1 /* $OpenBSD: uvm_aobj.c,v 1.35 2007/09/07 15:00:20 art Exp $ */ 2 /* $NetBSD: uvm_aobj.c,v 1.39 2001/02/18 21:19:08 chs Exp $ */ 3 4 /* 5 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and 6 * Washington University. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by Charles D. Cranor and 20 * Washington University. 21 * 4. The name of the author may not be used to endorse or promote products 22 * derived from this software without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 25 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 26 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 27 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 28 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 29 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 30 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 31 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 32 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 33 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 34 * 35 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp 36 */ 37 /* 38 * uvm_aobj.c: anonymous memory uvm_object pager 39 * 40 * author: Chuck Silvers <chuq@chuq.com> 41 * started: Jan-1998 42 * 43 * - design mostly from Chuck Cranor 44 */ 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/proc.h> 49 #include <sys/malloc.h> 50 #include <sys/kernel.h> 51 #include <sys/pool.h> 52 #include <sys/kernel.h> 53 54 #include <uvm/uvm.h> 55 56 /* 57 * an aobj manages anonymous-memory backed uvm_objects. in addition 58 * to keeping the list of resident pages, it also keeps a list of 59 * allocated swap blocks. depending on the size of the aobj this list 60 * of allocated swap blocks is either stored in an array (small objects) 61 * or in a hash table (large objects). 62 */ 63 64 /* 65 * local structures 66 */ 67 68 /* 69 * for hash tables, we break the address space of the aobj into blocks 70 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to 71 * be a power of two. 72 */ 73 74 #define UAO_SWHASH_CLUSTER_SHIFT 4 75 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT) 76 77 /* get the "tag" for this page index */ 78 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \ 79 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) 80 81 /* given an ELT and a page index, find the swap slot */ 82 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \ 83 ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)]) 84 85 /* given an ELT, return its pageidx base */ 86 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \ 87 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT) 88 89 /* 90 * the swhash hash function 91 */ 92 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \ 93 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \ 94 & (AOBJ)->u_swhashmask)]) 95 96 /* 97 * the swhash threshold determines if we will use an array or a 98 * hash table to store the list of allocated swap blocks. 99 */ 100 101 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4) 102 #define UAO_USES_SWHASH(AOBJ) \ 103 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */ 104 105 /* 106 * the number of buckets in a swhash, with an upper bound 107 */ 108 #define UAO_SWHASH_MAXBUCKETS 256 109 #define UAO_SWHASH_BUCKETS(AOBJ) \ 110 (min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \ 111 UAO_SWHASH_MAXBUCKETS)) 112 113 114 /* 115 * uao_swhash_elt: when a hash table is being used, this structure defines 116 * the format of an entry in the bucket list. 117 */ 118 119 struct uao_swhash_elt { 120 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */ 121 voff_t tag; /* our 'tag' */ 122 int count; /* our number of active slots */ 123 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */ 124 }; 125 126 /* 127 * uao_swhash: the swap hash table structure 128 */ 129 130 LIST_HEAD(uao_swhash, uao_swhash_elt); 131 132 /* 133 * uao_swhash_elt_pool: pool of uao_swhash_elt structures 134 */ 135 136 struct pool uao_swhash_elt_pool; 137 138 /* 139 * uvm_aobj: the actual anon-backed uvm_object 140 * 141 * => the uvm_object is at the top of the structure, this allows 142 * (struct uvm_device *) == (struct uvm_object *) 143 * => only one of u_swslots and u_swhash is used in any given aobj 144 */ 145 146 struct uvm_aobj { 147 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */ 148 int u_pages; /* number of pages in entire object */ 149 int u_flags; /* the flags (see uvm_aobj.h) */ 150 int *u_swslots; /* array of offset->swapslot mappings */ 151 /* 152 * hashtable of offset->swapslot mappings 153 * (u_swhash is an array of bucket heads) 154 */ 155 struct uao_swhash *u_swhash; 156 u_long u_swhashmask; /* mask for hashtable */ 157 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */ 158 }; 159 160 /* 161 * uvm_aobj_pool: pool of uvm_aobj structures 162 */ 163 164 struct pool uvm_aobj_pool; 165 166 /* 167 * local functions 168 */ 169 170 static struct uao_swhash_elt *uao_find_swhash_elt(struct uvm_aobj *, 171 int, boolean_t); 172 static int uao_find_swslot(struct uvm_aobj *, int); 173 static boolean_t uao_flush(struct uvm_object *, 174 voff_t, voff_t, int); 175 static void uao_free(struct uvm_aobj *); 176 static int uao_get(struct uvm_object *, voff_t, 177 vm_page_t *, int *, int, 178 vm_prot_t, int, int); 179 static boolean_t uao_releasepg(struct vm_page *, 180 struct vm_page **); 181 static boolean_t uao_pagein(struct uvm_aobj *, int, int); 182 static boolean_t uao_pagein_page(struct uvm_aobj *, int); 183 184 /* 185 * aobj_pager 186 * 187 * note that some functions (e.g. put) are handled elsewhere 188 */ 189 190 struct uvm_pagerops aobj_pager = { 191 NULL, /* init */ 192 uao_reference, /* reference */ 193 uao_detach, /* detach */ 194 NULL, /* fault */ 195 uao_flush, /* flush */ 196 uao_get, /* get */ 197 NULL, /* put (done by pagedaemon) */ 198 NULL, /* cluster */ 199 NULL, /* mk_pcluster */ 200 uao_releasepg /* releasepg */ 201 }; 202 203 /* 204 * uao_list: global list of active aobjs, locked by uao_list_lock 205 */ 206 207 static LIST_HEAD(aobjlist, uvm_aobj) uao_list; 208 static simple_lock_data_t uao_list_lock; 209 210 211 /* 212 * functions 213 */ 214 215 /* 216 * hash table/array related functions 217 */ 218 219 /* 220 * uao_find_swhash_elt: find (or create) a hash table entry for a page 221 * offset. 222 * 223 * => the object should be locked by the caller 224 */ 225 226 static struct uao_swhash_elt * 227 uao_find_swhash_elt(aobj, pageidx, create) 228 struct uvm_aobj *aobj; 229 int pageidx; 230 boolean_t create; 231 { 232 struct uao_swhash *swhash; 233 struct uao_swhash_elt *elt; 234 voff_t page_tag; 235 236 swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */ 237 page_tag = UAO_SWHASH_ELT_TAG(pageidx); /* tag to search for */ 238 239 /* 240 * now search the bucket for the requested tag 241 */ 242 LIST_FOREACH(elt, swhash, list) { 243 if (elt->tag == page_tag) 244 return(elt); 245 } 246 247 /* fail now if we are not allowed to create a new entry in the bucket */ 248 if (!create) 249 return NULL; 250 251 252 /* 253 * allocate a new entry for the bucket and init/insert it in 254 */ 255 elt = pool_get(&uao_swhash_elt_pool, PR_WAITOK); 256 LIST_INSERT_HEAD(swhash, elt, list); 257 elt->tag = page_tag; 258 elt->count = 0; 259 memset(elt->slots, 0, sizeof(elt->slots)); 260 261 return(elt); 262 } 263 264 /* 265 * uao_find_swslot: find the swap slot number for an aobj/pageidx 266 * 267 * => object must be locked by caller 268 */ 269 __inline static int 270 uao_find_swslot(aobj, pageidx) 271 struct uvm_aobj *aobj; 272 int pageidx; 273 { 274 275 /* 276 * if noswap flag is set, then we never return a slot 277 */ 278 279 if (aobj->u_flags & UAO_FLAG_NOSWAP) 280 return(0); 281 282 /* 283 * if hashing, look in hash table. 284 */ 285 286 if (UAO_USES_SWHASH(aobj)) { 287 struct uao_swhash_elt *elt = 288 uao_find_swhash_elt(aobj, pageidx, FALSE); 289 290 if (elt) 291 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx)); 292 else 293 return(0); 294 } 295 296 /* 297 * otherwise, look in the array 298 */ 299 return(aobj->u_swslots[pageidx]); 300 } 301 302 /* 303 * uao_set_swslot: set the swap slot for a page in an aobj. 304 * 305 * => setting a slot to zero frees the slot 306 * => object must be locked by caller 307 */ 308 int 309 uao_set_swslot(uobj, pageidx, slot) 310 struct uvm_object *uobj; 311 int pageidx, slot; 312 { 313 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 314 int oldslot; 315 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist); 316 UVMHIST_LOG(pdhist, "aobj %p pageidx %ld slot %ld", 317 aobj, pageidx, slot, 0); 318 319 /* 320 * if noswap flag is set, then we can't set a slot 321 */ 322 323 if (aobj->u_flags & UAO_FLAG_NOSWAP) { 324 325 if (slot == 0) 326 return(0); /* a clear is ok */ 327 328 /* but a set is not */ 329 printf("uao_set_swslot: uobj = %p\n", uobj); 330 panic("uao_set_swslot: attempt to set a slot on a NOSWAP object"); 331 } 332 333 /* 334 * are we using a hash table? if so, add it in the hash. 335 */ 336 337 if (UAO_USES_SWHASH(aobj)) { 338 339 /* 340 * Avoid allocating an entry just to free it again if 341 * the page had not swap slot in the first place, and 342 * we are freeing. 343 */ 344 345 struct uao_swhash_elt *elt = 346 uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE); 347 if (elt == NULL) { 348 KASSERT(slot == 0); 349 return (0); 350 } 351 352 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx); 353 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot; 354 355 /* 356 * now adjust the elt's reference counter and free it if we've 357 * dropped it to zero. 358 */ 359 360 /* an allocation? */ 361 if (slot) { 362 if (oldslot == 0) 363 elt->count++; 364 } else { /* freeing slot ... */ 365 if (oldslot) /* to be safe */ 366 elt->count--; 367 368 if (elt->count == 0) { 369 LIST_REMOVE(elt, list); 370 pool_put(&uao_swhash_elt_pool, elt); 371 } 372 } 373 } else { 374 /* we are using an array */ 375 oldslot = aobj->u_swslots[pageidx]; 376 aobj->u_swslots[pageidx] = slot; 377 } 378 return (oldslot); 379 } 380 381 /* 382 * end of hash/array functions 383 */ 384 385 /* 386 * uao_free: free all resources held by an aobj, and then free the aobj 387 * 388 * => the aobj should be dead 389 */ 390 static void 391 uao_free(aobj) 392 struct uvm_aobj *aobj; 393 { 394 395 simple_unlock(&aobj->u_obj.vmobjlock); 396 397 if (UAO_USES_SWHASH(aobj)) { 398 int i, hashbuckets = aobj->u_swhashmask + 1; 399 400 /* 401 * free the swslots from each hash bucket, 402 * then the hash bucket, and finally the hash table itself. 403 */ 404 for (i = 0; i < hashbuckets; i++) { 405 struct uao_swhash_elt *elt, *next; 406 407 for (elt = LIST_FIRST(&aobj->u_swhash[i]); 408 elt != NULL; 409 elt = next) { 410 int j; 411 412 for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) { 413 int slot = elt->slots[j]; 414 415 if (slot == 0) { 416 continue; 417 } 418 uvm_swap_free(slot, 1); 419 420 /* 421 * this page is no longer 422 * only in swap. 423 */ 424 simple_lock(&uvm.swap_data_lock); 425 uvmexp.swpgonly--; 426 simple_unlock(&uvm.swap_data_lock); 427 } 428 429 next = LIST_NEXT(elt, list); 430 pool_put(&uao_swhash_elt_pool, elt); 431 } 432 } 433 free(aobj->u_swhash, M_UVMAOBJ); 434 } else { 435 int i; 436 437 /* 438 * free the array 439 */ 440 441 for (i = 0; i < aobj->u_pages; i++) { 442 int slot = aobj->u_swslots[i]; 443 444 if (slot) { 445 uvm_swap_free(slot, 1); 446 447 /* this page is no longer only in swap. */ 448 simple_lock(&uvm.swap_data_lock); 449 uvmexp.swpgonly--; 450 simple_unlock(&uvm.swap_data_lock); 451 } 452 } 453 free(aobj->u_swslots, M_UVMAOBJ); 454 } 455 456 /* 457 * finally free the aobj itself 458 */ 459 pool_put(&uvm_aobj_pool, aobj); 460 } 461 462 /* 463 * pager functions 464 */ 465 466 /* 467 * uao_create: create an aobj of the given size and return its uvm_object. 468 * 469 * => for normal use, flags are always zero 470 * => for the kernel object, the flags are: 471 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once) 472 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ") 473 */ 474 struct uvm_object * 475 uao_create(size, flags) 476 vsize_t size; 477 int flags; 478 { 479 static struct uvm_aobj kernel_object_store; /* home of kernel_object */ 480 static int kobj_alloced = 0; /* not allocated yet */ 481 int pages = round_page(size) >> PAGE_SHIFT; 482 struct uvm_aobj *aobj; 483 484 /* 485 * malloc a new aobj unless we are asked for the kernel object 486 */ 487 if (flags & UAO_FLAG_KERNOBJ) { /* want kernel object? */ 488 if (kobj_alloced) 489 panic("uao_create: kernel object already allocated"); 490 491 aobj = &kernel_object_store; 492 aobj->u_pages = pages; 493 aobj->u_flags = UAO_FLAG_NOSWAP; /* no swap to start */ 494 /* we are special, we never die */ 495 aobj->u_obj.uo_refs = UVM_OBJ_KERN; 496 kobj_alloced = UAO_FLAG_KERNOBJ; 497 } else if (flags & UAO_FLAG_KERNSWAP) { 498 aobj = &kernel_object_store; 499 if (kobj_alloced != UAO_FLAG_KERNOBJ) 500 panic("uao_create: asked to enable swap on kernel object"); 501 kobj_alloced = UAO_FLAG_KERNSWAP; 502 } else { /* normal object */ 503 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK); 504 aobj->u_pages = pages; 505 aobj->u_flags = 0; /* normal object */ 506 aobj->u_obj.uo_refs = 1; /* start with 1 reference */ 507 } 508 509 /* 510 * allocate hash/array if necessary 511 * 512 * note: in the KERNSWAP case no need to worry about locking since 513 * we are still booting we should be the only thread around. 514 */ 515 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) { 516 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ? 517 M_NOWAIT : M_WAITOK; 518 519 /* allocate hash table or array depending on object size */ 520 if (UAO_USES_SWHASH(aobj)) { 521 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj), 522 M_UVMAOBJ, mflags, &aobj->u_swhashmask); 523 if (aobj->u_swhash == NULL) 524 panic("uao_create: hashinit swhash failed"); 525 } else { 526 aobj->u_swslots = malloc(pages * sizeof(int), 527 M_UVMAOBJ, mflags|M_ZERO); 528 if (aobj->u_swslots == NULL) 529 panic("uao_create: malloc swslots failed"); 530 } 531 532 if (flags) { 533 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */ 534 return(&aobj->u_obj); 535 /* done! */ 536 } 537 } 538 539 /* 540 * init aobj fields 541 */ 542 simple_lock_init(&aobj->u_obj.vmobjlock); 543 aobj->u_obj.pgops = &aobj_pager; 544 TAILQ_INIT(&aobj->u_obj.memq); 545 aobj->u_obj.uo_npages = 0; 546 547 /* 548 * now that aobj is ready, add it to the global list 549 */ 550 simple_lock(&uao_list_lock); 551 LIST_INSERT_HEAD(&uao_list, aobj, u_list); 552 simple_unlock(&uao_list_lock); 553 554 /* 555 * done! 556 */ 557 return(&aobj->u_obj); 558 } 559 560 561 562 /* 563 * uao_init: set up aobj pager subsystem 564 * 565 * => called at boot time from uvm_pager_init() 566 */ 567 void 568 uao_init() 569 { 570 static int uao_initialized; 571 572 if (uao_initialized) 573 return; 574 uao_initialized = TRUE; 575 576 LIST_INIT(&uao_list); 577 simple_lock_init(&uao_list_lock); 578 579 /* 580 * NOTE: Pages fror this pool must not come from a pageable 581 * kernel map! 582 */ 583 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 584 0, 0, 0, "uaoeltpl", &pool_allocator_nointr); 585 586 pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0, 587 "aobjpl", &pool_allocator_nointr); 588 } 589 590 /* 591 * uao_reference: add a ref to an aobj 592 * 593 * => aobj must be unlocked 594 * => just lock it and call the locked version 595 */ 596 void 597 uao_reference(uobj) 598 struct uvm_object *uobj; 599 { 600 simple_lock(&uobj->vmobjlock); 601 uao_reference_locked(uobj); 602 simple_unlock(&uobj->vmobjlock); 603 } 604 605 /* 606 * uao_reference_locked: add a ref to an aobj that is already locked 607 * 608 * => aobj must be locked 609 * this needs to be separate from the normal routine 610 * since sometimes we need to add a reference to an aobj when 611 * it's already locked. 612 */ 613 void 614 uao_reference_locked(uobj) 615 struct uvm_object *uobj; 616 { 617 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist); 618 619 /* 620 * kernel_object already has plenty of references, leave it alone. 621 */ 622 623 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) 624 return; 625 626 uobj->uo_refs++; /* bump! */ 627 UVMHIST_LOG(maphist, "<- done (uobj=%p, ref = %ld)", 628 uobj, uobj->uo_refs,0,0); 629 } 630 631 632 /* 633 * uao_detach: drop a reference to an aobj 634 * 635 * => aobj must be unlocked 636 * => just lock it and call the locked version 637 */ 638 void 639 uao_detach(uobj) 640 struct uvm_object *uobj; 641 { 642 simple_lock(&uobj->vmobjlock); 643 uao_detach_locked(uobj); 644 } 645 646 647 /* 648 * uao_detach_locked: drop a reference to an aobj 649 * 650 * => aobj must be locked, and is unlocked (or freed) upon return. 651 * this needs to be separate from the normal routine 652 * since sometimes we need to detach from an aobj when 653 * it's already locked. 654 */ 655 void 656 uao_detach_locked(uobj) 657 struct uvm_object *uobj; 658 { 659 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 660 struct vm_page *pg, *next; 661 boolean_t busybody; 662 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist); 663 664 /* 665 * detaching from kernel_object is a noop. 666 */ 667 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) { 668 simple_unlock(&uobj->vmobjlock); 669 return; 670 } 671 672 UVMHIST_LOG(maphist," (uobj=%p) ref=%ld", uobj,uobj->uo_refs,0,0); 673 uobj->uo_refs--; /* drop ref! */ 674 if (uobj->uo_refs) { /* still more refs? */ 675 simple_unlock(&uobj->vmobjlock); 676 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0); 677 return; 678 } 679 680 /* 681 * remove the aobj from the global list. 682 */ 683 simple_lock(&uao_list_lock); 684 LIST_REMOVE(aobj, u_list); 685 simple_unlock(&uao_list_lock); 686 687 /* 688 * free all the pages that aren't PG_BUSY, 689 * mark for release any that are. 690 */ 691 busybody = FALSE; 692 for (pg = TAILQ_FIRST(&uobj->memq); pg != NULL; pg = next) { 693 next = TAILQ_NEXT(pg, listq); 694 if (pg->pg_flags & PG_BUSY) { 695 atomic_setbits_int(&pg->pg_flags, PG_RELEASED); 696 busybody = TRUE; 697 continue; 698 } 699 700 /* zap the mappings, free the swap slot, free the page */ 701 pmap_page_protect(pg, VM_PROT_NONE); 702 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT); 703 uvm_lock_pageq(); 704 uvm_pagefree(pg); 705 uvm_unlock_pageq(); 706 } 707 708 /* 709 * if we found any busy pages, we're done for now. 710 * mark the aobj for death, releasepg will finish up for us. 711 */ 712 if (busybody) { 713 aobj->u_flags |= UAO_FLAG_KILLME; 714 simple_unlock(&aobj->u_obj.vmobjlock); 715 return; 716 } 717 718 /* 719 * finally, free the rest. 720 */ 721 uao_free(aobj); 722 } 723 724 /* 725 * uao_flush: "flush" pages out of a uvm object 726 * 727 * => object should be locked by caller. we may _unlock_ the object 728 * if (and only if) we need to clean a page (PGO_CLEANIT). 729 * XXXJRT Currently, however, we don't. In the case of cleaning 730 * XXXJRT a page, we simply just deactivate it. Should probably 731 * XXXJRT handle this better, in the future (although "flushing" 732 * XXXJRT anonymous memory isn't terribly important). 733 * => if PGO_CLEANIT is not set, then we will neither unlock the object 734 * or block. 735 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets 736 * for flushing. 737 * => NOTE: we rely on the fact that the object's memq is a TAILQ and 738 * that new pages are inserted on the tail end of the list. thus, 739 * we can make a complete pass through the object in one go by starting 740 * at the head and working towards the tail (new pages are put in 741 * front of us). 742 * => NOTE: we are allowed to lock the page queues, so the caller 743 * must not be holding the lock on them [e.g. pagedaemon had 744 * better not call us with the queues locked] 745 * => we return TRUE unless we encountered some sort of I/O error 746 * XXXJRT currently never happens, as we never directly initiate 747 * XXXJRT I/O 748 * 749 * comment on "cleaning" object and PG_BUSY pages: 750 * this routine is holding the lock on the object. the only time 751 * that is can run into a PG_BUSY page that it does not own is if 752 * some other process has started I/O on the page (e.g. either 753 * a pagein or a pageout). if the PG_BUSY page is being paged 754 * in, then it can not be dirty (!PG_CLEAN) because no one has 755 * had a change to modify it yet. if the PG_BUSY page is being 756 * paged out then it means that someone else has already started 757 * cleaning the page for us (how nice!). in this case, if we 758 * have syncio specified, then after we make our pass through the 759 * object we need to wait for the other PG_BUSY pages to clear 760 * off (i.e. we need to do an iosync). also note that once a 761 * page is PG_BUSY is must stary in its object until it is un-busyed. 762 * XXXJRT We never actually do this, as we are "flushing" anonymous 763 * XXXJRT memory, which doesn't have persistent backing store. 764 * 765 * note on page traversal: 766 * we can traverse the pages in an object either by going down the 767 * linked list in "uobj->memq", or we can go over the address range 768 * by page doing hash table lookups for each address. depending 769 * on how many pages are in the object it may be cheaper to do one 770 * or the other. we set "by_list" to true if we are using memq. 771 * if the cost of a hash lookup was equal to the cost of the list 772 * traversal we could compare the number of pages in the start->stop 773 * range to the total number of pages in the object. however, it 774 * seems that a hash table lookup is more expensive than the linked 775 * list traversal, so we multiply the number of pages in the 776 * start->stop range by a penalty which we define below. 777 */ 778 779 #define UAO_HASH_PENALTY 4 /* XXX: a guess */ 780 781 boolean_t 782 uao_flush(uobj, start, stop, flags) 783 struct uvm_object *uobj; 784 voff_t start, stop; 785 int flags; 786 { 787 struct uvm_aobj *aobj = (struct uvm_aobj *) uobj; 788 struct vm_page *pp, *ppnext; 789 boolean_t retval, by_list; 790 voff_t curoff; 791 UVMHIST_FUNC("uao_flush"); UVMHIST_CALLED(maphist); 792 793 curoff = 0; /* XXX: shut up gcc */ 794 795 retval = TRUE; /* default to success */ 796 797 if (flags & PGO_ALLPAGES) { 798 start = 0; 799 stop = aobj->u_pages << PAGE_SHIFT; 800 by_list = TRUE; /* always go by the list */ 801 } else { 802 start = trunc_page(start); 803 stop = round_page(stop); 804 if (stop > (aobj->u_pages << PAGE_SHIFT)) { 805 printf("uao_flush: strange, got an out of range " 806 "flush (fixed)\n"); 807 stop = aobj->u_pages << PAGE_SHIFT; 808 } 809 by_list = (uobj->uo_npages <= 810 ((stop - start) >> PAGE_SHIFT) * UAO_HASH_PENALTY); 811 } 812 813 UVMHIST_LOG(maphist, 814 " flush start=0x%lx, stop=0x%lx, by_list=%ld, flags=0x%lx", 815 (u_long)start, (u_long)stop, by_list, flags); 816 817 /* 818 * Don't need to do any work here if we're not freeing 819 * or deactivating pages. 820 */ 821 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) { 822 UVMHIST_LOG(maphist, 823 "<- done (no work to do)",0,0,0,0); 824 return (retval); 825 } 826 827 /* 828 * now do it. note: we must update ppnext in the body of loop or we 829 * will get stuck. we need to use ppnext because we may free "pp" 830 * before doing the next loop. 831 */ 832 833 if (by_list) { 834 pp = TAILQ_FIRST(&uobj->memq); 835 } else { 836 curoff = start; 837 pp = uvm_pagelookup(uobj, curoff); 838 } 839 840 ppnext = NULL; /* XXX: shut up gcc */ 841 uvm_lock_pageq(); /* page queues locked */ 842 843 /* locked: both page queues and uobj */ 844 for ( ; (by_list && pp != NULL) || 845 (!by_list && curoff < stop) ; pp = ppnext) { 846 if (by_list) { 847 ppnext = TAILQ_NEXT(pp, listq); 848 849 /* range check */ 850 if (pp->offset < start || pp->offset >= stop) 851 continue; 852 } else { 853 curoff += PAGE_SIZE; 854 if (curoff < stop) 855 ppnext = uvm_pagelookup(uobj, curoff); 856 857 /* null check */ 858 if (pp == NULL) 859 continue; 860 } 861 862 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) { 863 /* 864 * XXX In these first 3 cases, we always just 865 * XXX deactivate the page. We may want to 866 * XXX handle the different cases more specifically 867 * XXX in the future. 868 */ 869 case PGO_CLEANIT|PGO_FREE: 870 case PGO_CLEANIT|PGO_DEACTIVATE: 871 case PGO_DEACTIVATE: 872 deactivate_it: 873 /* skip the page if it's loaned or wired */ 874 if (pp->loan_count != 0 || 875 pp->wire_count != 0) 876 continue; 877 878 #ifdef UBC 879 /* ...and deactivate the page. */ 880 pmap_clear_reference(pp); 881 #else 882 /* zap all mappings for the page. */ 883 pmap_page_protect(pp, VM_PROT_NONE); 884 885 /* ...and deactivate the page. */ 886 #endif 887 uvm_pagedeactivate(pp); 888 889 continue; 890 891 case PGO_FREE: 892 /* 893 * If there are multiple references to 894 * the object, just deactivate the page. 895 */ 896 if (uobj->uo_refs > 1) 897 goto deactivate_it; 898 899 /* XXX skip the page if it's loaned or wired */ 900 if (pp->loan_count != 0 || 901 pp->wire_count != 0) 902 continue; 903 904 /* 905 * mark the page as released if its busy. 906 */ 907 if (pp->pg_flags & PG_BUSY) { 908 atomic_setbits_int(&pp->pg_flags, PG_RELEASED); 909 continue; 910 } 911 912 /* zap all mappings for the page. */ 913 pmap_page_protect(pp, VM_PROT_NONE); 914 915 uao_dropswap(uobj, pp->offset >> PAGE_SHIFT); 916 uvm_pagefree(pp); 917 918 continue; 919 920 default: 921 panic("uao_flush: weird flags"); 922 } 923 } 924 925 uvm_unlock_pageq(); 926 927 UVMHIST_LOG(maphist, 928 "<- done, rv=%ld",retval,0,0,0); 929 return (retval); 930 } 931 932 /* 933 * uao_get: fetch me a page 934 * 935 * we have three cases: 936 * 1: page is resident -> just return the page. 937 * 2: page is zero-fill -> allocate a new page and zero it. 938 * 3: page is swapped out -> fetch the page from swap. 939 * 940 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot. 941 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES), 942 * then we will need to return VM_PAGER_UNLOCK. 943 * 944 * => prefer map unlocked (not required) 945 * => object must be locked! we will _unlock_ it before starting any I/O. 946 * => flags: PGO_ALLPAGES: get all of the pages 947 * PGO_LOCKED: fault data structures are locked 948 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx] 949 * => NOTE: caller must check for released pages!! 950 */ 951 static int 952 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags) 953 struct uvm_object *uobj; 954 voff_t offset; 955 struct vm_page **pps; 956 int *npagesp; 957 int centeridx, advice, flags; 958 vm_prot_t access_type; 959 { 960 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj; 961 voff_t current_offset; 962 vm_page_t ptmp; 963 int lcv, gotpages, maxpages, swslot, rv, pageidx; 964 boolean_t done; 965 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist); 966 967 UVMHIST_LOG(pdhist, "aobj=%p offset=%ld, flags=%ld", 968 aobj, (u_long)offset, flags,0); 969 970 /* 971 * get number of pages 972 */ 973 maxpages = *npagesp; 974 975 /* 976 * step 1: handled the case where fault data structures are locked. 977 */ 978 979 if (flags & PGO_LOCKED) { 980 /* 981 * step 1a: get pages that are already resident. only do 982 * this if the data structures are locked (i.e. the first 983 * time through). 984 */ 985 986 done = TRUE; /* be optimistic */ 987 gotpages = 0; /* # of pages we got so far */ 988 989 for (lcv = 0, current_offset = offset ; lcv < maxpages ; 990 lcv++, current_offset += PAGE_SIZE) { 991 /* do we care about this page? if not, skip it */ 992 if (pps[lcv] == PGO_DONTCARE) 993 continue; 994 995 ptmp = uvm_pagelookup(uobj, current_offset); 996 997 /* 998 * if page is new, attempt to allocate the page, 999 * zero-fill'd. 1000 */ 1001 if (ptmp == NULL && uao_find_swslot(aobj, 1002 current_offset >> PAGE_SHIFT) == 0) { 1003 ptmp = uvm_pagealloc(uobj, current_offset, 1004 NULL, UVM_PGA_ZERO); 1005 if (ptmp) { 1006 /* new page */ 1007 atomic_clearbits_int(&ptmp->pg_flags, 1008 PG_BUSY|PG_FAKE); 1009 atomic_setbits_int(&ptmp->pg_flags, 1010 PQ_AOBJ); 1011 UVM_PAGE_OWN(ptmp, NULL); 1012 } 1013 } 1014 1015 /* 1016 * to be useful must get a non-busy, non-released page 1017 */ 1018 if (ptmp == NULL || 1019 (ptmp->pg_flags & (PG_BUSY|PG_RELEASED)) != 0) { 1020 if (lcv == centeridx || 1021 (flags & PGO_ALLPAGES) != 0) 1022 /* need to do a wait or I/O! */ 1023 done = FALSE; 1024 continue; 1025 } 1026 1027 /* 1028 * useful page: busy/lock it and plug it in our 1029 * result array 1030 */ 1031 /* caller must un-busy this page */ 1032 atomic_setbits_int(&ptmp->pg_flags, PG_BUSY); 1033 UVM_PAGE_OWN(ptmp, "uao_get1"); 1034 pps[lcv] = ptmp; 1035 gotpages++; 1036 1037 } /* "for" lcv loop */ 1038 1039 /* 1040 * step 1b: now we've either done everything needed or we 1041 * to unlock and do some waiting or I/O. 1042 */ 1043 1044 UVMHIST_LOG(pdhist, "<- done (done=%ld)", done, 0,0,0); 1045 1046 *npagesp = gotpages; 1047 if (done) 1048 /* bingo! */ 1049 return(VM_PAGER_OK); 1050 else 1051 /* EEK! Need to unlock and I/O */ 1052 return(VM_PAGER_UNLOCK); 1053 } 1054 1055 /* 1056 * step 2: get non-resident or busy pages. 1057 * object is locked. data structures are unlocked. 1058 */ 1059 1060 for (lcv = 0, current_offset = offset ; lcv < maxpages ; 1061 lcv++, current_offset += PAGE_SIZE) { 1062 1063 /* 1064 * - skip over pages we've already gotten or don't want 1065 * - skip over pages we don't _have_ to get 1066 */ 1067 1068 if (pps[lcv] != NULL || 1069 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0)) 1070 continue; 1071 1072 pageidx = current_offset >> PAGE_SHIFT; 1073 1074 /* 1075 * we have yet to locate the current page (pps[lcv]). we 1076 * first look for a page that is already at the current offset. 1077 * if we find a page, we check to see if it is busy or 1078 * released. if that is the case, then we sleep on the page 1079 * until it is no longer busy or released and repeat the lookup. 1080 * if the page we found is neither busy nor released, then we 1081 * busy it (so we own it) and plug it into pps[lcv]. this 1082 * 'break's the following while loop and indicates we are 1083 * ready to move on to the next page in the "lcv" loop above. 1084 * 1085 * if we exit the while loop with pps[lcv] still set to NULL, 1086 * then it means that we allocated a new busy/fake/clean page 1087 * ptmp in the object and we need to do I/O to fill in the data. 1088 */ 1089 1090 /* top of "pps" while loop */ 1091 while (pps[lcv] == NULL) { 1092 /* look for a resident page */ 1093 ptmp = uvm_pagelookup(uobj, current_offset); 1094 1095 /* not resident? allocate one now (if we can) */ 1096 if (ptmp == NULL) { 1097 1098 ptmp = uvm_pagealloc(uobj, current_offset, 1099 NULL, 0); 1100 1101 /* out of RAM? */ 1102 if (ptmp == NULL) { 1103 simple_unlock(&uobj->vmobjlock); 1104 UVMHIST_LOG(pdhist, 1105 "sleeping, ptmp == NULL\n",0,0,0,0); 1106 uvm_wait("uao_getpage"); 1107 simple_lock(&uobj->vmobjlock); 1108 /* goto top of pps while loop */ 1109 continue; 1110 } 1111 1112 /* 1113 * safe with PQ's unlocked: because we just 1114 * alloc'd the page 1115 */ 1116 atomic_setbits_int(&ptmp->pg_flags, PQ_AOBJ); 1117 1118 /* 1119 * got new page ready for I/O. break pps while 1120 * loop. pps[lcv] is still NULL. 1121 */ 1122 break; 1123 } 1124 1125 /* page is there, see if we need to wait on it */ 1126 if ((ptmp->pg_flags & (PG_BUSY|PG_RELEASED)) != 0) { 1127 atomic_setbits_int(&ptmp->pg_flags, PG_WANTED); 1128 UVMHIST_LOG(pdhist, 1129 "sleeping, ptmp->flags 0x%lx\n", 1130 ptmp->pg_flags,0,0,0); 1131 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock, 1132 FALSE, "uao_get", 0); 1133 simple_lock(&uobj->vmobjlock); 1134 continue; /* goto top of pps while loop */ 1135 } 1136 1137 /* 1138 * if we get here then the page has become resident and 1139 * unbusy between steps 1 and 2. we busy it now (so we 1140 * own it) and set pps[lcv] (so that we exit the while 1141 * loop). 1142 */ 1143 /* we own it, caller must un-busy */ 1144 atomic_setbits_int(&ptmp->pg_flags, PG_BUSY); 1145 UVM_PAGE_OWN(ptmp, "uao_get2"); 1146 pps[lcv] = ptmp; 1147 } 1148 1149 /* 1150 * if we own the valid page at the correct offset, pps[lcv] will 1151 * point to it. nothing more to do except go to the next page. 1152 */ 1153 if (pps[lcv]) 1154 continue; /* next lcv */ 1155 1156 /* 1157 * we have a "fake/busy/clean" page that we just allocated. 1158 * do the needed "i/o", either reading from swap or zeroing. 1159 */ 1160 swslot = uao_find_swslot(aobj, pageidx); 1161 1162 /* 1163 * just zero the page if there's nothing in swap. 1164 */ 1165 if (swslot == 0) 1166 { 1167 /* 1168 * page hasn't existed before, just zero it. 1169 */ 1170 uvm_pagezero(ptmp); 1171 } else { 1172 UVMHIST_LOG(pdhist, "pagein from swslot %ld", 1173 swslot, 0,0,0); 1174 1175 /* 1176 * page in the swapped-out page. 1177 * unlock object for i/o, relock when done. 1178 */ 1179 simple_unlock(&uobj->vmobjlock); 1180 rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO); 1181 simple_lock(&uobj->vmobjlock); 1182 1183 /* 1184 * I/O done. check for errors. 1185 */ 1186 if (rv != VM_PAGER_OK) 1187 { 1188 UVMHIST_LOG(pdhist, "<- done (error=%ld)", 1189 rv,0,0,0); 1190 if (ptmp->pg_flags & PG_WANTED) 1191 wakeup(ptmp); 1192 1193 /* 1194 * remove the swap slot from the aobj 1195 * and mark the aobj as having no real slot. 1196 * don't free the swap slot, thus preventing 1197 * it from being used again. 1198 */ 1199 swslot = uao_set_swslot(&aobj->u_obj, pageidx, 1200 SWSLOT_BAD); 1201 uvm_swap_markbad(swslot, 1); 1202 1203 atomic_clearbits_int(&ptmp->pg_flags, 1204 PG_WANTED|PG_BUSY); 1205 UVM_PAGE_OWN(ptmp, NULL); 1206 uvm_lock_pageq(); 1207 uvm_pagefree(ptmp); 1208 uvm_unlock_pageq(); 1209 1210 simple_unlock(&uobj->vmobjlock); 1211 return (rv); 1212 } 1213 } 1214 1215 /* 1216 * we got the page! clear the fake flag (indicates valid 1217 * data now in page) and plug into our result array. note 1218 * that page is still busy. 1219 * 1220 * it is the callers job to: 1221 * => check if the page is released 1222 * => unbusy the page 1223 * => activate the page 1224 */ 1225 1226 /* data is valid ... */ 1227 atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE); 1228 pmap_clear_modify(ptmp); /* ... and clean */ 1229 pps[lcv] = ptmp; 1230 1231 } /* lcv loop */ 1232 1233 /* 1234 * finally, unlock object and return. 1235 */ 1236 1237 simple_unlock(&uobj->vmobjlock); 1238 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0); 1239 return(VM_PAGER_OK); 1240 } 1241 1242 /* 1243 * uao_releasepg: handle released page in an aobj 1244 * 1245 * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need 1246 * to dispose of. 1247 * => caller must handle PG_WANTED case 1248 * => called with page's object locked, pageq's unlocked 1249 * => returns TRUE if page's object is still alive, FALSE if we 1250 * killed the page's object. if we return TRUE, then we 1251 * return with the object locked. 1252 * => if (nextpgp != NULL) => we return the next page on the queue, and return 1253 * with the page queues locked [for pagedaemon] 1254 * => if (nextpgp == NULL) => we return with page queues unlocked [normal case] 1255 * => we kill the aobj if it is not referenced and we are suppose to 1256 * kill it ("KILLME"). 1257 */ 1258 static boolean_t 1259 uao_releasepg(pg, nextpgp) 1260 struct vm_page *pg; 1261 struct vm_page **nextpgp; /* OUT */ 1262 { 1263 struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject; 1264 1265 KASSERT(pg->pg_flags & PG_RELEASED); 1266 1267 /* 1268 * dispose of the page [caller handles PG_WANTED] and swap slot. 1269 */ 1270 pmap_page_protect(pg, VM_PROT_NONE); 1271 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT); 1272 uvm_lock_pageq(); 1273 if (nextpgp) 1274 *nextpgp = TAILQ_NEXT(pg, pageq); /* next page for daemon */ 1275 uvm_pagefree(pg); 1276 if (!nextpgp) 1277 uvm_unlock_pageq(); /* keep locked for daemon */ 1278 1279 /* 1280 * if we're not killing the object, we're done. 1281 */ 1282 if ((aobj->u_flags & UAO_FLAG_KILLME) == 0) 1283 return TRUE; 1284 KASSERT(aobj->u_obj.uo_refs == 0); 1285 1286 /* 1287 * if there are still pages in the object, we're done for now. 1288 */ 1289 if (aobj->u_obj.uo_npages != 0) 1290 return TRUE; 1291 1292 KASSERT(TAILQ_EMPTY(&aobj->u_obj.memq)); 1293 1294 /* 1295 * finally, free the rest. 1296 */ 1297 uao_free(aobj); 1298 1299 return FALSE; 1300 } 1301 1302 1303 /* 1304 * uao_dropswap: release any swap resources from this aobj page. 1305 * 1306 * => aobj must be locked or have a reference count of 0. 1307 */ 1308 1309 void 1310 uao_dropswap(uobj, pageidx) 1311 struct uvm_object *uobj; 1312 int pageidx; 1313 { 1314 int slot; 1315 1316 slot = uao_set_swslot(uobj, pageidx, 0); 1317 if (slot) { 1318 uvm_swap_free(slot, 1); 1319 } 1320 } 1321 1322 1323 /* 1324 * page in every page in every aobj that is paged-out to a range of swslots. 1325 * 1326 * => nothing should be locked. 1327 * => returns TRUE if pagein was aborted due to lack of memory. 1328 */ 1329 boolean_t 1330 uao_swap_off(startslot, endslot) 1331 int startslot, endslot; 1332 { 1333 struct uvm_aobj *aobj, *nextaobj; 1334 1335 /* 1336 * walk the list of all aobjs. 1337 */ 1338 1339 restart: 1340 simple_lock(&uao_list_lock); 1341 1342 for (aobj = LIST_FIRST(&uao_list); 1343 aobj != NULL; 1344 aobj = nextaobj) { 1345 boolean_t rv; 1346 1347 /* 1348 * try to get the object lock, 1349 * start all over if we fail. 1350 * most of the time we'll get the aobj lock, 1351 * so this should be a rare case. 1352 */ 1353 if (!simple_lock_try(&aobj->u_obj.vmobjlock)) { 1354 simple_unlock(&uao_list_lock); 1355 goto restart; 1356 } 1357 1358 /* 1359 * add a ref to the aobj so it doesn't disappear 1360 * while we're working. 1361 */ 1362 uao_reference_locked(&aobj->u_obj); 1363 1364 /* 1365 * now it's safe to unlock the uao list. 1366 */ 1367 simple_unlock(&uao_list_lock); 1368 1369 /* 1370 * page in any pages in the swslot range. 1371 * if there's an error, abort and return the error. 1372 */ 1373 rv = uao_pagein(aobj, startslot, endslot); 1374 if (rv) { 1375 uao_detach_locked(&aobj->u_obj); 1376 return rv; 1377 } 1378 1379 /* 1380 * we're done with this aobj. 1381 * relock the list and drop our ref on the aobj. 1382 */ 1383 simple_lock(&uao_list_lock); 1384 nextaobj = LIST_NEXT(aobj, u_list); 1385 uao_detach_locked(&aobj->u_obj); 1386 } 1387 1388 /* 1389 * done with traversal, unlock the list 1390 */ 1391 simple_unlock(&uao_list_lock); 1392 return FALSE; 1393 } 1394 1395 1396 /* 1397 * page in any pages from aobj in the given range. 1398 * 1399 * => aobj must be locked and is returned locked. 1400 * => returns TRUE if pagein was aborted due to lack of memory. 1401 */ 1402 static boolean_t 1403 uao_pagein(aobj, startslot, endslot) 1404 struct uvm_aobj *aobj; 1405 int startslot, endslot; 1406 { 1407 boolean_t rv; 1408 1409 if (UAO_USES_SWHASH(aobj)) { 1410 struct uao_swhash_elt *elt; 1411 int bucket; 1412 1413 restart: 1414 for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) { 1415 for (elt = LIST_FIRST(&aobj->u_swhash[bucket]); 1416 elt != NULL; 1417 elt = LIST_NEXT(elt, list)) { 1418 int i; 1419 1420 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) { 1421 int slot = elt->slots[i]; 1422 1423 /* 1424 * if the slot isn't in range, skip it. 1425 */ 1426 if (slot < startslot || 1427 slot >= endslot) { 1428 continue; 1429 } 1430 1431 /* 1432 * process the page, 1433 * the start over on this object 1434 * since the swhash elt 1435 * may have been freed. 1436 */ 1437 rv = uao_pagein_page(aobj, 1438 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i); 1439 if (rv) { 1440 return rv; 1441 } 1442 goto restart; 1443 } 1444 } 1445 } 1446 } else { 1447 int i; 1448 1449 for (i = 0; i < aobj->u_pages; i++) { 1450 int slot = aobj->u_swslots[i]; 1451 1452 /* 1453 * if the slot isn't in range, skip it 1454 */ 1455 if (slot < startslot || slot >= endslot) { 1456 continue; 1457 } 1458 1459 /* 1460 * process the page. 1461 */ 1462 rv = uao_pagein_page(aobj, i); 1463 if (rv) { 1464 return rv; 1465 } 1466 } 1467 } 1468 1469 return FALSE; 1470 } 1471 1472 /* 1473 * page in a page from an aobj. used for swap_off. 1474 * returns TRUE if pagein was aborted due to lack of memory. 1475 * 1476 * => aobj must be locked and is returned locked. 1477 */ 1478 static boolean_t 1479 uao_pagein_page(aobj, pageidx) 1480 struct uvm_aobj *aobj; 1481 int pageidx; 1482 { 1483 struct vm_page *pg; 1484 int rv, slot, npages; 1485 1486 pg = NULL; 1487 npages = 1; 1488 /* locked: aobj */ 1489 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT, 1490 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0); 1491 /* unlocked: aobj */ 1492 1493 /* 1494 * relock and finish up. 1495 */ 1496 simple_lock(&aobj->u_obj.vmobjlock); 1497 1498 switch (rv) { 1499 case VM_PAGER_OK: 1500 break; 1501 1502 case VM_PAGER_ERROR: 1503 case VM_PAGER_REFAULT: 1504 /* 1505 * nothing more to do on errors. 1506 * VM_PAGER_REFAULT can only mean that the anon was freed, 1507 * so again there's nothing to do. 1508 */ 1509 return FALSE; 1510 1511 } 1512 KASSERT((pg->pg_flags & PG_RELEASED) == 0); 1513 1514 /* 1515 * ok, we've got the page now. 1516 * mark it as dirty, clear its swslot and un-busy it. 1517 */ 1518 slot = uao_set_swslot(&aobj->u_obj, pageidx, 0); 1519 uvm_swap_free(slot, 1); 1520 atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_CLEAN|PG_FAKE); 1521 UVM_PAGE_OWN(pg, NULL); 1522 1523 /* 1524 * deactivate the page (to put it on a page queue). 1525 */ 1526 pmap_clear_reference(pg); 1527 #ifndef UBC 1528 pmap_page_protect(pg, VM_PROT_NONE); 1529 #endif 1530 uvm_lock_pageq(); 1531 uvm_pagedeactivate(pg); 1532 uvm_unlock_pageq(); 1533 1534 return FALSE; 1535 } 1536