xref: /openbsd-src/sys/uvm/uvm_aobj.c (revision b2ea75c1b17e1a9a339660e7ed45cd24946b230e)
1 /*	$OpenBSD: uvm_aobj.c,v 1.14 2001/08/11 10:57:22 art Exp $	*/
2 /*	$NetBSD: uvm_aobj.c,v 1.31 2000/05/19 04:34:45 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
6  *                    Washington University.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by Charles D. Cranor and
20  *      Washington University.
21  * 4. The name of the author may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
33  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
36  */
37 /*
38  * uvm_aobj.c: anonymous memory uvm_object pager
39  *
40  * author: Chuck Silvers <chuq@chuq.com>
41  * started: Jan-1998
42  *
43  * - design mostly from Chuck Cranor
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/malloc.h>
50 #include <sys/pool.h>
51 #include <sys/kernel.h>
52 
53 #include <vm/vm.h>
54 #include <vm/vm_page.h>
55 #include <vm/vm_kern.h>
56 
57 #include <uvm/uvm.h>
58 
59 /*
60  * an aobj manages anonymous-memory backed uvm_objects.   in addition
61  * to keeping the list of resident pages, it also keeps a list of
62  * allocated swap blocks.  depending on the size of the aobj this list
63  * of allocated swap blocks is either stored in an array (small objects)
64  * or in a hash table (large objects).
65  */
66 
67 /*
68  * local structures
69  */
70 
71 /*
72  * for hash tables, we break the address space of the aobj into blocks
73  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
74  * be a power of two.
75  */
76 
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79 
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83 
84 /* given an ELT and a page index, find the swap slot */
85 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
86 	((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
87 
88 /* given an ELT, return its pageidx base */
89 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
90 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
91 
92 /*
93  * the swhash hash function
94  */
95 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
96 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
97 			    & (AOBJ)->u_swhashmask)])
98 
99 /*
100  * the swhash threshhold determines if we will use an array or a
101  * hash table to store the list of allocated swap blocks.
102  */
103 
104 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
105 #define UAO_USES_SWHASH(AOBJ) \
106 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
107 
108 /*
109  * the number of buckets in a swhash, with an upper bound
110  */
111 #define UAO_SWHASH_MAXBUCKETS 256
112 #define UAO_SWHASH_BUCKETS(AOBJ) \
113 	(min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
114 	     UAO_SWHASH_MAXBUCKETS))
115 
116 
117 /*
118  * uao_swhash_elt: when a hash table is being used, this structure defines
119  * the format of an entry in the bucket list.
120  */
121 
122 struct uao_swhash_elt {
123 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
124 	voff_t tag;				/* our 'tag' */
125 	int count;				/* our number of active slots */
126 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
127 };
128 
129 /*
130  * uao_swhash: the swap hash table structure
131  */
132 
133 LIST_HEAD(uao_swhash, uao_swhash_elt);
134 
135 /*
136  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
137  */
138 
139 struct pool uao_swhash_elt_pool;
140 
141 /*
142  * uvm_aobj: the actual anon-backed uvm_object
143  *
144  * => the uvm_object is at the top of the structure, this allows
145  *   (struct uvm_device *) == (struct uvm_object *)
146  * => only one of u_swslots and u_swhash is used in any given aobj
147  */
148 
149 struct uvm_aobj {
150 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
151 	int u_pages;		 /* number of pages in entire object */
152 	int u_flags;		 /* the flags (see uvm_aobj.h) */
153 	int *u_swslots;		 /* array of offset->swapslot mappings */
154 				 /*
155 				  * hashtable of offset->swapslot mappings
156 				  * (u_swhash is an array of bucket heads)
157 				  */
158 	struct uao_swhash *u_swhash;
159 	u_long u_swhashmask;		/* mask for hashtable */
160 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
161 };
162 
163 /*
164  * uvm_aobj_pool: pool of uvm_aobj structures
165  */
166 
167 struct pool uvm_aobj_pool;
168 
169 /*
170  * local functions
171  */
172 
173 static struct uao_swhash_elt	*uao_find_swhash_elt __P((struct uvm_aobj *,
174 							  int, boolean_t));
175 static int			 uao_find_swslot __P((struct uvm_aobj *, int));
176 static boolean_t		 uao_flush __P((struct uvm_object *,
177 						voff_t, voff_t, int));
178 static void			 uao_free __P((struct uvm_aobj *));
179 static int			 uao_get __P((struct uvm_object *, voff_t,
180 					      vm_page_t *, int *, int,
181 					      vm_prot_t, int, int));
182 static boolean_t		 uao_releasepg __P((struct vm_page *,
183 						    struct vm_page **));
184 static boolean_t		 uao_pagein __P((struct uvm_aobj *, int, int));
185 static boolean_t		 uao_pagein_page __P((struct uvm_aobj *, int));
186 
187 
188 
189 /*
190  * aobj_pager
191  *
192  * note that some functions (e.g. put) are handled elsewhere
193  */
194 
195 struct uvm_pagerops aobj_pager = {
196 	NULL,			/* init */
197 	uao_reference,		/* reference */
198 	uao_detach,		/* detach */
199 	NULL,			/* fault */
200 	uao_flush,		/* flush */
201 	uao_get,		/* get */
202 	NULL,			/* asyncget */
203 	NULL,			/* put (done by pagedaemon) */
204 	NULL,			/* cluster */
205 	NULL,			/* mk_pcluster */
206 	NULL,			/* aiodone */
207 	uao_releasepg		/* releasepg */
208 };
209 
210 /*
211  * uao_list: global list of active aobjs, locked by uao_list_lock
212  */
213 
214 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
215 static simple_lock_data_t uao_list_lock;
216 
217 
218 /*
219  * functions
220  */
221 
222 /*
223  * hash table/array related functions
224  */
225 
226 /*
227  * uao_find_swhash_elt: find (or create) a hash table entry for a page
228  * offset.
229  *
230  * => the object should be locked by the caller
231  */
232 
233 static struct uao_swhash_elt *
234 uao_find_swhash_elt(aobj, pageidx, create)
235 	struct uvm_aobj *aobj;
236 	int pageidx;
237 	boolean_t create;
238 {
239 	struct uao_swhash *swhash;
240 	struct uao_swhash_elt *elt;
241 	voff_t page_tag;
242 
243 	swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
244 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);	/* tag to search for */
245 
246 	/*
247 	 * now search the bucket for the requested tag
248 	 */
249 	for (elt = swhash->lh_first; elt != NULL; elt = elt->list.le_next) {
250 		if (elt->tag == page_tag)
251 			return(elt);
252 	}
253 
254 	/* fail now if we are not allowed to create a new entry in the bucket */
255 	if (!create)
256 		return NULL;
257 
258 
259 	/*
260 	 * allocate a new entry for the bucket and init/insert it in
261 	 */
262 	elt = pool_get(&uao_swhash_elt_pool, PR_WAITOK);
263 	LIST_INSERT_HEAD(swhash, elt, list);
264 	elt->tag = page_tag;
265 	elt->count = 0;
266 	memset(elt->slots, 0, sizeof(elt->slots));
267 
268 	return(elt);
269 }
270 
271 /*
272  * uao_find_swslot: find the swap slot number for an aobj/pageidx
273  *
274  * => object must be locked by caller
275  */
276 __inline static int
277 uao_find_swslot(aobj, pageidx)
278 	struct uvm_aobj *aobj;
279 	int pageidx;
280 {
281 
282 	/*
283 	 * if noswap flag is set, then we never return a slot
284 	 */
285 
286 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
287 		return(0);
288 
289 	/*
290 	 * if hashing, look in hash table.
291 	 */
292 
293 	if (UAO_USES_SWHASH(aobj)) {
294 		struct uao_swhash_elt *elt =
295 		    uao_find_swhash_elt(aobj, pageidx, FALSE);
296 
297 		if (elt)
298 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
299 		else
300 			return(0);
301 	}
302 
303 	/*
304 	 * otherwise, look in the array
305 	 */
306 	return(aobj->u_swslots[pageidx]);
307 }
308 
309 /*
310  * uao_set_swslot: set the swap slot for a page in an aobj.
311  *
312  * => setting a slot to zero frees the slot
313  * => object must be locked by caller
314  */
315 int
316 uao_set_swslot(uobj, pageidx, slot)
317 	struct uvm_object *uobj;
318 	int pageidx, slot;
319 {
320 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
321 	int oldslot;
322 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
323 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
324 	    aobj, pageidx, slot, 0);
325 
326 	/*
327 	 * if noswap flag is set, then we can't set a slot
328 	 */
329 
330 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
331 
332 		if (slot == 0)
333 			return(0);		/* a clear is ok */
334 
335 		/* but a set is not */
336 		printf("uao_set_swslot: uobj = %p\n", uobj);
337 	    panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
338 	}
339 
340 	/*
341 	 * are we using a hash table?  if so, add it in the hash.
342 	 */
343 
344 	if (UAO_USES_SWHASH(aobj)) {
345 		/*
346 		 * Avoid allocating an entry just to free it again if
347 		 * the page had not swap slot in the first place, and
348 		 * we are freeing.
349 		 */
350 		struct uao_swhash_elt *elt =
351 		    uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
352 		if (elt == NULL) {
353 #ifdef DIAGNOSTIC
354 			if (slot)
355 				panic("uao_set_swslot: didn't create elt");
356 #endif
357 			return (0);
358 		}
359 
360 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
361 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
362 
363 		/*
364 		 * now adjust the elt's reference counter and free it if we've
365 		 * dropped it to zero.
366 		 */
367 
368 		/* an allocation? */
369 		if (slot) {
370 			if (oldslot == 0)
371 				elt->count++;
372 		} else {		/* freeing slot ... */
373 			if (oldslot)	/* to be safe */
374 				elt->count--;
375 
376 			if (elt->count == 0) {
377 				LIST_REMOVE(elt, list);
378 				pool_put(&uao_swhash_elt_pool, elt);
379 			}
380 		}
381 
382 	} else {
383 		/* we are using an array */
384 		oldslot = aobj->u_swslots[pageidx];
385 		aobj->u_swslots[pageidx] = slot;
386 	}
387 	return (oldslot);
388 }
389 
390 /*
391  * end of hash/array functions
392  */
393 
394 /*
395  * uao_free: free all resources held by an aobj, and then free the aobj
396  *
397  * => the aobj should be dead
398  */
399 static void
400 uao_free(aobj)
401 	struct uvm_aobj *aobj;
402 {
403 
404 	simple_unlock(&aobj->u_obj.vmobjlock);
405 
406 	if (UAO_USES_SWHASH(aobj)) {
407 		int i, hashbuckets = aobj->u_swhashmask + 1;
408 
409 		/*
410 		 * free the swslots from each hash bucket,
411 		 * then the hash bucket, and finally the hash table itself.
412 		 */
413 		for (i = 0; i < hashbuckets; i++) {
414 			struct uao_swhash_elt *elt, *next;
415 
416 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
417 			     elt != NULL;
418 			     elt = next) {
419 				int j;
420 
421 				for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
422 					int slot = elt->slots[j];
423 
424 					if (slot) {
425 						uvm_swap_free(slot, 1);
426 
427 						/*
428 						 * this page is no longer
429 						 * only in swap.
430 						 */
431 						simple_lock(&uvm.swap_data_lock);
432 						uvmexp.swpgonly--;
433 						simple_unlock(&uvm.swap_data_lock);
434 					}
435 				}
436 
437 				next = LIST_NEXT(elt, list);
438 				pool_put(&uao_swhash_elt_pool, elt);
439 			}
440 		}
441 		FREE(aobj->u_swhash, M_UVMAOBJ);
442 	} else {
443 		int i;
444 
445 		/*
446 		 * free the array
447 		 */
448 
449 		for (i = 0; i < aobj->u_pages; i++) {
450 			int slot = aobj->u_swslots[i];
451 
452 			if (slot) {
453 				uvm_swap_free(slot, 1);
454 
455 				/* this page is no longer only in swap. */
456 				simple_lock(&uvm.swap_data_lock);
457 				uvmexp.swpgonly--;
458 				simple_unlock(&uvm.swap_data_lock);
459 			}
460 		}
461 		FREE(aobj->u_swslots, M_UVMAOBJ);
462 	}
463 
464 	/*
465 	 * finally free the aobj itself
466 	 */
467 	pool_put(&uvm_aobj_pool, aobj);
468 }
469 
470 /*
471  * pager functions
472  */
473 
474 /*
475  * uao_create: create an aobj of the given size and return its uvm_object.
476  *
477  * => for normal use, flags are always zero
478  * => for the kernel object, the flags are:
479  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
480  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
481  */
482 struct uvm_object *
483 uao_create(size, flags)
484 	vsize_t size;
485 	int flags;
486 {
487 	static struct uvm_aobj kernel_object_store; /* home of kernel_object */
488 	static int kobj_alloced = 0;			/* not allocated yet */
489 	int pages = round_page(size) >> PAGE_SHIFT;
490 	struct uvm_aobj *aobj;
491 
492 	/*
493 	 * malloc a new aobj unless we are asked for the kernel object
494 	 */
495 	if (flags & UAO_FLAG_KERNOBJ) {		/* want kernel object? */
496 		if (kobj_alloced)
497 			panic("uao_create: kernel object already allocated");
498 
499 		aobj = &kernel_object_store;
500 		aobj->u_pages = pages;
501 		aobj->u_flags = UAO_FLAG_NOSWAP;	/* no swap to start */
502 		/* we are special, we never die */
503 		aobj->u_obj.uo_refs = UVM_OBJ_KERN;
504 		kobj_alloced = UAO_FLAG_KERNOBJ;
505 	} else if (flags & UAO_FLAG_KERNSWAP) {
506 		aobj = &kernel_object_store;
507 		if (kobj_alloced != UAO_FLAG_KERNOBJ)
508 		    panic("uao_create: asked to enable swap on kernel object");
509 		kobj_alloced = UAO_FLAG_KERNSWAP;
510 	} else {	/* normal object */
511 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
512 		aobj->u_pages = pages;
513 		aobj->u_flags = 0;		/* normal object */
514 		aobj->u_obj.uo_refs = 1;	/* start with 1 reference */
515 	}
516 
517 	/*
518  	 * allocate hash/array if necessary
519  	 *
520  	 * note: in the KERNSWAP case no need to worry about locking since
521  	 * we are still booting we should be the only thread around.
522  	 */
523 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
524 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
525 		    M_NOWAIT : M_WAITOK;
526 
527 		/* allocate hash table or array depending on object size */
528 		if (UAO_USES_SWHASH(aobj)) {
529 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
530 			    M_UVMAOBJ, mflags, &aobj->u_swhashmask);
531 			if (aobj->u_swhash == NULL)
532 				panic("uao_create: hashinit swhash failed");
533 		} else {
534 			MALLOC(aobj->u_swslots, int *, pages * sizeof(int),
535 			    M_UVMAOBJ, mflags);
536 			if (aobj->u_swslots == NULL)
537 				panic("uao_create: malloc swslots failed");
538 			memset(aobj->u_swslots, 0, pages * sizeof(int));
539 		}
540 
541 		if (flags) {
542 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
543 			return(&aobj->u_obj);
544 			/* done! */
545 		}
546 	}
547 
548 	/*
549  	 * init aobj fields
550  	 */
551 	simple_lock_init(&aobj->u_obj.vmobjlock);
552 	aobj->u_obj.pgops = &aobj_pager;
553 	TAILQ_INIT(&aobj->u_obj.memq);
554 	aobj->u_obj.uo_npages = 0;
555 
556 	/*
557  	 * now that aobj is ready, add it to the global list
558  	 */
559 	simple_lock(&uao_list_lock);
560 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
561 	simple_unlock(&uao_list_lock);
562 
563 	/*
564  	 * done!
565  	 */
566 	return(&aobj->u_obj);
567 }
568 
569 
570 
571 /*
572  * uao_init: set up aobj pager subsystem
573  *
574  * => called at boot time from uvm_pager_init()
575  */
576 void
577 uao_init()
578 {
579 	static int uao_initialized;
580 
581 	if (uao_initialized)
582 		return;
583 	uao_initialized = TRUE;
584 
585 	LIST_INIT(&uao_list);
586 	simple_lock_init(&uao_list_lock);
587 
588 	/*
589 	 * NOTE: Pages fror this pool must not come from a pageable
590 	 * kernel map!
591 	 */
592 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
593 	    0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
594 
595 	pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
596 	    "aobjpl", 0,
597 	    pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
598 }
599 
600 /*
601  * uao_reference: add a ref to an aobj
602  *
603  * => aobj must be unlocked
604  * => just lock it and call the locked version
605  */
606 void
607 uao_reference(uobj)
608 	struct uvm_object *uobj;
609 {
610 	simple_lock(&uobj->vmobjlock);
611 	uao_reference_locked(uobj);
612 	simple_unlock(&uobj->vmobjlock);
613 }
614 
615 /*
616  * uao_reference_locked: add a ref to an aobj that is already locked
617  *
618  * => aobj must be locked
619  * this needs to be separate from the normal routine
620  * since sometimes we need to add a reference to an aobj when
621  * it's already locked.
622  */
623 void
624 uao_reference_locked(uobj)
625 	struct uvm_object *uobj;
626 {
627 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
628 
629 	/*
630  	 * kernel_object already has plenty of references, leave it alone.
631  	 */
632 
633 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
634 		return;
635 
636 	uobj->uo_refs++;		/* bump! */
637 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
638 		    uobj, uobj->uo_refs,0,0);
639 }
640 
641 
642 /*
643  * uao_detach: drop a reference to an aobj
644  *
645  * => aobj must be unlocked
646  * => just lock it and call the locked version
647  */
648 void
649 uao_detach(uobj)
650 	struct uvm_object *uobj;
651 {
652 	simple_lock(&uobj->vmobjlock);
653 	uao_detach_locked(uobj);
654 }
655 
656 
657 /*
658  * uao_detach_locked: drop a reference to an aobj
659  *
660  * => aobj must be locked, and is unlocked (or freed) upon return.
661  * this needs to be separate from the normal routine
662  * since sometimes we need to detach from an aobj when
663  * it's already locked.
664  */
665 void
666 uao_detach_locked(uobj)
667 	struct uvm_object *uobj;
668 {
669 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
670 	struct vm_page *pg;
671 	boolean_t busybody;
672 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
673 
674 	/*
675  	 * detaching from kernel_object is a noop.
676  	 */
677 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
678 		simple_unlock(&uobj->vmobjlock);
679 		return;
680 	}
681 
682 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
683 	uobj->uo_refs--;				/* drop ref! */
684 	if (uobj->uo_refs) {				/* still more refs? */
685 		simple_unlock(&uobj->vmobjlock);
686 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
687 		return;
688 	}
689 
690 	/*
691  	 * remove the aobj from the global list.
692  	 */
693 	simple_lock(&uao_list_lock);
694 	LIST_REMOVE(aobj, u_list);
695 	simple_unlock(&uao_list_lock);
696 
697 	/*
698  	 * free all the pages that aren't PG_BUSY,
699 	 * mark for release any that are.
700  	 */
701 	busybody = FALSE;
702 	for (pg = TAILQ_FIRST(&uobj->memq);
703 	     pg != NULL;
704 	     pg = TAILQ_NEXT(pg, listq)) {
705 		if (pg->flags & PG_BUSY) {
706 			pg->flags |= PG_RELEASED;
707 			busybody = TRUE;
708 			continue;
709 		}
710 
711 		/* zap the mappings, free the swap slot, free the page */
712 		pmap_page_protect(pg, VM_PROT_NONE);
713 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
714 		uvm_lock_pageq();
715 		uvm_pagefree(pg);
716 		uvm_unlock_pageq();
717 	}
718 
719 	/*
720  	 * if we found any busy pages, we're done for now.
721  	 * mark the aobj for death, releasepg will finish up for us.
722  	 */
723 	if (busybody) {
724 		aobj->u_flags |= UAO_FLAG_KILLME;
725 		simple_unlock(&aobj->u_obj.vmobjlock);
726 		return;
727 	}
728 
729 	/*
730  	 * finally, free the rest.
731  	 */
732 	uao_free(aobj);
733 }
734 
735 /*
736  * uao_flush: "flush" pages out of a uvm object
737  *
738  * => object should be locked by caller.  we may _unlock_ the object
739  *	if (and only if) we need to clean a page (PGO_CLEANIT).
740  *	XXXJRT Currently, however, we don't.  In the case of cleaning
741  *	XXXJRT a page, we simply just deactivate it.  Should probably
742  *	XXXJRT handle this better, in the future (although "flushing"
743  *	XXXJRT anonymous memory isn't terribly important).
744  * => if PGO_CLEANIT is not set, then we will neither unlock the object
745  *	or block.
746  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
747  *	for flushing.
748  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
749  *	that new pages are inserted on the tail end of the list.  thus,
750  *	we can make a complete pass through the object in one go by starting
751  *	at the head and working towards the tail (new pages are put in
752  *	front of us).
753  * => NOTE: we are allowed to lock the page queues, so the caller
754  *	must not be holding the lock on them [e.g. pagedaemon had
755  *	better not call us with the queues locked]
756  * => we return TRUE unless we encountered some sort of I/O error
757  *	XXXJRT currently never happens, as we never directly initiate
758  *	XXXJRT I/O
759  *
760  * comment on "cleaning" object and PG_BUSY pages:
761  *	this routine is holding the lock on the object.  the only time
762  *	that is can run into a PG_BUSY page that it does not own is if
763  *	some other process has started I/O on the page (e.g. either
764  *	a pagein or a pageout).  if the PG_BUSY page is being paged
765  *	in, then it can not be dirty (!PG_CLEAN) because no one has
766  *	had a change to modify it yet.  if the PG_BUSY page is being
767  *	paged out then it means that someone else has already started
768  *	cleaning the page for us (how nice!).  in this case, if we
769  *	have syncio specified, then after we make our pass through the
770  *	object we need to wait for the other PG_BUSY pages to clear
771  *	off (i.e. we need to do an iosync).  also note that once a
772  *	page is PG_BUSY is must stary in its object until it is un-busyed.
773  *	XXXJRT We never actually do this, as we are "flushing" anonymous
774  *	XXXJRT memory, which doesn't have persistent backing store.
775  *
776  * note on page traversal:
777  *	we can traverse the pages in an object either by going down the
778  *	linked list in "uobj->memq", or we can go over the address range
779  *	by page doing hash table lookups for each address.  depending
780  *	on how many pages are in the object it may be cheaper to do one
781  *	or the other.  we set "by_list" to true if we are using memq.
782  *	if the cost of a hash lookup was equal to the cost of the list
783  *	traversal we could compare the number of pages in the start->stop
784  *	range to the total number of pages in the object.  however, it
785  *	seems that a hash table lookup is more expensive than the linked
786  *	list traversal, so we multiply the number of pages in the
787  *	start->stop range by a penalty which we define below.
788  */
789 
790 #define	UAO_HASH_PENALTY 4	/* XXX: a guess */
791 
792 boolean_t
793 uao_flush(uobj, start, stop, flags)
794 	struct uvm_object *uobj;
795 	voff_t start, stop;
796 	int flags;
797 {
798 	struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
799 	struct vm_page *pp, *ppnext;
800 	boolean_t retval, by_list;
801 	voff_t curoff;
802 	UVMHIST_FUNC("uao_flush"); UVMHIST_CALLED(maphist);
803 
804 	curoff = 0;	/* XXX: shut up gcc */
805 
806 	retval = TRUE;	/* default to success */
807 
808 	if (flags & PGO_ALLPAGES) {
809 		start = 0;
810 		stop = aobj->u_pages << PAGE_SHIFT;
811 		by_list = TRUE;		/* always go by the list */
812 	} else {
813 		start = trunc_page(start);
814 		stop = round_page(stop);
815 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
816 			printf("uao_flush: strange, got an out of range "
817 			    "flush (fixed)\n");
818 			stop = aobj->u_pages << PAGE_SHIFT;
819 		}
820 		by_list = (uobj->uo_npages <=
821 		    ((stop - start) >> PAGE_SHIFT) * UAO_HASH_PENALTY);
822 	}
823 
824 	UVMHIST_LOG(maphist,
825 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
826 	    start, stop, by_list, flags);
827 
828 	/*
829 	 * Don't need to do any work here if we're not freeing
830 	 * or deactivating pages.
831 	 */
832 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
833 		UVMHIST_LOG(maphist,
834 		    "<- done (no work to do)",0,0,0,0);
835 		return (retval);
836 	}
837 
838 	/*
839 	 * now do it.  note: we must update ppnext in the body of loop or we
840 	 * will get stuck.  we need to use ppnext because we may free "pp"
841 	 * before doing the next loop.
842 	 */
843 
844 	if (by_list) {
845 		pp = uobj->memq.tqh_first;
846 	} else {
847 		curoff = start;
848 		pp = uvm_pagelookup(uobj, curoff);
849 	}
850 
851 	ppnext = NULL;	/* XXX: shut up gcc */
852 	uvm_lock_pageq();	/* page queues locked */
853 
854 	/* locked: both page queues and uobj */
855 	for ( ; (by_list && pp != NULL) ||
856 	    (!by_list && curoff < stop) ; pp = ppnext) {
857 		if (by_list) {
858 			ppnext = pp->listq.tqe_next;
859 
860 			/* range check */
861 			if (pp->offset < start || pp->offset >= stop)
862 				continue;
863 		} else {
864 			curoff += PAGE_SIZE;
865 			if (curoff < stop)
866 				ppnext = uvm_pagelookup(uobj, curoff);
867 
868 			/* null check */
869 			if (pp == NULL)
870 				continue;
871 		}
872 
873 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
874 		/*
875 		 * XXX In these first 3 cases, we always just
876 		 * XXX deactivate the page.  We may want to
877 		 * XXX handle the different cases more specifically
878 		 * XXX in the future.
879 		 */
880 		case PGO_CLEANIT|PGO_FREE:
881 		case PGO_CLEANIT|PGO_DEACTIVATE:
882 		case PGO_DEACTIVATE:
883  deactivate_it:
884 			/* skip the page if it's loaned or wired */
885 			if (pp->loan_count != 0 ||
886 			    pp->wire_count != 0)
887 				continue;
888 
889 			/* zap all mappings for the page. */
890 			pmap_page_protect(pp, VM_PROT_NONE);
891 
892 			/* ...and deactivate the page. */
893 			uvm_pagedeactivate(pp);
894 
895 			continue;
896 
897 		case PGO_FREE:
898 			/*
899 			 * If there are multiple references to
900 			 * the object, just deactivate the page.
901 			 */
902 			if (uobj->uo_refs > 1)
903 				goto deactivate_it;
904 
905 			/* XXX skip the page if it's loaned or wired */
906 			if (pp->loan_count != 0 ||
907 			    pp->wire_count != 0)
908 				continue;
909 
910 			/*
911 			 * mark the page as released if its busy.
912 			 */
913 			if (pp->flags & PG_BUSY) {
914 				pp->flags |= PG_RELEASED;
915 				continue;
916 			}
917 
918 			/* zap all mappings for the page. */
919 			pmap_page_protect(pp, VM_PROT_NONE);
920 
921 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
922 			uvm_pagefree(pp);
923 
924 			continue;
925 
926 		default:
927 			panic("uao_flush: weird flags");
928 		}
929 #ifdef DIAGNOSTIC
930 		panic("uao_flush: unreachable code");
931 #endif
932 	}
933 
934 	uvm_unlock_pageq();
935 
936 	UVMHIST_LOG(maphist,
937 	    "<- done, rv=%d",retval,0,0,0);
938 	return (retval);
939 }
940 
941 /*
942  * uao_get: fetch me a page
943  *
944  * we have three cases:
945  * 1: page is resident     -> just return the page.
946  * 2: page is zero-fill    -> allocate a new page and zero it.
947  * 3: page is swapped out  -> fetch the page from swap.
948  *
949  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
950  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
951  * then we will need to return VM_PAGER_UNLOCK.
952  *
953  * => prefer map unlocked (not required)
954  * => object must be locked!  we will _unlock_ it before starting any I/O.
955  * => flags: PGO_ALLPAGES: get all of the pages
956  *           PGO_LOCKED: fault data structures are locked
957  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
958  * => NOTE: caller must check for released pages!!
959  */
960 static int
961 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
962 	struct uvm_object *uobj;
963 	voff_t offset;
964 	struct vm_page **pps;
965 	int *npagesp;
966 	int centeridx, advice, flags;
967 	vm_prot_t access_type;
968 {
969 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
970 	voff_t current_offset;
971 	vm_page_t ptmp;
972 	int lcv, gotpages, maxpages, swslot, rv, pageidx;
973 	boolean_t done;
974 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
975 
976 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
977 		    aobj, offset, flags,0);
978 
979 	/*
980  	 * get number of pages
981  	 */
982 	maxpages = *npagesp;
983 
984 	/*
985  	 * step 1: handled the case where fault data structures are locked.
986  	 */
987 
988 	if (flags & PGO_LOCKED) {
989 		/*
990  		 * step 1a: get pages that are already resident.   only do
991 		 * this if the data structures are locked (i.e. the first
992 		 * time through).
993  		 */
994 
995 		done = TRUE;	/* be optimistic */
996 		gotpages = 0;	/* # of pages we got so far */
997 
998 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
999 		    lcv++, current_offset += PAGE_SIZE) {
1000 			/* do we care about this page?  if not, skip it */
1001 			if (pps[lcv] == PGO_DONTCARE)
1002 				continue;
1003 
1004 			ptmp = uvm_pagelookup(uobj, current_offset);
1005 
1006 			/*
1007  			 * if page is new, attempt to allocate the page,
1008 			 * zero-fill'd.
1009  			 */
1010 			if (ptmp == NULL && uao_find_swslot(aobj,
1011 			    current_offset >> PAGE_SHIFT) == 0) {
1012 				ptmp = uvm_pagealloc(uobj, current_offset,
1013 				    NULL, UVM_PGA_ZERO);
1014 				if (ptmp) {
1015 					/* new page */
1016 					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
1017 					ptmp->pqflags |= PQ_AOBJ;
1018 					UVM_PAGE_OWN(ptmp, NULL);
1019 				}
1020 			}
1021 
1022 			/*
1023 			 * to be useful must get a non-busy, non-released page
1024 			 */
1025 			if (ptmp == NULL ||
1026 			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1027 				if (lcv == centeridx ||
1028 				    (flags & PGO_ALLPAGES) != 0)
1029 					/* need to do a wait or I/O! */
1030 					done = FALSE;
1031 					continue;
1032 			}
1033 
1034 			/*
1035 			 * useful page: busy/lock it and plug it in our
1036 			 * result array
1037 			 */
1038 			/* caller must un-busy this page */
1039 			ptmp->flags |= PG_BUSY;
1040 			UVM_PAGE_OWN(ptmp, "uao_get1");
1041 			pps[lcv] = ptmp;
1042 			gotpages++;
1043 
1044 		}	/* "for" lcv loop */
1045 
1046 		/*
1047  		 * step 1b: now we've either done everything needed or we
1048 		 * to unlock and do some waiting or I/O.
1049  		 */
1050 
1051 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1052 
1053 		*npagesp = gotpages;
1054 		if (done)
1055 			/* bingo! */
1056 			return(VM_PAGER_OK);
1057 		else
1058 			/* EEK!   Need to unlock and I/O */
1059 			return(VM_PAGER_UNLOCK);
1060 	}
1061 
1062 	/*
1063  	 * step 2: get non-resident or busy pages.
1064  	 * object is locked.   data structures are unlocked.
1065  	 */
1066 
1067 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1068 	    lcv++, current_offset += PAGE_SIZE) {
1069 
1070 		/*
1071 		 * - skip over pages we've already gotten or don't want
1072 		 * - skip over pages we don't _have_ to get
1073 		 */
1074 
1075 		if (pps[lcv] != NULL ||
1076 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1077 			continue;
1078 
1079 		pageidx = current_offset >> PAGE_SHIFT;
1080 
1081 		/*
1082  		 * we have yet to locate the current page (pps[lcv]).   we
1083 		 * first look for a page that is already at the current offset.
1084 		 * if we find a page, we check to see if it is busy or
1085 		 * released.  if that is the case, then we sleep on the page
1086 		 * until it is no longer busy or released and repeat the lookup.
1087 		 * if the page we found is neither busy nor released, then we
1088 		 * busy it (so we own it) and plug it into pps[lcv].   this
1089 		 * 'break's the following while loop and indicates we are
1090 		 * ready to move on to the next page in the "lcv" loop above.
1091  		 *
1092  		 * if we exit the while loop with pps[lcv] still set to NULL,
1093 		 * then it means that we allocated a new busy/fake/clean page
1094 		 * ptmp in the object and we need to do I/O to fill in the data.
1095  		 */
1096 
1097 		/* top of "pps" while loop */
1098 		while (pps[lcv] == NULL) {
1099 			/* look for a resident page */
1100 			ptmp = uvm_pagelookup(uobj, current_offset);
1101 
1102 			/* not resident?   allocate one now (if we can) */
1103 			if (ptmp == NULL) {
1104 
1105 				ptmp = uvm_pagealloc(uobj, current_offset,
1106 				    NULL, 0);
1107 
1108 				/* out of RAM? */
1109 				if (ptmp == NULL) {
1110 					simple_unlock(&uobj->vmobjlock);
1111 					UVMHIST_LOG(pdhist,
1112 					    "sleeping, ptmp == NULL\n",0,0,0,0);
1113 					uvm_wait("uao_getpage");
1114 					simple_lock(&uobj->vmobjlock);
1115 					/* goto top of pps while loop */
1116 					continue;
1117 				}
1118 
1119 				/*
1120 				 * safe with PQ's unlocked: because we just
1121 				 * alloc'd the page
1122 				 */
1123 				ptmp->pqflags |= PQ_AOBJ;
1124 
1125 				/*
1126 				 * got new page ready for I/O.  break pps while
1127 				 * loop.  pps[lcv] is still NULL.
1128 				 */
1129 				break;
1130 			}
1131 
1132 			/* page is there, see if we need to wait on it */
1133 			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1134 				ptmp->flags |= PG_WANTED;
1135 				UVMHIST_LOG(pdhist,
1136 				    "sleeping, ptmp->flags 0x%x\n",
1137 				    ptmp->flags,0,0,0);
1138 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1139 				    FALSE, "uao_get", 0);
1140 				simple_lock(&uobj->vmobjlock);
1141 				continue;	/* goto top of pps while loop */
1142 			}
1143 
1144 			/*
1145  			 * if we get here then the page has become resident and
1146 			 * unbusy between steps 1 and 2.  we busy it now (so we
1147 			 * own it) and set pps[lcv] (so that we exit the while
1148 			 * loop).
1149  			 */
1150 			/* we own it, caller must un-busy */
1151 			ptmp->flags |= PG_BUSY;
1152 			UVM_PAGE_OWN(ptmp, "uao_get2");
1153 			pps[lcv] = ptmp;
1154 		}
1155 
1156 		/*
1157  		 * if we own the valid page at the correct offset, pps[lcv] will
1158  		 * point to it.   nothing more to do except go to the next page.
1159  		 */
1160 		if (pps[lcv])
1161 			continue;			/* next lcv */
1162 
1163 		/*
1164  		 * we have a "fake/busy/clean" page that we just allocated.
1165  		 * do the needed "i/o", either reading from swap or zeroing.
1166  		 */
1167 		swslot = uao_find_swslot(aobj, pageidx);
1168 
1169 		/*
1170  		 * just zero the page if there's nothing in swap.
1171  		 */
1172 		if (swslot == 0)
1173 		{
1174 			/*
1175 			 * page hasn't existed before, just zero it.
1176 			 */
1177 			uvm_pagezero(ptmp);
1178 		} else {
1179 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
1180 			     swslot, 0,0,0);
1181 
1182 			/*
1183 			 * page in the swapped-out page.
1184 			 * unlock object for i/o, relock when done.
1185 			 */
1186 			simple_unlock(&uobj->vmobjlock);
1187 			rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1188 			simple_lock(&uobj->vmobjlock);
1189 
1190 			/*
1191 			 * I/O done.  check for errors.
1192 			 */
1193 			if (rv != VM_PAGER_OK)
1194 			{
1195 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
1196 				    rv,0,0,0);
1197 				if (ptmp->flags & PG_WANTED)
1198 					wakeup(ptmp);
1199 
1200 				/*
1201 				 * remove the swap slot from the aobj
1202 				 * and mark the aobj as having no real slot.
1203 				 * don't free the swap slot, thus preventing
1204 				 * it from being used again.
1205 				 */
1206 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1207 							SWSLOT_BAD);
1208 				uvm_swap_markbad(swslot, 1);
1209 
1210 				ptmp->flags &= ~(PG_WANTED|PG_BUSY);
1211 				UVM_PAGE_OWN(ptmp, NULL);
1212 				uvm_lock_pageq();
1213 				uvm_pagefree(ptmp);
1214 				uvm_unlock_pageq();
1215 
1216 				simple_unlock(&uobj->vmobjlock);
1217 				return (rv);
1218 			}
1219 		}
1220 
1221 		/*
1222  		 * we got the page!   clear the fake flag (indicates valid
1223 		 * data now in page) and plug into our result array.   note
1224 		 * that page is still busy.
1225  		 *
1226  		 * it is the callers job to:
1227  		 * => check if the page is released
1228  		 * => unbusy the page
1229  		 * => activate the page
1230  		 */
1231 
1232 		ptmp->flags &= ~PG_FAKE;		/* data is valid ... */
1233 		pmap_clear_modify(ptmp);		/* ... and clean */
1234 		pps[lcv] = ptmp;
1235 
1236 	}	/* lcv loop */
1237 
1238 	/*
1239  	 * finally, unlock object and return.
1240  	 */
1241 
1242 	simple_unlock(&uobj->vmobjlock);
1243 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1244 	return(VM_PAGER_OK);
1245 }
1246 
1247 /*
1248  * uao_releasepg: handle released page in an aobj
1249  *
1250  * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
1251  *      to dispose of.
1252  * => caller must handle PG_WANTED case
1253  * => called with page's object locked, pageq's unlocked
1254  * => returns TRUE if page's object is still alive, FALSE if we
1255  *      killed the page's object.    if we return TRUE, then we
1256  *      return with the object locked.
1257  * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
1258  *                              with the page queues locked [for pagedaemon]
1259  * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
1260  * => we kill the aobj if it is not referenced and we are suppose to
1261  *      kill it ("KILLME").
1262  */
1263 static boolean_t
1264 uao_releasepg(pg, nextpgp)
1265 	struct vm_page *pg;
1266 	struct vm_page **nextpgp;	/* OUT */
1267 {
1268 	struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
1269 
1270 #ifdef DIAGNOSTIC
1271 	if ((pg->flags & PG_RELEASED) == 0)
1272 		panic("uao_releasepg: page not released!");
1273 #endif
1274 
1275 	/*
1276  	 * dispose of the page [caller handles PG_WANTED] and swap slot.
1277  	 */
1278 	pmap_page_protect(pg, VM_PROT_NONE);
1279 	uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
1280 	uvm_lock_pageq();
1281 	if (nextpgp)
1282 		*nextpgp = pg->pageq.tqe_next;	/* next page for daemon */
1283 	uvm_pagefree(pg);
1284 	if (!nextpgp)
1285 		uvm_unlock_pageq();		/* keep locked for daemon */
1286 
1287 	/*
1288  	 * if we're not killing the object, we're done.
1289  	 */
1290 	if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
1291 		return TRUE;
1292 
1293 #ifdef DIAGNOSTIC
1294 	if (aobj->u_obj.uo_refs)
1295 		panic("uvm_km_releasepg: kill flag set on referenced object!");
1296 #endif
1297 
1298 	/*
1299  	 * if there are still pages in the object, we're done for now.
1300  	 */
1301 	if (aobj->u_obj.uo_npages != 0)
1302 		return TRUE;
1303 
1304 #ifdef DIAGNOSTIC
1305 	if (TAILQ_FIRST(&aobj->u_obj.memq))
1306 		panic("uvn_releasepg: pages in object with npages == 0");
1307 #endif
1308 
1309 	/*
1310  	 * finally, free the rest.
1311  	 */
1312 	uao_free(aobj);
1313 
1314 	return FALSE;
1315 }
1316 
1317 
1318 /*
1319  * uao_dropswap:  release any swap resources from this aobj page.
1320  *
1321  * => aobj must be locked or have a reference count of 0.
1322  */
1323 
1324 void
1325 uao_dropswap(uobj, pageidx)
1326 	struct uvm_object *uobj;
1327 	int pageidx;
1328 {
1329 	int slot;
1330 
1331 	slot = uao_set_swslot(uobj, pageidx, 0);
1332 	if (slot) {
1333 		uvm_swap_free(slot, 1);
1334 	}
1335 }
1336 
1337 
1338 /*
1339  * page in every page in every aobj that is paged-out to a range of swslots.
1340  *
1341  * => nothing should be locked.
1342  * => returns TRUE if pagein was aborted due to lack of memory.
1343  */
1344 boolean_t
1345 uao_swap_off(startslot, endslot)
1346 	int startslot, endslot;
1347 {
1348 	struct uvm_aobj *aobj, *nextaobj;
1349 
1350 	/*
1351 	 * walk the list of all aobjs.
1352 	 */
1353 
1354 restart:
1355 	simple_lock(&uao_list_lock);
1356 
1357 	for (aobj = LIST_FIRST(&uao_list);
1358 	     aobj != NULL;
1359 	     aobj = nextaobj) {
1360 		boolean_t rv;
1361 
1362 		/*
1363 		 * try to get the object lock,
1364 		 * start all over if we fail.
1365 		 * most of the time we'll get the aobj lock,
1366 		 * so this should be a rare case.
1367 		 */
1368 		if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1369 			simple_unlock(&uao_list_lock);
1370 			goto restart;
1371 		}
1372 
1373 		/*
1374 		 * add a ref to the aobj so it doesn't disappear
1375 		 * while we're working.
1376 		 */
1377 		uao_reference_locked(&aobj->u_obj);
1378 
1379 		/*
1380 		 * now it's safe to unlock the uao list.
1381 		 */
1382 		simple_unlock(&uao_list_lock);
1383 
1384 		/*
1385 		 * page in any pages in the swslot range.
1386 		 * if there's an error, abort and return the error.
1387 		 */
1388 		rv = uao_pagein(aobj, startslot, endslot);
1389 		if (rv) {
1390 			uao_detach_locked(&aobj->u_obj);
1391 			return rv;
1392 		}
1393 
1394 		/*
1395 		 * we're done with this aobj.
1396 		 * relock the list and drop our ref on the aobj.
1397 		 */
1398 		simple_lock(&uao_list_lock);
1399 		nextaobj = LIST_NEXT(aobj, u_list);
1400 		uao_detach_locked(&aobj->u_obj);
1401 	}
1402 
1403 	/*
1404 	 * done with traversal, unlock the list
1405 	 */
1406 	simple_unlock(&uao_list_lock);
1407 	return FALSE;
1408 }
1409 
1410 
1411 /*
1412  * page in any pages from aobj in the given range.
1413  *
1414  * => aobj must be locked and is returned locked.
1415  * => returns TRUE if pagein was aborted due to lack of memory.
1416  */
1417 static boolean_t
1418 uao_pagein(aobj, startslot, endslot)
1419 	struct uvm_aobj *aobj;
1420 	int startslot, endslot;
1421 {
1422 	boolean_t rv;
1423 
1424 	if (UAO_USES_SWHASH(aobj)) {
1425 		struct uao_swhash_elt *elt;
1426 		int bucket;
1427 
1428 restart:
1429 		for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1430 			for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1431 			     elt != NULL;
1432 			     elt = LIST_NEXT(elt, list)) {
1433 				int i;
1434 
1435 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1436 					int slot = elt->slots[i];
1437 
1438 					/*
1439 					 * if the slot isn't in range, skip it.
1440 					 */
1441 					if (slot < startslot ||
1442 					    slot >= endslot) {
1443 						continue;
1444 					}
1445 
1446 					/*
1447 					 * process the page,
1448 					 * the start over on this object
1449 					 * since the swhash elt
1450 					 * may have been freed.
1451 					 */
1452 					rv = uao_pagein_page(aobj,
1453 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1454 					if (rv) {
1455 						return rv;
1456 					}
1457 					goto restart;
1458 				}
1459 			}
1460 		}
1461 	} else {
1462 		int i;
1463 
1464 		for (i = 0; i < aobj->u_pages; i++) {
1465 			int slot = aobj->u_swslots[i];
1466 
1467 			/*
1468 			 * if the slot isn't in range, skip it
1469 			 */
1470 			if (slot < startslot || slot >= endslot) {
1471 				continue;
1472 			}
1473 
1474 			/*
1475 			 * process the page.
1476 			 */
1477 			rv = uao_pagein_page(aobj, i);
1478 			if (rv) {
1479 				return rv;
1480 			}
1481 		}
1482 	}
1483 
1484 	return FALSE;
1485 }
1486 
1487 /*
1488  * page in a page from an aobj.  used for swap_off.
1489  * returns TRUE if pagein was aborted due to lack of memory.
1490  *
1491  * => aobj must be locked and is returned locked.
1492  */
1493 static boolean_t
1494 uao_pagein_page(aobj, pageidx)
1495 	struct uvm_aobj *aobj;
1496 	int pageidx;
1497 {
1498 	struct vm_page *pg;
1499 	int rv, slot, npages;
1500 	UVMHIST_FUNC("uao_pagein_page");  UVMHIST_CALLED(pdhist);
1501 
1502 	pg = NULL;
1503 	npages = 1;
1504 	/* locked: aobj */
1505 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1506 		     &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1507 	/* unlocked: aobj */
1508 
1509 	/*
1510 	 * relock and finish up.
1511 	 */
1512 	simple_lock(&aobj->u_obj.vmobjlock);
1513 
1514 	switch (rv) {
1515 	case VM_PAGER_OK:
1516 		break;
1517 
1518 	case VM_PAGER_ERROR:
1519 	case VM_PAGER_REFAULT:
1520 		/*
1521 		 * nothing more to do on errors.
1522 		 * VM_PAGER_REFAULT can only mean that the anon was freed,
1523 		 * so again there's nothing to do.
1524 		 */
1525 		return FALSE;
1526 
1527 #ifdef DIAGNOSTIC
1528 	default:
1529 		panic("uao_pagein_page: uao_get -> %d\n", rv);
1530 #endif
1531 	}
1532 
1533 #ifdef DIAGNOSTIC
1534 	/*
1535 	 * this should never happen, since we have a reference on the aobj.
1536 	 */
1537 	if (pg->flags & PG_RELEASED) {
1538 		panic("uao_pagein_page: found PG_RELEASED page?\n");
1539 	}
1540 #endif
1541 
1542 	/*
1543 	 * ok, we've got the page now.
1544 	 * mark it as dirty, clear its swslot and un-busy it.
1545 	 */
1546 	slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1547 	uvm_swap_free(slot, 1);
1548 	pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1549 	UVM_PAGE_OWN(pg, NULL);
1550 
1551 	/*
1552 	 * deactivate the page (to put it on a page queue).
1553 	 */
1554 	pmap_clear_reference(pg);
1555 	pmap_page_protect(pg, VM_PROT_NONE);
1556 	uvm_lock_pageq();
1557 	uvm_pagedeactivate(pg);
1558 	uvm_unlock_pageq();
1559 
1560 	return FALSE;
1561 }
1562