1 /* $OpenBSD: uvm_fault.c,v 1.108 2020/11/19 17:06:40 mpi Exp $ */ 2 /* $NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $ */ 3 4 /* 5 * Copyright (c) 1997 Charles D. Cranor and Washington University. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp 29 */ 30 31 /* 32 * uvm_fault.c: fault handler 33 */ 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/proc.h> 39 #include <sys/malloc.h> 40 #include <sys/mman.h> 41 #include <sys/tracepoint.h> 42 43 #include <uvm/uvm.h> 44 45 /* 46 * 47 * a word on page faults: 48 * 49 * types of page faults we handle: 50 * 51 * CASE 1: upper layer faults CASE 2: lower layer faults 52 * 53 * CASE 1A CASE 1B CASE 2A CASE 2B 54 * read/write1 write>1 read/write +-cow_write/zero 55 * | | | | 56 * +--|--+ +--|--+ +-----+ + | + | +-----+ 57 * amap | V | | ----------->new| | | | ^ | 58 * +-----+ +-----+ +-----+ + | + | +--|--+ 59 * | | | 60 * +-----+ +-----+ +--|--+ | +--|--+ 61 * uobj | d/c | | d/c | | V | +----| | 62 * +-----+ +-----+ +-----+ +-----+ 63 * 64 * d/c = don't care 65 * 66 * case [0]: layerless fault 67 * no amap or uobj is present. this is an error. 68 * 69 * case [1]: upper layer fault [anon active] 70 * 1A: [read] or [write with anon->an_ref == 1] 71 * I/O takes place in top level anon and uobj is not touched. 72 * 1B: [write with anon->an_ref > 1] 73 * new anon is alloc'd and data is copied off ["COW"] 74 * 75 * case [2]: lower layer fault [uobj] 76 * 2A: [read on non-NULL uobj] or [write to non-copy_on_write area] 77 * I/O takes place directly in object. 78 * 2B: [write to copy_on_write] or [read on NULL uobj] 79 * data is "promoted" from uobj to a new anon. 80 * if uobj is null, then we zero fill. 81 * 82 * we follow the standard UVM locking protocol ordering: 83 * 84 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ) 85 * we hold a PG_BUSY page if we unlock for I/O 86 * 87 * 88 * the code is structured as follows: 89 * 90 * - init the "IN" params in the ufi structure 91 * ReFault: 92 * - do lookups [locks maps], check protection, handle needs_copy 93 * - check for case 0 fault (error) 94 * - establish "range" of fault 95 * - if we have an amap lock it and extract the anons 96 * - if sequential advice deactivate pages behind us 97 * - at the same time check pmap for unmapped areas and anon for pages 98 * that we could map in (and do map it if found) 99 * - check object for resident pages that we could map in 100 * - if (case 2) goto Case2 101 * - >>> handle case 1 102 * - ensure source anon is resident in RAM 103 * - if case 1B alloc new anon and copy from source 104 * - map the correct page in 105 * Case2: 106 * - >>> handle case 2 107 * - ensure source page is resident (if uobj) 108 * - if case 2B alloc new anon and copy from source (could be zero 109 * fill if uobj == NULL) 110 * - map the correct page in 111 * - done! 112 * 113 * note on paging: 114 * if we have to do I/O we place a PG_BUSY page in the correct object, 115 * unlock everything, and do the I/O. when I/O is done we must reverify 116 * the state of the world before assuming that our data structures are 117 * valid. [because mappings could change while the map is unlocked] 118 * 119 * alternative 1: unbusy the page in question and restart the page fault 120 * from the top (ReFault). this is easy but does not take advantage 121 * of the information that we already have from our previous lookup, 122 * although it is possible that the "hints" in the vm_map will help here. 123 * 124 * alternative 2: the system already keeps track of a "version" number of 125 * a map. [i.e. every time you write-lock a map (e.g. to change a 126 * mapping) you bump the version number up by one...] so, we can save 127 * the version number of the map before we release the lock and start I/O. 128 * then when I/O is done we can relock and check the version numbers 129 * to see if anything changed. this might save us some over 1 because 130 * we don't have to unbusy the page and may be less compares(?). 131 * 132 * alternative 3: put in backpointers or a way to "hold" part of a map 133 * in place while I/O is in progress. this could be complex to 134 * implement (especially with structures like amap that can be referenced 135 * by multiple map entries, and figuring out what should wait could be 136 * complex as well...). 137 * 138 * given that we are not currently multiprocessor or multithreaded we might 139 * as well choose alternative 2 now. maybe alternative 3 would be useful 140 * in the future. XXX keep in mind for future consideration//rechecking. 141 */ 142 143 /* 144 * local data structures 145 */ 146 struct uvm_advice { 147 int nback; 148 int nforw; 149 }; 150 151 /* 152 * page range array: set up in uvmfault_init(). 153 */ 154 static struct uvm_advice uvmadvice[MADV_MASK + 1]; 155 156 #define UVM_MAXRANGE 16 /* must be max() of nback+nforw+1 */ 157 158 /* 159 * private prototypes 160 */ 161 static void uvmfault_amapcopy(struct uvm_faultinfo *); 162 static inline void uvmfault_anonflush(struct vm_anon **, int); 163 void uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t); 164 void uvmfault_update_stats(struct uvm_faultinfo *); 165 166 /* 167 * inline functions 168 */ 169 /* 170 * uvmfault_anonflush: try and deactivate pages in specified anons 171 * 172 * => does not have to deactivate page if it is busy 173 */ 174 static inline void 175 uvmfault_anonflush(struct vm_anon **anons, int n) 176 { 177 int lcv; 178 struct vm_page *pg; 179 180 for (lcv = 0 ; lcv < n ; lcv++) { 181 if (anons[lcv] == NULL) 182 continue; 183 pg = anons[lcv]->an_page; 184 if (pg && (pg->pg_flags & PG_BUSY) == 0) { 185 uvm_lock_pageq(); 186 if (pg->wire_count == 0) { 187 pmap_page_protect(pg, PROT_NONE); 188 uvm_pagedeactivate(pg); 189 } 190 uvm_unlock_pageq(); 191 } 192 } 193 } 194 195 /* 196 * normal functions 197 */ 198 /* 199 * uvmfault_init: compute proper values for the uvmadvice[] array. 200 */ 201 void 202 uvmfault_init(void) 203 { 204 int npages; 205 206 npages = atop(16384); 207 if (npages > 0) { 208 KASSERT(npages <= UVM_MAXRANGE / 2); 209 uvmadvice[MADV_NORMAL].nforw = npages; 210 uvmadvice[MADV_NORMAL].nback = npages - 1; 211 } 212 213 npages = atop(32768); 214 if (npages > 0) { 215 KASSERT(npages <= UVM_MAXRANGE / 2); 216 uvmadvice[MADV_SEQUENTIAL].nforw = npages - 1; 217 uvmadvice[MADV_SEQUENTIAL].nback = npages; 218 } 219 } 220 221 /* 222 * uvmfault_amapcopy: clear "needs_copy" in a map. 223 * 224 * => if we are out of RAM we sleep (waiting for more) 225 */ 226 static void 227 uvmfault_amapcopy(struct uvm_faultinfo *ufi) 228 { 229 230 /* while we haven't done the job */ 231 while (1) { 232 /* no mapping? give up. */ 233 if (uvmfault_lookup(ufi, TRUE) == FALSE) 234 return; 235 236 /* copy if needed. */ 237 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) 238 amap_copy(ufi->map, ufi->entry, M_NOWAIT, 239 UVM_ET_ISSTACK(ufi->entry) ? FALSE : TRUE, 240 ufi->orig_rvaddr, ufi->orig_rvaddr + 1); 241 242 /* didn't work? must be out of RAM. sleep. */ 243 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 244 uvmfault_unlockmaps(ufi, TRUE); 245 uvm_wait("fltamapcopy"); 246 continue; 247 } 248 249 /* got it! */ 250 uvmfault_unlockmaps(ufi, TRUE); 251 return; 252 } 253 /*NOTREACHED*/ 254 } 255 256 /* 257 * uvmfault_anonget: get data in an anon into a non-busy, non-released 258 * page in that anon. 259 * 260 * => we don't move the page on the queues [gets moved later] 261 * => if we allocate a new page [we_own], it gets put on the queues. 262 * either way, the result is that the page is on the queues at return time 263 */ 264 int 265 uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap, 266 struct vm_anon *anon) 267 { 268 boolean_t we_own; /* we own anon's page? */ 269 boolean_t locked; /* did we relock? */ 270 struct vm_page *pg; 271 int result; 272 273 result = 0; /* XXX shut up gcc */ 274 uvmexp.fltanget++; 275 /* bump rusage counters */ 276 if (anon->an_page) 277 curproc->p_ru.ru_minflt++; 278 else 279 curproc->p_ru.ru_majflt++; 280 281 /* loop until we get it, or fail. */ 282 while (1) { 283 we_own = FALSE; /* TRUE if we set PG_BUSY on a page */ 284 pg = anon->an_page; 285 286 /* page there? make sure it is not busy/released. */ 287 if (pg) { 288 KASSERT(pg->pg_flags & PQ_ANON); 289 KASSERT(pg->uanon == anon); 290 291 /* 292 * if the page is busy, we drop all the locks and 293 * try again. 294 */ 295 if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0) 296 return (VM_PAGER_OK); 297 atomic_setbits_int(&pg->pg_flags, PG_WANTED); 298 uvmexp.fltpgwait++; 299 300 /* 301 * the last unlock must be an atomic unlock+wait on 302 * the owner of page 303 */ 304 uvmfault_unlockall(ufi, amap, NULL); 305 tsleep_nsec(pg, PVM, "anonget2", INFSLP); 306 /* ready to relock and try again */ 307 } else { 308 /* no page, we must try and bring it in. */ 309 pg = uvm_pagealloc(NULL, 0, anon, 0); 310 311 if (pg == NULL) { /* out of RAM. */ 312 uvmfault_unlockall(ufi, amap, NULL); 313 uvmexp.fltnoram++; 314 uvm_wait("flt_noram1"); 315 /* ready to relock and try again */ 316 } else { 317 /* we set the PG_BUSY bit */ 318 we_own = TRUE; 319 uvmfault_unlockall(ufi, amap, NULL); 320 321 /* 322 * we are passing a PG_BUSY+PG_FAKE+PG_CLEAN 323 * page into the uvm_swap_get function with 324 * all data structures unlocked. note that 325 * it is ok to read an_swslot here because 326 * we hold PG_BUSY on the page. 327 */ 328 uvmexp.pageins++; 329 result = uvm_swap_get(pg, anon->an_swslot, 330 PGO_SYNCIO); 331 332 /* 333 * we clean up after the i/o below in the 334 * "we_own" case 335 */ 336 /* ready to relock and try again */ 337 } 338 } 339 340 /* now relock and try again */ 341 locked = uvmfault_relock(ufi); 342 343 /* 344 * if we own the page (i.e. we set PG_BUSY), then we need 345 * to clean up after the I/O. there are three cases to 346 * consider: 347 * [1] page released during I/O: free anon and ReFault. 348 * [2] I/O not OK. free the page and cause the fault 349 * to fail. 350 * [3] I/O OK! activate the page and sync with the 351 * non-we_own case (i.e. drop anon lock if not locked). 352 */ 353 if (we_own) { 354 if (pg->pg_flags & PG_WANTED) { 355 wakeup(pg); 356 } 357 /* un-busy! */ 358 atomic_clearbits_int(&pg->pg_flags, 359 PG_WANTED|PG_BUSY|PG_FAKE); 360 UVM_PAGE_OWN(pg, NULL); 361 362 /* 363 * if we were RELEASED during I/O, then our anon is 364 * no longer part of an amap. we need to free the 365 * anon and try again. 366 */ 367 if (pg->pg_flags & PG_RELEASED) { 368 pmap_page_protect(pg, PROT_NONE); 369 uvm_anfree(anon); /* frees page for us */ 370 if (locked) 371 uvmfault_unlockall(ufi, amap, NULL); 372 uvmexp.fltpgrele++; 373 return (VM_PAGER_REFAULT); /* refault! */ 374 } 375 376 if (result != VM_PAGER_OK) { 377 KASSERT(result != VM_PAGER_PEND); 378 379 /* remove page from anon */ 380 anon->an_page = NULL; 381 382 /* 383 * remove the swap slot from the anon 384 * and mark the anon as having no real slot. 385 * don't free the swap slot, thus preventing 386 * it from being used again. 387 */ 388 uvm_swap_markbad(anon->an_swslot, 1); 389 anon->an_swslot = SWSLOT_BAD; 390 391 /* 392 * note: page was never !PG_BUSY, so it 393 * can't be mapped and thus no need to 394 * pmap_page_protect it... 395 */ 396 uvm_lock_pageq(); 397 uvm_pagefree(pg); 398 uvm_unlock_pageq(); 399 400 if (locked) 401 uvmfault_unlockall(ufi, amap, NULL); 402 return (VM_PAGER_ERROR); 403 } 404 405 /* 406 * must be OK, clear modify (already PG_CLEAN) 407 * and activate 408 */ 409 pmap_clear_modify(pg); 410 uvm_lock_pageq(); 411 uvm_pageactivate(pg); 412 uvm_unlock_pageq(); 413 } 414 415 /* we were not able to relock. restart fault. */ 416 if (!locked) 417 return (VM_PAGER_REFAULT); 418 419 /* verify no one touched the amap and moved the anon on us. */ 420 if (ufi != NULL && 421 amap_lookup(&ufi->entry->aref, 422 ufi->orig_rvaddr - ufi->entry->start) != anon) { 423 424 uvmfault_unlockall(ufi, amap, NULL); 425 return (VM_PAGER_REFAULT); 426 } 427 428 /* try it again! */ 429 uvmexp.fltanretry++; 430 continue; 431 432 } /* while (1) */ 433 /*NOTREACHED*/ 434 } 435 436 /* 437 * Update statistics after fault resolution. 438 * - maxrss 439 */ 440 void 441 uvmfault_update_stats(struct uvm_faultinfo *ufi) 442 { 443 struct vm_map *map; 444 struct proc *p; 445 vsize_t res; 446 447 map = ufi->orig_map; 448 449 /* 450 * If this is a nested pmap (eg, a virtual machine pmap managed 451 * by vmm(4) on amd64/i386), don't do any updating, just return. 452 * 453 * pmap_nested() on other archs is #defined to 0, so this is a 454 * no-op. 455 */ 456 if (pmap_nested(map->pmap)) 457 return; 458 459 /* Update the maxrss for the process. */ 460 if (map->flags & VM_MAP_ISVMSPACE) { 461 p = curproc; 462 KASSERT(p != NULL && &p->p_vmspace->vm_map == map); 463 464 res = pmap_resident_count(map->pmap); 465 /* Convert res from pages to kilobytes. */ 466 res <<= (PAGE_SHIFT - 10); 467 468 if (p->p_ru.ru_maxrss < res) 469 p->p_ru.ru_maxrss = res; 470 } 471 } 472 473 struct uvm_faultctx { 474 /* 475 * the following members are set up by uvm_fault_check() and 476 * read-only after that. 477 */ 478 vm_prot_t enter_prot; 479 vaddr_t startva; 480 int npages; 481 int centeridx; 482 boolean_t narrow; 483 boolean_t wired; 484 paddr_t pa_flags; 485 }; 486 487 int uvm_fault_lower(struct uvm_faultinfo *, struct uvm_faultctx *, 488 struct vm_page **, vm_fault_t, vm_prot_t); 489 490 /* 491 * uvm_fault_check: check prot, handle needs-copy, etc. 492 * 493 * 1. lookup entry. 494 * 2. check protection. 495 * 3. adjust fault condition (mainly for simulated fault). 496 * 4. handle needs-copy (lazy amap copy). 497 * 5. establish range of interest for neighbor fault (aka pre-fault). 498 * 6. look up anons (if amap exists). 499 * 7. flush pages (if MADV_SEQUENTIAL) 500 * 501 * => called with nothing locked. 502 * => if we fail (result != 0) we unlock everything. 503 * => initialize/adjust many members of flt. 504 */ 505 int 506 uvm_fault_check(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 507 struct vm_anon ***ranons, vm_prot_t access_type) 508 { 509 struct vm_amap *amap; 510 struct uvm_object *uobj; 511 int nback, nforw; 512 513 /* lookup and lock the maps */ 514 if (uvmfault_lookup(ufi, FALSE) == FALSE) { 515 return (EFAULT); 516 } 517 518 #ifdef DIAGNOSTIC 519 if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0) 520 panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)", 521 ufi->map, ufi->orig_rvaddr); 522 #endif 523 524 /* check protection */ 525 if ((ufi->entry->protection & access_type) != access_type) { 526 uvmfault_unlockmaps(ufi, FALSE); 527 return (EACCES); 528 } 529 530 /* 531 * "enter_prot" is the protection we want to enter the page in at. 532 * for certain pages (e.g. copy-on-write pages) this protection can 533 * be more strict than ufi->entry->protection. "wired" means either 534 * the entry is wired or we are fault-wiring the pg. 535 */ 536 537 flt->enter_prot = ufi->entry->protection; 538 flt->pa_flags = UVM_ET_ISWC(ufi->entry) ? PMAP_WC : 0; 539 flt->wired = VM_MAPENT_ISWIRED(ufi->entry) || (flt->narrow == TRUE); 540 if (flt->wired) 541 access_type = flt->enter_prot; /* full access for wired */ 542 543 /* handle "needs_copy" case. */ 544 if (UVM_ET_ISNEEDSCOPY(ufi->entry)) { 545 if ((access_type & PROT_WRITE) || 546 (ufi->entry->object.uvm_obj == NULL)) { 547 /* need to clear */ 548 uvmfault_unlockmaps(ufi, FALSE); 549 uvmfault_amapcopy(ufi); 550 uvmexp.fltamcopy++; 551 return (ERESTART); 552 } else { 553 /* 554 * ensure that we pmap_enter page R/O since 555 * needs_copy is still true 556 */ 557 flt->enter_prot &= ~PROT_WRITE; 558 } 559 } 560 561 /* identify the players */ 562 amap = ufi->entry->aref.ar_amap; /* top layer */ 563 uobj = ufi->entry->object.uvm_obj; /* bottom layer */ 564 565 /* 566 * check for a case 0 fault. if nothing backing the entry then 567 * error now. 568 */ 569 if (amap == NULL && uobj == NULL) { 570 uvmfault_unlockmaps(ufi, FALSE); 571 return (EFAULT); 572 } 573 574 /* 575 * establish range of interest based on advice from mapper 576 * and then clip to fit map entry. note that we only want 577 * to do this the first time through the fault. if we 578 * ReFault we will disable this by setting "narrow" to true. 579 */ 580 if (flt->narrow == FALSE) { 581 582 /* wide fault (!narrow) */ 583 nback = min(uvmadvice[ufi->entry->advice].nback, 584 (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT); 585 flt->startva = ufi->orig_rvaddr - ((vsize_t)nback << PAGE_SHIFT); 586 nforw = min(uvmadvice[ufi->entry->advice].nforw, 587 ((ufi->entry->end - ufi->orig_rvaddr) >> PAGE_SHIFT) - 1); 588 /* 589 * note: "-1" because we don't want to count the 590 * faulting page as forw 591 */ 592 flt->npages = nback + nforw + 1; 593 flt->centeridx = nback; 594 595 flt->narrow = TRUE; /* ensure only once per-fault */ 596 } else { 597 /* narrow fault! */ 598 nback = nforw = 0; 599 flt->startva = ufi->orig_rvaddr; 600 flt->npages = 1; 601 flt->centeridx = 0; 602 } 603 604 /* if we've got an amap, extract current anons. */ 605 if (amap) { 606 amap_lookups(&ufi->entry->aref, 607 flt->startva - ufi->entry->start, *ranons, flt->npages); 608 } else { 609 *ranons = NULL; /* to be safe */ 610 } 611 612 /* 613 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages 614 * now and then forget about them (for the rest of the fault). 615 */ 616 if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) { 617 /* flush back-page anons? */ 618 if (amap) 619 uvmfault_anonflush(*ranons, nback); 620 621 /* flush object? */ 622 if (uobj) { 623 voff_t uoff; 624 625 uoff = (flt->startva - ufi->entry->start) + ufi->entry->offset; 626 (void) uobj->pgops->pgo_flush(uobj, uoff, uoff + 627 ((vsize_t)nback << PAGE_SHIFT), PGO_DEACTIVATE); 628 } 629 630 /* now forget about the backpages */ 631 if (amap) 632 *ranons += nback; 633 flt->startva += ((vsize_t)nback << PAGE_SHIFT); 634 flt->npages -= nback; 635 flt->centeridx = 0; 636 } 637 638 return 0; 639 } 640 641 /* 642 * uvm_fault_upper: handle upper fault (case 1A & 1B) 643 * 644 * 1. get anon. let uvmfault_anonget do the dirty work. 645 * 2. if COW, promote data to new anon 646 * 3. enter h/w mapping 647 */ 648 int 649 uvm_fault_upper(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 650 struct vm_anon **anons, vm_fault_t fault_type, vm_prot_t access_type) 651 { 652 struct vm_amap *amap = ufi->entry->aref.ar_amap; 653 struct vm_anon *oanon, *anon = anons[flt->centeridx]; 654 struct vm_page *pg = NULL; 655 int error, ret; 656 657 /* 658 * no matter if we have case 1A or case 1B we are going to need to 659 * have the anon's memory resident. ensure that now. 660 */ 661 /* 662 * let uvmfault_anonget do the dirty work. 663 * also, if it is OK, then the anon's page is on the queues. 664 */ 665 error = uvmfault_anonget(ufi, amap, anon); 666 switch (error) { 667 case VM_PAGER_OK: 668 break; 669 670 case VM_PAGER_REFAULT: 671 return ERESTART; 672 673 case VM_PAGER_ERROR: 674 /* 675 * An error occured while trying to bring in the 676 * page -- this is the only error we return right 677 * now. 678 */ 679 return EACCES; /* XXX */ 680 default: 681 #ifdef DIAGNOSTIC 682 panic("uvm_fault: uvmfault_anonget -> %d", error); 683 #else 684 return EACCES; 685 #endif 686 } 687 688 /* 689 * if we are case 1B then we will need to allocate a new blank 690 * anon to transfer the data into. note that we have a lock 691 * on anon, so no one can busy or release the page until we are done. 692 * also note that the ref count can't drop to zero here because 693 * it is > 1 and we are only dropping one ref. 694 * 695 * in the (hopefully very rare) case that we are out of RAM we 696 * will wait for more RAM, and refault. 697 * 698 * if we are out of anon VM we wait for RAM to become available. 699 */ 700 701 if ((access_type & PROT_WRITE) != 0 && anon->an_ref > 1) { 702 uvmexp.flt_acow++; 703 oanon = anon; /* oanon = old */ 704 anon = uvm_analloc(); 705 if (anon) { 706 pg = uvm_pagealloc(NULL, 0, anon, 0); 707 } 708 709 /* check for out of RAM */ 710 if (anon == NULL || pg == NULL) { 711 uvmfault_unlockall(ufi, amap, NULL); 712 if (anon == NULL) 713 uvmexp.fltnoanon++; 714 else { 715 uvm_anfree(anon); 716 uvmexp.fltnoram++; 717 } 718 719 if (uvm_swapisfull()) 720 return ENOMEM; 721 722 /* out of RAM, wait for more */ 723 if (anon == NULL) 724 uvm_anwait(); 725 else 726 uvm_wait("flt_noram3"); 727 return ERESTART; 728 } 729 730 /* got all resources, replace anon with nanon */ 731 uvm_pagecopy(oanon->an_page, pg); /* pg now !PG_CLEAN */ 732 /* un-busy! new page */ 733 atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE); 734 UVM_PAGE_OWN(pg, NULL); 735 ret = amap_add(&ufi->entry->aref, 736 ufi->orig_rvaddr - ufi->entry->start, anon, 1); 737 KASSERT(ret == 0); 738 739 /* deref: can not drop to zero here by defn! */ 740 oanon->an_ref--; 741 742 /* 743 * note: anon is _not_ locked, but we have the sole references 744 * to in from amap. 745 * thus, no one can get at it until we are done with it. 746 */ 747 } else { 748 uvmexp.flt_anon++; 749 oanon = anon; 750 pg = anon->an_page; 751 if (anon->an_ref > 1) /* disallow writes to ref > 1 anons */ 752 flt->enter_prot = flt->enter_prot & ~PROT_WRITE; 753 } 754 755 /* 756 * now map the page in ... 757 * XXX: old fault unlocks object before pmap_enter. this seems 758 * suspect since some other thread could blast the page out from 759 * under us between the unlock and the pmap_enter. 760 */ 761 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, 762 VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot, 763 access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) { 764 /* 765 * No need to undo what we did; we can simply think of 766 * this as the pmap throwing away the mapping information. 767 * 768 * We do, however, have to go through the ReFault path, 769 * as the map may change while we're asleep. 770 */ 771 uvmfault_unlockall(ufi, amap, NULL); 772 if (uvm_swapisfull()) { 773 /* XXX instrumentation */ 774 return ENOMEM; 775 } 776 /* XXX instrumentation */ 777 uvm_wait("flt_pmfail1"); 778 return ERESTART; 779 } 780 781 /* ... update the page queues. */ 782 uvm_lock_pageq(); 783 784 if (fault_type == VM_FAULT_WIRE) { 785 uvm_pagewire(pg); 786 /* 787 * since the now-wired page cannot be paged out, 788 * release its swap resources for others to use. 789 * since an anon with no swap cannot be PG_CLEAN, 790 * clear its clean flag now. 791 */ 792 atomic_clearbits_int(&pg->pg_flags, PG_CLEAN); 793 uvm_anon_dropswap(anon); 794 } else { 795 /* activate it */ 796 uvm_pageactivate(pg); 797 } 798 799 uvm_unlock_pageq(); 800 801 /* done case 1! finish up by unlocking everything and returning success */ 802 uvmfault_unlockall(ufi, amap, NULL); 803 pmap_update(ufi->orig_map->pmap); 804 return 0; 805 } 806 807 808 /* 809 * uvm_fault_upper_lookup: look up existing h/w mapping and amap. 810 * 811 * iterate range of interest: 812 * 1. check if h/w mapping exists. if yes, we don't care 813 * 2. check if anon exists. if not, page is lower. 814 * 3. if anon exists, enter h/w mapping for neighbors. 815 */ 816 boolean_t 817 uvm_fault_upper_lookup(struct uvm_faultinfo *ufi, 818 const struct uvm_faultctx *flt, struct vm_anon **anons, 819 struct vm_page **pages) 820 { 821 struct vm_amap *amap = ufi->entry->aref.ar_amap; 822 struct vm_anon *anon; 823 boolean_t shadowed; 824 vaddr_t currva; 825 paddr_t pa; 826 int lcv; 827 828 /* 829 * map in the backpages and frontpages we found in the amap in hopes 830 * of preventing future faults. we also init the pages[] array as 831 * we go. 832 */ 833 currva = flt->startva; 834 shadowed = FALSE; 835 for (lcv = 0 ; lcv < flt->npages ; lcv++, currva += PAGE_SIZE) { 836 /* 837 * dont play with VAs that are already mapped 838 * except for center) 839 */ 840 if (lcv != flt->centeridx && 841 pmap_extract(ufi->orig_map->pmap, currva, &pa)) { 842 pages[lcv] = PGO_DONTCARE; 843 continue; 844 } 845 846 /* unmapped or center page. check if any anon at this level. */ 847 if (amap == NULL || anons[lcv] == NULL) { 848 pages[lcv] = NULL; 849 continue; 850 } 851 852 /* check for present page and map if possible. re-activate it */ 853 pages[lcv] = PGO_DONTCARE; 854 if (lcv == flt->centeridx) { /* save center for later! */ 855 shadowed = TRUE; 856 continue; 857 } 858 anon = anons[lcv]; 859 if (anon->an_page && 860 (anon->an_page->pg_flags & (PG_RELEASED|PG_BUSY)) == 0) { 861 uvm_lock_pageq(); 862 uvm_pageactivate(anon->an_page); /* reactivate */ 863 uvm_unlock_pageq(); 864 uvmexp.fltnamap++; 865 866 /* 867 * Since this isn't the page that's actually faulting, 868 * ignore pmap_enter() failures; it's not critical 869 * that we enter these right now. 870 */ 871 (void) pmap_enter(ufi->orig_map->pmap, currva, 872 VM_PAGE_TO_PHYS(anon->an_page) | flt->pa_flags, 873 (anon->an_ref > 1) ? 874 (flt->enter_prot & ~PROT_WRITE) : flt->enter_prot, 875 PMAP_CANFAIL | 876 (VM_MAPENT_ISWIRED(ufi->entry) ? PMAP_WIRED : 0)); 877 } 878 } 879 if (flt->npages > 1) 880 pmap_update(ufi->orig_map->pmap); 881 882 return shadowed; 883 } 884 885 /* 886 * F A U L T - m a i n e n t r y p o i n t 887 */ 888 889 /* 890 * uvm_fault: page fault handler 891 * 892 * => called from MD code to resolve a page fault 893 * => VM data structures usually should be unlocked. however, it is 894 * possible to call here with the main map locked if the caller 895 * gets a write lock, sets it recursive, and then calls us (c.f. 896 * uvm_map_pageable). this should be avoided because it keeps 897 * the map locked off during I/O. 898 */ 899 #define MASK(entry) (UVM_ET_ISCOPYONWRITE(entry) ? \ 900 ~PROT_WRITE : PROT_MASK) 901 int 902 uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type, 903 vm_prot_t access_type) 904 { 905 struct uvm_faultinfo ufi; 906 struct uvm_faultctx flt; 907 boolean_t shadowed; 908 struct vm_anon *anons_store[UVM_MAXRANGE], **anons; 909 struct vm_page *pages[UVM_MAXRANGE]; 910 int error; 911 912 uvmexp.faults++; /* XXX: locking? */ 913 TRACEPOINT(uvm, fault, vaddr, fault_type, access_type, NULL); 914 915 /* init the IN parameters in the ufi */ 916 ufi.orig_map = orig_map; 917 ufi.orig_rvaddr = trunc_page(vaddr); 918 ufi.orig_size = PAGE_SIZE; /* can't get any smaller than this */ 919 if (fault_type == VM_FAULT_WIRE) 920 flt.narrow = TRUE; /* don't look for neighborhood 921 * pages on wire */ 922 else 923 flt.narrow = FALSE; /* normal fault */ 924 925 926 /* "goto ReFault" means restart the page fault from ground zero. */ 927 ReFault: 928 anons = anons_store; 929 930 error = uvm_fault_check(&ufi, &flt, &anons, access_type); 931 switch (error) { 932 case 0: 933 break; 934 case ERESTART: 935 goto ReFault; 936 default: 937 return error; 938 } 939 940 /* (shadowed == TRUE) if there is an anon at the faulting address */ 941 shadowed = uvm_fault_upper_lookup(&ufi, &flt, anons, pages); 942 943 /* handle case 1: fault on an anon in our amap */ 944 if (shadowed == TRUE) { 945 error = uvm_fault_upper(&ufi, &flt, anons, fault_type, 946 access_type); 947 switch (error) { 948 case ERESTART: 949 goto ReFault; 950 default: 951 return error; 952 } 953 } 954 955 /* handle case 2: faulting on backing object or zero fill */ 956 error = uvm_fault_lower(&ufi, &flt, pages, fault_type, access_type); 957 switch (error) { 958 case ERESTART: 959 goto ReFault; 960 default: 961 return error; 962 } 963 } 964 965 int 966 uvm_fault_lower(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt, 967 struct vm_page **pages, vm_fault_t fault_type, vm_prot_t access_type) 968 { 969 struct vm_amap *amap = ufi->entry->aref.ar_amap; 970 struct uvm_object *uobj = ufi->entry->object.uvm_obj; 971 boolean_t promote, locked; 972 int result, lcv, gotpages; 973 struct vm_page *uobjpage, *pg = NULL; 974 struct vm_anon *anon = NULL; 975 vaddr_t currva; 976 voff_t uoff; 977 978 /* 979 * if the desired page is not shadowed by the amap and we have a 980 * backing object, then we check to see if the backing object would 981 * prefer to handle the fault itself (rather than letting us do it 982 * with the usual pgo_get hook). the backing object signals this by 983 * providing a pgo_fault routine. 984 */ 985 if (uobj != NULL && uobj->pgops->pgo_fault != NULL) { 986 result = uobj->pgops->pgo_fault(ufi, flt->startva, pages, 987 flt->npages, flt->centeridx, fault_type, access_type, 988 PGO_LOCKED); 989 990 if (result == VM_PAGER_OK) 991 return (0); /* pgo_fault did pmap enter */ 992 else if (result == VM_PAGER_REFAULT) 993 return ERESTART; /* try again! */ 994 else 995 return (EACCES); 996 } 997 998 /* 999 * now, if the desired page is not shadowed by the amap and we have 1000 * a backing object that does not have a special fault routine, then 1001 * we ask (with pgo_get) the object for resident pages that we care 1002 * about and attempt to map them in. we do not let pgo_get block 1003 * (PGO_LOCKED). 1004 * 1005 * ("get" has the option of doing a pmap_enter for us) 1006 */ 1007 if (uobj != NULL) { 1008 uvmexp.fltlget++; 1009 gotpages = flt->npages; 1010 (void) uobj->pgops->pgo_get(uobj, ufi->entry->offset + 1011 (flt->startva - ufi->entry->start), 1012 pages, &gotpages, flt->centeridx, 1013 access_type & MASK(ufi->entry), 1014 ufi->entry->advice, PGO_LOCKED); 1015 1016 /* check for pages to map, if we got any */ 1017 uobjpage = NULL; 1018 if (gotpages) { 1019 currva = flt->startva; 1020 for (lcv = 0 ; lcv < flt->npages ; 1021 lcv++, currva += PAGE_SIZE) { 1022 if (pages[lcv] == NULL || 1023 pages[lcv] == PGO_DONTCARE) 1024 continue; 1025 1026 KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0); 1027 1028 /* 1029 * if center page is resident and not 1030 * PG_BUSY, then pgo_get made it PG_BUSY 1031 * for us and gave us a handle to it. 1032 * remember this page as "uobjpage." 1033 * (for later use). 1034 */ 1035 if (lcv == flt->centeridx) { 1036 uobjpage = pages[lcv]; 1037 continue; 1038 } 1039 1040 /* 1041 * note: calling pgo_get with locked data 1042 * structures returns us pages which are 1043 * neither busy nor released, so we don't 1044 * need to check for this. we can just 1045 * directly enter the page (after moving it 1046 * to the head of the active queue [useful?]). 1047 */ 1048 1049 uvm_lock_pageq(); 1050 uvm_pageactivate(pages[lcv]); /* reactivate */ 1051 uvm_unlock_pageq(); 1052 uvmexp.fltnomap++; 1053 1054 /* 1055 * Since this page isn't the page that's 1056 * actually faulting, ignore pmap_enter() 1057 * failures; it's not critical that we 1058 * enter these right now. 1059 */ 1060 (void) pmap_enter(ufi->orig_map->pmap, currva, 1061 VM_PAGE_TO_PHYS(pages[lcv]) | flt->pa_flags, 1062 flt->enter_prot & MASK(ufi->entry), 1063 PMAP_CANFAIL | 1064 (flt->wired ? PMAP_WIRED : 0)); 1065 1066 /* 1067 * NOTE: page can't be PG_WANTED because 1068 * we've held the lock the whole time 1069 * we've had the handle. 1070 */ 1071 atomic_clearbits_int(&pages[lcv]->pg_flags, 1072 PG_BUSY); 1073 UVM_PAGE_OWN(pages[lcv], NULL); 1074 } /* for "lcv" loop */ 1075 pmap_update(ufi->orig_map->pmap); 1076 } /* "gotpages" != 0 */ 1077 /* note: object still _locked_ */ 1078 } else { 1079 uobjpage = NULL; 1080 } 1081 1082 /* 1083 * note that at this point we are done with any front or back pages. 1084 * we are now going to focus on the center page (i.e. the one we've 1085 * faulted on). if we have faulted on the bottom (uobj) 1086 * layer [i.e. case 2] and the page was both present and available, 1087 * then we've got a pointer to it as "uobjpage" and we've already 1088 * made it BUSY. 1089 */ 1090 1091 /* 1092 * note that uobjpage can not be PGO_DONTCARE at this point. we now 1093 * set uobjpage to PGO_DONTCARE if we are doing a zero fill. if we 1094 * have a backing object, check and see if we are going to promote 1095 * the data up to an anon during the fault. 1096 */ 1097 if (uobj == NULL) { 1098 uobjpage = PGO_DONTCARE; 1099 promote = TRUE; /* always need anon here */ 1100 } else { 1101 KASSERT(uobjpage != PGO_DONTCARE); 1102 promote = (access_type & PROT_WRITE) && 1103 UVM_ET_ISCOPYONWRITE(ufi->entry); 1104 } 1105 1106 /* 1107 * if uobjpage is not null then we do not need to do I/O to get the 1108 * uobjpage. 1109 * 1110 * if uobjpage is null, then we need to ask the pager to 1111 * get the data for us. once we have the data, we need to reverify 1112 * the state the world. we are currently not holding any resources. 1113 */ 1114 if (uobjpage) { 1115 /* update rusage counters */ 1116 curproc->p_ru.ru_minflt++; 1117 } else { 1118 /* update rusage counters */ 1119 curproc->p_ru.ru_majflt++; 1120 1121 uvmfault_unlockall(ufi, amap, NULL); 1122 1123 uvmexp.fltget++; 1124 gotpages = 1; 1125 uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset; 1126 result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages, 1127 0, access_type & MASK(ufi->entry), ufi->entry->advice, 1128 PGO_SYNCIO); 1129 1130 /* recover from I/O */ 1131 if (result != VM_PAGER_OK) { 1132 KASSERT(result != VM_PAGER_PEND); 1133 1134 if (result == VM_PAGER_AGAIN) { 1135 tsleep_nsec(&lbolt, PVM, "fltagain2", INFSLP); 1136 return ERESTART; 1137 } 1138 1139 if (!UVM_ET_ISNOFAULT(ufi->entry)) 1140 return (EIO); 1141 1142 uobjpage = PGO_DONTCARE; 1143 promote = TRUE; 1144 } 1145 1146 /* re-verify the state of the world. */ 1147 locked = uvmfault_relock(ufi); 1148 1149 /* 1150 * Re-verify that amap slot is still free. if there is 1151 * a problem, we clean up. 1152 */ 1153 if (locked && amap && amap_lookup(&ufi->entry->aref, 1154 ufi->orig_rvaddr - ufi->entry->start)) { 1155 if (locked) 1156 uvmfault_unlockall(ufi, amap, NULL); 1157 locked = FALSE; 1158 } 1159 1160 /* didn't get the lock? release the page and retry. */ 1161 if (locked == FALSE && uobjpage != PGO_DONTCARE) { 1162 uvm_lock_pageq(); 1163 /* make sure it is in queues */ 1164 uvm_pageactivate(uobjpage); 1165 uvm_unlock_pageq(); 1166 1167 if (uobjpage->pg_flags & PG_WANTED) 1168 /* still holding object lock */ 1169 wakeup(uobjpage); 1170 atomic_clearbits_int(&uobjpage->pg_flags, 1171 PG_BUSY|PG_WANTED); 1172 UVM_PAGE_OWN(uobjpage, NULL); 1173 return ERESTART; 1174 } 1175 if (locked == FALSE) 1176 return ERESTART; 1177 1178 /* 1179 * we have the data in uobjpage which is PG_BUSY 1180 */ 1181 } 1182 1183 /* 1184 * notes: 1185 * - at this point uobjpage can not be NULL 1186 * - at this point uobjpage could be PG_WANTED (handle later) 1187 */ 1188 if (promote == FALSE) { 1189 /* 1190 * we are not promoting. if the mapping is COW ensure that we 1191 * don't give more access than we should (e.g. when doing a read 1192 * fault on a COPYONWRITE mapping we want to map the COW page in 1193 * R/O even though the entry protection could be R/W). 1194 * 1195 * set "pg" to the page we want to map in (uobjpage, usually) 1196 */ 1197 uvmexp.flt_obj++; 1198 if (UVM_ET_ISCOPYONWRITE(ufi->entry)) 1199 flt->enter_prot &= ~PROT_WRITE; 1200 pg = uobjpage; /* map in the actual object */ 1201 1202 /* assert(uobjpage != PGO_DONTCARE) */ 1203 1204 /* 1205 * we are faulting directly on the page. 1206 */ 1207 } else { 1208 /* 1209 * if we are going to promote the data to an anon we 1210 * allocate a blank anon here and plug it into our amap. 1211 */ 1212 #ifdef DIAGNOSTIC 1213 if (amap == NULL) 1214 panic("uvm_fault: want to promote data, but no anon"); 1215 #endif 1216 1217 anon = uvm_analloc(); 1218 if (anon) { 1219 /* 1220 * In `Fill in data...' below, if 1221 * uobjpage == PGO_DONTCARE, we want 1222 * a zero'd, dirty page, so have 1223 * uvm_pagealloc() do that for us. 1224 */ 1225 pg = uvm_pagealloc(NULL, 0, anon, 1226 (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0); 1227 } 1228 1229 /* 1230 * out of memory resources? 1231 */ 1232 if (anon == NULL || pg == NULL) { 1233 /* arg! must unbusy our page and fail or sleep. */ 1234 if (uobjpage != PGO_DONTCARE) { 1235 uvm_lock_pageq(); 1236 uvm_pageactivate(uobjpage); 1237 uvm_unlock_pageq(); 1238 1239 if (uobjpage->pg_flags & PG_WANTED) 1240 wakeup(uobjpage); 1241 atomic_clearbits_int(&uobjpage->pg_flags, 1242 PG_BUSY|PG_WANTED); 1243 UVM_PAGE_OWN(uobjpage, NULL); 1244 } 1245 1246 /* unlock and fail ... */ 1247 uvmfault_unlockall(ufi, amap, uobj); 1248 if (anon == NULL) 1249 uvmexp.fltnoanon++; 1250 else { 1251 uvm_anfree(anon); 1252 uvmexp.fltnoram++; 1253 } 1254 1255 if (uvm_swapisfull()) 1256 return (ENOMEM); 1257 1258 /* out of RAM, wait for more */ 1259 if (anon == NULL) 1260 uvm_anwait(); 1261 else 1262 uvm_wait("flt_noram5"); 1263 return ERESTART; 1264 } 1265 1266 /* fill in the data */ 1267 if (uobjpage != PGO_DONTCARE) { 1268 uvmexp.flt_prcopy++; 1269 /* copy page [pg now dirty] */ 1270 uvm_pagecopy(uobjpage, pg); 1271 1272 /* 1273 * promote to shared amap? make sure all sharing 1274 * procs see it 1275 */ 1276 if ((amap_flags(amap) & AMAP_SHARED) != 0) { 1277 pmap_page_protect(uobjpage, PROT_NONE); 1278 } 1279 1280 /* dispose of uobjpage. drop handle to uobj as well. */ 1281 if (uobjpage->pg_flags & PG_WANTED) 1282 wakeup(uobjpage); 1283 atomic_clearbits_int(&uobjpage->pg_flags, 1284 PG_BUSY|PG_WANTED); 1285 UVM_PAGE_OWN(uobjpage, NULL); 1286 uvm_lock_pageq(); 1287 uvm_pageactivate(uobjpage); 1288 uvm_unlock_pageq(); 1289 uobj = NULL; 1290 } else { 1291 uvmexp.flt_przero++; 1292 /* 1293 * Page is zero'd and marked dirty by uvm_pagealloc() 1294 * above. 1295 */ 1296 } 1297 1298 if (amap_add(&ufi->entry->aref, 1299 ufi->orig_rvaddr - ufi->entry->start, anon, 0)) { 1300 uvmfault_unlockall(ufi, amap, NULL); 1301 uvm_anfree(anon); 1302 uvmexp.fltnoamap++; 1303 1304 if (uvm_swapisfull()) 1305 return (ENOMEM); 1306 1307 amap_populate(&ufi->entry->aref, 1308 ufi->orig_rvaddr - ufi->entry->start); 1309 return ERESTART; 1310 } 1311 } 1312 1313 /* note: pg is either the uobjpage or the new page in the new anon */ 1314 /* 1315 * all resources are present. we can now map it in and free our 1316 * resources. 1317 */ 1318 if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr, 1319 VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot, 1320 access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) { 1321 /* 1322 * No need to undo what we did; we can simply think of 1323 * this as the pmap throwing away the mapping information. 1324 * 1325 * We do, however, have to go through the ReFault path, 1326 * as the map may change while we're asleep. 1327 */ 1328 if (pg->pg_flags & PG_WANTED) 1329 wakeup(pg); 1330 1331 atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED); 1332 UVM_PAGE_OWN(pg, NULL); 1333 uvmfault_unlockall(ufi, amap, uobj); 1334 if (uvm_swapisfull()) { 1335 /* XXX instrumentation */ 1336 return (ENOMEM); 1337 } 1338 /* XXX instrumentation */ 1339 uvm_wait("flt_pmfail2"); 1340 return ERESTART; 1341 } 1342 1343 uvm_lock_pageq(); 1344 1345 if (fault_type == VM_FAULT_WIRE) { 1346 uvm_pagewire(pg); 1347 if (pg->pg_flags & PQ_AOBJ) { 1348 /* 1349 * since the now-wired page cannot be paged out, 1350 * release its swap resources for others to use. 1351 * since an aobj page with no swap cannot be PG_CLEAN, 1352 * clear its clean flag now. 1353 */ 1354 atomic_clearbits_int(&pg->pg_flags, PG_CLEAN); 1355 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT); 1356 } 1357 } else { 1358 /* activate it */ 1359 uvm_pageactivate(pg); 1360 } 1361 uvm_unlock_pageq(); 1362 1363 if (pg->pg_flags & PG_WANTED) 1364 wakeup(pg); 1365 1366 atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED); 1367 UVM_PAGE_OWN(pg, NULL); 1368 uvmfault_unlockall(ufi, amap, uobj); 1369 pmap_update(ufi->orig_map->pmap); 1370 1371 return (0); 1372 } 1373 1374 1375 /* 1376 * uvm_fault_wire: wire down a range of virtual addresses in a map. 1377 * 1378 * => map may be read-locked by caller, but MUST NOT be write-locked. 1379 * => if map is read-locked, any operations which may cause map to 1380 * be write-locked in uvm_fault() must be taken care of by 1381 * the caller. See uvm_map_pageable(). 1382 */ 1383 int 1384 uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type) 1385 { 1386 vaddr_t va; 1387 int rv; 1388 1389 /* 1390 * now fault it in a page at a time. if the fault fails then we have 1391 * to undo what we have done. note that in uvm_fault PROT_NONE 1392 * is replaced with the max protection if fault_type is VM_FAULT_WIRE. 1393 */ 1394 for (va = start ; va < end ; va += PAGE_SIZE) { 1395 rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type); 1396 if (rv) { 1397 if (va != start) { 1398 uvm_fault_unwire(map, start, va); 1399 } 1400 return (rv); 1401 } 1402 } 1403 1404 return (0); 1405 } 1406 1407 /* 1408 * uvm_fault_unwire(): unwire range of virtual space. 1409 */ 1410 void 1411 uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end) 1412 { 1413 1414 vm_map_lock_read(map); 1415 uvm_fault_unwire_locked(map, start, end); 1416 vm_map_unlock_read(map); 1417 } 1418 1419 /* 1420 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire(). 1421 * 1422 * => map must be at least read-locked. 1423 */ 1424 void 1425 uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end) 1426 { 1427 vm_map_entry_t entry, next; 1428 pmap_t pmap = vm_map_pmap(map); 1429 vaddr_t va; 1430 paddr_t pa; 1431 struct vm_page *pg; 1432 1433 KASSERT((map->flags & VM_MAP_INTRSAFE) == 0); 1434 1435 /* 1436 * we assume that the area we are unwiring has actually been wired 1437 * in the first place. this means that we should be able to extract 1438 * the PAs from the pmap. we also lock out the page daemon so that 1439 * we can call uvm_pageunwire. 1440 */ 1441 uvm_lock_pageq(); 1442 1443 /* find the beginning map entry for the region. */ 1444 KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map)); 1445 if (uvm_map_lookup_entry(map, start, &entry) == FALSE) 1446 panic("uvm_fault_unwire_locked: address not in map"); 1447 1448 for (va = start; va < end ; va += PAGE_SIZE) { 1449 if (pmap_extract(pmap, va, &pa) == FALSE) 1450 continue; 1451 1452 /* find the map entry for the current address. */ 1453 KASSERT(va >= entry->start); 1454 while (va >= entry->end) { 1455 next = RBT_NEXT(uvm_map_addr, entry); 1456 KASSERT(next != NULL && next->start <= entry->end); 1457 entry = next; 1458 } 1459 1460 /* if the entry is no longer wired, tell the pmap. */ 1461 if (VM_MAPENT_ISWIRED(entry) == 0) 1462 pmap_unwire(pmap, va); 1463 1464 pg = PHYS_TO_VM_PAGE(pa); 1465 if (pg) 1466 uvm_pageunwire(pg); 1467 } 1468 1469 uvm_unlock_pageq(); 1470 } 1471 1472 /* 1473 * uvmfault_unlockmaps: unlock the maps 1474 */ 1475 void 1476 uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked) 1477 { 1478 /* 1479 * ufi can be NULL when this isn't really a fault, 1480 * but merely paging in anon data. 1481 */ 1482 if (ufi == NULL) { 1483 return; 1484 } 1485 1486 uvmfault_update_stats(ufi); 1487 if (write_locked) { 1488 vm_map_unlock(ufi->map); 1489 } else { 1490 vm_map_unlock_read(ufi->map); 1491 } 1492 } 1493 1494 /* 1495 * uvmfault_unlockall: unlock everything passed in. 1496 * 1497 * => maps must be read-locked (not write-locked). 1498 */ 1499 void 1500 uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap, 1501 struct uvm_object *uobj) 1502 { 1503 1504 uvmfault_unlockmaps(ufi, FALSE); 1505 } 1506 1507 /* 1508 * uvmfault_lookup: lookup a virtual address in a map 1509 * 1510 * => caller must provide a uvm_faultinfo structure with the IN 1511 * params properly filled in 1512 * => we will lookup the map entry (handling submaps) as we go 1513 * => if the lookup is a success we will return with the maps locked 1514 * => if "write_lock" is TRUE, we write_lock the map, otherwise we only 1515 * get a read lock. 1516 * => note that submaps can only appear in the kernel and they are 1517 * required to use the same virtual addresses as the map they 1518 * are referenced by (thus address translation between the main 1519 * map and the submap is unnecessary). 1520 */ 1521 1522 boolean_t 1523 uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock) 1524 { 1525 vm_map_t tmpmap; 1526 1527 /* init ufi values for lookup. */ 1528 ufi->map = ufi->orig_map; 1529 ufi->size = ufi->orig_size; 1530 1531 /* 1532 * keep going down levels until we are done. note that there can 1533 * only be two levels so we won't loop very long. 1534 */ 1535 while (1) { 1536 if (ufi->orig_rvaddr < ufi->map->min_offset || 1537 ufi->orig_rvaddr >= ufi->map->max_offset) 1538 return(FALSE); 1539 1540 /* lock map */ 1541 if (write_lock) { 1542 vm_map_lock(ufi->map); 1543 } else { 1544 vm_map_lock_read(ufi->map); 1545 } 1546 1547 /* lookup */ 1548 if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr, 1549 &ufi->entry)) { 1550 uvmfault_unlockmaps(ufi, write_lock); 1551 return(FALSE); 1552 } 1553 1554 /* reduce size if necessary */ 1555 if (ufi->entry->end - ufi->orig_rvaddr < ufi->size) 1556 ufi->size = ufi->entry->end - ufi->orig_rvaddr; 1557 1558 /* 1559 * submap? replace map with the submap and lookup again. 1560 * note: VAs in submaps must match VAs in main map. 1561 */ 1562 if (UVM_ET_ISSUBMAP(ufi->entry)) { 1563 tmpmap = ufi->entry->object.sub_map; 1564 uvmfault_unlockmaps(ufi, write_lock); 1565 ufi->map = tmpmap; 1566 continue; 1567 } 1568 1569 /* got it! */ 1570 ufi->mapv = ufi->map->timestamp; 1571 return(TRUE); 1572 1573 } 1574 /*NOTREACHED*/ 1575 } 1576 1577 /* 1578 * uvmfault_relock: attempt to relock the same version of the map 1579 * 1580 * => fault data structures should be unlocked before calling. 1581 * => if a success (TRUE) maps will be locked after call. 1582 */ 1583 boolean_t 1584 uvmfault_relock(struct uvm_faultinfo *ufi) 1585 { 1586 /* 1587 * ufi can be NULL when this isn't really a fault, 1588 * but merely paging in anon data. 1589 */ 1590 if (ufi == NULL) { 1591 return TRUE; 1592 } 1593 1594 uvmexp.fltrelck++; 1595 1596 /* 1597 * relock map. fail if version mismatch (in which case nothing 1598 * gets locked). 1599 */ 1600 vm_map_lock_read(ufi->map); 1601 if (ufi->mapv != ufi->map->timestamp) { 1602 vm_map_unlock_read(ufi->map); 1603 return(FALSE); 1604 } 1605 1606 uvmexp.fltrelckok++; 1607 return(TRUE); /* got it! */ 1608 } 1609