xref: /openbsd-src/sys/uvm/uvm_aobj.c (revision f1dd7b858388b4a23f4f67a4957ec5ff656ebbe8)
1 /*	$OpenBSD: uvm_aobj.c,v 1.95 2021/04/22 11:54:32 mpi Exp $	*/
2 /*	$NetBSD: uvm_aobj.c,v 1.39 2001/02/18 21:19:08 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
6  *                    Washington University.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
30  */
31 /*
32  * uvm_aobj.c: anonymous memory uvm_object pager
33  *
34  * author: Chuck Silvers <chuq@chuq.com>
35  * started: Jan-1998
36  *
37  * - design mostly from Chuck Cranor
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/pool.h>
45 #include <sys/stdint.h>
46 #include <sys/atomic.h>
47 
48 #include <uvm/uvm.h>
49 
50 /*
51  * An anonymous UVM object (aobj) manages anonymous-memory.  In addition to
52  * keeping the list of resident pages, it may also keep a list of allocated
53  * swap blocks.  Depending on the size of the object, this list is either
54  * stored in an array (small objects) or in a hash table (large objects).
55  */
56 
57 /*
58  * Note: for hash tables, we break the address space of the aobj into blocks
59  * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
60  */
61 #define	UAO_SWHASH_CLUSTER_SHIFT	4
62 #define	UAO_SWHASH_CLUSTER_SIZE		(1 << UAO_SWHASH_CLUSTER_SHIFT)
63 
64 /* Get the "tag" for this page index. */
65 #define	UAO_SWHASH_ELT_TAG(idx)		((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
66 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
67     ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
68 
69 /* Given an ELT and a page index, find the swap slot. */
70 #define	UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
71     ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
72 
73 /* Given an ELT, return its pageidx base. */
74 #define	UAO_SWHASH_ELT_PAGEIDX_BASE(elt) \
75     ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
76 
77 /* The hash function. */
78 #define	UAO_SWHASH_HASH(aobj, idx) \
79     (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
80     & (aobj)->u_swhashmask)])
81 
82 /*
83  * The threshold which determines whether we will use an array or a
84  * hash table to store the list of allocated swap blocks.
85  */
86 #define	UAO_SWHASH_THRESHOLD		(UAO_SWHASH_CLUSTER_SIZE * 4)
87 #define	UAO_USES_SWHASH(aobj) \
88     ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
89 
90 /* The number of buckets in a hash, with an upper bound. */
91 #define	UAO_SWHASH_MAXBUCKETS		256
92 #define	UAO_SWHASH_BUCKETS(pages) \
93     (min((pages) >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
94 
95 
96 /*
97  * uao_swhash_elt: when a hash table is being used, this structure defines
98  * the format of an entry in the bucket list.
99  */
100 struct uao_swhash_elt {
101 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
102 	voff_t tag;				/* our 'tag' */
103 	int count;				/* our number of active slots */
104 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
105 };
106 
107 /*
108  * uao_swhash: the swap hash table structure
109  */
110 LIST_HEAD(uao_swhash, uao_swhash_elt);
111 
112 /*
113  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
114  */
115 struct pool uao_swhash_elt_pool;
116 
117 /*
118  * uvm_aobj: the actual anon-backed uvm_object
119  *
120  * => the uvm_object is at the top of the structure, this allows
121  *   (struct uvm_aobj *) == (struct uvm_object *)
122  * => only one of u_swslots and u_swhash is used in any given aobj
123  */
124 struct uvm_aobj {
125 	struct uvm_object u_obj; /* has: pgops, memt, #pages, #refs */
126 	int u_pages;		 /* number of pages in entire object */
127 	int u_flags;		 /* the flags (see uvm_aobj.h) */
128 	/*
129 	 * Either an array or hashtable (array of bucket heads) of
130 	 * offset -> swapslot mappings for the aobj.
131 	 */
132 #define u_swslots	u_swap.slot_array
133 #define u_swhash	u_swap.slot_hash
134 	union swslots {
135 		int			*slot_array;
136 		struct uao_swhash	*slot_hash;
137 	} u_swap;
138 	u_long u_swhashmask;		/* mask for hashtable */
139 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
140 };
141 
142 struct pool uvm_aobj_pool;
143 
144 static struct uao_swhash_elt	*uao_find_swhash_elt(struct uvm_aobj *, int,
145 				     boolean_t);
146 static int			 uao_find_swslot(struct uvm_aobj *, int);
147 static boolean_t		 uao_flush(struct uvm_object *, voff_t,
148 				     voff_t, int);
149 static void			 uao_free(struct uvm_aobj *);
150 static int			 uao_get(struct uvm_object *, voff_t,
151 				     vm_page_t *, int *, int, vm_prot_t,
152 				     int, int);
153 static boolean_t		 uao_pagein(struct uvm_aobj *, int, int);
154 static boolean_t		 uao_pagein_page(struct uvm_aobj *, int);
155 
156 void	uao_dropswap_range(struct uvm_object *, voff_t, voff_t);
157 void	uao_shrink_flush(struct uvm_object *, int, int);
158 int	uao_shrink_hash(struct uvm_object *, int);
159 int	uao_shrink_array(struct uvm_object *, int);
160 int	uao_shrink_convert(struct uvm_object *, int);
161 
162 int	uao_grow_hash(struct uvm_object *, int);
163 int	uao_grow_array(struct uvm_object *, int);
164 int	uao_grow_convert(struct uvm_object *, int);
165 
166 /*
167  * aobj_pager
168  *
169  * note that some functions (e.g. put) are handled elsewhere
170  */
171 const struct uvm_pagerops aobj_pager = {
172 	.pgo_reference = uao_reference,
173 	.pgo_detach = uao_detach,
174 	.pgo_flush = uao_flush,
175 	.pgo_get = uao_get,
176 };
177 
178 /*
179  * uao_list: global list of active aobjs, locked by uao_list_lock
180  *
181  * Lock ordering: generally the locking order is object lock, then list lock.
182  * in the case of swap off we have to iterate over the list, and thus the
183  * ordering is reversed. In that case we must use trylocking to prevent
184  * deadlock.
185  */
186 static LIST_HEAD(aobjlist, uvm_aobj) uao_list = LIST_HEAD_INITIALIZER(uao_list);
187 static struct mutex uao_list_lock = MUTEX_INITIALIZER(IPL_NONE);
188 
189 
190 /*
191  * functions
192  */
193 /*
194  * hash table/array related functions
195  */
196 /*
197  * uao_find_swhash_elt: find (or create) a hash table entry for a page
198  * offset.
199  */
200 static struct uao_swhash_elt *
201 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, boolean_t create)
202 {
203 	struct uao_swhash *swhash;
204 	struct uao_swhash_elt *elt;
205 	voff_t page_tag;
206 
207 	swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
208 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);	/* tag to search for */
209 
210 	/*
211 	 * now search the bucket for the requested tag
212 	 */
213 	LIST_FOREACH(elt, swhash, list) {
214 		if (elt->tag == page_tag)
215 			return elt;
216 	}
217 
218 	if (!create)
219 		return NULL;
220 
221 	/*
222 	 * allocate a new entry for the bucket and init/insert it in
223 	 */
224 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT | PR_ZERO);
225 	/*
226 	 * XXX We cannot sleep here as the hash table might disappear
227 	 * from under our feet.  And we run the risk of deadlocking
228 	 * the pagedeamon.  In fact this code will only be called by
229 	 * the pagedaemon and allocation will only fail if we
230 	 * exhausted the pagedeamon reserve.  In that case we're
231 	 * doomed anyway, so panic.
232 	 */
233 	if (elt == NULL)
234 		panic("%s: can't allocate entry", __func__);
235 	LIST_INSERT_HEAD(swhash, elt, list);
236 	elt->tag = page_tag;
237 
238 	return elt;
239 }
240 
241 /*
242  * uao_find_swslot: find the swap slot number for an aobj/pageidx
243  */
244 inline static int
245 uao_find_swslot(struct uvm_aobj *aobj, int pageidx)
246 {
247 
248 	/*
249 	 * if noswap flag is set, then we never return a slot
250 	 */
251 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
252 		return 0;
253 
254 	/*
255 	 * if hashing, look in hash table.
256 	 */
257 	if (UAO_USES_SWHASH(aobj)) {
258 		struct uao_swhash_elt *elt =
259 		    uao_find_swhash_elt(aobj, pageidx, FALSE);
260 
261 		if (elt)
262 			return UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
263 		else
264 			return 0;
265 	}
266 
267 	/*
268 	 * otherwise, look in the array
269 	 */
270 	return aobj->u_swslots[pageidx];
271 }
272 
273 /*
274  * uao_set_swslot: set the swap slot for a page in an aobj.
275  *
276  * => setting a slot to zero frees the slot
277  * => we return the old slot number, or -1 if we failed to allocate
278  *    memory to record the new slot number
279  */
280 int
281 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
282 {
283 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
284 	int oldslot;
285 
286 	KERNEL_ASSERT_LOCKED();
287 
288 	/*
289 	 * if noswap flag is set, then we can't set a slot
290 	 */
291 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
292 		if (slot == 0)
293 			return 0;		/* a clear is ok */
294 
295 		/* but a set is not */
296 		printf("uao_set_swslot: uobj = %p\n", uobj);
297 	    panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
298 	}
299 
300 	/*
301 	 * are we using a hash table?  if so, add it in the hash.
302 	 */
303 	if (UAO_USES_SWHASH(aobj)) {
304 		/*
305 		 * Avoid allocating an entry just to free it again if
306 		 * the page had not swap slot in the first place, and
307 		 * we are freeing.
308 		 */
309 		struct uao_swhash_elt *elt =
310 		    uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
311 		if (elt == NULL) {
312 			KASSERT(slot == 0);
313 			return 0;
314 		}
315 
316 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
317 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
318 
319 		/*
320 		 * now adjust the elt's reference counter and free it if we've
321 		 * dropped it to zero.
322 		 */
323 		if (slot) {
324 			if (oldslot == 0)
325 				elt->count++;
326 		} else {
327 			if (oldslot)
328 				elt->count--;
329 
330 			if (elt->count == 0) {
331 				LIST_REMOVE(elt, list);
332 				pool_put(&uao_swhash_elt_pool, elt);
333 			}
334 		}
335 	} else {
336 		/* we are using an array */
337 		oldslot = aobj->u_swslots[pageidx];
338 		aobj->u_swslots[pageidx] = slot;
339 	}
340 	return oldslot;
341 }
342 /*
343  * end of hash/array functions
344  */
345 
346 /*
347  * uao_free: free all resources held by an aobj, and then free the aobj
348  *
349  * => the aobj should be dead
350  */
351 static void
352 uao_free(struct uvm_aobj *aobj)
353 {
354 
355 	if (UAO_USES_SWHASH(aobj)) {
356 		int i, hashbuckets = aobj->u_swhashmask + 1;
357 
358 		/*
359 		 * free the swslots from each hash bucket,
360 		 * then the hash bucket, and finally the hash table itself.
361 		 */
362 		for (i = 0; i < hashbuckets; i++) {
363 			struct uao_swhash_elt *elt, *next;
364 
365 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
366 			     elt != NULL;
367 			     elt = next) {
368 				int j;
369 
370 				for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
371 					int slot = elt->slots[j];
372 
373 					if (slot == 0) {
374 						continue;
375 					}
376 					uvm_swap_free(slot, 1);
377 					/*
378 					 * this page is no longer
379 					 * only in swap.
380 					 */
381 					atomic_dec_int(&uvmexp.swpgonly);
382 				}
383 
384 				next = LIST_NEXT(elt, list);
385 				pool_put(&uao_swhash_elt_pool, elt);
386 			}
387 		}
388 
389 		hashfree(aobj->u_swhash, UAO_SWHASH_BUCKETS(aobj->u_pages), M_UVMAOBJ);
390 	} else {
391 		int i;
392 
393 		/*
394 		 * free the array
395 		 */
396 		for (i = 0; i < aobj->u_pages; i++) {
397 			int slot = aobj->u_swslots[i];
398 
399 			if (slot) {
400 				uvm_swap_free(slot, 1);
401 
402 				/* this page is no longer only in swap. */
403 				atomic_dec_int(&uvmexp.swpgonly);
404 			}
405 		}
406 		free(aobj->u_swslots, M_UVMAOBJ, aobj->u_pages * sizeof(int));
407 	}
408 
409 	/*
410 	 * finally free the aobj itself
411 	 */
412 	pool_put(&uvm_aobj_pool, aobj);
413 }
414 
415 /*
416  * pager functions
417  */
418 
419 #ifdef TMPFS
420 /*
421  * Shrink an aobj to a given number of pages. The procedure is always the same:
422  * assess the necessity of data structure conversion (hash to array), secure
423  * resources, flush pages and drop swap slots.
424  *
425  */
426 
427 void
428 uao_shrink_flush(struct uvm_object *uobj, int startpg, int endpg)
429 {
430 	KASSERT(startpg < endpg);
431 	KASSERT(uobj->uo_refs == 1);
432 	uao_flush(uobj, (voff_t)startpg << PAGE_SHIFT,
433 	    (voff_t)endpg << PAGE_SHIFT, PGO_FREE);
434 	uao_dropswap_range(uobj, startpg, endpg);
435 }
436 
437 int
438 uao_shrink_hash(struct uvm_object *uobj, int pages)
439 {
440 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
441 	struct uao_swhash *new_swhash;
442 	struct uao_swhash_elt *elt;
443 	unsigned long new_hashmask;
444 	int i;
445 
446 	KASSERT(UAO_USES_SWHASH(aobj));
447 
448 	/*
449 	 * If the size of the hash table doesn't change, all we need to do is
450 	 * to adjust the page count.
451 	 */
452 	if (UAO_SWHASH_BUCKETS(aobj->u_pages) == UAO_SWHASH_BUCKETS(pages)) {
453 		uao_shrink_flush(uobj, pages, aobj->u_pages);
454 		aobj->u_pages = pages;
455 		return 0;
456 	}
457 
458 	new_swhash = hashinit(UAO_SWHASH_BUCKETS(pages), M_UVMAOBJ,
459 	    M_WAITOK | M_CANFAIL, &new_hashmask);
460 	if (new_swhash == NULL)
461 		return ENOMEM;
462 
463 	uao_shrink_flush(uobj, pages, aobj->u_pages);
464 
465 	/*
466 	 * Even though the hash table size is changing, the hash of the buckets
467 	 * we are interested in copying should not change.
468 	 */
469 	for (i = 0; i < UAO_SWHASH_BUCKETS(aobj->u_pages); i++) {
470 		while (LIST_EMPTY(&aobj->u_swhash[i]) == 0) {
471 			elt = LIST_FIRST(&aobj->u_swhash[i]);
472 			LIST_REMOVE(elt, list);
473 			LIST_INSERT_HEAD(&new_swhash[i], elt, list);
474 		}
475 	}
476 
477 	hashfree(aobj->u_swhash, UAO_SWHASH_BUCKETS(aobj->u_pages), M_UVMAOBJ);
478 
479 	aobj->u_swhash = new_swhash;
480 	aobj->u_pages = pages;
481 	aobj->u_swhashmask = new_hashmask;
482 
483 	return 0;
484 }
485 
486 int
487 uao_shrink_convert(struct uvm_object *uobj, int pages)
488 {
489 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
490 	struct uao_swhash_elt *elt;
491 	int i, *new_swslots;
492 
493 	new_swslots = mallocarray(pages, sizeof(int), M_UVMAOBJ,
494 	    M_WAITOK | M_CANFAIL | M_ZERO);
495 	if (new_swslots == NULL)
496 		return ENOMEM;
497 
498 	uao_shrink_flush(uobj, pages, aobj->u_pages);
499 
500 	/* Convert swap slots from hash to array.  */
501 	for (i = 0; i < pages; i++) {
502 		elt = uao_find_swhash_elt(aobj, i, FALSE);
503 		if (elt != NULL) {
504 			new_swslots[i] = UAO_SWHASH_ELT_PAGESLOT(elt, i);
505 			if (new_swslots[i] != 0)
506 				elt->count--;
507 			if (elt->count == 0) {
508 				LIST_REMOVE(elt, list);
509 				pool_put(&uao_swhash_elt_pool, elt);
510 			}
511 		}
512 	}
513 
514 	hashfree(aobj->u_swhash, UAO_SWHASH_BUCKETS(aobj->u_pages), M_UVMAOBJ);
515 
516 	aobj->u_swslots = new_swslots;
517 	aobj->u_pages = pages;
518 
519 	return 0;
520 }
521 
522 int
523 uao_shrink_array(struct uvm_object *uobj, int pages)
524 {
525 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
526 	int i, *new_swslots;
527 
528 	new_swslots = mallocarray(pages, sizeof(int), M_UVMAOBJ,
529 	    M_WAITOK | M_CANFAIL | M_ZERO);
530 	if (new_swslots == NULL)
531 		return ENOMEM;
532 
533 	uao_shrink_flush(uobj, pages, aobj->u_pages);
534 
535 	for (i = 0; i < pages; i++)
536 		new_swslots[i] = aobj->u_swslots[i];
537 
538 	free(aobj->u_swslots, M_UVMAOBJ, aobj->u_pages * sizeof(int));
539 
540 	aobj->u_swslots = new_swslots;
541 	aobj->u_pages = pages;
542 
543 	return 0;
544 }
545 
546 int
547 uao_shrink(struct uvm_object *uobj, int pages)
548 {
549 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
550 
551 	KASSERT(pages < aobj->u_pages);
552 
553 	/*
554 	 * Distinguish between three possible cases:
555 	 * 1. aobj uses hash and must be converted to array.
556 	 * 2. aobj uses array and array size needs to be adjusted.
557 	 * 3. aobj uses hash and hash size needs to be adjusted.
558 	 */
559 	if (pages > UAO_SWHASH_THRESHOLD)
560 		return uao_shrink_hash(uobj, pages);	/* case 3 */
561 	else if (aobj->u_pages > UAO_SWHASH_THRESHOLD)
562 		return uao_shrink_convert(uobj, pages);	/* case 1 */
563 	else
564 		return uao_shrink_array(uobj, pages);	/* case 2 */
565 }
566 
567 /*
568  * Grow an aobj to a given number of pages. Right now we only adjust the swap
569  * slots. We could additionally handle page allocation directly, so that they
570  * don't happen through uvm_fault(). That would allow us to use another
571  * mechanism for the swap slots other than malloc(). It is thus mandatory that
572  * the caller of these functions does not allow faults to happen in case of
573  * growth error.
574  */
575 int
576 uao_grow_array(struct uvm_object *uobj, int pages)
577 {
578 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
579 	int i, *new_swslots;
580 
581 	KASSERT(aobj->u_pages <= UAO_SWHASH_THRESHOLD);
582 
583 	new_swslots = mallocarray(pages, sizeof(int), M_UVMAOBJ,
584 	    M_WAITOK | M_CANFAIL | M_ZERO);
585 	if (new_swslots == NULL)
586 		return ENOMEM;
587 
588 	for (i = 0; i < aobj->u_pages; i++)
589 		new_swslots[i] = aobj->u_swslots[i];
590 
591 	free(aobj->u_swslots, M_UVMAOBJ, aobj->u_pages * sizeof(int));
592 
593 	aobj->u_swslots = new_swslots;
594 	aobj->u_pages = pages;
595 
596 	return 0;
597 }
598 
599 int
600 uao_grow_hash(struct uvm_object *uobj, int pages)
601 {
602 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
603 	struct uao_swhash *new_swhash;
604 	struct uao_swhash_elt *elt;
605 	unsigned long new_hashmask;
606 	int i;
607 
608 	KASSERT(pages > UAO_SWHASH_THRESHOLD);
609 
610 	/*
611 	 * If the size of the hash table doesn't change, all we need to do is
612 	 * to adjust the page count.
613 	 */
614 	if (UAO_SWHASH_BUCKETS(aobj->u_pages) == UAO_SWHASH_BUCKETS(pages)) {
615 		aobj->u_pages = pages;
616 		return 0;
617 	}
618 
619 	KASSERT(UAO_SWHASH_BUCKETS(aobj->u_pages) < UAO_SWHASH_BUCKETS(pages));
620 
621 	new_swhash = hashinit(UAO_SWHASH_BUCKETS(pages), M_UVMAOBJ,
622 	    M_WAITOK | M_CANFAIL, &new_hashmask);
623 	if (new_swhash == NULL)
624 		return ENOMEM;
625 
626 	for (i = 0; i < UAO_SWHASH_BUCKETS(aobj->u_pages); i++) {
627 		while (LIST_EMPTY(&aobj->u_swhash[i]) == 0) {
628 			elt = LIST_FIRST(&aobj->u_swhash[i]);
629 			LIST_REMOVE(elt, list);
630 			LIST_INSERT_HEAD(&new_swhash[i], elt, list);
631 		}
632 	}
633 
634 	hashfree(aobj->u_swhash, UAO_SWHASH_BUCKETS(aobj->u_pages), M_UVMAOBJ);
635 
636 	aobj->u_swhash = new_swhash;
637 	aobj->u_pages = pages;
638 	aobj->u_swhashmask = new_hashmask;
639 
640 	return 0;
641 }
642 
643 int
644 uao_grow_convert(struct uvm_object *uobj, int pages)
645 {
646 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
647 	struct uao_swhash *new_swhash;
648 	struct uao_swhash_elt *elt;
649 	unsigned long new_hashmask;
650 	int i, *old_swslots;
651 
652 	new_swhash = hashinit(UAO_SWHASH_BUCKETS(pages), M_UVMAOBJ,
653 	    M_WAITOK | M_CANFAIL, &new_hashmask);
654 	if (new_swhash == NULL)
655 		return ENOMEM;
656 
657 	/* Set these now, so we can use uao_find_swhash_elt(). */
658 	old_swslots = aobj->u_swslots;
659 	aobj->u_swhash = new_swhash;
660 	aobj->u_swhashmask = new_hashmask;
661 
662 	for (i = 0; i < aobj->u_pages; i++) {
663 		if (old_swslots[i] != 0) {
664 			elt = uao_find_swhash_elt(aobj, i, TRUE);
665 			elt->count++;
666 			UAO_SWHASH_ELT_PAGESLOT(elt, i) = old_swslots[i];
667 		}
668 	}
669 
670 	free(old_swslots, M_UVMAOBJ, aobj->u_pages * sizeof(int));
671 	aobj->u_pages = pages;
672 
673 	return 0;
674 }
675 
676 int
677 uao_grow(struct uvm_object *uobj, int pages)
678 {
679 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
680 
681 	KASSERT(pages > aobj->u_pages);
682 
683 	/*
684 	 * Distinguish between three possible cases:
685 	 * 1. aobj uses hash and hash size needs to be adjusted.
686 	 * 2. aobj uses array and array size needs to be adjusted.
687 	 * 3. aobj uses array and must be converted to hash.
688 	 */
689 	if (pages <= UAO_SWHASH_THRESHOLD)
690 		return uao_grow_array(uobj, pages);	/* case 2 */
691 	else if (aobj->u_pages > UAO_SWHASH_THRESHOLD)
692 		return uao_grow_hash(uobj, pages);	/* case 1 */
693 	else
694 		return uao_grow_convert(uobj, pages);
695 }
696 #endif /* TMPFS */
697 
698 /*
699  * uao_create: create an aobj of the given size and return its uvm_object.
700  *
701  * => for normal use, flags are zero or UAO_FLAG_CANFAIL.
702  * => for the kernel object, the flags are:
703  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
704  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
705  */
706 struct uvm_object *
707 uao_create(vsize_t size, int flags)
708 {
709 	static struct uvm_aobj kernel_object_store;
710 	static int kobj_alloced = 0;
711 	int pages = round_page(size) >> PAGE_SHIFT;
712 	int refs = UVM_OBJ_KERN;
713 	int mflags;
714 	struct uvm_aobj *aobj;
715 
716 	/*
717 	 * Allocate a new aobj, unless kernel object is requested.
718 	 */
719 	if (flags & UAO_FLAG_KERNOBJ) {
720 		if (kobj_alloced)
721 			panic("uao_create: kernel object already allocated");
722 
723 		aobj = &kernel_object_store;
724 		aobj->u_pages = pages;
725 		aobj->u_flags = UAO_FLAG_NOSWAP;
726 		kobj_alloced = UAO_FLAG_KERNOBJ;
727 	} else if (flags & UAO_FLAG_KERNSWAP) {
728 		aobj = &kernel_object_store;
729 		if (kobj_alloced != UAO_FLAG_KERNOBJ)
730 		    panic("uao_create: asked to enable swap on kernel object");
731 		kobj_alloced = UAO_FLAG_KERNSWAP;
732 	} else {
733 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
734 		aobj->u_pages = pages;
735 		aobj->u_flags = 0;
736 		refs = 1;
737 	}
738 
739 	/*
740 	 * allocate hash/array if necessary
741 	 */
742  	if (flags == 0 || (flags & (UAO_FLAG_KERNSWAP | UAO_FLAG_CANFAIL))) {
743 		if (flags)
744 			mflags = M_NOWAIT;
745 		else
746 			mflags = M_WAITOK;
747 
748 		/* allocate hash table or array depending on object size */
749 		if (UAO_USES_SWHASH(aobj)) {
750 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(pages),
751 			    M_UVMAOBJ, mflags, &aobj->u_swhashmask);
752 			if (aobj->u_swhash == NULL) {
753 				if (flags & UAO_FLAG_CANFAIL) {
754 					pool_put(&uvm_aobj_pool, aobj);
755 					return NULL;
756 				}
757 				panic("uao_create: hashinit swhash failed");
758 			}
759 		} else {
760 			aobj->u_swslots = mallocarray(pages, sizeof(int),
761 			    M_UVMAOBJ, mflags|M_ZERO);
762 			if (aobj->u_swslots == NULL) {
763 				if (flags & UAO_FLAG_CANFAIL) {
764 					pool_put(&uvm_aobj_pool, aobj);
765 					return NULL;
766 				}
767 				panic("uao_create: malloc swslots failed");
768 			}
769 		}
770 
771 		if (flags & UAO_FLAG_KERNSWAP) {
772 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
773 			return &aobj->u_obj;
774 			/* done! */
775 		}
776 	}
777 
778 	/*
779 	 * Initialise UVM object.
780 	 */
781 	uvm_objinit(&aobj->u_obj, &aobj_pager, refs);
782 
783 	/*
784  	 * now that aobj is ready, add it to the global list
785  	 */
786 	mtx_enter(&uao_list_lock);
787 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
788 	mtx_leave(&uao_list_lock);
789 
790 	return &aobj->u_obj;
791 }
792 
793 
794 
795 /*
796  * uao_init: set up aobj pager subsystem
797  *
798  * => called at boot time from uvm_pager_init()
799  */
800 void
801 uao_init(void)
802 {
803 	/*
804 	 * NOTE: Pages for this pool must not come from a pageable
805 	 * kernel map!
806 	 */
807 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0,
808 	    IPL_NONE, PR_WAITOK, "uaoeltpl", NULL);
809 	pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0,
810 	    IPL_NONE, PR_WAITOK, "aobjpl", NULL);
811 }
812 
813 /*
814  * uao_reference: hold a reference to an anonymous UVM object.
815  */
816 void
817 uao_reference(struct uvm_object *uobj)
818 {
819 	KERNEL_ASSERT_LOCKED();
820 	uao_reference_locked(uobj);
821 }
822 
823 void
824 uao_reference_locked(struct uvm_object *uobj)
825 {
826 
827 	/* Kernel object is persistent. */
828 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
829 		return;
830 
831 	uobj->uo_refs++;
832 }
833 
834 
835 /*
836  * uao_detach: drop a reference to an anonymous UVM object.
837  */
838 void
839 uao_detach(struct uvm_object *uobj)
840 {
841 	KERNEL_ASSERT_LOCKED();
842 	uao_detach_locked(uobj);
843 }
844 
845 
846 /*
847  * uao_detach_locked: drop a reference to an aobj
848  *
849  * => aobj may freed upon return.
850  */
851 void
852 uao_detach_locked(struct uvm_object *uobj)
853 {
854 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
855 	struct vm_page *pg;
856 
857 	/*
858 	 * Detaching from kernel_object is a NOP.
859 	 */
860 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
861 		return;
862 	}
863 
864 	/*
865 	 * Drop the reference.  If it was the last one, destroy the object.
866 	 */
867 	uobj->uo_refs--;
868 	if (uobj->uo_refs) {
869 		return;
870 	}
871 
872 	/*
873 	 * Remove the aobj from the global list.
874 	 */
875 	mtx_enter(&uao_list_lock);
876 	LIST_REMOVE(aobj, u_list);
877 	mtx_leave(&uao_list_lock);
878 
879 	/*
880 	 * Free all the pages left in the aobj.  For each page, when the
881 	 * page is no longer busy (and thus after any disk I/O that it is
882 	 * involved in is complete), release any swap resources and free
883 	 * the page itself.
884 	 */
885 	uvm_lock_pageq();
886 	while((pg = RBT_ROOT(uvm_objtree, &uobj->memt)) != NULL) {
887 		if (pg->pg_flags & PG_BUSY) {
888 			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
889 			uvm_unlock_pageq();
890 			tsleep_nsec(pg, PVM, "uao_det", INFSLP);
891 			uvm_lock_pageq();
892 			continue;
893 		}
894 		pmap_page_protect(pg, PROT_NONE);
895 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
896 		uvm_pagefree(pg);
897 	}
898 	uvm_unlock_pageq();
899 
900 	/*
901 	 * Finally, free the anonymous UVM object itself.
902 	 */
903 	uao_free(aobj);
904 }
905 
906 /*
907  * uao_flush: flush pages out of a uvm object
908  *
909  * => if PGO_CLEANIT is not set, then we will not block.
910  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
911  *	for flushing.
912  * => NOTE: we are allowed to lock the page queues, so the caller
913  *	must not be holding the lock on them [e.g. pagedaemon had
914  *	better not call us with the queues locked]
915  * => we return TRUE unless we encountered some sort of I/O error
916  *	XXXJRT currently never happens, as we never directly initiate
917  *	XXXJRT I/O
918  */
919 boolean_t
920 uao_flush(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
921 {
922 	struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
923 	struct vm_page *pp;
924 	voff_t curoff;
925 
926 	KERNEL_ASSERT_LOCKED();
927 
928 	if (flags & PGO_ALLPAGES) {
929 		start = 0;
930 		stop = (voff_t)aobj->u_pages << PAGE_SHIFT;
931 	} else {
932 		start = trunc_page(start);
933 		stop = round_page(stop);
934 		if (stop > ((voff_t)aobj->u_pages << PAGE_SHIFT)) {
935 			printf("uao_flush: strange, got an out of range "
936 			    "flush (fixed)\n");
937 			stop = (voff_t)aobj->u_pages << PAGE_SHIFT;
938 		}
939 	}
940 
941 	/*
942 	 * Don't need to do any work here if we're not freeing
943 	 * or deactivating pages.
944 	 */
945 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
946 		return TRUE;
947 
948 	curoff = start;
949 	for (;;) {
950 		if (curoff < stop) {
951 			pp = uvm_pagelookup(uobj, curoff);
952 			curoff += PAGE_SIZE;
953 			if (pp == NULL)
954 				continue;
955 		} else {
956 			break;
957 		}
958 
959 		/* Make sure page is unbusy, else wait for it. */
960 		if (pp->pg_flags & PG_BUSY) {
961 			atomic_setbits_int(&pp->pg_flags, PG_WANTED);
962 			tsleep_nsec(pp, PVM, "uaoflsh", INFSLP);
963 			curoff -= PAGE_SIZE;
964 			continue;
965 		}
966 
967 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
968 		/*
969 		 * XXX In these first 3 cases, we always just
970 		 * XXX deactivate the page.  We may want to
971 		 * XXX handle the different cases more specifically
972 		 * XXX in the future.
973 		 */
974 		case PGO_CLEANIT|PGO_FREE:
975 			/* FALLTHROUGH */
976 		case PGO_CLEANIT|PGO_DEACTIVATE:
977 			/* FALLTHROUGH */
978 		case PGO_DEACTIVATE:
979  deactivate_it:
980 			if (pp->wire_count != 0)
981 				continue;
982 
983 			uvm_lock_pageq();
984 			pmap_page_protect(pp, PROT_NONE);
985 			uvm_pagedeactivate(pp);
986 			uvm_unlock_pageq();
987 
988 			continue;
989 		case PGO_FREE:
990 			/*
991 			 * If there are multiple references to
992 			 * the object, just deactivate the page.
993 			 */
994 			if (uobj->uo_refs > 1)
995 				goto deactivate_it;
996 
997 			/* XXX skip the page if it's wired */
998 			if (pp->wire_count != 0)
999 				continue;
1000 
1001 			/*
1002 			 * free the swap slot and the page.
1003 			 */
1004 			pmap_page_protect(pp, PROT_NONE);
1005 
1006 			/*
1007 			 * freeing swapslot here is not strictly necessary.
1008 			 * however, leaving it here doesn't save much
1009 			 * because we need to update swap accounting anyway.
1010 			 */
1011 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
1012 			uvm_lock_pageq();
1013 			uvm_pagefree(pp);
1014 			uvm_unlock_pageq();
1015 
1016 			continue;
1017 		default:
1018 			panic("uao_flush: weird flags");
1019 		}
1020 	}
1021 
1022 	return TRUE;
1023 }
1024 
1025 /*
1026  * uao_get: fetch me a page
1027  *
1028  * we have three cases:
1029  * 1: page is resident     -> just return the page.
1030  * 2: page is zero-fill    -> allocate a new page and zero it.
1031  * 3: page is swapped out  -> fetch the page from swap.
1032  *
1033  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
1034  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
1035  * then we will need to return VM_PAGER_UNLOCK.
1036  *
1037  * => flags: PGO_ALLPAGES: get all of the pages
1038  *           PGO_LOCKED: fault data structures are locked
1039  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
1040  * => NOTE: caller must check for released pages!!
1041  */
1042 static int
1043 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
1044     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
1045 {
1046 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1047 	voff_t current_offset;
1048 	vm_page_t ptmp;
1049 	int lcv, gotpages, maxpages, swslot, rv, pageidx;
1050 	boolean_t done;
1051 
1052 	KERNEL_ASSERT_LOCKED();
1053 
1054 	/*
1055  	 * get number of pages
1056  	 */
1057 	maxpages = *npagesp;
1058 
1059 	if (flags & PGO_LOCKED) {
1060 		/*
1061  		 * step 1a: get pages that are already resident.   only do
1062 		 * this if the data structures are locked (i.e. the first
1063 		 * time through).
1064  		 */
1065 
1066 		done = TRUE;	/* be optimistic */
1067 		gotpages = 0;	/* # of pages we got so far */
1068 
1069 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1070 		    lcv++, current_offset += PAGE_SIZE) {
1071 			/* do we care about this page?  if not, skip it */
1072 			if (pps[lcv] == PGO_DONTCARE)
1073 				continue;
1074 
1075 			ptmp = uvm_pagelookup(uobj, current_offset);
1076 
1077 			/*
1078  			 * if page is new, attempt to allocate the page,
1079 			 * zero-fill'd.
1080  			 */
1081 			if (ptmp == NULL && uao_find_swslot(aobj,
1082 			    current_offset >> PAGE_SHIFT) == 0) {
1083 				ptmp = uvm_pagealloc(uobj, current_offset,
1084 				    NULL, UVM_PGA_ZERO);
1085 				if (ptmp) {
1086 					/* new page */
1087 					atomic_clearbits_int(&ptmp->pg_flags,
1088 					    PG_BUSY|PG_FAKE);
1089 					atomic_setbits_int(&ptmp->pg_flags,
1090 					    PQ_AOBJ);
1091 					UVM_PAGE_OWN(ptmp, NULL);
1092 				}
1093 			}
1094 
1095 			/*
1096 			 * to be useful must get a non-busy page
1097 			 */
1098 			if (ptmp == NULL ||
1099 			    (ptmp->pg_flags & PG_BUSY) != 0) {
1100 				if (lcv == centeridx ||
1101 				    (flags & PGO_ALLPAGES) != 0)
1102 					/* need to do a wait or I/O! */
1103 					done = FALSE;
1104 				continue;
1105 			}
1106 
1107 			/*
1108 			 * useful page: plug it in our result array
1109 			 */
1110 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
1111 			UVM_PAGE_OWN(ptmp, "uao_get1");
1112 			pps[lcv] = ptmp;
1113 			gotpages++;
1114 
1115 		}
1116 
1117 		/*
1118  		 * step 1b: now we've either done everything needed or we
1119 		 * to unlock and do some waiting or I/O.
1120  		 */
1121 		*npagesp = gotpages;
1122 		if (done)
1123 			/* bingo! */
1124 			return VM_PAGER_OK;
1125 		else
1126 			/* EEK!   Need to unlock and I/O */
1127 			return VM_PAGER_UNLOCK;
1128 	}
1129 
1130 	/*
1131  	 * step 2: get non-resident or busy pages.
1132  	 * data structures are unlocked.
1133  	 */
1134 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1135 	    lcv++, current_offset += PAGE_SIZE) {
1136 		/*
1137 		 * - skip over pages we've already gotten or don't want
1138 		 * - skip over pages we don't _have_ to get
1139 		 */
1140 		if (pps[lcv] != NULL ||
1141 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1142 			continue;
1143 
1144 		pageidx = current_offset >> PAGE_SHIFT;
1145 
1146 		/*
1147  		 * we have yet to locate the current page (pps[lcv]).   we
1148 		 * first look for a page that is already at the current offset.
1149 		 * if we find a page, we check to see if it is busy or
1150 		 * released.  if that is the case, then we sleep on the page
1151 		 * until it is no longer busy or released and repeat the lookup.
1152 		 * if the page we found is neither busy nor released, then we
1153 		 * busy it (so we own it) and plug it into pps[lcv].   this
1154 		 * 'break's the following while loop and indicates we are
1155 		 * ready to move on to the next page in the "lcv" loop above.
1156  		 *
1157  		 * if we exit the while loop with pps[lcv] still set to NULL,
1158 		 * then it means that we allocated a new busy/fake/clean page
1159 		 * ptmp in the object and we need to do I/O to fill in the data.
1160  		 */
1161 
1162 		/* top of "pps" while loop */
1163 		while (pps[lcv] == NULL) {
1164 			/* look for a resident page */
1165 			ptmp = uvm_pagelookup(uobj, current_offset);
1166 
1167 			/* not resident?   allocate one now (if we can) */
1168 			if (ptmp == NULL) {
1169 
1170 				ptmp = uvm_pagealloc(uobj, current_offset,
1171 				    NULL, 0);
1172 
1173 				/* out of RAM? */
1174 				if (ptmp == NULL) {
1175 					uvm_wait("uao_getpage");
1176 					continue;
1177 				}
1178 
1179 				/*
1180 				 * safe with PQ's unlocked: because we just
1181 				 * alloc'd the page
1182 				 */
1183 				atomic_setbits_int(&ptmp->pg_flags, PQ_AOBJ);
1184 
1185 				/*
1186 				 * got new page ready for I/O.  break pps while
1187 				 * loop.  pps[lcv] is still NULL.
1188 				 */
1189 				break;
1190 			}
1191 
1192 			/* page is there, see if we need to wait on it */
1193 			if ((ptmp->pg_flags & PG_BUSY) != 0) {
1194 				atomic_setbits_int(&ptmp->pg_flags, PG_WANTED);
1195 				tsleep_nsec(ptmp, PVM, "uao_get", INFSLP);
1196 				continue;	/* goto top of pps while loop */
1197 			}
1198 
1199 			/*
1200  			 * if we get here then the page is resident and
1201 			 * unbusy.  we busy it now (so we own it).
1202  			 */
1203 			/* we own it, caller must un-busy */
1204 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
1205 			UVM_PAGE_OWN(ptmp, "uao_get2");
1206 			pps[lcv] = ptmp;
1207 		}
1208 
1209 		/*
1210  		 * if we own the valid page at the correct offset, pps[lcv] will
1211  		 * point to it.   nothing more to do except go to the next page.
1212  		 */
1213 		if (pps[lcv])
1214 			continue;			/* next lcv */
1215 
1216 		/*
1217  		 * we have a "fake/busy/clean" page that we just allocated.
1218  		 * do the needed "i/o", either reading from swap or zeroing.
1219  		 */
1220 		swslot = uao_find_swslot(aobj, pageidx);
1221 
1222 		/* just zero the page if there's nothing in swap.  */
1223 		if (swslot == 0) {
1224 			/* page hasn't existed before, just zero it. */
1225 			uvm_pagezero(ptmp);
1226 		} else {
1227 			/*
1228 			 * page in the swapped-out page.
1229 			 */
1230 			rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1231 
1232 			/*
1233 			 * I/O done.  check for errors.
1234 			 */
1235 			if (rv != VM_PAGER_OK) {
1236 				/*
1237 				 * remove the swap slot from the aobj
1238 				 * and mark the aobj as having no real slot.
1239 				 * don't free the swap slot, thus preventing
1240 				 * it from being used again.
1241 				 */
1242 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1243 							SWSLOT_BAD);
1244 				uvm_swap_markbad(swslot, 1);
1245 
1246 				if (ptmp->pg_flags & PG_WANTED)
1247 					wakeup(ptmp);
1248 				atomic_clearbits_int(&ptmp->pg_flags,
1249 				    PG_WANTED|PG_BUSY);
1250 				UVM_PAGE_OWN(ptmp, NULL);
1251 				uvm_lock_pageq();
1252 				uvm_pagefree(ptmp);
1253 				uvm_unlock_pageq();
1254 
1255 				return rv;
1256 			}
1257 		}
1258 
1259 		/*
1260  		 * we got the page!   clear the fake flag (indicates valid
1261 		 * data now in page) and plug into our result array.   note
1262 		 * that page is still busy.
1263  		 *
1264  		 * it is the callers job to:
1265  		 * => check if the page is released
1266  		 * => unbusy the page
1267  		 * => activate the page
1268  		 */
1269 		atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE);
1270 		pmap_clear_modify(ptmp);		/* ... and clean */
1271 		pps[lcv] = ptmp;
1272 
1273 	}	/* lcv loop */
1274 
1275 	return VM_PAGER_OK;
1276 }
1277 
1278 /*
1279  * uao_dropswap:  release any swap resources from this aobj page.
1280  */
1281 int
1282 uao_dropswap(struct uvm_object *uobj, int pageidx)
1283 {
1284 	int slot;
1285 
1286 	slot = uao_set_swslot(uobj, pageidx, 0);
1287 	if (slot) {
1288 		uvm_swap_free(slot, 1);
1289 	}
1290 	return slot;
1291 }
1292 
1293 /*
1294  * page in every page in every aobj that is paged-out to a range of swslots.
1295  *
1296  * => returns TRUE if pagein was aborted due to lack of memory.
1297  */
1298 boolean_t
1299 uao_swap_off(int startslot, int endslot)
1300 {
1301 	struct uvm_aobj *aobj, *nextaobj, *prevaobj = NULL;
1302 
1303 	/*
1304 	 * Walk the list of all anonymous UVM objects.
1305 	 */
1306 	mtx_enter(&uao_list_lock);
1307 
1308 	for (aobj = LIST_FIRST(&uao_list);
1309 	     aobj != NULL;
1310 	     aobj = nextaobj) {
1311 		boolean_t rv;
1312 
1313 		/*
1314 		 * add a ref to the aobj so it doesn't disappear
1315 		 * while we're working.
1316 		 */
1317 		uao_reference_locked(&aobj->u_obj);
1318 
1319 		/*
1320 		 * now it's safe to unlock the uao list.
1321 		 * note that lock interleaving is alright with IPL_NONE mutexes.
1322 		 */
1323 		mtx_leave(&uao_list_lock);
1324 
1325 		if (prevaobj) {
1326 			uao_detach_locked(&prevaobj->u_obj);
1327 			prevaobj = NULL;
1328 		}
1329 
1330 		/*
1331 		 * page in any pages in the swslot range.
1332 		 * if there's an error, abort and return the error.
1333 		 */
1334 		rv = uao_pagein(aobj, startslot, endslot);
1335 		if (rv) {
1336 			uao_detach_locked(&aobj->u_obj);
1337 			return rv;
1338 		}
1339 
1340 		/*
1341 		 * we're done with this aobj.
1342 		 * relock the list and drop our ref on the aobj.
1343 		 */
1344 		mtx_enter(&uao_list_lock);
1345 		nextaobj = LIST_NEXT(aobj, u_list);
1346 		/*
1347 		 * prevaobj means that we have an object that we need
1348 		 * to drop a reference for. We can't just drop it now with
1349 		 * the list locked since that could cause lock recursion in
1350 		 * the case where we reduce the refcount to 0. It will be
1351 		 * released the next time we drop the list lock.
1352 		 */
1353 		prevaobj = aobj;
1354 	}
1355 
1356 	/*
1357 	 * done with traversal, unlock the list
1358 	 */
1359 	mtx_leave(&uao_list_lock);
1360 	if (prevaobj) {
1361 		uao_detach_locked(&prevaobj->u_obj);
1362 	}
1363 	return FALSE;
1364 }
1365 
1366 /*
1367  * page in any pages from aobj in the given range.
1368  *
1369  * => returns TRUE if pagein was aborted due to lack of memory.
1370  */
1371 static boolean_t
1372 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1373 {
1374 	boolean_t rv;
1375 
1376 	if (UAO_USES_SWHASH(aobj)) {
1377 		struct uao_swhash_elt *elt;
1378 		int bucket;
1379 
1380 restart:
1381 		for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1382 			for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1383 			     elt != NULL;
1384 			     elt = LIST_NEXT(elt, list)) {
1385 				int i;
1386 
1387 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1388 					int slot = elt->slots[i];
1389 
1390 					/*
1391 					 * if the slot isn't in range, skip it.
1392 					 */
1393 					if (slot < startslot ||
1394 					    slot >= endslot) {
1395 						continue;
1396 					}
1397 
1398 					/*
1399 					 * process the page,
1400 					 * the start over on this object
1401 					 * since the swhash elt
1402 					 * may have been freed.
1403 					 */
1404 					rv = uao_pagein_page(aobj,
1405 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1406 					if (rv) {
1407 						return rv;
1408 					}
1409 					goto restart;
1410 				}
1411 			}
1412 		}
1413 	} else {
1414 		int i;
1415 
1416 		for (i = 0; i < aobj->u_pages; i++) {
1417 			int slot = aobj->u_swslots[i];
1418 
1419 			/*
1420 			 * if the slot isn't in range, skip it
1421 			 */
1422 			if (slot < startslot || slot >= endslot) {
1423 				continue;
1424 			}
1425 
1426 			/*
1427 			 * process the page.
1428 			 */
1429 			rv = uao_pagein_page(aobj, i);
1430 			if (rv) {
1431 				return rv;
1432 			}
1433 		}
1434 	}
1435 
1436 	return FALSE;
1437 }
1438 
1439 /*
1440  * uao_pagein_page: page in a single page from an anonymous UVM object.
1441  *
1442  * => Returns TRUE if pagein was aborted due to lack of memory.
1443  */
1444 static boolean_t
1445 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1446 {
1447 	struct vm_page *pg;
1448 	int rv, slot, npages;
1449 
1450 	pg = NULL;
1451 	npages = 1;
1452 	rv = uao_get(&aobj->u_obj, (voff_t)pageidx << PAGE_SHIFT,
1453 	    &pg, &npages, 0, PROT_READ | PROT_WRITE, 0, 0);
1454 
1455 	switch (rv) {
1456 	case VM_PAGER_OK:
1457 		break;
1458 
1459 	case VM_PAGER_ERROR:
1460 	case VM_PAGER_REFAULT:
1461 		/*
1462 		 * nothing more to do on errors.
1463 		 * VM_PAGER_REFAULT can only mean that the anon was freed,
1464 		 * so again there's nothing to do.
1465 		 */
1466 		return FALSE;
1467 	}
1468 
1469 	/*
1470 	 * ok, we've got the page now.
1471 	 * mark it as dirty, clear its swslot and un-busy it.
1472 	 */
1473 	slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1474 	uvm_swap_free(slot, 1);
1475 	atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_CLEAN|PG_FAKE);
1476 	UVM_PAGE_OWN(pg, NULL);
1477 
1478 	/*
1479 	 * deactivate the page (to put it on a page queue).
1480 	 */
1481 	pmap_clear_reference(pg);
1482 	uvm_lock_pageq();
1483 	uvm_pagedeactivate(pg);
1484 	uvm_unlock_pageq();
1485 
1486 	return FALSE;
1487 }
1488 
1489 /*
1490  * XXX pedro: Once we are comfortable enough with this function, we can adapt
1491  * uao_free() to use it.
1492  *
1493  * uao_dropswap_range: drop swapslots in the range.
1494  *
1495  * => aobj must be locked and is returned locked.
1496  * => start is inclusive.  end is exclusive.
1497  */
1498 void
1499 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1500 {
1501 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1502 	int swpgonlydelta = 0;
1503 
1504 	/* KASSERT(mutex_owned(uobj->vmobjlock)); */
1505 
1506 	if (end == 0) {
1507 		end = INT64_MAX;
1508 	}
1509 
1510 	if (UAO_USES_SWHASH(aobj)) {
1511 		int i, hashbuckets = aobj->u_swhashmask + 1;
1512 		voff_t taghi;
1513 		voff_t taglo;
1514 
1515 		taglo = UAO_SWHASH_ELT_TAG(start);
1516 		taghi = UAO_SWHASH_ELT_TAG(end);
1517 
1518 		for (i = 0; i < hashbuckets; i++) {
1519 			struct uao_swhash_elt *elt, *next;
1520 
1521 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1522 			     elt != NULL;
1523 			     elt = next) {
1524 				int startidx, endidx;
1525 				int j;
1526 
1527 				next = LIST_NEXT(elt, list);
1528 
1529 				if (elt->tag < taglo || taghi < elt->tag) {
1530 					continue;
1531 				}
1532 
1533 				if (elt->tag == taglo) {
1534 					startidx =
1535 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1536 				} else {
1537 					startidx = 0;
1538 				}
1539 
1540 				if (elt->tag == taghi) {
1541 					endidx =
1542 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1543 				} else {
1544 					endidx = UAO_SWHASH_CLUSTER_SIZE;
1545 				}
1546 
1547 				for (j = startidx; j < endidx; j++) {
1548 					int slot = elt->slots[j];
1549 
1550 					KASSERT(uvm_pagelookup(&aobj->u_obj,
1551 					    (voff_t)(UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1552 					    + j) << PAGE_SHIFT) == NULL);
1553 
1554 					if (slot > 0) {
1555 						uvm_swap_free(slot, 1);
1556 						swpgonlydelta++;
1557 						KASSERT(elt->count > 0);
1558 						elt->slots[j] = 0;
1559 						elt->count--;
1560 					}
1561 				}
1562 
1563 				if (elt->count == 0) {
1564 					LIST_REMOVE(elt, list);
1565 					pool_put(&uao_swhash_elt_pool, elt);
1566 				}
1567 			}
1568 		}
1569 	} else {
1570 		int i;
1571 
1572 		if (aobj->u_pages < end) {
1573 			end = aobj->u_pages;
1574 		}
1575 		for (i = start; i < end; i++) {
1576 			int slot = aobj->u_swslots[i];
1577 
1578 			if (slot > 0) {
1579 				uvm_swap_free(slot, 1);
1580 				swpgonlydelta++;
1581 			}
1582 		}
1583 	}
1584 
1585 	/*
1586 	 * adjust the counter of pages only in swap for all
1587 	 * the swap slots we've freed.
1588 	 */
1589 	if (swpgonlydelta > 0) {
1590 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1591 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
1592 	}
1593 }
1594