xref: /openbsd-src/sys/uvm/uvm_aobj.c (revision de8cc8edbc71bd3e3bc7fbffa27ba0e564c37d8b)
1 /*	$OpenBSD: uvm_aobj.c,v 1.90 2021/01/11 18:51:09 mpi Exp $	*/
2 /*	$NetBSD: uvm_aobj.c,v 1.39 2001/02/18 21:19:08 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
6  *                    Washington University.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
30  */
31 /*
32  * uvm_aobj.c: anonymous memory uvm_object pager
33  *
34  * author: Chuck Silvers <chuq@chuq.com>
35  * started: Jan-1998
36  *
37  * - design mostly from Chuck Cranor
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/pool.h>
45 #include <sys/stdint.h>
46 #include <sys/atomic.h>
47 
48 #include <uvm/uvm.h>
49 
50 /*
51  * an aobj manages anonymous-memory backed uvm_objects.   in addition
52  * to keeping the list of resident pages, it also keeps a list of
53  * allocated swap blocks.  depending on the size of the aobj this list
54  * of allocated swap blocks is either stored in an array (small objects)
55  * or in a hash table (large objects).
56  */
57 
58 /*
59  * local structures
60  */
61 
62 /*
63  * for hash tables, we break the address space of the aobj into blocks
64  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
65  * be a power of two.
66  */
67 #define UAO_SWHASH_CLUSTER_SHIFT 4
68 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
69 
70 /* get the "tag" for this page index */
71 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
72 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
73 
74 /* given an ELT and a page index, find the swap slot */
75 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
76 	((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
77 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
78 	((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
79 
80 /* given an ELT, return its pageidx base */
81 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
82 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
83 
84 /*
85  * the swhash hash function
86  */
87 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
88 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
89 			    & (AOBJ)->u_swhashmask)])
90 
91 /*
92  * the swhash threshold determines if we will use an array or a
93  * hash table to store the list of allocated swap blocks.
94  */
95 
96 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
97 
98 /*
99  * the number of buckets in a swhash, with an upper bound
100  */
101 #define UAO_SWHASH_MAXBUCKETS 256
102 #define UAO_SWHASH_BUCKETS(pages) \
103 	(min((pages) >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
104 
105 
106 /*
107  * uao_swhash_elt: when a hash table is being used, this structure defines
108  * the format of an entry in the bucket list.
109  */
110 struct uao_swhash_elt {
111 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
112 	voff_t tag;				/* our 'tag' */
113 	int count;				/* our number of active slots */
114 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
115 };
116 
117 /*
118  * uao_swhash: the swap hash table structure
119  */
120 LIST_HEAD(uao_swhash, uao_swhash_elt);
121 
122 /*
123  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
124  */
125 struct pool uao_swhash_elt_pool;
126 
127 /*
128  * uvm_aobj: the actual anon-backed uvm_object
129  *
130  * => the uvm_object is at the top of the structure, this allows
131  *   (struct uvm_aobj *) == (struct uvm_object *)
132  * => only one of u_swslots and u_swhash is used in any given aobj
133  */
134 struct uvm_aobj {
135 	struct uvm_object u_obj; /* has: pgops, memt, #pages, #refs */
136 	int u_pages;		 /* number of pages in entire object */
137 	int u_flags;		 /* the flags (see uvm_aobj.h) */
138 	/*
139 	 * Either an array or hashtable (array of bucket heads) of
140 	 * offset -> swapslot mappings for the aobj.
141 	 */
142 #define u_swslots	u_swap.slot_array
143 #define u_swhash	u_swap.slot_hash
144 	union swslots {
145 		int			*slot_array;
146 		struct uao_swhash	*slot_hash;
147 	} u_swap;
148 	u_long u_swhashmask;		/* mask for hashtable */
149 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
150 };
151 
152 /*
153  * uvm_aobj_pool: pool of uvm_aobj structures
154  */
155 struct pool uvm_aobj_pool;
156 
157 /*
158  * local functions
159  */
160 static struct uao_swhash_elt	*uao_find_swhash_elt(struct uvm_aobj *, int,
161 				     boolean_t);
162 static int			 uao_find_swslot(struct uvm_aobj *, int);
163 static boolean_t		 uao_flush(struct uvm_object *, voff_t,
164 				     voff_t, int);
165 static void			 uao_free(struct uvm_aobj *);
166 static int			 uao_get(struct uvm_object *, voff_t,
167 				     vm_page_t *, int *, int, vm_prot_t,
168 				     int, int);
169 static boolean_t		 uao_pagein(struct uvm_aobj *, int, int);
170 static boolean_t		 uao_pagein_page(struct uvm_aobj *, int);
171 
172 void	uao_dropswap_range(struct uvm_object *, voff_t, voff_t);
173 void	uao_shrink_flush(struct uvm_object *, int, int);
174 int	uao_shrink_hash(struct uvm_object *, int);
175 int	uao_shrink_array(struct uvm_object *, int);
176 int	uao_shrink_convert(struct uvm_object *, int);
177 
178 int	uao_grow_hash(struct uvm_object *, int);
179 int	uao_grow_array(struct uvm_object *, int);
180 int	uao_grow_convert(struct uvm_object *, int);
181 
182 /*
183  * aobj_pager
184  *
185  * note that some functions (e.g. put) are handled elsewhere
186  */
187 const struct uvm_pagerops aobj_pager = {
188 	.pgo_reference = uao_reference,
189 	.pgo_detach = uao_detach,
190 	.pgo_flush = uao_flush,
191 	.pgo_get = uao_get,
192 };
193 
194 /*
195  * uao_list: global list of active aobjs, locked by uao_list_lock
196  *
197  * Lock ordering: generally the locking order is object lock, then list lock.
198  * in the case of swap off we have to iterate over the list, and thus the
199  * ordering is reversed. In that case we must use trylocking to prevent
200  * deadlock.
201  */
202 static LIST_HEAD(aobjlist, uvm_aobj) uao_list = LIST_HEAD_INITIALIZER(uao_list);
203 static struct mutex uao_list_lock = MUTEX_INITIALIZER(IPL_NONE);
204 
205 
206 /*
207  * functions
208  */
209 /*
210  * hash table/array related functions
211  */
212 /*
213  * uao_find_swhash_elt: find (or create) a hash table entry for a page
214  * offset.
215  */
216 static struct uao_swhash_elt *
217 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, boolean_t create)
218 {
219 	struct uao_swhash *swhash;
220 	struct uao_swhash_elt *elt;
221 	voff_t page_tag;
222 
223 	swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
224 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);	/* tag to search for */
225 
226 	/* now search the bucket for the requested tag */
227 	LIST_FOREACH(elt, swhash, list) {
228 		if (elt->tag == page_tag)
229 			return(elt);
230 	}
231 
232 	/* fail now if we are not allowed to create a new entry in the bucket */
233 	if (!create)
234 		return NULL;
235 
236 	/* allocate a new entry for the bucket and init/insert it in */
237 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT | PR_ZERO);
238 	/*
239 	 * XXX We cannot sleep here as the hash table might disappear
240 	 * from under our feet.  And we run the risk of deadlocking
241 	 * the pagedeamon.  In fact this code will only be called by
242 	 * the pagedaemon and allocation will only fail if we
243 	 * exhausted the pagedeamon reserve.  In that case we're
244 	 * doomed anyway, so panic.
245 	 */
246 	if (elt == NULL)
247 		panic("%s: can't allocate entry", __func__);
248 	LIST_INSERT_HEAD(swhash, elt, list);
249 	elt->tag = page_tag;
250 
251 	return(elt);
252 }
253 
254 /*
255  * uao_find_swslot: find the swap slot number for an aobj/pageidx
256  */
257 inline static int
258 uao_find_swslot(struct uvm_aobj *aobj, int pageidx)
259 {
260 
261 	/* if noswap flag is set, then we never return a slot */
262 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
263 		return(0);
264 
265 	/* if hashing, look in hash table.  */
266 	if (aobj->u_pages > UAO_SWHASH_THRESHOLD) {
267 		struct uao_swhash_elt *elt =
268 		    uao_find_swhash_elt(aobj, pageidx, FALSE);
269 
270 		if (elt)
271 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
272 		else
273 			return(0);
274 	}
275 
276 	/* otherwise, look in the array */
277 	return(aobj->u_swslots[pageidx]);
278 }
279 
280 /*
281  * uao_set_swslot: set the swap slot for a page in an aobj.
282  *
283  * => setting a slot to zero frees the slot
284  */
285 int
286 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
287 {
288 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
289 	int oldslot;
290 
291 	KERNEL_ASSERT_LOCKED();
292 
293 	/* if noswap flag is set, then we can't set a slot */
294 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
295 		if (slot == 0)
296 			return(0);		/* a clear is ok */
297 
298 		/* but a set is not */
299 		printf("uao_set_swslot: uobj = %p\n", uobj);
300 		panic("uao_set_swslot: attempt to set a slot"
301 		    " on a NOSWAP object");
302 	}
303 
304 	/* are we using a hash table?  if so, add it in the hash.  */
305 	if (aobj->u_pages > UAO_SWHASH_THRESHOLD) {
306 		/*
307 		 * Avoid allocating an entry just to free it again if
308 		 * the page had not swap slot in the first place, and
309 		 * we are freeing.
310 		 */
311 		struct uao_swhash_elt *elt =
312 		    uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
313 		if (elt == NULL) {
314 			KASSERT(slot == 0);
315 			return (0);
316 		}
317 
318 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
319 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
320 
321 		/*
322 		 * now adjust the elt's reference counter and free it if we've
323 		 * dropped it to zero.
324 		 */
325 		/* an allocation? */
326 		if (slot) {
327 			if (oldslot == 0)
328 				elt->count++;
329 		} else {		/* freeing slot ... */
330 			if (oldslot)	/* to be safe */
331 				elt->count--;
332 
333 			if (elt->count == 0) {
334 				LIST_REMOVE(elt, list);
335 				pool_put(&uao_swhash_elt_pool, elt);
336 			}
337 		}
338 	} else {
339 		/* we are using an array */
340 		oldslot = aobj->u_swslots[pageidx];
341 		aobj->u_swslots[pageidx] = slot;
342 	}
343 	return (oldslot);
344 }
345 /*
346  * end of hash/array functions
347  */
348 
349 /*
350  * uao_free: free all resources held by an aobj, and then free the aobj
351  *
352  * => the aobj should be dead
353  */
354 static void
355 uao_free(struct uvm_aobj *aobj)
356 {
357 
358 	if (aobj->u_pages > UAO_SWHASH_THRESHOLD) {
359 		int i, hashbuckets = aobj->u_swhashmask + 1;
360 
361 		/*
362 		 * free the swslots from each hash bucket,
363 		 * then the hash bucket, and finally the hash table itself.
364 		 */
365 		for (i = 0; i < hashbuckets; i++) {
366 			struct uao_swhash_elt *elt, *next;
367 
368 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
369 			     elt != NULL;
370 			     elt = next) {
371 				int j;
372 
373 				for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
374 					int slot = elt->slots[j];
375 
376 					if (slot == 0) {
377 						continue;
378 					}
379 					uvm_swap_free(slot, 1);
380 					/*
381 					 * this page is no longer
382 					 * only in swap.
383 					 */
384 					uvmexp.swpgonly--;
385 				}
386 
387 				next = LIST_NEXT(elt, list);
388 				pool_put(&uao_swhash_elt_pool, elt);
389 			}
390 		}
391 
392 		hashfree(aobj->u_swhash, UAO_SWHASH_BUCKETS(aobj->u_pages), M_UVMAOBJ);
393 	} else {
394 		int i;
395 
396 		/* free the array */
397 		for (i = 0; i < aobj->u_pages; i++) {
398 			int slot = aobj->u_swslots[i];
399 
400 			if (slot) {
401 				uvm_swap_free(slot, 1);
402 				/* this page is no longer only in swap. */
403 				uvmexp.swpgonly--;
404 			}
405 		}
406 		free(aobj->u_swslots, M_UVMAOBJ, aobj->u_pages * sizeof(int));
407 	}
408 
409 	/* finally free the aobj itself */
410 	pool_put(&uvm_aobj_pool, aobj);
411 }
412 
413 /*
414  * pager functions
415  */
416 
417 /*
418  * Shrink an aobj to a given number of pages. The procedure is always the same:
419  * assess the necessity of data structure conversion (hash to array), secure
420  * resources, flush pages and drop swap slots.
421  *
422  */
423 
424 void
425 uao_shrink_flush(struct uvm_object *uobj, int startpg, int endpg)
426 {
427 	KASSERT(startpg < endpg);
428 	KASSERT(uobj->uo_refs == 1);
429 	uao_flush(uobj, (voff_t)startpg << PAGE_SHIFT,
430 	    (voff_t)endpg << PAGE_SHIFT, PGO_FREE);
431 	uao_dropswap_range(uobj, startpg, endpg);
432 }
433 
434 int
435 uao_shrink_hash(struct uvm_object *uobj, int pages)
436 {
437 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
438 	struct uao_swhash *new_swhash;
439 	struct uao_swhash_elt *elt;
440 	unsigned long new_hashmask;
441 	int i;
442 
443 	KASSERT(aobj->u_pages > UAO_SWHASH_THRESHOLD);
444 
445 	/*
446 	 * If the size of the hash table doesn't change, all we need to do is
447 	 * to adjust the page count.
448 	 */
449 	if (UAO_SWHASH_BUCKETS(aobj->u_pages) == UAO_SWHASH_BUCKETS(pages)) {
450 		uao_shrink_flush(uobj, pages, aobj->u_pages);
451 		aobj->u_pages = pages;
452 		return 0;
453 	}
454 
455 	new_swhash = hashinit(UAO_SWHASH_BUCKETS(pages), M_UVMAOBJ,
456 	    M_WAITOK | M_CANFAIL, &new_hashmask);
457 	if (new_swhash == NULL)
458 		return ENOMEM;
459 
460 	uao_shrink_flush(uobj, pages, aobj->u_pages);
461 
462 	/*
463 	 * Even though the hash table size is changing, the hash of the buckets
464 	 * we are interested in copying should not change.
465 	 */
466 	for (i = 0; i < UAO_SWHASH_BUCKETS(aobj->u_pages); i++) {
467 		while (LIST_EMPTY(&aobj->u_swhash[i]) == 0) {
468 			elt = LIST_FIRST(&aobj->u_swhash[i]);
469 			LIST_REMOVE(elt, list);
470 			LIST_INSERT_HEAD(&new_swhash[i], elt, list);
471 		}
472 	}
473 
474 	hashfree(aobj->u_swhash, UAO_SWHASH_BUCKETS(aobj->u_pages), M_UVMAOBJ);
475 
476 	aobj->u_swhash = new_swhash;
477 	aobj->u_pages = pages;
478 	aobj->u_swhashmask = new_hashmask;
479 
480 	return 0;
481 }
482 
483 int
484 uao_shrink_convert(struct uvm_object *uobj, int pages)
485 {
486 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
487 	struct uao_swhash_elt *elt;
488 	int i, *new_swslots;
489 
490 	new_swslots = mallocarray(pages, sizeof(int), M_UVMAOBJ,
491 	    M_WAITOK | M_CANFAIL | M_ZERO);
492 	if (new_swslots == NULL)
493 		return ENOMEM;
494 
495 	uao_shrink_flush(uobj, pages, aobj->u_pages);
496 
497 	/* Convert swap slots from hash to array.  */
498 	for (i = 0; i < pages; i++) {
499 		elt = uao_find_swhash_elt(aobj, i, FALSE);
500 		if (elt != NULL) {
501 			new_swslots[i] = UAO_SWHASH_ELT_PAGESLOT(elt, i);
502 			if (new_swslots[i] != 0)
503 				elt->count--;
504 			if (elt->count == 0) {
505 				LIST_REMOVE(elt, list);
506 				pool_put(&uao_swhash_elt_pool, elt);
507 			}
508 		}
509 	}
510 
511 	hashfree(aobj->u_swhash, UAO_SWHASH_BUCKETS(aobj->u_pages), M_UVMAOBJ);
512 
513 	aobj->u_swslots = new_swslots;
514 	aobj->u_pages = pages;
515 
516 	return 0;
517 }
518 
519 int
520 uao_shrink_array(struct uvm_object *uobj, int pages)
521 {
522 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
523 	int i, *new_swslots;
524 
525 	new_swslots = mallocarray(pages, sizeof(int), M_UVMAOBJ,
526 	    M_WAITOK | M_CANFAIL | M_ZERO);
527 	if (new_swslots == NULL)
528 		return ENOMEM;
529 
530 	uao_shrink_flush(uobj, pages, aobj->u_pages);
531 
532 	for (i = 0; i < pages; i++)
533 		new_swslots[i] = aobj->u_swslots[i];
534 
535 	free(aobj->u_swslots, M_UVMAOBJ, aobj->u_pages * sizeof(int));
536 
537 	aobj->u_swslots = new_swslots;
538 	aobj->u_pages = pages;
539 
540 	return 0;
541 }
542 
543 int
544 uao_shrink(struct uvm_object *uobj, int pages)
545 {
546 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
547 
548 	KASSERT(pages < aobj->u_pages);
549 
550 	/*
551 	 * Distinguish between three possible cases:
552 	 * 1. aobj uses hash and must be converted to array.
553 	 * 2. aobj uses array and array size needs to be adjusted.
554 	 * 3. aobj uses hash and hash size needs to be adjusted.
555 	 */
556 	if (pages > UAO_SWHASH_THRESHOLD)
557 		return uao_shrink_hash(uobj, pages);	/* case 3 */
558 	else if (aobj->u_pages > UAO_SWHASH_THRESHOLD)
559 		return uao_shrink_convert(uobj, pages);	/* case 1 */
560 	else
561 		return uao_shrink_array(uobj, pages);	/* case 2 */
562 }
563 
564 /*
565  * Grow an aobj to a given number of pages. Right now we only adjust the swap
566  * slots. We could additionally handle page allocation directly, so that they
567  * don't happen through uvm_fault(). That would allow us to use another
568  * mechanism for the swap slots other than malloc(). It is thus mandatory that
569  * the caller of these functions does not allow faults to happen in case of
570  * growth error.
571  */
572 int
573 uao_grow_array(struct uvm_object *uobj, int pages)
574 {
575 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
576 	int i, *new_swslots;
577 
578 	KASSERT(aobj->u_pages <= UAO_SWHASH_THRESHOLD);
579 
580 	new_swslots = mallocarray(pages, sizeof(int), M_UVMAOBJ,
581 	    M_WAITOK | M_CANFAIL | M_ZERO);
582 	if (new_swslots == NULL)
583 		return ENOMEM;
584 
585 	for (i = 0; i < aobj->u_pages; i++)
586 		new_swslots[i] = aobj->u_swslots[i];
587 
588 	free(aobj->u_swslots, M_UVMAOBJ, aobj->u_pages * sizeof(int));
589 
590 	aobj->u_swslots = new_swslots;
591 	aobj->u_pages = pages;
592 
593 	return 0;
594 }
595 
596 int
597 uao_grow_hash(struct uvm_object *uobj, int pages)
598 {
599 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
600 	struct uao_swhash *new_swhash;
601 	struct uao_swhash_elt *elt;
602 	unsigned long new_hashmask;
603 	int i;
604 
605 	KASSERT(pages > UAO_SWHASH_THRESHOLD);
606 
607 	/*
608 	 * If the size of the hash table doesn't change, all we need to do is
609 	 * to adjust the page count.
610 	 */
611 	if (UAO_SWHASH_BUCKETS(aobj->u_pages) == UAO_SWHASH_BUCKETS(pages)) {
612 		aobj->u_pages = pages;
613 		return 0;
614 	}
615 
616 	KASSERT(UAO_SWHASH_BUCKETS(aobj->u_pages) < UAO_SWHASH_BUCKETS(pages));
617 
618 	new_swhash = hashinit(UAO_SWHASH_BUCKETS(pages), M_UVMAOBJ,
619 	    M_WAITOK | M_CANFAIL, &new_hashmask);
620 	if (new_swhash == NULL)
621 		return ENOMEM;
622 
623 	for (i = 0; i < UAO_SWHASH_BUCKETS(aobj->u_pages); i++) {
624 		while (LIST_EMPTY(&aobj->u_swhash[i]) == 0) {
625 			elt = LIST_FIRST(&aobj->u_swhash[i]);
626 			LIST_REMOVE(elt, list);
627 			LIST_INSERT_HEAD(&new_swhash[i], elt, list);
628 		}
629 	}
630 
631 	hashfree(aobj->u_swhash, UAO_SWHASH_BUCKETS(aobj->u_pages), M_UVMAOBJ);
632 
633 	aobj->u_swhash = new_swhash;
634 	aobj->u_pages = pages;
635 	aobj->u_swhashmask = new_hashmask;
636 
637 	return 0;
638 }
639 
640 int
641 uao_grow_convert(struct uvm_object *uobj, int pages)
642 {
643 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
644 	struct uao_swhash *new_swhash;
645 	struct uao_swhash_elt *elt;
646 	unsigned long new_hashmask;
647 	int i, *old_swslots;
648 
649 	new_swhash = hashinit(UAO_SWHASH_BUCKETS(pages), M_UVMAOBJ,
650 	    M_WAITOK | M_CANFAIL, &new_hashmask);
651 	if (new_swhash == NULL)
652 		return ENOMEM;
653 
654 	/* Set these now, so we can use uao_find_swhash_elt(). */
655 	old_swslots = aobj->u_swslots;
656 	aobj->u_swhash = new_swhash;
657 	aobj->u_swhashmask = new_hashmask;
658 
659 	for (i = 0; i < aobj->u_pages; i++) {
660 		if (old_swslots[i] != 0) {
661 			elt = uao_find_swhash_elt(aobj, i, TRUE);
662 			elt->count++;
663 			UAO_SWHASH_ELT_PAGESLOT(elt, i) = old_swslots[i];
664 		}
665 	}
666 
667 	free(old_swslots, M_UVMAOBJ, aobj->u_pages * sizeof(int));
668 	aobj->u_pages = pages;
669 
670 	return 0;
671 }
672 
673 int
674 uao_grow(struct uvm_object *uobj, int pages)
675 {
676 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
677 
678 	KASSERT(pages > aobj->u_pages);
679 
680 	/*
681 	 * Distinguish between three possible cases:
682 	 * 1. aobj uses hash and hash size needs to be adjusted.
683 	 * 2. aobj uses array and array size needs to be adjusted.
684 	 * 3. aobj uses array and must be converted to hash.
685 	 */
686 	if (pages <= UAO_SWHASH_THRESHOLD)
687 		return uao_grow_array(uobj, pages);	/* case 2 */
688 	else if (aobj->u_pages > UAO_SWHASH_THRESHOLD)
689 		return uao_grow_hash(uobj, pages);	/* case 1 */
690 	else
691 		return uao_grow_convert(uobj, pages);
692 }
693 
694 /*
695  * uao_create: create an aobj of the given size and return its uvm_object.
696  *
697  * => for normal use, flags are zero or UAO_FLAG_CANFAIL.
698  * => for the kernel object, the flags are:
699  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
700  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
701  */
702 struct uvm_object *
703 uao_create(vsize_t size, int flags)
704 {
705 	static struct uvm_aobj kernel_object_store; /* home of kernel_object */
706 	static int kobj_alloced = 0;			/* not allocated yet */
707 	int pages = round_page(size) >> PAGE_SHIFT;
708 	int refs = UVM_OBJ_KERN;
709 	int mflags;
710 	struct uvm_aobj *aobj;
711 
712 	/* malloc a new aobj unless we are asked for the kernel object */
713 	if (flags & UAO_FLAG_KERNOBJ) {		/* want kernel object? */
714 		if (kobj_alloced)
715 			panic("uao_create: kernel object already allocated");
716 
717 		aobj = &kernel_object_store;
718 		aobj->u_pages = pages;
719 		aobj->u_flags = UAO_FLAG_NOSWAP;	/* no swap to start */
720 		/* we are special, we never die */
721 		kobj_alloced = UAO_FLAG_KERNOBJ;
722 	} else if (flags & UAO_FLAG_KERNSWAP) {
723 		aobj = &kernel_object_store;
724 		if (kobj_alloced != UAO_FLAG_KERNOBJ)
725 		    panic("uao_create: asked to enable swap on kernel object");
726 		kobj_alloced = UAO_FLAG_KERNSWAP;
727 	} else {	/* normal object */
728 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
729 		aobj->u_pages = pages;
730 		aobj->u_flags = 0;		/* normal object */
731 		refs = 1;			/* normal object so 1 ref */
732 	}
733 
734 	/* allocate hash/array if necessary */
735  	if (flags == 0 || (flags & (UAO_FLAG_KERNSWAP | UAO_FLAG_CANFAIL))) {
736 		if (flags)
737 			mflags = M_NOWAIT;
738 		else
739 			mflags = M_WAITOK;
740 
741 		/* allocate hash table or array depending on object size */
742 		if (aobj->u_pages > UAO_SWHASH_THRESHOLD) {
743 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(pages),
744 			    M_UVMAOBJ, mflags, &aobj->u_swhashmask);
745 			if (aobj->u_swhash == NULL) {
746 				if (flags & UAO_FLAG_CANFAIL) {
747 					pool_put(&uvm_aobj_pool, aobj);
748 					return (NULL);
749 				}
750 				panic("uao_create: hashinit swhash failed");
751 			}
752 		} else {
753 			aobj->u_swslots = mallocarray(pages, sizeof(int),
754 			    M_UVMAOBJ, mflags|M_ZERO);
755 			if (aobj->u_swslots == NULL) {
756 				if (flags & UAO_FLAG_CANFAIL) {
757 					pool_put(&uvm_aobj_pool, aobj);
758 					return (NULL);
759 				}
760 				panic("uao_create: malloc swslots failed");
761 			}
762 		}
763 
764 		if (flags & UAO_FLAG_KERNSWAP) {
765 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
766 			return(&aobj->u_obj);
767 			/* done! */
768 		}
769 	}
770 
771 	uvm_objinit(&aobj->u_obj, &aobj_pager, refs);
772 
773 	/* now that aobj is ready, add it to the global list */
774 	mtx_enter(&uao_list_lock);
775 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
776 	mtx_leave(&uao_list_lock);
777 
778 	return(&aobj->u_obj);
779 }
780 
781 
782 
783 /*
784  * uao_init: set up aobj pager subsystem
785  *
786  * => called at boot time from uvm_pager_init()
787  */
788 void
789 uao_init(void)
790 {
791 	/*
792 	 * NOTE: Pages for this pool must not come from a pageable
793 	 * kernel map!
794 	 */
795 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0,
796 	    IPL_NONE, PR_WAITOK, "uaoeltpl", NULL);
797 	pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0,
798 	    IPL_NONE, PR_WAITOK, "aobjpl", NULL);
799 }
800 
801 /*
802  * uao_reference: add a ref to an aobj
803  */
804 void
805 uao_reference(struct uvm_object *uobj)
806 {
807 	KERNEL_ASSERT_LOCKED();
808 	uao_reference_locked(uobj);
809 }
810 
811 /*
812  * uao_reference_locked: add a ref to an aobj
813  */
814 void
815 uao_reference_locked(struct uvm_object *uobj)
816 {
817 
818 	/* kernel_object already has plenty of references, leave it alone. */
819 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
820 		return;
821 
822 	uobj->uo_refs++;		/* bump! */
823 }
824 
825 
826 /*
827  * uao_detach: drop a reference to an aobj
828  */
829 void
830 uao_detach(struct uvm_object *uobj)
831 {
832 	KERNEL_ASSERT_LOCKED();
833 	uao_detach_locked(uobj);
834 }
835 
836 
837 /*
838  * uao_detach_locked: drop a reference to an aobj
839  *
840  * => aobj may freed upon return.
841  */
842 void
843 uao_detach_locked(struct uvm_object *uobj)
844 {
845 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
846 	struct vm_page *pg;
847 
848 	/* detaching from kernel_object is a noop. */
849 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
850 		return;
851 	}
852 
853 	uobj->uo_refs--;				/* drop ref! */
854 	if (uobj->uo_refs) {				/* still more refs? */
855 		return;
856 	}
857 
858 	/* remove the aobj from the global list. */
859 	mtx_enter(&uao_list_lock);
860 	LIST_REMOVE(aobj, u_list);
861 	mtx_leave(&uao_list_lock);
862 
863 	/*
864 	 * Free all pages left in the object. If they're busy, wait
865 	 * for them to become available before we kill it.
866 	 * Release swap resources then free the page.
867  	 */
868 	uvm_lock_pageq();
869 	while((pg = RBT_ROOT(uvm_objtree, &uobj->memt)) != NULL) {
870 		if (pg->pg_flags & PG_BUSY) {
871 			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
872 			uvm_unlock_pageq();
873 			tsleep_nsec(pg, PVM, "uao_det", INFSLP);
874 			uvm_lock_pageq();
875 			continue;
876 		}
877 		pmap_page_protect(pg, PROT_NONE);
878 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
879 		uvm_pagefree(pg);
880 	}
881 	uvm_unlock_pageq();
882 
883 	/* finally, free the rest. */
884 	uao_free(aobj);
885 }
886 
887 /*
888  * uao_flush: "flush" pages out of a uvm object
889  *
890  * => if PGO_CLEANIT is not set, then we will not block.
891  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
892  *	for flushing.
893  * => NOTE: we are allowed to lock the page queues, so the caller
894  *	must not be holding the lock on them [e.g. pagedaemon had
895  *	better not call us with the queues locked]
896  * => we return TRUE unless we encountered some sort of I/O error
897  *	XXXJRT currently never happens, as we never directly initiate
898  *	XXXJRT I/O
899  */
900 boolean_t
901 uao_flush(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
902 {
903 	struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
904 	struct vm_page *pp;
905 	voff_t curoff;
906 
907 	KERNEL_ASSERT_LOCKED();
908 
909 	if (flags & PGO_ALLPAGES) {
910 		start = 0;
911 		stop = (voff_t)aobj->u_pages << PAGE_SHIFT;
912 	} else {
913 		start = trunc_page(start);
914 		stop = round_page(stop);
915 		if (stop > ((voff_t)aobj->u_pages << PAGE_SHIFT)) {
916 			printf("uao_flush: strange, got an out of range "
917 			    "flush (fixed)\n");
918 			stop = (voff_t)aobj->u_pages << PAGE_SHIFT;
919 		}
920 	}
921 
922 	/*
923 	 * Don't need to do any work here if we're not freeing
924 	 * or deactivating pages.
925 	 */
926 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
927 		return (TRUE);
928 
929 	curoff = start;
930 	for (;;) {
931 		if (curoff < stop) {
932 			pp = uvm_pagelookup(uobj, curoff);
933 			curoff += PAGE_SIZE;
934 			if (pp == NULL)
935 				continue;
936 		} else {
937 			break;
938 		}
939 
940 		/* Make sure page is unbusy, else wait for it. */
941 		if (pp->pg_flags & PG_BUSY) {
942 			atomic_setbits_int(&pp->pg_flags, PG_WANTED);
943 			tsleep_nsec(pp, PVM, "uaoflsh", INFSLP);
944 			curoff -= PAGE_SIZE;
945 			continue;
946 		}
947 
948 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
949 		/*
950 		 * XXX In these first 3 cases, we always just
951 		 * XXX deactivate the page.  We may want to
952 		 * XXX handle the different cases more specifically
953 		 * XXX in the future.
954 		 */
955 		case PGO_CLEANIT|PGO_FREE:
956 			/* FALLTHROUGH */
957 		case PGO_CLEANIT|PGO_DEACTIVATE:
958 			/* FALLTHROUGH */
959 		case PGO_DEACTIVATE:
960  deactivate_it:
961 			/* skip the page if it's wired */
962 			if (pp->wire_count != 0)
963 				continue;
964 
965 			uvm_lock_pageq();
966 			/* zap all mappings for the page. */
967 			pmap_page_protect(pp, PROT_NONE);
968 
969 			/* ...and deactivate the page. */
970 			uvm_pagedeactivate(pp);
971 			uvm_unlock_pageq();
972 
973 			continue;
974 		case PGO_FREE:
975 			/*
976 			 * If there are multiple references to
977 			 * the object, just deactivate the page.
978 			 */
979 			if (uobj->uo_refs > 1)
980 				goto deactivate_it;
981 
982 			/* XXX skip the page if it's wired */
983 			if (pp->wire_count != 0)
984 				continue;
985 
986 			/* zap all mappings for the page. */
987 			pmap_page_protect(pp, PROT_NONE);
988 
989 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
990 			uvm_lock_pageq();
991 			uvm_pagefree(pp);
992 			uvm_unlock_pageq();
993 
994 			continue;
995 		default:
996 			panic("uao_flush: weird flags");
997 		}
998 	}
999 
1000 	return (TRUE);
1001 }
1002 
1003 /*
1004  * uao_get: fetch me a page
1005  *
1006  * we have three cases:
1007  * 1: page is resident     -> just return the page.
1008  * 2: page is zero-fill    -> allocate a new page and zero it.
1009  * 3: page is swapped out  -> fetch the page from swap.
1010  *
1011  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
1012  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
1013  * then we will need to return VM_PAGER_UNLOCK.
1014  *
1015  * => flags: PGO_ALLPAGES: get all of the pages
1016  *           PGO_LOCKED: fault data structures are locked
1017  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
1018  * => NOTE: caller must check for released pages!!
1019  */
1020 static int
1021 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
1022     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
1023 {
1024 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1025 	voff_t current_offset;
1026 	vm_page_t ptmp;
1027 	int lcv, gotpages, maxpages, swslot, rv, pageidx;
1028 	boolean_t done;
1029 
1030 	KERNEL_ASSERT_LOCKED();
1031 
1032 	/* get number of pages */
1033 	maxpages = *npagesp;
1034 
1035 	/* step 1: handled the case where fault data structures are locked. */
1036 	if (flags & PGO_LOCKED) {
1037 		/* step 1a: get pages that are already resident. */
1038 
1039 		done = TRUE;	/* be optimistic */
1040 		gotpages = 0;	/* # of pages we got so far */
1041 
1042 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1043 		    lcv++, current_offset += PAGE_SIZE) {
1044 			/* do we care about this page?  if not, skip it */
1045 			if (pps[lcv] == PGO_DONTCARE)
1046 				continue;
1047 
1048 			ptmp = uvm_pagelookup(uobj, current_offset);
1049 
1050 			/*
1051  			 * if page is new, attempt to allocate the page,
1052 			 * zero-fill'd.
1053  			 */
1054 			if (ptmp == NULL && uao_find_swslot(aobj,
1055 			    current_offset >> PAGE_SHIFT) == 0) {
1056 				ptmp = uvm_pagealloc(uobj, current_offset,
1057 				    NULL, UVM_PGA_ZERO);
1058 				if (ptmp) {
1059 					/* new page */
1060 					atomic_clearbits_int(&ptmp->pg_flags,
1061 					    PG_BUSY|PG_FAKE);
1062 					atomic_setbits_int(&ptmp->pg_flags,
1063 					    PQ_AOBJ);
1064 					UVM_PAGE_OWN(ptmp, NULL);
1065 				}
1066 			}
1067 
1068 			/* to be useful must get a non-busy page */
1069 			if (ptmp == NULL ||
1070 			    (ptmp->pg_flags & PG_BUSY) != 0) {
1071 				if (lcv == centeridx ||
1072 				    (flags & PGO_ALLPAGES) != 0)
1073 					/* need to do a wait or I/O! */
1074 					done = FALSE;
1075 				continue;
1076 			}
1077 
1078 			/*
1079 			 * useful page: busy it and plug it in our
1080 			 * result array
1081 			 */
1082 			/* caller must un-busy this page */
1083 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
1084 			UVM_PAGE_OWN(ptmp, "uao_get1");
1085 			pps[lcv] = ptmp;
1086 			gotpages++;
1087 
1088 		}
1089 
1090 		/*
1091  		 * step 1b: now we've either done everything needed or we
1092 		 * to unlock and do some waiting or I/O.
1093  		 */
1094 		*npagesp = gotpages;
1095 		if (done)
1096 			/* bingo! */
1097 			return(VM_PAGER_OK);
1098 		else
1099 			/* EEK!   Need to unlock and I/O */
1100 			return(VM_PAGER_UNLOCK);
1101 	}
1102 
1103 	/*
1104  	 * step 2: get non-resident or busy pages.
1105  	 * data structures are unlocked.
1106  	 */
1107 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1108 	    lcv++, current_offset += PAGE_SIZE) {
1109 		/*
1110 		 * - skip over pages we've already gotten or don't want
1111 		 * - skip over pages we don't _have_ to get
1112 		 */
1113 		if (pps[lcv] != NULL ||
1114 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1115 			continue;
1116 
1117 		pageidx = current_offset >> PAGE_SHIFT;
1118 
1119 		/*
1120  		 * we have yet to locate the current page (pps[lcv]).   we
1121 		 * first look for a page that is already at the current offset.
1122 		 * if we find a page, we check to see if it is busy or
1123 		 * released.  if that is the case, then we sleep on the page
1124 		 * until it is no longer busy or released and repeat the lookup.
1125 		 * if the page we found is neither busy nor released, then we
1126 		 * busy it (so we own it) and plug it into pps[lcv].   this
1127 		 * 'break's the following while loop and indicates we are
1128 		 * ready to move on to the next page in the "lcv" loop above.
1129  		 *
1130  		 * if we exit the while loop with pps[lcv] still set to NULL,
1131 		 * then it means that we allocated a new busy/fake/clean page
1132 		 * ptmp in the object and we need to do I/O to fill in the data.
1133  		 */
1134 
1135 		/* top of "pps" while loop */
1136 		while (pps[lcv] == NULL) {
1137 			/* look for a resident page */
1138 			ptmp = uvm_pagelookup(uobj, current_offset);
1139 
1140 			/* not resident?   allocate one now (if we can) */
1141 			if (ptmp == NULL) {
1142 
1143 				ptmp = uvm_pagealloc(uobj, current_offset,
1144 				    NULL, 0);
1145 
1146 				/* out of RAM? */
1147 				if (ptmp == NULL) {
1148 					uvm_wait("uao_getpage");
1149 					/* goto top of pps while loop */
1150 					continue;
1151 				}
1152 
1153 				/*
1154 				 * safe with PQ's unlocked: because we just
1155 				 * alloc'd the page
1156 				 */
1157 				atomic_setbits_int(&ptmp->pg_flags, PQ_AOBJ);
1158 
1159 				/*
1160 				 * got new page ready for I/O.  break pps while
1161 				 * loop.  pps[lcv] is still NULL.
1162 				 */
1163 				break;
1164 			}
1165 
1166 			/* page is there, see if we need to wait on it */
1167 			if ((ptmp->pg_flags & PG_BUSY) != 0) {
1168 				atomic_setbits_int(&ptmp->pg_flags, PG_WANTED);
1169 				tsleep_nsec(ptmp, PVM, "uao_get", INFSLP);
1170 				continue;	/* goto top of pps while loop */
1171 			}
1172 
1173 			/*
1174  			 * if we get here then the page has become resident and
1175 			 * unbusy between steps 1 and 2.  we busy it now (so we
1176 			 * own it) and set pps[lcv] (so that we exit the while
1177 			 * loop).
1178  			 */
1179 			/* we own it, caller must un-busy */
1180 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
1181 			UVM_PAGE_OWN(ptmp, "uao_get2");
1182 			pps[lcv] = ptmp;
1183 		}
1184 
1185 		/*
1186  		 * if we own the valid page at the correct offset, pps[lcv] will
1187  		 * point to it.   nothing more to do except go to the next page.
1188  		 */
1189 		if (pps[lcv])
1190 			continue;			/* next lcv */
1191 
1192 		/*
1193  		 * we have a "fake/busy/clean" page that we just allocated.
1194  		 * do the needed "i/o", either reading from swap or zeroing.
1195  		 */
1196 		swslot = uao_find_swslot(aobj, pageidx);
1197 
1198 		/* just zero the page if there's nothing in swap.  */
1199 		if (swslot == 0) {
1200 			/* page hasn't existed before, just zero it. */
1201 			uvm_pagezero(ptmp);
1202 		} else {
1203 			/* page in the swapped-out page. */
1204 			rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1205 
1206 			/* I/O done.  check for errors. */
1207 			if (rv != VM_PAGER_OK) {
1208 				/*
1209 				 * remove the swap slot from the aobj
1210 				 * and mark the aobj as having no real slot.
1211 				 * don't free the swap slot, thus preventing
1212 				 * it from being used again.
1213 				 */
1214 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1215 							SWSLOT_BAD);
1216 				uvm_swap_markbad(swslot, 1);
1217 
1218 				if (ptmp->pg_flags & PG_WANTED)
1219 					wakeup(ptmp);
1220 				atomic_clearbits_int(&ptmp->pg_flags,
1221 				    PG_WANTED|PG_BUSY);
1222 				UVM_PAGE_OWN(ptmp, NULL);
1223 				uvm_lock_pageq();
1224 				uvm_pagefree(ptmp);
1225 				uvm_unlock_pageq();
1226 
1227 				return (rv);
1228 			}
1229 		}
1230 
1231 		/*
1232  		 * we got the page!   clear the fake flag (indicates valid
1233 		 * data now in page) and plug into our result array.   note
1234 		 * that page is still busy.
1235  		 *
1236  		 * it is the callers job to:
1237  		 * => check if the page is released
1238  		 * => unbusy the page
1239  		 * => activate the page
1240  		 */
1241 
1242 		/* data is valid ... */
1243 		atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE);
1244 		pmap_clear_modify(ptmp);		/* ... and clean */
1245 		pps[lcv] = ptmp;
1246 
1247 	}	/* lcv loop */
1248 
1249 	return(VM_PAGER_OK);
1250 }
1251 
1252 /*
1253  * uao_dropswap:  release any swap resources from this aobj page.
1254  */
1255 int
1256 uao_dropswap(struct uvm_object *uobj, int pageidx)
1257 {
1258 	int slot;
1259 
1260 	slot = uao_set_swslot(uobj, pageidx, 0);
1261 	if (slot) {
1262 		uvm_swap_free(slot, 1);
1263 	}
1264 	return (slot);
1265 }
1266 
1267 /*
1268  * page in every page in every aobj that is paged-out to a range of swslots.
1269  *
1270  * => returns TRUE if pagein was aborted due to lack of memory.
1271  */
1272 boolean_t
1273 uao_swap_off(int startslot, int endslot)
1274 {
1275 	struct uvm_aobj *aobj, *nextaobj, *prevaobj = NULL;
1276 
1277 	/* walk the list of all aobjs. */
1278 	mtx_enter(&uao_list_lock);
1279 
1280 	for (aobj = LIST_FIRST(&uao_list);
1281 	     aobj != NULL;
1282 	     aobj = nextaobj) {
1283 		boolean_t rv;
1284 
1285 		/*
1286 		 * add a ref to the aobj so it doesn't disappear
1287 		 * while we're working.
1288 		 */
1289 		uao_reference_locked(&aobj->u_obj);
1290 
1291 		/*
1292 		 * now it's safe to unlock the uao list.
1293 		 * note that lock interleaving is alright with IPL_NONE mutexes.
1294 		 */
1295 		mtx_leave(&uao_list_lock);
1296 
1297 		if (prevaobj) {
1298 			uao_detach_locked(&prevaobj->u_obj);
1299 			prevaobj = NULL;
1300 		}
1301 
1302 		/*
1303 		 * page in any pages in the swslot range.
1304 		 * if there's an error, abort and return the error.
1305 		 */
1306 		rv = uao_pagein(aobj, startslot, endslot);
1307 		if (rv) {
1308 			uao_detach_locked(&aobj->u_obj);
1309 			return rv;
1310 		}
1311 
1312 		/*
1313 		 * we're done with this aobj.
1314 		 * relock the list and drop our ref on the aobj.
1315 		 */
1316 		mtx_enter(&uao_list_lock);
1317 		nextaobj = LIST_NEXT(aobj, u_list);
1318 		/*
1319 		 * prevaobj means that we have an object that we need
1320 		 * to drop a reference for. We can't just drop it now with
1321 		 * the list locked since that could cause lock recursion in
1322 		 * the case where we reduce the refcount to 0. It will be
1323 		 * released the next time we drop the list lock.
1324 		 */
1325 		prevaobj = aobj;
1326 	}
1327 
1328 	/* done with traversal, unlock the list */
1329 	mtx_leave(&uao_list_lock);
1330 	if (prevaobj) {
1331 		uao_detach_locked(&prevaobj->u_obj);
1332 	}
1333 	return FALSE;
1334 }
1335 
1336 /*
1337  * page in any pages from aobj in the given range.
1338  *
1339  * => returns TRUE if pagein was aborted due to lack of memory.
1340  */
1341 static boolean_t
1342 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1343 {
1344 	boolean_t rv;
1345 
1346 	if (aobj->u_pages > UAO_SWHASH_THRESHOLD) {
1347 		struct uao_swhash_elt *elt;
1348 		int bucket;
1349 
1350 restart:
1351 		for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1352 			for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1353 			     elt != NULL;
1354 			     elt = LIST_NEXT(elt, list)) {
1355 				int i;
1356 
1357 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1358 					int slot = elt->slots[i];
1359 
1360 					/* if slot isn't in range, skip it. */
1361 					if (slot < startslot ||
1362 					    slot >= endslot) {
1363 						continue;
1364 					}
1365 
1366 					/*
1367 					 * process the page,
1368 					 * the start over on this object
1369 					 * since the swhash elt
1370 					 * may have been freed.
1371 					 */
1372 					rv = uao_pagein_page(aobj,
1373 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1374 					if (rv) {
1375 						return rv;
1376 					}
1377 					goto restart;
1378 				}
1379 			}
1380 		}
1381 	} else {
1382 		int i;
1383 
1384 		for (i = 0; i < aobj->u_pages; i++) {
1385 			int slot = aobj->u_swslots[i];
1386 
1387 			/* if the slot isn't in range, skip it */
1388 			if (slot < startslot || slot >= endslot) {
1389 				continue;
1390 			}
1391 
1392 			/* process the page.  */
1393 			rv = uao_pagein_page(aobj, i);
1394 			if (rv) {
1395 				return rv;
1396 			}
1397 		}
1398 	}
1399 
1400 	return FALSE;
1401 }
1402 
1403 /*
1404  * page in a page from an aobj.  used for swap_off.
1405  * returns TRUE if pagein was aborted due to lack of memory.
1406  */
1407 static boolean_t
1408 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1409 {
1410 	struct vm_page *pg;
1411 	int rv, slot, npages;
1412 
1413 	pg = NULL;
1414 	npages = 1;
1415 	rv = uao_get(&aobj->u_obj, (voff_t)pageidx << PAGE_SHIFT,
1416 	    &pg, &npages, 0, PROT_READ | PROT_WRITE, 0, 0);
1417 
1418 	switch (rv) {
1419 	case VM_PAGER_OK:
1420 		break;
1421 
1422 	case VM_PAGER_ERROR:
1423 	case VM_PAGER_REFAULT:
1424 		/*
1425 		 * nothing more to do on errors.
1426 		 * VM_PAGER_REFAULT can only mean that the anon was freed,
1427 		 * so again there's nothing to do.
1428 		 */
1429 		return FALSE;
1430 	}
1431 
1432 	/*
1433 	 * ok, we've got the page now.
1434 	 * mark it as dirty, clear its swslot and un-busy it.
1435 	 */
1436 	slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1437 	uvm_swap_free(slot, 1);
1438 	atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_CLEAN|PG_FAKE);
1439 	UVM_PAGE_OWN(pg, NULL);
1440 
1441 	/* deactivate the page (to put it on a page queue). */
1442 	pmap_clear_reference(pg);
1443 	uvm_lock_pageq();
1444 	uvm_pagedeactivate(pg);
1445 	uvm_unlock_pageq();
1446 
1447 	return FALSE;
1448 }
1449 
1450 /*
1451  * XXX pedro: Once we are comfortable enough with this function, we can adapt
1452  * uao_free() to use it.
1453  *
1454  * uao_dropswap_range: drop swapslots in the range.
1455  *
1456  * => aobj must be locked and is returned locked.
1457  * => start is inclusive.  end is exclusive.
1458  */
1459 void
1460 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1461 {
1462 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1463 	int swpgonlydelta = 0;
1464 
1465 	/* KASSERT(mutex_owned(uobj->vmobjlock)); */
1466 
1467 	if (end == 0) {
1468 		end = INT64_MAX;
1469 	}
1470 
1471 	if (aobj->u_pages > UAO_SWHASH_THRESHOLD) {
1472 		int i, hashbuckets = aobj->u_swhashmask + 1;
1473 		voff_t taghi;
1474 		voff_t taglo;
1475 
1476 		taglo = UAO_SWHASH_ELT_TAG(start);
1477 		taghi = UAO_SWHASH_ELT_TAG(end);
1478 
1479 		for (i = 0; i < hashbuckets; i++) {
1480 			struct uao_swhash_elt *elt, *next;
1481 
1482 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1483 			     elt != NULL;
1484 			     elt = next) {
1485 				int startidx, endidx;
1486 				int j;
1487 
1488 				next = LIST_NEXT(elt, list);
1489 
1490 				if (elt->tag < taglo || taghi < elt->tag) {
1491 					continue;
1492 				}
1493 
1494 				if (elt->tag == taglo) {
1495 					startidx =
1496 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1497 				} else {
1498 					startidx = 0;
1499 				}
1500 
1501 				if (elt->tag == taghi) {
1502 					endidx =
1503 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1504 				} else {
1505 					endidx = UAO_SWHASH_CLUSTER_SIZE;
1506 				}
1507 
1508 				for (j = startidx; j < endidx; j++) {
1509 					int slot = elt->slots[j];
1510 
1511 					KASSERT(uvm_pagelookup(&aobj->u_obj,
1512 					    (voff_t)(UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1513 					    + j) << PAGE_SHIFT) == NULL);
1514 
1515 					if (slot > 0) {
1516 						uvm_swap_free(slot, 1);
1517 						swpgonlydelta++;
1518 						KASSERT(elt->count > 0);
1519 						elt->slots[j] = 0;
1520 						elt->count--;
1521 					}
1522 				}
1523 
1524 				if (elt->count == 0) {
1525 					LIST_REMOVE(elt, list);
1526 					pool_put(&uao_swhash_elt_pool, elt);
1527 				}
1528 			}
1529 		}
1530 	} else {
1531 		int i;
1532 
1533 		if (aobj->u_pages < end) {
1534 			end = aobj->u_pages;
1535 		}
1536 		for (i = start; i < end; i++) {
1537 			int slot = aobj->u_swslots[i];
1538 
1539 			if (slot > 0) {
1540 				uvm_swap_free(slot, 1);
1541 				swpgonlydelta++;
1542 			}
1543 		}
1544 	}
1545 
1546 	/*
1547 	 * adjust the counter of pages only in swap for all
1548 	 * the swap slots we've freed.
1549 	 */
1550 	if (swpgonlydelta > 0) {
1551 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1552 		uvmexp.swpgonly -= swpgonlydelta;
1553 	}
1554 }
1555