				 * all data structures unlocked.  note that
325 				 * it is ok to read an_swslot here because
326 				 * we hold PG_BUSY on the page.
327 				 */
328 				uvmexp.pageins++;
329 				result = uvm_swap_get(pg, anon->an_swslot,
330 				    PGO_SYNCIO);
331 
332 				/*
333 				 * we clean up after the i/o below in the
334 				 * "we_own" case
335 				 */
336 				/* ready to relock and try again */
337 			}
338 		}
339 
340 		/* now relock and try again */
341 		locked = uvmfault_relock(ufi);
342 
343 		/*
344 		 * if we own the page (i.e. we set PG_BUSY), then we need
345 		 * to clean up after the I/O. there are three cases to
346 		 * consider:
347 		 *   [1] page released during I/O: free anon and ReFault.
348 		 *   [2] I/O not OK.   free the page and cause the fault
349 		 *       to fail.
350 		 *   [3] I/O OK!   activate the page and sync with the
351 		 *       non-we_own case (i.e. drop anon lock if not locked).
352 		 */
353 		if (we_own) {
354 			if (pg->pg_flags & PG_WANTED) {
355 				wakeup(pg);
356 			}
357 			/* un-busy! */
358 			atomic_clearbits_int(&pg->pg_flags,
359 			    PG_WANTED|PG_BUSY|PG_FAKE);
360 			UVM_PAGE_OWN(pg, NULL);
361 
362 			/*
363 			 * if we were RELEASED during I/O, then our anon is
364 			 * no longer part of an amap.   we need to free the
365 			 * anon and try again.
366 			 */
367 			if (pg->pg_flags & PG_RELEASED) {
368 				pmap_page_protect(pg, PROT_NONE);
369 				uvm_anfree(anon);	/* frees page for us */
370 				if (locked)
371 					uvmfault_unlockall(ufi, amap, NULL,
372 							   NULL);
373 				uvmexp.fltpgrele++;
374 				return (VM_PAGER_REFAULT);	/* refault! */
375 			}
376 
377 			if (result != VM_PAGER_OK) {
378 				KASSERT(result != VM_PAGER_PEND);
379 
380 				/* remove page from anon */
381 				anon->an_page = NULL;
382 
383 				/*
384 				 * remove the swap slot from the anon
385 				 * and mark the anon as having no real slot.
386 				 * don't free the swap slot, thus preventing
387 				 * it from being used again.
388 				 */
389 				uvm_swap_markbad(anon->an_swslot, 1);
390 				anon->an_swslot = SWSLOT_BAD;
391 
392 				/*
393 				 * note: page was never !PG_BUSY, so it
394 				 * can't be mapped and thus no need to
395 				 * pmap_page_protect it...
396 				 */
397 				uvm_lock_pageq();
398 				uvm_pagefree(pg);
399 				uvm_unlock_pageq();
400 
401 				if (locked)
402 					uvmfault_unlockall(ufi, amap, NULL,
403 					    anon);
404 				return (VM_PAGER_ERROR);
405 			}
406 
407 			/*
408 			 * must be OK, clear modify (already PG_CLEAN)
409 			 * and activate
410 			 */
411 			pmap_clear_modify(pg);
412 			uvm_lock_pageq();
413 			uvm_pageactivate(pg);
414 			uvm_unlock_pageq();
415 		}
416 
417 		/* we were not able to relock.   restart fault. */
418 		if (!locked)
419 			return (VM_PAGER_REFAULT);
420 
421 		/* verify no one touched the amap and moved the anon on us. */
422 		if (ufi != NULL &&
423 		    amap_lookup(&ufi->entry->aref,
424 				ufi->orig_rvaddr - ufi->entry->start) != anon) {
425 
426 			uvmfault_unlockall(ufi, amap, NULL, anon);
427 			return (VM_PAGER_REFAULT);
428 		}
429 
430 		/* try it again! */
431 		uvmexp.fltanretry++;
432 		continue;
433 
434 	} /* while (1) */
435 	/*NOTREACHED*/
436 }
437 
438 /*
439  * Update statistics after fault resolution.
440  * - maxrss
441  */
442 void
443 uvmfault_update_stats(struct uvm_faultinfo *ufi)
444 {
445 	struct vm_map		*map;
446 	struct proc		*p;
447 	vsize_t			 res;
448 
449 	map = ufi->orig_map;
450 
451 	/*
452 	 * If this is a nested pmap (eg, a virtual machine pmap managed
453 	 * by vmm(4) on amd64/i386), don't do any updating, just return.
454 	 *
455 	 * pmap_nested() on other archs is #defined to 0, so this is a
456 	 * no-op.
457 	 */
458 	if (pmap_nested(map->pmap))
459 		return;
460 
461 	/* Update the maxrss for the process. */
462 	if (map->flags & VM_MAP_ISVMSPACE) {
463 		p = curproc;
464 		KASSERT(p != NULL && &p->p_vmspace->vm_map == map);
465 
466 		res = pmap_resident_count(map->pmap);
467 		/* Convert res from pages to kilobytes. */
468 		res <<= (PAGE_SHIFT - 10);
469 
470 		if (p->p_ru.ru_maxrss < res)
471 			p->p_ru.ru_maxrss = res;
472 	}
473 }
474 
475 /*
476  *   F A U L T   -   m a i n   e n t r y   p o i n t
477  */
478 
479 /*
480  * uvm_fault: page fault handler
481  *
482  * => called from MD code to resolve a page fault
483  * => VM data structures usually should be unlocked.   however, it is
484  *	possible to call here with the main map locked if the caller
485  *	gets a write lock, sets it recursive, and then calls us (c.f.
486  *	uvm_map_pageable).   this should be avoided because it keeps
487  *	the map locked off during I/O.
488  */
489 #define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
490 			 ~PROT_WRITE : PROT_MASK)
491 int
492 uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type,
493     vm_prot_t access_type)
494 {
495 	struct uvm_faultinfo ufi;
496 	vm_prot_t enter_prot;
497 	boolean_t wired, narrow, promote, locked, shadowed;
498 	int npages, nback, nforw, centeridx, result, lcv, gotpages, ret;
499 	vaddr_t startva, currva;
500 	voff_t uoff;
501 	paddr_t pa, pa_flags;
502 	struct vm_amap *amap;
503 	struct uvm_object *uobj;
504 	struct vm_anon *anons_store[UVM_MAXRANGE], **anons, *anon, *oanon;
505 	struct vm_page *pages[UVM_MAXRANGE], *pg, *uobjpage;
506 
507 	anon = NULL;
508 	pg = NULL;
509 
510 	uvmexp.faults++;	/* XXX: locking? */
511 	TRACEPOINT(uvm, fault, vaddr, fault_type, access_type, NULL);
512 
513 	/* init the IN parameters in the ufi */
514 	ufi.orig_map = orig_map;
515 	ufi.orig_rvaddr = trunc_page(vaddr);
516 	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
517 	if (fault_type == VM_FAULT_WIRE)
518 		narrow = TRUE;		/* don't look for neighborhood
519 					 * pages on wire */
520 	else
521 		narrow = FALSE;		/* normal fault */
522 
523 	/* "goto ReFault" means restart the page fault from ground zero. */
524 ReFault:
525 	/* lookup and lock the maps */
526 	if (uvmfault_lookup(&ufi, FALSE) == FALSE) {
527 		return (EFAULT);
528 	}
529 
530 #ifdef DIAGNOSTIC
531 	if ((ufi.map->flags & VM_MAP_PAGEABLE) == 0)
532 		panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)",
533 		    ufi.map, vaddr);
534 #endif
535 
536 	/* check protection */
537 	if ((ufi.entry->protection & access_type) != access_type) {
538 		uvmfault_unlockmaps(&ufi, FALSE);
539 		return (EACCES);
540 	}
541 
542 	/*
543 	 * "enter_prot" is the protection we want to enter the page in at.
544 	 * for certain pages (e.g. copy-on-write pages) this protection can
545 	 * be more strict than ufi.entry->protection.  "wired" means either
546 	 * the entry is wired or we are fault-wiring the pg.
547 	 */
548 
549 	enter_prot = ufi.entry->protection;
550 	pa_flags = UVM_ET_ISWC(ufi.entry) ? PMAP_WC : 0;
551 	wired = VM_MAPENT_ISWIRED(ufi.entry) || (fault_type == VM_FAULT_WIRE);
552 	if (wired)
553 		access_type = enter_prot; /* full access for wired */
554 
555 	/* handle "needs_copy" case. */
556 	if (UVM_ET_ISNEEDSCOPY(ufi.entry)) {
557 		if ((access_type & PROT_WRITE) ||
558 		    (ufi.entry->object.uvm_obj == NULL)) {
559 			/* need to clear */
560 			uvmfault_unlockmaps(&ufi, FALSE);
561 			uvmfault_amapcopy(&ufi);
562 			uvmexp.fltamcopy++;
563 			goto ReFault;
564 		} else {
565 			/*
566 			 * ensure that we pmap_enter page R/O since
567 			 * needs_copy is still true
568 			 */
569 			enter_prot &= ~PROT_WRITE;
570 		}
571 	}
572 
573 	/* identify the players */
574 	amap = ufi.entry->aref.ar_amap;		/* top layer */
575 	uobj = ufi.entry->object.uvm_obj;	/* bottom layer */
576 
577 	/*
578 	 * check for a case 0 fault.  if nothing backing the entry then
579 	 * error now.
580 	 */
581 	if (amap == NULL && uobj == NULL) {
582 		uvmfault_unlockmaps(&ufi, FALSE);
583 		return (EFAULT);
584 	}
585 
586 	/*
587 	 * establish range of interest based on advice from mapper
588 	 * and then clip to fit map entry.   note that we only want
589 	 * to do this the first time through the fault.   if we
590 	 * ReFault we will disable this by setting "narrow" to true.
591 	 */
592 	if (narrow == FALSE) {
593 
594 		/* wide fault (!narrow) */
595 		nback = min(uvmadvice[ufi.entry->advice].nback,
596 			    (ufi.orig_rvaddr - ufi.entry->start) >> PAGE_SHIFT);
597 		startva = ufi.orig_rvaddr - ((vsize_t)nback << PAGE_SHIFT);
598 		nforw = min(uvmadvice[ufi.entry->advice].nforw,
599 			    ((ufi.entry->end - ufi.orig_rvaddr) >>
600 			     PAGE_SHIFT) - 1);
601 		/*
602 		 * note: "-1" because we don't want to count the
603 		 * faulting page as forw
604 		 */
605 		npages = nback + nforw + 1;
606 		centeridx = nback;
607 
608 		narrow = TRUE;	/* ensure only once per-fault */
609 	} else {
610 		/* narrow fault! */
611 		nback = nforw = 0;
612 		startva = ufi.orig_rvaddr;
613 		npages = 1;
614 		centeridx = 0;
615 	}
616 
617 	/* if we've got an amap, extract current anons. */
618 	if (amap) {
619 		anons = anons_store;
620 		amap_lookups(&ufi.entry->aref, startva - ufi.entry->start,
621 		    anons, npages);
622 	} else {
623 		anons = NULL;	/* to be safe */
624 	}
625 
626 	/*
627 	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
628 	 * now and then forget about them (for the rest of the fault).
629 	 */
630 	if (ufi.entry->advice == MADV_SEQUENTIAL && nback != 0) {
631 		/* flush back-page anons? */
632 		if (amap)
633 			uvmfault_anonflush(anons, nback);
634 
635 		/* flush object? */
636 		if (uobj) {
637 			uoff = (startva - ufi.entry->start) + ufi.entry->offset;
638 			(void) uobj->pgops->pgo_flush(uobj, uoff, uoff +
639 			    ((vsize_t)nback << PAGE_SHIFT), PGO_DEACTIVATE);
640 		}
641 
642 		/* now forget about the backpages */
643 		if (amap)
644 			anons += nback;
645 		startva += ((vsize_t)nback << PAGE_SHIFT);
646 		npages -= nback;
647 		centeridx = 0;
648 	}
649 
650 	/*
651 	 * map in the backpages and frontpages we found in the amap in hopes
652 	 * of preventing future faults.    we also init the pages[] array as
653 	 * we go.
654 	 */
655 	currva = startva;
656 	shadowed = FALSE;
657 	for (lcv = 0 ; lcv < npages ; lcv++, currva += PAGE_SIZE) {
658 		/*
659 		 * dont play with VAs that are already mapped
660 		 * except for center)
661 		 */
662 		if (lcv != centeridx &&
663 		    pmap_extract(ufi.orig_map->pmap, currva, &pa)) {
664 			pages[lcv] = PGO_DONTCARE;
665 			continue;
666 		}
667 
668 		/* unmapped or center page.   check if any anon at this level. */
669 		if (amap == NULL || anons[lcv] == NULL) {
670 			pages[lcv] = NULL;
671 			continue;
672 		}
673 
674 		/* check for present page and map if possible.   re-activate it. */
675 		pages[lcv] = PGO_DONTCARE;
676 		if (lcv == centeridx) {		/* save center for later! */
677 			shadowed = TRUE;
678 			continue;
679 		}
680 		anon = anons[lcv];
681 		if (anon->an_page &&
682 		    (anon->an_page->pg_flags & (PG_RELEASED|PG_BUSY)) == 0) {
683 			uvm_lock_pageq();
684 			uvm_pageactivate(anon->an_page);	/* reactivate */
685 			uvm_unlock_pageq();
686 			uvmexp.fltnamap++;
687 
688 			/*
689 			 * Since this isn't the page that's actually faulting,
690 			 * ignore pmap_enter() failures; it's not critical
691 			 * that we enter these right now.
692 			 */
693 			(void) pmap_enter(ufi.orig_map->pmap, currva,
694 			    VM_PAGE_TO_PHYS(anon->an_page) | pa_flags,
695 			    (anon->an_ref > 1) ? (enter_prot & ~PROT_WRITE) :
696 			    enter_prot,
697 			    PMAP_CANFAIL |
698 			     (VM_MAPENT_ISWIRED(ufi.entry) ? PMAP_WIRED : 0));
699 		}
700 	}
701 	if (npages > 1)
702 		pmap_update(ufi.orig_map->pmap);
703 
704 	/* (shadowed == TRUE) if there is an anon at the faulting address */
705 	/*
706 	 * if the desired page is not shadowed by the amap and we have a
707 	 * backing object, then we check to see if the backing object would
708 	 * prefer to handle the fault itself (rather than letting us do it
709 	 * with the usual pgo_get hook).  the backing object signals this by
710 	 * providing a pgo_fault routine.
711 	 */
712 	if (uobj && shadowed == FALSE && uobj->pgops->pgo_fault != NULL) {
713 		result = uobj->pgops->pgo_fault(&ufi, startva, pages, npages,
714 				    centeridx, fault_type, access_type,
715 				    PGO_LOCKED);
716 
717 		if (result == VM_PAGER_OK)
718 			return (0);		/* pgo_fault did pmap enter */
719 		else if (result == VM_PAGER_REFAULT)
720 			goto ReFault;		/* try again! */
721 		else
722 			return (EACCES);
723 	}
724 
725 	/*
726 	 * now, if the desired page is not shadowed by the amap and we have
727 	 * a backing object that does not have a special fault routine, then
728 	 * we ask (with pgo_get) the object for resident pages that we care
729 	 * about and attempt to map them in.  we do not let pgo_get block
730 	 * (PGO_LOCKED).
731 	 *
732 	 * ("get" has the option of doing a pmap_enter for us)
733 	 */
734 	if (uobj && shadowed == FALSE) {
735 		uvmexp.fltlget++;
736 		gotpages = npages;
737 		(void) uobj->pgops->pgo_get(uobj, ufi.entry->offset +
738 				(startva - ufi.entry->start),
739 				pages, &gotpages, centeridx,
740 				access_type & MASK(ufi.entry),
741 				ufi.entry->advice, PGO_LOCKED);
742 
743 		/* check for pages to map, if we got any */
744 		uobjpage = NULL;
745 		if (gotpages) {
746 			currva = startva;
747 			for (lcv = 0 ; lcv < npages ;
748 			    lcv++, currva += PAGE_SIZE) {
749 				if (pages[lcv] == NULL ||
750 				    pages[lcv] == PGO_DONTCARE)
751 					continue;
752 
753 				KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0);
754 
755 				/*
756 				 * if center page is resident and not
757 				 * PG_BUSY, then pgo_get made it PG_BUSY
758 				 * for us and gave us a handle to it.
759 				 * remember this page as "uobjpage."
760 				 * (for later use).
761 				 */
762 				if (lcv == centeridx) {
763 					uobjpage = pages[lcv];
764 					continue;
765 				}
766 
767 				/*
768 				 * note: calling pgo_get with locked data
769 				 * structures returns us pages which are
770 				 * neither busy nor released, so we don't
771 				 * need to check for this.   we can just
772 				 * directly enter the page (after moving it
773 				 * to the head of the active queue [useful?]).
774 				 */
775 
776 				uvm_lock_pageq();
777 				uvm_pageactivate(pages[lcv]);	/* reactivate */
778 				uvm_unlock_pageq();
779 				uvmexp.fltnomap++;
780 
781 				/*
782 				 * Since this page isn't the page that's
783 				 * actually faulting, ignore pmap_enter()
784 				 * failures; it's not critical that we
785 				 * enter these right now.
786 				 */
787 				(void) pmap_enter(ufi.orig_map->pmap, currva,
788 				    VM_PAGE_TO_PHYS(pages[lcv]) | pa_flags,
789 				    enter_prot & MASK(ufi.entry),
790 				    PMAP_CANFAIL |
791 				     (wired ? PMAP_WIRED : 0));
792 
793 				/*
794 				 * NOTE: page can't be PG_WANTED because
795 				 * we've held the lock the whole time
796 				 * we've had the handle.
797 				 */
798 				atomic_clearbits_int(&pages[lcv]->pg_flags,
799 				    PG_BUSY);
800 				UVM_PAGE_OWN(pages[lcv], NULL);
801 			}	/* for "lcv" loop */
802 			pmap_update(ufi.orig_map->pmap);
803 		}   /* "gotpages" != 0 */
804 		/* note: object still _locked_ */
805 	} else {
806 		uobjpage = NULL;
807 	}
808 
809 	/*
810 	 * note that at this point we are done with any front or back pages.
811 	 * we are now going to focus on the center page (i.e. the one we've
812 	 * faulted on).  if we have faulted on the top (anon) layer
813 	 * [i.e. case 1], then the anon we want is anons[centeridx] (we have
814 	 * not touched it yet).  if we have faulted on the bottom (uobj)
815 	 * layer [i.e. case 2] and the page was both present and available,
816 	 * then we've got a pointer to it as "uobjpage" and we've already
817 	 * made it BUSY.
818 	 */
819 	/*
820 	 * there are four possible cases we must address: 1A, 1B, 2A, and 2B
821 	 */
822 	/* redirect case 2: if we are not shadowed, go to case 2. */
823 	if (shadowed == FALSE)
824 		goto Case2;
825 
826 	/* handle case 1: fault on an anon in our amap */
827 	anon = anons[centeridx];
828 
829 	/*
830 	 * no matter if we have case 1A or case 1B we are going to need to
831 	 * have the anon's memory resident.   ensure that now.
832 	 */
833 	/*
834 	 * let uvmfault_anonget do the dirty work.
835 	 * also, if it is OK, then the anon's page is on the queues.
836 	 */
837 	result = uvmfault_anonget(&ufi, amap, anon);
838 	switch (result) {
839 	case VM_PAGER_OK:
840 		break;
841 
842 	case VM_PAGER_REFAULT:
843 		goto ReFault;
844 
845 	case VM_PAGER_ERROR:
846 		/*
847 		 * An error occured while trying to bring in the
848 		 * page -- this is the only error we return right
849 		 * now.
850 		 */
851 		return (EACCES);	/* XXX */
852 	default:
853 #ifdef DIAGNOSTIC
854 		panic("uvm_fault: uvmfault_anonget -> %d", result);
855 #else
856 		return (EACCES);
857 #endif
858 	}
859 
860 	/*
861 	 * if we are case 1B then we will need to allocate a new blank
862 	 * anon to transfer the data into.   note that we have a lock
863 	 * on anon, so no one can busy or release the page until we are done.
864 	 * also note that the ref count can't drop to zero here because
865 	 * it is > 1 and we are only dropping one ref.
866 	 *
867 	 * in the (hopefully very rare) case that we are out of RAM we
868 	 * will wait for more RAM, and refault.
869 	 *
870 	 * if we are out of anon VM we wait for RAM to become available.
871 	 */
872 
873 	if ((access_type & PROT_WRITE) != 0 && anon->an_ref > 1) {
874 		uvmexp.flt_acow++;
875 		oanon = anon;		/* oanon = old */
876 		anon = uvm_analloc();
877 		if (anon) {
878 			pg = uvm_pagealloc(NULL, 0, anon, 0);
879 		}
880 
881 		/* check for out of RAM */
882 		if (anon == NULL || pg == NULL) {
883 			uvmfault_unlockall(&ufi, amap, NULL, oanon);
884 			if (anon == NULL)
885 				uvmexp.fltnoanon++;
886 			else {
887 				uvm_anfree(anon);
888 				uvmexp.fltnoram++;
889 			}
890 
891 			if (uvm_swapisfull())
892 				return (ENOMEM);
893 
894 			/* out of RAM, wait for more */
895 			if (anon == NULL)
896 				uvm_anwait();
897 			else
898 				uvm_wait("flt_noram3");
899 			goto ReFault;
900 		}
901 
902 		/* got all resources, replace anon with nanon */
903 		uvm_pagecopy(oanon->an_page, pg);	/* pg now !PG_CLEAN */
904 		/* un-busy! new page */
905 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE);
906 		UVM_PAGE_OWN(pg, NULL);
907 		ret = amap_add(&ufi.entry->aref,
908 		    ufi.orig_rvaddr - ufi.entry->start, anon, 1);
909 		KASSERT(ret == 0);
910 
911 		/* deref: can not drop to zero here by defn! */
912 		oanon->an_ref--;
913 
914 		/*
915 		 * note: anon is _not_ locked, but we have the sole references
916 		 * to in from amap.
917 		 * thus, no one can get at it until we are done with it.
918 		 */
919 	} else {
920 		uvmexp.flt_anon++;
921 		oanon = anon;
922 		pg = anon->an_page;
923 		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
924 			enter_prot = enter_prot & ~PROT_WRITE;
925 	}
926 
927 	/*
928 	 * now map the page in ...
929 	 * XXX: old fault unlocks object before pmap_enter.  this seems
930 	 * suspect since some other thread could blast the page out from
931 	 * under us between the unlock and the pmap_enter.
932 	 */
933 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr,
934 	    VM_PAGE_TO_PHYS(pg) | pa_flags, enter_prot,
935 	    access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
936 		/*
937 		 * No need to undo what we did; we can simply think of
938 		 * this as the pmap throwing away the mapping information.
939 		 *
940 		 * We do, however, have to go through the ReFault path,
941 		 * as the map may change while we're asleep.
942 		 */
943 		uvmfault_unlockall(&ufi, amap, NULL, oanon);
944 		if (uvm_swapisfull()) {
945 			/* XXX instrumentation */
946 			return (ENOMEM);
947 		}
948 		/* XXX instrumentation */
949 		uvm_wait("flt_pmfail1");
950 		goto ReFault;
951 	}
952 
953 	/* ... update the page queues. */
954 	uvm_lock_pageq();
955 
956 	if (fault_type == VM_FAULT_WIRE) {
957 		uvm_pagewire(pg);
958 		/*
959 		 * since the now-wired page cannot be paged out,
960 		 * release its swap resources for others to use.
961 		 * since an anon with no swap cannot be PG_CLEAN,
962 		 * clear its clean flag now.
963 		 */
964 		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
965 		uvm_anon_dropswap(anon);
966 	} else {
967 		/* activate it */
968 		uvm_pageactivate(pg);
969 	}
970 
971 	uvm_unlock_pageq();
972 
973 	/* done case 1!  finish up by unlocking everything and returning success */
974 	uvmfault_unlockall(&ufi, amap, NULL, oanon);
975 	pmap_update(ufi.orig_map->pmap);
976 	return (0);
977 
978 
979 Case2:
980 	/* handle case 2: faulting on backing object or zero fill */
981 	/*
982 	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
983 	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
984 	 * have a backing object, check and see if we are going to promote
985 	 * the data up to an anon during the fault.
986 	 */
987 	if (uobj == NULL) {
988 		uobjpage = PGO_DONTCARE;
989 		promote = TRUE;		/* always need anon here */
990 	} else {
991 		KASSERT(uobjpage != PGO_DONTCARE);
992 		promote = (access_type & PROT_WRITE) &&
993 		     UVM_ET_ISCOPYONWRITE(ufi.entry);
994 	}
995 
996 	/*
997 	 * if uobjpage is not null then we do not need to do I/O to get the
998 	 * uobjpage.
999 	 *
1000 	 * if uobjpage is null, then we need to ask the pager to
1001 	 * get the data for us.   once we have the data, we need to reverify
1002 	 * the state the world.   we are currently not holding any resources.
1003 	 */
1004 	if (uobjpage) {
1005 		/* update rusage counters */
1006 		curproc->p_ru.ru_minflt++;
1007 	} else {
1008 		/* update rusage counters */
1009 		curproc->p_ru.ru_majflt++;
1010 
1011 		uvmfault_unlockall(&ufi, amap, NULL, NULL);
1012 
1013 		uvmexp.fltget++;
1014 		gotpages = 1;
1015 		uoff = (ufi.orig_rvaddr - ufi.entry->start) + ufi.entry->offset;
1016 		result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1017 		    0, access_type & MASK(ufi.entry), ufi.entry->advice,
1018 		    PGO_SYNCIO);
1019 
1020 		/* recover from I/O */
1021 		if (result != VM_PAGER_OK) {
1022 			KASSERT(result != VM_PAGER_PEND);
1023 
1024 			if (result == VM_PAGER_AGAIN) {
1025 				tsleep_nsec(&lbolt, PVM, "fltagain2", INFSLP);
1026 				goto ReFault;
1027 			}
1028 
1029 			if (!UVM_ET_ISNOFAULT(ufi.entry))
1030 				return (EIO);
1031 
1032 			uobjpage = PGO_DONTCARE;
1033 			promote = TRUE;
1034 		}
1035 
1036 		/* re-verify the state of the world.  */
1037 		locked = uvmfault_relock(&ufi);
1038 
1039 		/*
1040 		 * Re-verify that amap slot is still free. if there is
1041 		 * a problem, we clean up.
1042 		 */
1043 		if (locked && amap && amap_lookup(&ufi.entry->aref,
1044 		      ufi.orig_rvaddr - ufi.entry->start)) {
1045 			if (locked)
1046 				uvmfault_unlockall(&ufi, amap, NULL, NULL);
1047 			locked = FALSE;
1048 		}
1049 
1050 		/* didn't get the lock?   release the page and retry. */
1051 		if (locked == FALSE && uobjpage != PGO_DONTCARE) {
1052 			uvm_lock_pageq();
1053 			/* make sure it is in queues */
1054 			uvm_pageactivate(uobjpage);
1055 			uvm_unlock_pageq();
1056 
1057 			if (uobjpage->pg_flags & PG_WANTED)
1058 				/* still holding object lock */
1059 				wakeup(uobjpage);
1060 			atomic_clearbits_int(&uobjpage->pg_flags,
1061 			    PG_BUSY|PG_WANTED);
1062 			UVM_PAGE_OWN(uobjpage, NULL);
1063 			goto ReFault;
1064 		}
1065 		if (locked == FALSE)
1066 			goto ReFault;
1067 
1068 		/*
1069 		 * we have the data in uobjpage which is PG_BUSY
1070 		 */
1071 	}
1072 
1073 	/*
1074 	 * notes:
1075 	 *  - at this point uobjpage can not be NULL
1076 	 *  - at this point uobjpage could be PG_WANTED (handle later)
1077 	 */
1078 	if (promote == FALSE) {
1079 		/*
1080 		 * we are not promoting.   if the mapping is COW ensure that we
1081 		 * don't give more access than we should (e.g. when doing a read
1082 		 * fault on a COPYONWRITE mapping we want to map the COW page in
1083 		 * R/O even though the entry protection could be R/W).
1084 		 *
1085 		 * set "pg" to the page we want to map in (uobjpage, usually)
1086 		 */
1087 		uvmexp.flt_obj++;
1088 		if (UVM_ET_ISCOPYONWRITE(ufi.entry))
1089 			enter_prot &= ~PROT_WRITE;
1090 		pg = uobjpage;		/* map in the actual object */
1091 
1092 		/* assert(uobjpage != PGO_DONTCARE) */
1093 
1094 		/*
1095 		 * we are faulting directly on the page.
1096 		 */
1097 	} else {
1098 		/*
1099 		 * if we are going to promote the data to an anon we
1100 		 * allocate a blank anon here and plug it into our amap.
1101 		 */
1102 #ifdef DIAGNOSTIC
1103 		if (amap == NULL)
1104 			panic("uvm_fault: want to promote data, but no anon");
1105 #endif
1106 
1107 		anon = uvm_analloc();
1108 		if (anon) {
1109 			/*
1110 			 * In `Fill in data...' below, if
1111 			 * uobjpage == PGO_DONTCARE, we want
1112 			 * a zero'd, dirty page, so have
1113 			 * uvm_pagealloc() do that for us.
1114 			 */
1115 			pg = uvm_pagealloc(NULL, 0, anon,
1116 			    (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1117 		}
1118 
1119 		/*
1120 		 * out of memory resources?
1121 		 */
1122 		if (anon == NULL || pg == NULL) {
1123 			/* arg!  must unbusy our page and fail or sleep. */
1124 			if (uobjpage != PGO_DONTCARE) {
1125 				uvm_lock_pageq();
1126 				uvm_pageactivate(uobjpage);
1127 				uvm_unlock_pageq();
1128 
1129 				if (uobjpage->pg_flags & PG_WANTED)
1130 					wakeup(uobjpage);
1131 				atomic_clearbits_int(&uobjpage->pg_flags,
1132 				    PG_BUSY|PG_WANTED);
1133 				UVM_PAGE_OWN(uobjpage, NULL);
1134 			}
1135 
1136 			/* unlock and fail ... */
1137 			uvmfault_unlockall(&ufi, amap, uobj, NULL);
1138 			if (anon == NULL)
1139 				uvmexp.fltnoanon++;
1140 			else {
1141 				uvm_anfree(anon);
1142 				uvmexp.fltnoram++;
1143 			}
1144 
1145 			if (uvm_swapisfull())
1146 				return (ENOMEM);
1147 
1148 			/* out of RAM, wait for more */
1149 			if (anon == NULL)
1150 				uvm_anwait();
1151 			else
1152 				uvm_wait("flt_noram5");
1153 			goto ReFault;
1154 		}
1155 
1156 		/* fill in the data */
1157 		if (uobjpage != PGO_DONTCARE) {
1158 			uvmexp.flt_prcopy++;
1159 			/* copy page [pg now dirty] */
1160 			uvm_pagecopy(uobjpage, pg);
1161 
1162 			/*
1163 			 * promote to shared amap?  make sure all sharing
1164 			 * procs see it
1165 			 */
1166 			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1167 				pmap_page_protect(uobjpage, PROT_NONE);
1168 			}
1169 
1170 			/* dispose of uobjpage. drop handle to uobj as well. */
1171 			if (uobjpage->pg_flags & PG_WANTED)
1172 				wakeup(uobjpage);
1173 			atomic_clearbits_int(&uobjpage->pg_flags,
1174 			    PG_BUSY|PG_WANTED);
1175 			UVM_PAGE_OWN(uobjpage, NULL);
1176 			uvm_lock_pageq();
1177 			uvm_pageactivate(uobjpage);
1178 			uvm_unlock_pageq();
1179 			uobj = NULL;
1180 		} else {
1181 			uvmexp.flt_przero++;
1182 			/*
1183 			 * Page is zero'd and marked dirty by uvm_pagealloc()
1184 			 * above.
1185 			 */
1186 		}
1187 
1188 		if (amap_add(&ufi.entry->aref,
1189 		    ufi.orig_rvaddr - ufi.entry->start, anon, 0)) {
1190 			uvmfault_unlockall(&ufi, amap, NULL, oanon);
1191 			uvm_anfree(anon);
1192 			uvmexp.fltnoamap++;
1193 
1194 			if (uvm_swapisfull())
1195 				return (ENOMEM);
1196 
1197 			amap_populate(&ufi.entry->aref,
1198 			    ufi.orig_rvaddr - ufi.entry->start);
1199 			goto ReFault;
1200 		}
1201 	}
1202 
1203 	/* note: pg is either the uobjpage or the new page in the new anon */
1204 	/*
1205 	 * all resources are present.   we can now map it in and free our
1206 	 * resources.
1207 	 */
1208 	if (pmap_enter(ufi.orig_map->pmap, ufi.orig_rvaddr,
1209 	    VM_PAGE_TO_PHYS(pg) | pa_flags, enter_prot,
1210 	    access_type | PMAP_CANFAIL | (wired ? PMAP_WIRED : 0)) != 0) {
1211 		/*
1212 		 * No need to undo what we did; we can simply think of
1213 		 * this as the pmap throwing away the mapping information.
1214 		 *
1215 		 * We do, however, have to go through the ReFault path,
1216 		 * as the map may change while we're asleep.
1217 		 */
1218 		if (pg->pg_flags & PG_WANTED)
1219 			wakeup(pg);
1220 
1221 		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1222 		UVM_PAGE_OWN(pg, NULL);
1223 		uvmfault_unlockall(&ufi, amap, uobj, NULL);
1224 		if (uvm_swapisfull()) {
1225 			/* XXX instrumentation */
1226 			return (ENOMEM);
1227 		}
1228 		/* XXX instrumentation */
1229 		uvm_wait("flt_pmfail2");
1230 		goto ReFault;
1231 	}
1232 
1233 	uvm_lock_pageq();
1234 
1235 	if (fault_type == VM_FAULT_WIRE) {
1236 		uvm_pagewire(pg);
1237 		if (pg->pg_flags & PQ_AOBJ) {
1238 			/*
1239 			 * since the now-wired page cannot be paged out,
1240 			 * release its swap resources for others to use.
1241 			 * since an aobj page with no swap cannot be PG_CLEAN,
1242 			 * clear its clean flag now.
1243 			 */
1244 			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1245 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1246 		}
1247 	} else {
1248 		/* activate it */
1249 		uvm_pageactivate(pg);
1250 	}
1251 	uvm_unlock_pageq();
1252 
1253 	if (pg->pg_flags & PG_WANTED)
1254 		wakeup(pg);
1255 
1256 	atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1257 	UVM_PAGE_OWN(pg, NULL);
1258 	uvmfault_unlockall(&ufi, amap, uobj, NULL);
1259 	pmap_update(ufi.orig_map->pmap);
1260 
1261 	return (0);
1262 }
1263 
1264 
1265 /*
1266  * uvm_fault_wire: wire down a range of virtual addresses in a map.
1267  *
1268  * => map may be read-locked by caller, but MUST NOT be write-locked.
1269  * => if map is read-locked, any operations which may cause map to
1270  *	be write-locked in uvm_fault() must be taken care of by
1271  *	the caller.  See uvm_map_pageable().
1272  */
1273 int
1274 uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type)
1275 {
1276 	vaddr_t va;
1277 	int rv;
1278 
1279 	/*
1280 	 * now fault it in a page at a time.   if the fault fails then we have
1281 	 * to undo what we have done.   note that in uvm_fault PROT_NONE
1282 	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1283 	 */
1284 	for (va = start ; va < end ; va += PAGE_SIZE) {
1285 		rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1286 		if (rv) {
1287 			if (va != start) {
1288 				uvm_fault_unwire(map, start, va);
1289 			}
1290 			return (rv);
1291 		}
1292 	}
1293 
1294 	return (0);
1295 }
1296 
1297 /*
1298  * uvm_fault_unwire(): unwire range of virtual space.
1299  */
1300 void
1301 uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end)
1302 {
1303 
1304 	vm_map_lock_read(map);
1305 	uvm_fault_unwire_locked(map, start, end);
1306 	vm_map_unlock_read(map);
1307 }
1308 
1309 /*
1310  * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1311  *
1312  * => map must be at least read-locked.
1313  */
1314 void
1315 uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end)
1316 {
1317 	vm_map_entry_t entry, next;
1318 	pmap_t pmap = vm_map_pmap(map);
1319 	vaddr_t va;
1320 	paddr_t pa;
1321 	struct vm_page *pg;
1322 
1323 	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1324 
1325 	/*
1326 	 * we assume that the area we are unwiring has actually been wired
1327 	 * in the first place.   this means that we should be able to extract
1328 	 * the PAs from the pmap.   we also lock out the page daemon so that
1329 	 * we can call uvm_pageunwire.
1330 	 */
1331 	uvm_lock_pageq();
1332 
1333 	/* find the beginning map entry for the region. */
1334 	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1335 	if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1336 		panic("uvm_fault_unwire_locked: address not in map");
1337 
1338 	for (va = start; va < end ; va += PAGE_SIZE) {
1339 		if (pmap_extract(pmap, va, &pa) == FALSE)
1340 			continue;
1341 
1342 		/* find the map entry for the current address. */
1343 		KASSERT(va >= entry->start);
1344 		while (va >= entry->end) {
1345 			next = RBT_NEXT(uvm_map_addr, entry);
1346 			KASSERT(next != NULL && next->start <= entry->end);
1347 			entry = next;
1348 		}
1349 
1350 		/* if the entry is no longer wired, tell the pmap. */
1351 		if (VM_MAPENT_ISWIRED(entry) == 0)
1352 			pmap_unwire(pmap, va);
1353 
1354 		pg = PHYS_TO_VM_PAGE(pa);
1355 		if (pg)
1356 			uvm_pageunwire(pg);
1357 	}
1358 
1359 	uvm_unlock_pageq();
1360 }
1361 
1362 /*
1363  * uvmfault_unlockmaps: unlock the maps
1364  */
1365 void
1366 uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked)
1367 {
1368 	/*
1369 	 * ufi can be NULL when this isn't really a fault,
1370 	 * but merely paging in anon data.
1371 	 */
1372 	if (ufi == NULL) {
1373 		return;
1374 	}
1375 
1376 	uvmfault_update_stats(ufi);
1377 	if (write_locked) {
1378 		vm_map_unlock(ufi->map);
1379 	} else {
1380 		vm_map_unlock_read(ufi->map);
1381 	}
1382 }
1383 
1384 /*
1385  * uvmfault_unlockall: unlock everything passed in.
1386  *
1387  * => maps must be read-locked (not write-locked).
1388  */
1389 void
1390 uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap,
1391     struct uvm_object *uobj, struct vm_anon *anon)
1392 {
1393 
1394 	uvmfault_unlockmaps(ufi, FALSE);
1395 }
1396 
1397 /*
1398  * uvmfault_lookup: lookup a virtual address in a map
1399  *
1400  * => caller must provide a uvm_faultinfo structure with the IN
1401  *	params properly filled in
1402  * => we will lookup the map entry (handling submaps) as we go
1403  * => if the lookup is a success we will return with the maps locked
1404  * => if "write_lock" is TRUE, we write_lock the map, otherwise we only
1405  *	get a read lock.
1406  * => note that submaps can only appear in the kernel and they are
1407  *	required to use the same virtual addresses as the map they
1408  *	are referenced by (thus address translation between the main
1409  *	map and the submap is unnecessary).
1410  */
1411 
1412 boolean_t
1413 uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock)
1414 {
1415 	vm_map_t tmpmap;
1416 
1417 	/* init ufi values for lookup. */
1418 	ufi->map = ufi->orig_map;
1419 	ufi->size = ufi->orig_size;
1420 
1421 	/*
1422 	 * keep going down levels until we are done.   note that there can
1423 	 * only be two levels so we won't loop very long.
1424 	 */
1425 	while (1) {
1426 		if (ufi->orig_rvaddr < ufi->map->min_offset ||
1427 		    ufi->orig_rvaddr >= ufi->map->max_offset)
1428 			return(FALSE);
1429 
1430 		/* lock map */
1431 		if (write_lock) {
1432 			vm_map_lock(ufi->map);
1433 		} else {
1434 			vm_map_lock_read(ufi->map);
1435 		}
1436 
1437 		/* lookup */
1438 		if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr,
1439 		    &ufi->entry)) {
1440 			uvmfault_unlockmaps(ufi, write_lock);
1441 			return(FALSE);
1442 		}
1443 
1444 		/* reduce size if necessary */
1445 		if (ufi->entry->end - ufi->orig_rvaddr < ufi->size)
1446 			ufi->size = ufi->entry->end - ufi->orig_rvaddr;
1447 
1448 		/*
1449 		 * submap?    replace map with the submap and lookup again.
1450 		 * note: VAs in submaps must match VAs in main map.
1451 		 */
1452 		if (UVM_ET_ISSUBMAP(ufi->entry)) {
1453 			tmpmap = ufi->entry->object.sub_map;
1454 			uvmfault_unlockmaps(ufi, write_lock);
1455 			ufi->map = tmpmap;
1456 			continue;
1457 		}
1458 
1459 		/* got it! */
1460 		ufi->mapv = ufi->map->timestamp;
1461 		return(TRUE);
1462 
1463 	}
1464 	/*NOTREACHED*/
1465 }
1466 
1467 /*
1468  * uvmfault_relock: attempt to relock the same version of the map
1469  *
1470  * => fault data structures should be unlocked before calling.
1471  * => if a success (TRUE) maps will be locked after call.
1472  */
1473 boolean_t
1474 uvmfault_relock(struct uvm_faultinfo *ufi)
1475 {
1476 	/*
1477 	 * ufi can be NULL when this isn't really a fault,
1478 	 * but merely paging in anon data.
1479 	 */
1480 	if (ufi == NULL) {
1481 		return TRUE;
1482 	}
1483 
1484 	uvmexp.fltrelck++;
1485 
1486 	/*
1487 	 * relock map.   fail if version mismatch (in which case nothing
1488 	 * gets locked).
1489 	 */
1490 	vm_map_lock_read(ufi->map);
1491 	if (ufi->mapv != ufi->map->timestamp) {
1492 		vm_map_unlock_read(ufi->map);
1493 		return(FALSE);
1494 	}
1495 
1496 	uvmexp.fltrelckok++;
1497 	return(TRUE);		/* got it! */
1498 }
1499