xref: /openbsd-src/sys/uvm/uvm_aobj.c (revision 8445c53715e7030056b779e8ab40efb7820981f2)
1 /*	$OpenBSD: uvm_aobj.c,v 1.15 2001/09/11 20:05:26 miod Exp $	*/
2 /*	$NetBSD: uvm_aobj.c,v 1.31 2000/05/19 04:34:45 thorpej Exp $	*/
3 
4 /*
5  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
6  *                    Washington University.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by Charles D. Cranor and
20  *      Washington University.
21  * 4. The name of the author may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
25  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
26  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
27  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
29  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
30  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
31  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
33  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34  *
35  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
36  */
37 /*
38  * uvm_aobj.c: anonymous memory uvm_object pager
39  *
40  * author: Chuck Silvers <chuq@chuq.com>
41  * started: Jan-1998
42  *
43  * - design mostly from Chuck Cranor
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/proc.h>
49 #include <sys/malloc.h>
50 #include <sys/pool.h>
51 #include <sys/kernel.h>
52 
53 #include <vm/vm.h>
54 #include <vm/vm_page.h>
55 
56 #include <uvm/uvm.h>
57 
58 /*
59  * an aobj manages anonymous-memory backed uvm_objects.   in addition
60  * to keeping the list of resident pages, it also keeps a list of
61  * allocated swap blocks.  depending on the size of the aobj this list
62  * of allocated swap blocks is either stored in an array (small objects)
63  * or in a hash table (large objects).
64  */
65 
66 /*
67  * local structures
68  */
69 
70 /*
71  * for hash tables, we break the address space of the aobj into blocks
72  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
73  * be a power of two.
74  */
75 
76 #define UAO_SWHASH_CLUSTER_SHIFT 4
77 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
78 
79 /* get the "tag" for this page index */
80 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
81 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
82 
83 /* given an ELT and a page index, find the swap slot */
84 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
85 	((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
86 
87 /* given an ELT, return its pageidx base */
88 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
89 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
90 
91 /*
92  * the swhash hash function
93  */
94 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
95 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
96 			    & (AOBJ)->u_swhashmask)])
97 
98 /*
99  * the swhash threshhold determines if we will use an array or a
100  * hash table to store the list of allocated swap blocks.
101  */
102 
103 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
104 #define UAO_USES_SWHASH(AOBJ) \
105 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
106 
107 /*
108  * the number of buckets in a swhash, with an upper bound
109  */
110 #define UAO_SWHASH_MAXBUCKETS 256
111 #define UAO_SWHASH_BUCKETS(AOBJ) \
112 	(min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
113 	     UAO_SWHASH_MAXBUCKETS))
114 
115 
116 /*
117  * uao_swhash_elt: when a hash table is being used, this structure defines
118  * the format of an entry in the bucket list.
119  */
120 
121 struct uao_swhash_elt {
122 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
123 	voff_t tag;				/* our 'tag' */
124 	int count;				/* our number of active slots */
125 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
126 };
127 
128 /*
129  * uao_swhash: the swap hash table structure
130  */
131 
132 LIST_HEAD(uao_swhash, uao_swhash_elt);
133 
134 /*
135  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
136  */
137 
138 struct pool uao_swhash_elt_pool;
139 
140 /*
141  * uvm_aobj: the actual anon-backed uvm_object
142  *
143  * => the uvm_object is at the top of the structure, this allows
144  *   (struct uvm_device *) == (struct uvm_object *)
145  * => only one of u_swslots and u_swhash is used in any given aobj
146  */
147 
148 struct uvm_aobj {
149 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
150 	int u_pages;		 /* number of pages in entire object */
151 	int u_flags;		 /* the flags (see uvm_aobj.h) */
152 	int *u_swslots;		 /* array of offset->swapslot mappings */
153 				 /*
154 				  * hashtable of offset->swapslot mappings
155 				  * (u_swhash is an array of bucket heads)
156 				  */
157 	struct uao_swhash *u_swhash;
158 	u_long u_swhashmask;		/* mask for hashtable */
159 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
160 };
161 
162 /*
163  * uvm_aobj_pool: pool of uvm_aobj structures
164  */
165 
166 struct pool uvm_aobj_pool;
167 
168 /*
169  * local functions
170  */
171 
172 static struct uao_swhash_elt	*uao_find_swhash_elt __P((struct uvm_aobj *,
173 							  int, boolean_t));
174 static int			 uao_find_swslot __P((struct uvm_aobj *, int));
175 static boolean_t		 uao_flush __P((struct uvm_object *,
176 						voff_t, voff_t, int));
177 static void			 uao_free __P((struct uvm_aobj *));
178 static int			 uao_get __P((struct uvm_object *, voff_t,
179 					      vm_page_t *, int *, int,
180 					      vm_prot_t, int, int));
181 static boolean_t		 uao_releasepg __P((struct vm_page *,
182 						    struct vm_page **));
183 static boolean_t		 uao_pagein __P((struct uvm_aobj *, int, int));
184 static boolean_t		 uao_pagein_page __P((struct uvm_aobj *, int));
185 
186 
187 
188 /*
189  * aobj_pager
190  *
191  * note that some functions (e.g. put) are handled elsewhere
192  */
193 
194 struct uvm_pagerops aobj_pager = {
195 	NULL,			/* init */
196 	uao_reference,		/* reference */
197 	uao_detach,		/* detach */
198 	NULL,			/* fault */
199 	uao_flush,		/* flush */
200 	uao_get,		/* get */
201 	NULL,			/* asyncget */
202 	NULL,			/* put (done by pagedaemon) */
203 	NULL,			/* cluster */
204 	NULL,			/* mk_pcluster */
205 	NULL,			/* aiodone */
206 	uao_releasepg		/* releasepg */
207 };
208 
209 /*
210  * uao_list: global list of active aobjs, locked by uao_list_lock
211  */
212 
213 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
214 static simple_lock_data_t uao_list_lock;
215 
216 
217 /*
218  * functions
219  */
220 
221 /*
222  * hash table/array related functions
223  */
224 
225 /*
226  * uao_find_swhash_elt: find (or create) a hash table entry for a page
227  * offset.
228  *
229  * => the object should be locked by the caller
230  */
231 
232 static struct uao_swhash_elt *
233 uao_find_swhash_elt(aobj, pageidx, create)
234 	struct uvm_aobj *aobj;
235 	int pageidx;
236 	boolean_t create;
237 {
238 	struct uao_swhash *swhash;
239 	struct uao_swhash_elt *elt;
240 	voff_t page_tag;
241 
242 	swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
243 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);	/* tag to search for */
244 
245 	/*
246 	 * now search the bucket for the requested tag
247 	 */
248 	for (elt = swhash->lh_first; elt != NULL; elt = elt->list.le_next) {
249 		if (elt->tag == page_tag)
250 			return(elt);
251 	}
252 
253 	/* fail now if we are not allowed to create a new entry in the bucket */
254 	if (!create)
255 		return NULL;
256 
257 
258 	/*
259 	 * allocate a new entry for the bucket and init/insert it in
260 	 */
261 	elt = pool_get(&uao_swhash_elt_pool, PR_WAITOK);
262 	LIST_INSERT_HEAD(swhash, elt, list);
263 	elt->tag = page_tag;
264 	elt->count = 0;
265 	memset(elt->slots, 0, sizeof(elt->slots));
266 
267 	return(elt);
268 }
269 
270 /*
271  * uao_find_swslot: find the swap slot number for an aobj/pageidx
272  *
273  * => object must be locked by caller
274  */
275 __inline static int
276 uao_find_swslot(aobj, pageidx)
277 	struct uvm_aobj *aobj;
278 	int pageidx;
279 {
280 
281 	/*
282 	 * if noswap flag is set, then we never return a slot
283 	 */
284 
285 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
286 		return(0);
287 
288 	/*
289 	 * if hashing, look in hash table.
290 	 */
291 
292 	if (UAO_USES_SWHASH(aobj)) {
293 		struct uao_swhash_elt *elt =
294 		    uao_find_swhash_elt(aobj, pageidx, FALSE);
295 
296 		if (elt)
297 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
298 		else
299 			return(0);
300 	}
301 
302 	/*
303 	 * otherwise, look in the array
304 	 */
305 	return(aobj->u_swslots[pageidx]);
306 }
307 
308 /*
309  * uao_set_swslot: set the swap slot for a page in an aobj.
310  *
311  * => setting a slot to zero frees the slot
312  * => object must be locked by caller
313  */
314 int
315 uao_set_swslot(uobj, pageidx, slot)
316 	struct uvm_object *uobj;
317 	int pageidx, slot;
318 {
319 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
320 	int oldslot;
321 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
322 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
323 	    aobj, pageidx, slot, 0);
324 
325 	/*
326 	 * if noswap flag is set, then we can't set a slot
327 	 */
328 
329 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
330 
331 		if (slot == 0)
332 			return(0);		/* a clear is ok */
333 
334 		/* but a set is not */
335 		printf("uao_set_swslot: uobj = %p\n", uobj);
336 	    panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
337 	}
338 
339 	/*
340 	 * are we using a hash table?  if so, add it in the hash.
341 	 */
342 
343 	if (UAO_USES_SWHASH(aobj)) {
344 		/*
345 		 * Avoid allocating an entry just to free it again if
346 		 * the page had not swap slot in the first place, and
347 		 * we are freeing.
348 		 */
349 		struct uao_swhash_elt *elt =
350 		    uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
351 		if (elt == NULL) {
352 #ifdef DIAGNOSTIC
353 			if (slot)
354 				panic("uao_set_swslot: didn't create elt");
355 #endif
356 			return (0);
357 		}
358 
359 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
360 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
361 
362 		/*
363 		 * now adjust the elt's reference counter and free it if we've
364 		 * dropped it to zero.
365 		 */
366 
367 		/* an allocation? */
368 		if (slot) {
369 			if (oldslot == 0)
370 				elt->count++;
371 		} else {		/* freeing slot ... */
372 			if (oldslot)	/* to be safe */
373 				elt->count--;
374 
375 			if (elt->count == 0) {
376 				LIST_REMOVE(elt, list);
377 				pool_put(&uao_swhash_elt_pool, elt);
378 			}
379 		}
380 
381 	} else {
382 		/* we are using an array */
383 		oldslot = aobj->u_swslots[pageidx];
384 		aobj->u_swslots[pageidx] = slot;
385 	}
386 	return (oldslot);
387 }
388 
389 /*
390  * end of hash/array functions
391  */
392 
393 /*
394  * uao_free: free all resources held by an aobj, and then free the aobj
395  *
396  * => the aobj should be dead
397  */
398 static void
399 uao_free(aobj)
400 	struct uvm_aobj *aobj;
401 {
402 
403 	simple_unlock(&aobj->u_obj.vmobjlock);
404 
405 	if (UAO_USES_SWHASH(aobj)) {
406 		int i, hashbuckets = aobj->u_swhashmask + 1;
407 
408 		/*
409 		 * free the swslots from each hash bucket,
410 		 * then the hash bucket, and finally the hash table itself.
411 		 */
412 		for (i = 0; i < hashbuckets; i++) {
413 			struct uao_swhash_elt *elt, *next;
414 
415 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
416 			     elt != NULL;
417 			     elt = next) {
418 				int j;
419 
420 				for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++) {
421 					int slot = elt->slots[j];
422 
423 					if (slot) {
424 						uvm_swap_free(slot, 1);
425 
426 						/*
427 						 * this page is no longer
428 						 * only in swap.
429 						 */
430 						simple_lock(&uvm.swap_data_lock);
431 						uvmexp.swpgonly--;
432 						simple_unlock(&uvm.swap_data_lock);
433 					}
434 				}
435 
436 				next = LIST_NEXT(elt, list);
437 				pool_put(&uao_swhash_elt_pool, elt);
438 			}
439 		}
440 		FREE(aobj->u_swhash, M_UVMAOBJ);
441 	} else {
442 		int i;
443 
444 		/*
445 		 * free the array
446 		 */
447 
448 		for (i = 0; i < aobj->u_pages; i++) {
449 			int slot = aobj->u_swslots[i];
450 
451 			if (slot) {
452 				uvm_swap_free(slot, 1);
453 
454 				/* this page is no longer only in swap. */
455 				simple_lock(&uvm.swap_data_lock);
456 				uvmexp.swpgonly--;
457 				simple_unlock(&uvm.swap_data_lock);
458 			}
459 		}
460 		FREE(aobj->u_swslots, M_UVMAOBJ);
461 	}
462 
463 	/*
464 	 * finally free the aobj itself
465 	 */
466 	pool_put(&uvm_aobj_pool, aobj);
467 }
468 
469 /*
470  * pager functions
471  */
472 
473 /*
474  * uao_create: create an aobj of the given size and return its uvm_object.
475  *
476  * => for normal use, flags are always zero
477  * => for the kernel object, the flags are:
478  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
479  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
480  */
481 struct uvm_object *
482 uao_create(size, flags)
483 	vsize_t size;
484 	int flags;
485 {
486 	static struct uvm_aobj kernel_object_store; /* home of kernel_object */
487 	static int kobj_alloced = 0;			/* not allocated yet */
488 	int pages = round_page(size) >> PAGE_SHIFT;
489 	struct uvm_aobj *aobj;
490 
491 	/*
492 	 * malloc a new aobj unless we are asked for the kernel object
493 	 */
494 	if (flags & UAO_FLAG_KERNOBJ) {		/* want kernel object? */
495 		if (kobj_alloced)
496 			panic("uao_create: kernel object already allocated");
497 
498 		aobj = &kernel_object_store;
499 		aobj->u_pages = pages;
500 		aobj->u_flags = UAO_FLAG_NOSWAP;	/* no swap to start */
501 		/* we are special, we never die */
502 		aobj->u_obj.uo_refs = UVM_OBJ_KERN;
503 		kobj_alloced = UAO_FLAG_KERNOBJ;
504 	} else if (flags & UAO_FLAG_KERNSWAP) {
505 		aobj = &kernel_object_store;
506 		if (kobj_alloced != UAO_FLAG_KERNOBJ)
507 		    panic("uao_create: asked to enable swap on kernel object");
508 		kobj_alloced = UAO_FLAG_KERNSWAP;
509 	} else {	/* normal object */
510 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
511 		aobj->u_pages = pages;
512 		aobj->u_flags = 0;		/* normal object */
513 		aobj->u_obj.uo_refs = 1;	/* start with 1 reference */
514 	}
515 
516 	/*
517  	 * allocate hash/array if necessary
518  	 *
519  	 * note: in the KERNSWAP case no need to worry about locking since
520  	 * we are still booting we should be the only thread around.
521  	 */
522 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
523 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
524 		    M_NOWAIT : M_WAITOK;
525 
526 		/* allocate hash table or array depending on object size */
527 		if (UAO_USES_SWHASH(aobj)) {
528 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
529 			    M_UVMAOBJ, mflags, &aobj->u_swhashmask);
530 			if (aobj->u_swhash == NULL)
531 				panic("uao_create: hashinit swhash failed");
532 		} else {
533 			MALLOC(aobj->u_swslots, int *, pages * sizeof(int),
534 			    M_UVMAOBJ, mflags);
535 			if (aobj->u_swslots == NULL)
536 				panic("uao_create: malloc swslots failed");
537 			memset(aobj->u_swslots, 0, pages * sizeof(int));
538 		}
539 
540 		if (flags) {
541 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
542 			return(&aobj->u_obj);
543 			/* done! */
544 		}
545 	}
546 
547 	/*
548  	 * init aobj fields
549  	 */
550 	simple_lock_init(&aobj->u_obj.vmobjlock);
551 	aobj->u_obj.pgops = &aobj_pager;
552 	TAILQ_INIT(&aobj->u_obj.memq);
553 	aobj->u_obj.uo_npages = 0;
554 
555 	/*
556  	 * now that aobj is ready, add it to the global list
557  	 */
558 	simple_lock(&uao_list_lock);
559 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
560 	simple_unlock(&uao_list_lock);
561 
562 	/*
563  	 * done!
564  	 */
565 	return(&aobj->u_obj);
566 }
567 
568 
569 
570 /*
571  * uao_init: set up aobj pager subsystem
572  *
573  * => called at boot time from uvm_pager_init()
574  */
575 void
576 uao_init()
577 {
578 	static int uao_initialized;
579 
580 	if (uao_initialized)
581 		return;
582 	uao_initialized = TRUE;
583 
584 	LIST_INIT(&uao_list);
585 	simple_lock_init(&uao_list_lock);
586 
587 	/*
588 	 * NOTE: Pages fror this pool must not come from a pageable
589 	 * kernel map!
590 	 */
591 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
592 	    0, 0, 0, "uaoeltpl", 0, NULL, NULL, M_UVMAOBJ);
593 
594 	pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0,
595 	    "aobjpl", 0,
596 	    pool_page_alloc_nointr, pool_page_free_nointr, M_UVMAOBJ);
597 }
598 
599 /*
600  * uao_reference: add a ref to an aobj
601  *
602  * => aobj must be unlocked
603  * => just lock it and call the locked version
604  */
605 void
606 uao_reference(uobj)
607 	struct uvm_object *uobj;
608 {
609 	simple_lock(&uobj->vmobjlock);
610 	uao_reference_locked(uobj);
611 	simple_unlock(&uobj->vmobjlock);
612 }
613 
614 /*
615  * uao_reference_locked: add a ref to an aobj that is already locked
616  *
617  * => aobj must be locked
618  * this needs to be separate from the normal routine
619  * since sometimes we need to add a reference to an aobj when
620  * it's already locked.
621  */
622 void
623 uao_reference_locked(uobj)
624 	struct uvm_object *uobj;
625 {
626 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
627 
628 	/*
629  	 * kernel_object already has plenty of references, leave it alone.
630  	 */
631 
632 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
633 		return;
634 
635 	uobj->uo_refs++;		/* bump! */
636 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
637 		    uobj, uobj->uo_refs,0,0);
638 }
639 
640 
641 /*
642  * uao_detach: drop a reference to an aobj
643  *
644  * => aobj must be unlocked
645  * => just lock it and call the locked version
646  */
647 void
648 uao_detach(uobj)
649 	struct uvm_object *uobj;
650 {
651 	simple_lock(&uobj->vmobjlock);
652 	uao_detach_locked(uobj);
653 }
654 
655 
656 /*
657  * uao_detach_locked: drop a reference to an aobj
658  *
659  * => aobj must be locked, and is unlocked (or freed) upon return.
660  * this needs to be separate from the normal routine
661  * since sometimes we need to detach from an aobj when
662  * it's already locked.
663  */
664 void
665 uao_detach_locked(uobj)
666 	struct uvm_object *uobj;
667 {
668 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
669 	struct vm_page *pg;
670 	boolean_t busybody;
671 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
672 
673 	/*
674  	 * detaching from kernel_object is a noop.
675  	 */
676 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
677 		simple_unlock(&uobj->vmobjlock);
678 		return;
679 	}
680 
681 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
682 	uobj->uo_refs--;				/* drop ref! */
683 	if (uobj->uo_refs) {				/* still more refs? */
684 		simple_unlock(&uobj->vmobjlock);
685 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
686 		return;
687 	}
688 
689 	/*
690  	 * remove the aobj from the global list.
691  	 */
692 	simple_lock(&uao_list_lock);
693 	LIST_REMOVE(aobj, u_list);
694 	simple_unlock(&uao_list_lock);
695 
696 	/*
697  	 * free all the pages that aren't PG_BUSY,
698 	 * mark for release any that are.
699  	 */
700 	busybody = FALSE;
701 	for (pg = TAILQ_FIRST(&uobj->memq);
702 	     pg != NULL;
703 	     pg = TAILQ_NEXT(pg, listq)) {
704 		if (pg->flags & PG_BUSY) {
705 			pg->flags |= PG_RELEASED;
706 			busybody = TRUE;
707 			continue;
708 		}
709 
710 		/* zap the mappings, free the swap slot, free the page */
711 		pmap_page_protect(pg, VM_PROT_NONE);
712 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
713 		uvm_lock_pageq();
714 		uvm_pagefree(pg);
715 		uvm_unlock_pageq();
716 	}
717 
718 	/*
719  	 * if we found any busy pages, we're done for now.
720  	 * mark the aobj for death, releasepg will finish up for us.
721  	 */
722 	if (busybody) {
723 		aobj->u_flags |= UAO_FLAG_KILLME;
724 		simple_unlock(&aobj->u_obj.vmobjlock);
725 		return;
726 	}
727 
728 	/*
729  	 * finally, free the rest.
730  	 */
731 	uao_free(aobj);
732 }
733 
734 /*
735  * uao_flush: "flush" pages out of a uvm object
736  *
737  * => object should be locked by caller.  we may _unlock_ the object
738  *	if (and only if) we need to clean a page (PGO_CLEANIT).
739  *	XXXJRT Currently, however, we don't.  In the case of cleaning
740  *	XXXJRT a page, we simply just deactivate it.  Should probably
741  *	XXXJRT handle this better, in the future (although "flushing"
742  *	XXXJRT anonymous memory isn't terribly important).
743  * => if PGO_CLEANIT is not set, then we will neither unlock the object
744  *	or block.
745  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
746  *	for flushing.
747  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
748  *	that new pages are inserted on the tail end of the list.  thus,
749  *	we can make a complete pass through the object in one go by starting
750  *	at the head and working towards the tail (new pages are put in
751  *	front of us).
752  * => NOTE: we are allowed to lock the page queues, so the caller
753  *	must not be holding the lock on them [e.g. pagedaemon had
754  *	better not call us with the queues locked]
755  * => we return TRUE unless we encountered some sort of I/O error
756  *	XXXJRT currently never happens, as we never directly initiate
757  *	XXXJRT I/O
758  *
759  * comment on "cleaning" object and PG_BUSY pages:
760  *	this routine is holding the lock on the object.  the only time
761  *	that is can run into a PG_BUSY page that it does not own is if
762  *	some other process has started I/O on the page (e.g. either
763  *	a pagein or a pageout).  if the PG_BUSY page is being paged
764  *	in, then it can not be dirty (!PG_CLEAN) because no one has
765  *	had a change to modify it yet.  if the PG_BUSY page is being
766  *	paged out then it means that someone else has already started
767  *	cleaning the page for us (how nice!).  in this case, if we
768  *	have syncio specified, then after we make our pass through the
769  *	object we need to wait for the other PG_BUSY pages to clear
770  *	off (i.e. we need to do an iosync).  also note that once a
771  *	page is PG_BUSY is must stary in its object until it is un-busyed.
772  *	XXXJRT We never actually do this, as we are "flushing" anonymous
773  *	XXXJRT memory, which doesn't have persistent backing store.
774  *
775  * note on page traversal:
776  *	we can traverse the pages in an object either by going down the
777  *	linked list in "uobj->memq", or we can go over the address range
778  *	by page doing hash table lookups for each address.  depending
779  *	on how many pages are in the object it may be cheaper to do one
780  *	or the other.  we set "by_list" to true if we are using memq.
781  *	if the cost of a hash lookup was equal to the cost of the list
782  *	traversal we could compare the number of pages in the start->stop
783  *	range to the total number of pages in the object.  however, it
784  *	seems that a hash table lookup is more expensive than the linked
785  *	list traversal, so we multiply the number of pages in the
786  *	start->stop range by a penalty which we define below.
787  */
788 
789 #define	UAO_HASH_PENALTY 4	/* XXX: a guess */
790 
791 boolean_t
792 uao_flush(uobj, start, stop, flags)
793 	struct uvm_object *uobj;
794 	voff_t start, stop;
795 	int flags;
796 {
797 	struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
798 	struct vm_page *pp, *ppnext;
799 	boolean_t retval, by_list;
800 	voff_t curoff;
801 	UVMHIST_FUNC("uao_flush"); UVMHIST_CALLED(maphist);
802 
803 	curoff = 0;	/* XXX: shut up gcc */
804 
805 	retval = TRUE;	/* default to success */
806 
807 	if (flags & PGO_ALLPAGES) {
808 		start = 0;
809 		stop = aobj->u_pages << PAGE_SHIFT;
810 		by_list = TRUE;		/* always go by the list */
811 	} else {
812 		start = trunc_page(start);
813 		stop = round_page(stop);
814 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
815 			printf("uao_flush: strange, got an out of range "
816 			    "flush (fixed)\n");
817 			stop = aobj->u_pages << PAGE_SHIFT;
818 		}
819 		by_list = (uobj->uo_npages <=
820 		    ((stop - start) >> PAGE_SHIFT) * UAO_HASH_PENALTY);
821 	}
822 
823 	UVMHIST_LOG(maphist,
824 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
825 	    start, stop, by_list, flags);
826 
827 	/*
828 	 * Don't need to do any work here if we're not freeing
829 	 * or deactivating pages.
830 	 */
831 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
832 		UVMHIST_LOG(maphist,
833 		    "<- done (no work to do)",0,0,0,0);
834 		return (retval);
835 	}
836 
837 	/*
838 	 * now do it.  note: we must update ppnext in the body of loop or we
839 	 * will get stuck.  we need to use ppnext because we may free "pp"
840 	 * before doing the next loop.
841 	 */
842 
843 	if (by_list) {
844 		pp = uobj->memq.tqh_first;
845 	} else {
846 		curoff = start;
847 		pp = uvm_pagelookup(uobj, curoff);
848 	}
849 
850 	ppnext = NULL;	/* XXX: shut up gcc */
851 	uvm_lock_pageq();	/* page queues locked */
852 
853 	/* locked: both page queues and uobj */
854 	for ( ; (by_list && pp != NULL) ||
855 	    (!by_list && curoff < stop) ; pp = ppnext) {
856 		if (by_list) {
857 			ppnext = pp->listq.tqe_next;
858 
859 			/* range check */
860 			if (pp->offset < start || pp->offset >= stop)
861 				continue;
862 		} else {
863 			curoff += PAGE_SIZE;
864 			if (curoff < stop)
865 				ppnext = uvm_pagelookup(uobj, curoff);
866 
867 			/* null check */
868 			if (pp == NULL)
869 				continue;
870 		}
871 
872 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
873 		/*
874 		 * XXX In these first 3 cases, we always just
875 		 * XXX deactivate the page.  We may want to
876 		 * XXX handle the different cases more specifically
877 		 * XXX in the future.
878 		 */
879 		case PGO_CLEANIT|PGO_FREE:
880 		case PGO_CLEANIT|PGO_DEACTIVATE:
881 		case PGO_DEACTIVATE:
882  deactivate_it:
883 			/* skip the page if it's loaned or wired */
884 			if (pp->loan_count != 0 ||
885 			    pp->wire_count != 0)
886 				continue;
887 
888 			/* zap all mappings for the page. */
889 			pmap_page_protect(pp, VM_PROT_NONE);
890 
891 			/* ...and deactivate the page. */
892 			uvm_pagedeactivate(pp);
893 
894 			continue;
895 
896 		case PGO_FREE:
897 			/*
898 			 * If there are multiple references to
899 			 * the object, just deactivate the page.
900 			 */
901 			if (uobj->uo_refs > 1)
902 				goto deactivate_it;
903 
904 			/* XXX skip the page if it's loaned or wired */
905 			if (pp->loan_count != 0 ||
906 			    pp->wire_count != 0)
907 				continue;
908 
909 			/*
910 			 * mark the page as released if its busy.
911 			 */
912 			if (pp->flags & PG_BUSY) {
913 				pp->flags |= PG_RELEASED;
914 				continue;
915 			}
916 
917 			/* zap all mappings for the page. */
918 			pmap_page_protect(pp, VM_PROT_NONE);
919 
920 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
921 			uvm_pagefree(pp);
922 
923 			continue;
924 
925 		default:
926 			panic("uao_flush: weird flags");
927 		}
928 #ifdef DIAGNOSTIC
929 		panic("uao_flush: unreachable code");
930 #endif
931 	}
932 
933 	uvm_unlock_pageq();
934 
935 	UVMHIST_LOG(maphist,
936 	    "<- done, rv=%d",retval,0,0,0);
937 	return (retval);
938 }
939 
940 /*
941  * uao_get: fetch me a page
942  *
943  * we have three cases:
944  * 1: page is resident     -> just return the page.
945  * 2: page is zero-fill    -> allocate a new page and zero it.
946  * 3: page is swapped out  -> fetch the page from swap.
947  *
948  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
949  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
950  * then we will need to return VM_PAGER_UNLOCK.
951  *
952  * => prefer map unlocked (not required)
953  * => object must be locked!  we will _unlock_ it before starting any I/O.
954  * => flags: PGO_ALLPAGES: get all of the pages
955  *           PGO_LOCKED: fault data structures are locked
956  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
957  * => NOTE: caller must check for released pages!!
958  */
959 static int
960 uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
961 	struct uvm_object *uobj;
962 	voff_t offset;
963 	struct vm_page **pps;
964 	int *npagesp;
965 	int centeridx, advice, flags;
966 	vm_prot_t access_type;
967 {
968 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
969 	voff_t current_offset;
970 	vm_page_t ptmp;
971 	int lcv, gotpages, maxpages, swslot, rv, pageidx;
972 	boolean_t done;
973 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
974 
975 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
976 		    aobj, offset, flags,0);
977 
978 	/*
979  	 * get number of pages
980  	 */
981 	maxpages = *npagesp;
982 
983 	/*
984  	 * step 1: handled the case where fault data structures are locked.
985  	 */
986 
987 	if (flags & PGO_LOCKED) {
988 		/*
989  		 * step 1a: get pages that are already resident.   only do
990 		 * this if the data structures are locked (i.e. the first
991 		 * time through).
992  		 */
993 
994 		done = TRUE;	/* be optimistic */
995 		gotpages = 0;	/* # of pages we got so far */
996 
997 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
998 		    lcv++, current_offset += PAGE_SIZE) {
999 			/* do we care about this page?  if not, skip it */
1000 			if (pps[lcv] == PGO_DONTCARE)
1001 				continue;
1002 
1003 			ptmp = uvm_pagelookup(uobj, current_offset);
1004 
1005 			/*
1006  			 * if page is new, attempt to allocate the page,
1007 			 * zero-fill'd.
1008  			 */
1009 			if (ptmp == NULL && uao_find_swslot(aobj,
1010 			    current_offset >> PAGE_SHIFT) == 0) {
1011 				ptmp = uvm_pagealloc(uobj, current_offset,
1012 				    NULL, UVM_PGA_ZERO);
1013 				if (ptmp) {
1014 					/* new page */
1015 					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
1016 					ptmp->pqflags |= PQ_AOBJ;
1017 					UVM_PAGE_OWN(ptmp, NULL);
1018 				}
1019 			}
1020 
1021 			/*
1022 			 * to be useful must get a non-busy, non-released page
1023 			 */
1024 			if (ptmp == NULL ||
1025 			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1026 				if (lcv == centeridx ||
1027 				    (flags & PGO_ALLPAGES) != 0)
1028 					/* need to do a wait or I/O! */
1029 					done = FALSE;
1030 					continue;
1031 			}
1032 
1033 			/*
1034 			 * useful page: busy/lock it and plug it in our
1035 			 * result array
1036 			 */
1037 			/* caller must un-busy this page */
1038 			ptmp->flags |= PG_BUSY;
1039 			UVM_PAGE_OWN(ptmp, "uao_get1");
1040 			pps[lcv] = ptmp;
1041 			gotpages++;
1042 
1043 		}	/* "for" lcv loop */
1044 
1045 		/*
1046  		 * step 1b: now we've either done everything needed or we
1047 		 * to unlock and do some waiting or I/O.
1048  		 */
1049 
1050 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1051 
1052 		*npagesp = gotpages;
1053 		if (done)
1054 			/* bingo! */
1055 			return(VM_PAGER_OK);
1056 		else
1057 			/* EEK!   Need to unlock and I/O */
1058 			return(VM_PAGER_UNLOCK);
1059 	}
1060 
1061 	/*
1062  	 * step 2: get non-resident or busy pages.
1063  	 * object is locked.   data structures are unlocked.
1064  	 */
1065 
1066 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1067 	    lcv++, current_offset += PAGE_SIZE) {
1068 
1069 		/*
1070 		 * - skip over pages we've already gotten or don't want
1071 		 * - skip over pages we don't _have_ to get
1072 		 */
1073 
1074 		if (pps[lcv] != NULL ||
1075 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1076 			continue;
1077 
1078 		pageidx = current_offset >> PAGE_SHIFT;
1079 
1080 		/*
1081  		 * we have yet to locate the current page (pps[lcv]).   we
1082 		 * first look for a page that is already at the current offset.
1083 		 * if we find a page, we check to see if it is busy or
1084 		 * released.  if that is the case, then we sleep on the page
1085 		 * until it is no longer busy or released and repeat the lookup.
1086 		 * if the page we found is neither busy nor released, then we
1087 		 * busy it (so we own it) and plug it into pps[lcv].   this
1088 		 * 'break's the following while loop and indicates we are
1089 		 * ready to move on to the next page in the "lcv" loop above.
1090  		 *
1091  		 * if we exit the while loop with pps[lcv] still set to NULL,
1092 		 * then it means that we allocated a new busy/fake/clean page
1093 		 * ptmp in the object and we need to do I/O to fill in the data.
1094  		 */
1095 
1096 		/* top of "pps" while loop */
1097 		while (pps[lcv] == NULL) {
1098 			/* look for a resident page */
1099 			ptmp = uvm_pagelookup(uobj, current_offset);
1100 
1101 			/* not resident?   allocate one now (if we can) */
1102 			if (ptmp == NULL) {
1103 
1104 				ptmp = uvm_pagealloc(uobj, current_offset,
1105 				    NULL, 0);
1106 
1107 				/* out of RAM? */
1108 				if (ptmp == NULL) {
1109 					simple_unlock(&uobj->vmobjlock);
1110 					UVMHIST_LOG(pdhist,
1111 					    "sleeping, ptmp == NULL\n",0,0,0,0);
1112 					uvm_wait("uao_getpage");
1113 					simple_lock(&uobj->vmobjlock);
1114 					/* goto top of pps while loop */
1115 					continue;
1116 				}
1117 
1118 				/*
1119 				 * safe with PQ's unlocked: because we just
1120 				 * alloc'd the page
1121 				 */
1122 				ptmp->pqflags |= PQ_AOBJ;
1123 
1124 				/*
1125 				 * got new page ready for I/O.  break pps while
1126 				 * loop.  pps[lcv] is still NULL.
1127 				 */
1128 				break;
1129 			}
1130 
1131 			/* page is there, see if we need to wait on it */
1132 			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
1133 				ptmp->flags |= PG_WANTED;
1134 				UVMHIST_LOG(pdhist,
1135 				    "sleeping, ptmp->flags 0x%x\n",
1136 				    ptmp->flags,0,0,0);
1137 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1138 				    FALSE, "uao_get", 0);
1139 				simple_lock(&uobj->vmobjlock);
1140 				continue;	/* goto top of pps while loop */
1141 			}
1142 
1143 			/*
1144  			 * if we get here then the page has become resident and
1145 			 * unbusy between steps 1 and 2.  we busy it now (so we
1146 			 * own it) and set pps[lcv] (so that we exit the while
1147 			 * loop).
1148  			 */
1149 			/* we own it, caller must un-busy */
1150 			ptmp->flags |= PG_BUSY;
1151 			UVM_PAGE_OWN(ptmp, "uao_get2");
1152 			pps[lcv] = ptmp;
1153 		}
1154 
1155 		/*
1156  		 * if we own the valid page at the correct offset, pps[lcv] will
1157  		 * point to it.   nothing more to do except go to the next page.
1158  		 */
1159 		if (pps[lcv])
1160 			continue;			/* next lcv */
1161 
1162 		/*
1163  		 * we have a "fake/busy/clean" page that we just allocated.
1164  		 * do the needed "i/o", either reading from swap or zeroing.
1165  		 */
1166 		swslot = uao_find_swslot(aobj, pageidx);
1167 
1168 		/*
1169  		 * just zero the page if there's nothing in swap.
1170  		 */
1171 		if (swslot == 0)
1172 		{
1173 			/*
1174 			 * page hasn't existed before, just zero it.
1175 			 */
1176 			uvm_pagezero(ptmp);
1177 		} else {
1178 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
1179 			     swslot, 0,0,0);
1180 
1181 			/*
1182 			 * page in the swapped-out page.
1183 			 * unlock object for i/o, relock when done.
1184 			 */
1185 			simple_unlock(&uobj->vmobjlock);
1186 			rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1187 			simple_lock(&uobj->vmobjlock);
1188 
1189 			/*
1190 			 * I/O done.  check for errors.
1191 			 */
1192 			if (rv != VM_PAGER_OK)
1193 			{
1194 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
1195 				    rv,0,0,0);
1196 				if (ptmp->flags & PG_WANTED)
1197 					wakeup(ptmp);
1198 
1199 				/*
1200 				 * remove the swap slot from the aobj
1201 				 * and mark the aobj as having no real slot.
1202 				 * don't free the swap slot, thus preventing
1203 				 * it from being used again.
1204 				 */
1205 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1206 							SWSLOT_BAD);
1207 				uvm_swap_markbad(swslot, 1);
1208 
1209 				ptmp->flags &= ~(PG_WANTED|PG_BUSY);
1210 				UVM_PAGE_OWN(ptmp, NULL);
1211 				uvm_lock_pageq();
1212 				uvm_pagefree(ptmp);
1213 				uvm_unlock_pageq();
1214 
1215 				simple_unlock(&uobj->vmobjlock);
1216 				return (rv);
1217 			}
1218 		}
1219 
1220 		/*
1221  		 * we got the page!   clear the fake flag (indicates valid
1222 		 * data now in page) and plug into our result array.   note
1223 		 * that page is still busy.
1224  		 *
1225  		 * it is the callers job to:
1226  		 * => check if the page is released
1227  		 * => unbusy the page
1228  		 * => activate the page
1229  		 */
1230 
1231 		ptmp->flags &= ~PG_FAKE;		/* data is valid ... */
1232 		pmap_clear_modify(ptmp);		/* ... and clean */
1233 		pps[lcv] = ptmp;
1234 
1235 	}	/* lcv loop */
1236 
1237 	/*
1238  	 * finally, unlock object and return.
1239  	 */
1240 
1241 	simple_unlock(&uobj->vmobjlock);
1242 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1243 	return(VM_PAGER_OK);
1244 }
1245 
1246 /*
1247  * uao_releasepg: handle released page in an aobj
1248  *
1249  * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
1250  *      to dispose of.
1251  * => caller must handle PG_WANTED case
1252  * => called with page's object locked, pageq's unlocked
1253  * => returns TRUE if page's object is still alive, FALSE if we
1254  *      killed the page's object.    if we return TRUE, then we
1255  *      return with the object locked.
1256  * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
1257  *                              with the page queues locked [for pagedaemon]
1258  * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
1259  * => we kill the aobj if it is not referenced and we are suppose to
1260  *      kill it ("KILLME").
1261  */
1262 static boolean_t
1263 uao_releasepg(pg, nextpgp)
1264 	struct vm_page *pg;
1265 	struct vm_page **nextpgp;	/* OUT */
1266 {
1267 	struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
1268 
1269 #ifdef DIAGNOSTIC
1270 	if ((pg->flags & PG_RELEASED) == 0)
1271 		panic("uao_releasepg: page not released!");
1272 #endif
1273 
1274 	/*
1275  	 * dispose of the page [caller handles PG_WANTED] and swap slot.
1276  	 */
1277 	pmap_page_protect(pg, VM_PROT_NONE);
1278 	uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
1279 	uvm_lock_pageq();
1280 	if (nextpgp)
1281 		*nextpgp = pg->pageq.tqe_next;	/* next page for daemon */
1282 	uvm_pagefree(pg);
1283 	if (!nextpgp)
1284 		uvm_unlock_pageq();		/* keep locked for daemon */
1285 
1286 	/*
1287  	 * if we're not killing the object, we're done.
1288  	 */
1289 	if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
1290 		return TRUE;
1291 
1292 #ifdef DIAGNOSTIC
1293 	if (aobj->u_obj.uo_refs)
1294 		panic("uvm_km_releasepg: kill flag set on referenced object!");
1295 #endif
1296 
1297 	/*
1298  	 * if there are still pages in the object, we're done for now.
1299  	 */
1300 	if (aobj->u_obj.uo_npages != 0)
1301 		return TRUE;
1302 
1303 #ifdef DIAGNOSTIC
1304 	if (TAILQ_FIRST(&aobj->u_obj.memq))
1305 		panic("uvn_releasepg: pages in object with npages == 0");
1306 #endif
1307 
1308 	/*
1309  	 * finally, free the rest.
1310  	 */
1311 	uao_free(aobj);
1312 
1313 	return FALSE;
1314 }
1315 
1316 
1317 /*
1318  * uao_dropswap:  release any swap resources from this aobj page.
1319  *
1320  * => aobj must be locked or have a reference count of 0.
1321  */
1322 
1323 void
1324 uao_dropswap(uobj, pageidx)
1325 	struct uvm_object *uobj;
1326 	int pageidx;
1327 {
1328 	int slot;
1329 
1330 	slot = uao_set_swslot(uobj, pageidx, 0);
1331 	if (slot) {
1332 		uvm_swap_free(slot, 1);
1333 	}
1334 }
1335 
1336 
1337 /*
1338  * page in every page in every aobj that is paged-out to a range of swslots.
1339  *
1340  * => nothing should be locked.
1341  * => returns TRUE if pagein was aborted due to lack of memory.
1342  */
1343 boolean_t
1344 uao_swap_off(startslot, endslot)
1345 	int startslot, endslot;
1346 {
1347 	struct uvm_aobj *aobj, *nextaobj;
1348 
1349 	/*
1350 	 * walk the list of all aobjs.
1351 	 */
1352 
1353 restart:
1354 	simple_lock(&uao_list_lock);
1355 
1356 	for (aobj = LIST_FIRST(&uao_list);
1357 	     aobj != NULL;
1358 	     aobj = nextaobj) {
1359 		boolean_t rv;
1360 
1361 		/*
1362 		 * try to get the object lock,
1363 		 * start all over if we fail.
1364 		 * most of the time we'll get the aobj lock,
1365 		 * so this should be a rare case.
1366 		 */
1367 		if (!simple_lock_try(&aobj->u_obj.vmobjlock)) {
1368 			simple_unlock(&uao_list_lock);
1369 			goto restart;
1370 		}
1371 
1372 		/*
1373 		 * add a ref to the aobj so it doesn't disappear
1374 		 * while we're working.
1375 		 */
1376 		uao_reference_locked(&aobj->u_obj);
1377 
1378 		/*
1379 		 * now it's safe to unlock the uao list.
1380 		 */
1381 		simple_unlock(&uao_list_lock);
1382 
1383 		/*
1384 		 * page in any pages in the swslot range.
1385 		 * if there's an error, abort and return the error.
1386 		 */
1387 		rv = uao_pagein(aobj, startslot, endslot);
1388 		if (rv) {
1389 			uao_detach_locked(&aobj->u_obj);
1390 			return rv;
1391 		}
1392 
1393 		/*
1394 		 * we're done with this aobj.
1395 		 * relock the list and drop our ref on the aobj.
1396 		 */
1397 		simple_lock(&uao_list_lock);
1398 		nextaobj = LIST_NEXT(aobj, u_list);
1399 		uao_detach_locked(&aobj->u_obj);
1400 	}
1401 
1402 	/*
1403 	 * done with traversal, unlock the list
1404 	 */
1405 	simple_unlock(&uao_list_lock);
1406 	return FALSE;
1407 }
1408 
1409 
1410 /*
1411  * page in any pages from aobj in the given range.
1412  *
1413  * => aobj must be locked and is returned locked.
1414  * => returns TRUE if pagein was aborted due to lack of memory.
1415  */
1416 static boolean_t
1417 uao_pagein(aobj, startslot, endslot)
1418 	struct uvm_aobj *aobj;
1419 	int startslot, endslot;
1420 {
1421 	boolean_t rv;
1422 
1423 	if (UAO_USES_SWHASH(aobj)) {
1424 		struct uao_swhash_elt *elt;
1425 		int bucket;
1426 
1427 restart:
1428 		for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1429 			for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1430 			     elt != NULL;
1431 			     elt = LIST_NEXT(elt, list)) {
1432 				int i;
1433 
1434 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1435 					int slot = elt->slots[i];
1436 
1437 					/*
1438 					 * if the slot isn't in range, skip it.
1439 					 */
1440 					if (slot < startslot ||
1441 					    slot >= endslot) {
1442 						continue;
1443 					}
1444 
1445 					/*
1446 					 * process the page,
1447 					 * the start over on this object
1448 					 * since the swhash elt
1449 					 * may have been freed.
1450 					 */
1451 					rv = uao_pagein_page(aobj,
1452 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1453 					if (rv) {
1454 						return rv;
1455 					}
1456 					goto restart;
1457 				}
1458 			}
1459 		}
1460 	} else {
1461 		int i;
1462 
1463 		for (i = 0; i < aobj->u_pages; i++) {
1464 			int slot = aobj->u_swslots[i];
1465 
1466 			/*
1467 			 * if the slot isn't in range, skip it
1468 			 */
1469 			if (slot < startslot || slot >= endslot) {
1470 				continue;
1471 			}
1472 
1473 			/*
1474 			 * process the page.
1475 			 */
1476 			rv = uao_pagein_page(aobj, i);
1477 			if (rv) {
1478 				return rv;
1479 			}
1480 		}
1481 	}
1482 
1483 	return FALSE;
1484 }
1485 
1486 /*
1487  * page in a page from an aobj.  used for swap_off.
1488  * returns TRUE if pagein was aborted due to lack of memory.
1489  *
1490  * => aobj must be locked and is returned locked.
1491  */
1492 static boolean_t
1493 uao_pagein_page(aobj, pageidx)
1494 	struct uvm_aobj *aobj;
1495 	int pageidx;
1496 {
1497 	struct vm_page *pg;
1498 	int rv, slot, npages;
1499 	UVMHIST_FUNC("uao_pagein_page");  UVMHIST_CALLED(pdhist);
1500 
1501 	pg = NULL;
1502 	npages = 1;
1503 	/* locked: aobj */
1504 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1505 		     &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, 0);
1506 	/* unlocked: aobj */
1507 
1508 	/*
1509 	 * relock and finish up.
1510 	 */
1511 	simple_lock(&aobj->u_obj.vmobjlock);
1512 
1513 	switch (rv) {
1514 	case VM_PAGER_OK:
1515 		break;
1516 
1517 	case VM_PAGER_ERROR:
1518 	case VM_PAGER_REFAULT:
1519 		/*
1520 		 * nothing more to do on errors.
1521 		 * VM_PAGER_REFAULT can only mean that the anon was freed,
1522 		 * so again there's nothing to do.
1523 		 */
1524 		return FALSE;
1525 
1526 #ifdef DIAGNOSTIC
1527 	default:
1528 		panic("uao_pagein_page: uao_get -> %d\n", rv);
1529 #endif
1530 	}
1531 
1532 #ifdef DIAGNOSTIC
1533 	/*
1534 	 * this should never happen, since we have a reference on the aobj.
1535 	 */
1536 	if (pg->flags & PG_RELEASED) {
1537 		panic("uao_pagein_page: found PG_RELEASED page?\n");
1538 	}
1539 #endif
1540 
1541 	/*
1542 	 * ok, we've got the page now.
1543 	 * mark it as dirty, clear its swslot and un-busy it.
1544 	 */
1545 	slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1546 	uvm_swap_free(slot, 1);
1547 	pg->flags &= ~(PG_BUSY|PG_CLEAN|PG_FAKE);
1548 	UVM_PAGE_OWN(pg, NULL);
1549 
1550 	/*
1551 	 * deactivate the page (to put it on a page queue).
1552 	 */
1553 	pmap_clear_reference(pg);
1554 	pmap_page_protect(pg, VM_PROT_NONE);
1555 	uvm_lock_pageq();
1556 	uvm_pagedeactivate(pg);
1557 	uvm_unlock_pageq();
1558 
1559 	return FALSE;
1560 }
1561