xref: /openbsd-src/sys/uvm/uvm_aobj.c (revision 4e1ee0786f11cc571bd0be17d38e46f635c719fc)
1 /*	$OpenBSD: uvm_aobj.c,v 1.99 2021/06/28 11:19:01 mpi Exp $	*/
2 /*	$NetBSD: uvm_aobj.c,v 1.39 2001/02/18 21:19:08 chs Exp $	*/
3 
4 /*
5  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
6  *                    Washington University.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
30  */
31 /*
32  * uvm_aobj.c: anonymous memory uvm_object pager
33  *
34  * author: Chuck Silvers <chuq@chuq.com>
35  * started: Jan-1998
36  *
37  * - design mostly from Chuck Cranor
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/pool.h>
45 #include <sys/stdint.h>
46 #include <sys/atomic.h>
47 
48 #include <uvm/uvm.h>
49 
50 /*
51  * An anonymous UVM object (aobj) manages anonymous-memory.  In addition to
52  * keeping the list of resident pages, it may also keep a list of allocated
53  * swap blocks.  Depending on the size of the object, this list is either
54  * stored in an array (small objects) or in a hash table (large objects).
55  */
56 
57 /*
58  * Note: for hash tables, we break the address space of the aobj into blocks
59  * of UAO_SWHASH_CLUSTER_SIZE pages, which shall be a power of two.
60  */
61 #define	UAO_SWHASH_CLUSTER_SHIFT	4
62 #define	UAO_SWHASH_CLUSTER_SIZE		(1 << UAO_SWHASH_CLUSTER_SHIFT)
63 
64 /* Get the "tag" for this page index. */
65 #define	UAO_SWHASH_ELT_TAG(idx)		((idx) >> UAO_SWHASH_CLUSTER_SHIFT)
66 #define UAO_SWHASH_ELT_PAGESLOT_IDX(idx) \
67     ((idx) & (UAO_SWHASH_CLUSTER_SIZE - 1))
68 
69 /* Given an ELT and a page index, find the swap slot. */
70 #define	UAO_SWHASH_ELT_PAGESLOT(elt, idx) \
71     ((elt)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(idx)])
72 
73 /* Given an ELT, return its pageidx base. */
74 #define	UAO_SWHASH_ELT_PAGEIDX_BASE(elt) \
75     ((elt)->tag << UAO_SWHASH_CLUSTER_SHIFT)
76 
77 /* The hash function. */
78 #define	UAO_SWHASH_HASH(aobj, idx) \
79     (&(aobj)->u_swhash[(((idx) >> UAO_SWHASH_CLUSTER_SHIFT) \
80     & (aobj)->u_swhashmask)])
81 
82 /*
83  * The threshold which determines whether we will use an array or a
84  * hash table to store the list of allocated swap blocks.
85  */
86 #define	UAO_SWHASH_THRESHOLD		(UAO_SWHASH_CLUSTER_SIZE * 4)
87 #define	UAO_USES_SWHASH(aobj) \
88     ((aobj)->u_pages > UAO_SWHASH_THRESHOLD)
89 
90 /* The number of buckets in a hash, with an upper bound. */
91 #define	UAO_SWHASH_MAXBUCKETS		256
92 #define	UAO_SWHASH_BUCKETS(pages) \
93     (min((pages) >> UAO_SWHASH_CLUSTER_SHIFT, UAO_SWHASH_MAXBUCKETS))
94 
95 
96 /*
97  * uao_swhash_elt: when a hash table is being used, this structure defines
98  * the format of an entry in the bucket list.
99  */
100 struct uao_swhash_elt {
101 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
102 	voff_t tag;				/* our 'tag' */
103 	int count;				/* our number of active slots */
104 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
105 };
106 
107 /*
108  * uao_swhash: the swap hash table structure
109  */
110 LIST_HEAD(uao_swhash, uao_swhash_elt);
111 
112 /*
113  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
114  */
115 struct pool uao_swhash_elt_pool;
116 
117 /*
118  * uvm_aobj: the actual anon-backed uvm_object
119  *
120  * => the uvm_object is at the top of the structure, this allows
121  *   (struct uvm_aobj *) == (struct uvm_object *)
122  * => only one of u_swslots and u_swhash is used in any given aobj
123  */
124 struct uvm_aobj {
125 	struct uvm_object u_obj; /* has: pgops, memt, #pages, #refs */
126 	int u_pages;		 /* number of pages in entire object */
127 	int u_flags;		 /* the flags (see uvm_aobj.h) */
128 	/*
129 	 * Either an array or hashtable (array of bucket heads) of
130 	 * offset -> swapslot mappings for the aobj.
131 	 */
132 #define u_swslots	u_swap.slot_array
133 #define u_swhash	u_swap.slot_hash
134 	union swslots {
135 		int			*slot_array;
136 		struct uao_swhash	*slot_hash;
137 	} u_swap;
138 	u_long u_swhashmask;		/* mask for hashtable */
139 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
140 };
141 
142 struct pool uvm_aobj_pool;
143 
144 static struct uao_swhash_elt	*uao_find_swhash_elt(struct uvm_aobj *, int,
145 				     boolean_t);
146 static int			 uao_find_swslot(struct uvm_object *, int);
147 static boolean_t		 uao_flush(struct uvm_object *, voff_t,
148 				     voff_t, int);
149 static void			 uao_free(struct uvm_aobj *);
150 static int			 uao_get(struct uvm_object *, voff_t,
151 				     vm_page_t *, int *, int, vm_prot_t,
152 				     int, int);
153 static boolean_t		 uao_pagein(struct uvm_aobj *, int, int);
154 static boolean_t		 uao_pagein_page(struct uvm_aobj *, int);
155 
156 void	uao_dropswap_range(struct uvm_object *, voff_t, voff_t);
157 void	uao_shrink_flush(struct uvm_object *, int, int);
158 int	uao_shrink_hash(struct uvm_object *, int);
159 int	uao_shrink_array(struct uvm_object *, int);
160 int	uao_shrink_convert(struct uvm_object *, int);
161 
162 int	uao_grow_hash(struct uvm_object *, int);
163 int	uao_grow_array(struct uvm_object *, int);
164 int	uao_grow_convert(struct uvm_object *, int);
165 
166 /*
167  * aobj_pager
168  *
169  * note that some functions (e.g. put) are handled elsewhere
170  */
171 const struct uvm_pagerops aobj_pager = {
172 	.pgo_reference = uao_reference,
173 	.pgo_detach = uao_detach,
174 	.pgo_flush = uao_flush,
175 	.pgo_get = uao_get,
176 };
177 
178 /*
179  * uao_list: global list of active aobjs, locked by uao_list_lock
180  *
181  * Lock ordering: generally the locking order is object lock, then list lock.
182  * in the case of swap off we have to iterate over the list, and thus the
183  * ordering is reversed. In that case we must use trylocking to prevent
184  * deadlock.
185  */
186 static LIST_HEAD(aobjlist, uvm_aobj) uao_list = LIST_HEAD_INITIALIZER(uao_list);
187 static struct mutex uao_list_lock = MUTEX_INITIALIZER(IPL_NONE);
188 
189 
190 /*
191  * functions
192  */
193 /*
194  * hash table/array related functions
195  */
196 /*
197  * uao_find_swhash_elt: find (or create) a hash table entry for a page
198  * offset.
199  */
200 static struct uao_swhash_elt *
201 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, boolean_t create)
202 {
203 	struct uao_swhash *swhash;
204 	struct uao_swhash_elt *elt;
205 	voff_t page_tag;
206 
207 	swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
208 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);	/* tag to search for */
209 
210 	/*
211 	 * now search the bucket for the requested tag
212 	 */
213 	LIST_FOREACH(elt, swhash, list) {
214 		if (elt->tag == page_tag)
215 			return elt;
216 	}
217 
218 	if (!create)
219 		return NULL;
220 
221 	/*
222 	 * allocate a new entry for the bucket and init/insert it in
223 	 */
224 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT | PR_ZERO);
225 	/*
226 	 * XXX We cannot sleep here as the hash table might disappear
227 	 * from under our feet.  And we run the risk of deadlocking
228 	 * the pagedeamon.  In fact this code will only be called by
229 	 * the pagedaemon and allocation will only fail if we
230 	 * exhausted the pagedeamon reserve.  In that case we're
231 	 * doomed anyway, so panic.
232 	 */
233 	if (elt == NULL)
234 		panic("%s: can't allocate entry", __func__);
235 	LIST_INSERT_HEAD(swhash, elt, list);
236 	elt->tag = page_tag;
237 
238 	return elt;
239 }
240 
241 /*
242  * uao_find_swslot: find the swap slot number for an aobj/pageidx
243  */
244 inline static int
245 uao_find_swslot(struct uvm_object *uobj, int pageidx)
246 {
247 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
248 
249 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
250 
251 	/*
252 	 * if noswap flag is set, then we never return a slot
253 	 */
254 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
255 		return 0;
256 
257 	/*
258 	 * if hashing, look in hash table.
259 	 */
260 	if (UAO_USES_SWHASH(aobj)) {
261 		struct uao_swhash_elt *elt =
262 		    uao_find_swhash_elt(aobj, pageidx, FALSE);
263 
264 		if (elt)
265 			return UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
266 		else
267 			return 0;
268 	}
269 
270 	/*
271 	 * otherwise, look in the array
272 	 */
273 	return aobj->u_swslots[pageidx];
274 }
275 
276 /*
277  * uao_set_swslot: set the swap slot for a page in an aobj.
278  *
279  * => setting a slot to zero frees the slot
280  * => we return the old slot number, or -1 if we failed to allocate
281  *    memory to record the new slot number
282  */
283 int
284 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
285 {
286 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
287 	int oldslot;
288 
289 	KERNEL_ASSERT_LOCKED();
290 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
291 
292 	/*
293 	 * if noswap flag is set, then we can't set a slot
294 	 */
295 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
296 		if (slot == 0)
297 			return 0;		/* a clear is ok */
298 
299 		/* but a set is not */
300 		printf("uao_set_swslot: uobj = %p\n", uobj);
301 	    panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
302 	}
303 
304 	/*
305 	 * are we using a hash table?  if so, add it in the hash.
306 	 */
307 	if (UAO_USES_SWHASH(aobj)) {
308 		/*
309 		 * Avoid allocating an entry just to free it again if
310 		 * the page had not swap slot in the first place, and
311 		 * we are freeing.
312 		 */
313 		struct uao_swhash_elt *elt =
314 		    uao_find_swhash_elt(aobj, pageidx, slot ? TRUE : FALSE);
315 		if (elt == NULL) {
316 			KASSERT(slot == 0);
317 			return 0;
318 		}
319 
320 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
321 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
322 
323 		/*
324 		 * now adjust the elt's reference counter and free it if we've
325 		 * dropped it to zero.
326 		 */
327 		if (slot) {
328 			if (oldslot == 0)
329 				elt->count++;
330 		} else {
331 			if (oldslot)
332 				elt->count--;
333 
334 			if (elt->count == 0) {
335 				LIST_REMOVE(elt, list);
336 				pool_put(&uao_swhash_elt_pool, elt);
337 			}
338 		}
339 	} else {
340 		/* we are using an array */
341 		oldslot = aobj->u_swslots[pageidx];
342 		aobj->u_swslots[pageidx] = slot;
343 	}
344 	return oldslot;
345 }
346 /*
347  * end of hash/array functions
348  */
349 
350 /*
351  * uao_free: free all resources held by an aobj, and then free the aobj
352  *
353  * => the aobj should be dead
354  */
355 static void
356 uao_free(struct uvm_aobj *aobj)
357 {
358 	struct uvm_object *uobj = &aobj->u_obj;
359 
360 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
361 	uao_dropswap_range(uobj, 0, 0);
362 
363 	if (UAO_USES_SWHASH(aobj)) {
364 		/*
365 		 * free the hash table itself.
366 		 */
367 		hashfree(aobj->u_swhash, UAO_SWHASH_BUCKETS(aobj->u_pages), M_UVMAOBJ);
368 	} else {
369 		free(aobj->u_swslots, M_UVMAOBJ, aobj->u_pages * sizeof(int));
370 	}
371 
372 	/*
373 	 * finally free the aobj itself
374 	 */
375 	pool_put(&uvm_aobj_pool, aobj);
376 }
377 
378 /*
379  * pager functions
380  */
381 
382 #ifdef TMPFS
383 /*
384  * Shrink an aobj to a given number of pages. The procedure is always the same:
385  * assess the necessity of data structure conversion (hash to array), secure
386  * resources, flush pages and drop swap slots.
387  *
388  */
389 
390 void
391 uao_shrink_flush(struct uvm_object *uobj, int startpg, int endpg)
392 {
393 	KASSERT(startpg < endpg);
394 	KASSERT(uobj->uo_refs == 1);
395 	uao_flush(uobj, (voff_t)startpg << PAGE_SHIFT,
396 	    (voff_t)endpg << PAGE_SHIFT, PGO_FREE);
397 	uao_dropswap_range(uobj, startpg, endpg);
398 }
399 
400 int
401 uao_shrink_hash(struct uvm_object *uobj, int pages)
402 {
403 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
404 	struct uao_swhash *new_swhash;
405 	struct uao_swhash_elt *elt;
406 	unsigned long new_hashmask;
407 	int i;
408 
409 	KASSERT(UAO_USES_SWHASH(aobj));
410 
411 	/*
412 	 * If the size of the hash table doesn't change, all we need to do is
413 	 * to adjust the page count.
414 	 */
415 	if (UAO_SWHASH_BUCKETS(aobj->u_pages) == UAO_SWHASH_BUCKETS(pages)) {
416 		uao_shrink_flush(uobj, pages, aobj->u_pages);
417 		aobj->u_pages = pages;
418 		return 0;
419 	}
420 
421 	new_swhash = hashinit(UAO_SWHASH_BUCKETS(pages), M_UVMAOBJ,
422 	    M_WAITOK | M_CANFAIL, &new_hashmask);
423 	if (new_swhash == NULL)
424 		return ENOMEM;
425 
426 	uao_shrink_flush(uobj, pages, aobj->u_pages);
427 
428 	/*
429 	 * Even though the hash table size is changing, the hash of the buckets
430 	 * we are interested in copying should not change.
431 	 */
432 	for (i = 0; i < UAO_SWHASH_BUCKETS(aobj->u_pages); i++) {
433 		while (LIST_EMPTY(&aobj->u_swhash[i]) == 0) {
434 			elt = LIST_FIRST(&aobj->u_swhash[i]);
435 			LIST_REMOVE(elt, list);
436 			LIST_INSERT_HEAD(&new_swhash[i], elt, list);
437 		}
438 	}
439 
440 	hashfree(aobj->u_swhash, UAO_SWHASH_BUCKETS(aobj->u_pages), M_UVMAOBJ);
441 
442 	aobj->u_swhash = new_swhash;
443 	aobj->u_pages = pages;
444 	aobj->u_swhashmask = new_hashmask;
445 
446 	return 0;
447 }
448 
449 int
450 uao_shrink_convert(struct uvm_object *uobj, int pages)
451 {
452 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
453 	struct uao_swhash_elt *elt;
454 	int i, *new_swslots;
455 
456 	new_swslots = mallocarray(pages, sizeof(int), M_UVMAOBJ,
457 	    M_WAITOK | M_CANFAIL | M_ZERO);
458 	if (new_swslots == NULL)
459 		return ENOMEM;
460 
461 	uao_shrink_flush(uobj, pages, aobj->u_pages);
462 
463 	/* Convert swap slots from hash to array.  */
464 	for (i = 0; i < pages; i++) {
465 		elt = uao_find_swhash_elt(aobj, i, FALSE);
466 		if (elt != NULL) {
467 			new_swslots[i] = UAO_SWHASH_ELT_PAGESLOT(elt, i);
468 			if (new_swslots[i] != 0)
469 				elt->count--;
470 			if (elt->count == 0) {
471 				LIST_REMOVE(elt, list);
472 				pool_put(&uao_swhash_elt_pool, elt);
473 			}
474 		}
475 	}
476 
477 	hashfree(aobj->u_swhash, UAO_SWHASH_BUCKETS(aobj->u_pages), M_UVMAOBJ);
478 
479 	aobj->u_swslots = new_swslots;
480 	aobj->u_pages = pages;
481 
482 	return 0;
483 }
484 
485 int
486 uao_shrink_array(struct uvm_object *uobj, int pages)
487 {
488 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
489 	int i, *new_swslots;
490 
491 	new_swslots = mallocarray(pages, sizeof(int), M_UVMAOBJ,
492 	    M_WAITOK | M_CANFAIL | M_ZERO);
493 	if (new_swslots == NULL)
494 		return ENOMEM;
495 
496 	uao_shrink_flush(uobj, pages, aobj->u_pages);
497 
498 	for (i = 0; i < pages; i++)
499 		new_swslots[i] = aobj->u_swslots[i];
500 
501 	free(aobj->u_swslots, M_UVMAOBJ, aobj->u_pages * sizeof(int));
502 
503 	aobj->u_swslots = new_swslots;
504 	aobj->u_pages = pages;
505 
506 	return 0;
507 }
508 
509 int
510 uao_shrink(struct uvm_object *uobj, int pages)
511 {
512 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
513 
514 	KASSERT(pages < aobj->u_pages);
515 
516 	/*
517 	 * Distinguish between three possible cases:
518 	 * 1. aobj uses hash and must be converted to array.
519 	 * 2. aobj uses array and array size needs to be adjusted.
520 	 * 3. aobj uses hash and hash size needs to be adjusted.
521 	 */
522 	if (pages > UAO_SWHASH_THRESHOLD)
523 		return uao_shrink_hash(uobj, pages);	/* case 3 */
524 	else if (aobj->u_pages > UAO_SWHASH_THRESHOLD)
525 		return uao_shrink_convert(uobj, pages);	/* case 1 */
526 	else
527 		return uao_shrink_array(uobj, pages);	/* case 2 */
528 }
529 
530 /*
531  * Grow an aobj to a given number of pages. Right now we only adjust the swap
532  * slots. We could additionally handle page allocation directly, so that they
533  * don't happen through uvm_fault(). That would allow us to use another
534  * mechanism for the swap slots other than malloc(). It is thus mandatory that
535  * the caller of these functions does not allow faults to happen in case of
536  * growth error.
537  */
538 int
539 uao_grow_array(struct uvm_object *uobj, int pages)
540 {
541 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
542 	int i, *new_swslots;
543 
544 	KASSERT(aobj->u_pages <= UAO_SWHASH_THRESHOLD);
545 
546 	new_swslots = mallocarray(pages, sizeof(int), M_UVMAOBJ,
547 	    M_WAITOK | M_CANFAIL | M_ZERO);
548 	if (new_swslots == NULL)
549 		return ENOMEM;
550 
551 	for (i = 0; i < aobj->u_pages; i++)
552 		new_swslots[i] = aobj->u_swslots[i];
553 
554 	free(aobj->u_swslots, M_UVMAOBJ, aobj->u_pages * sizeof(int));
555 
556 	aobj->u_swslots = new_swslots;
557 	aobj->u_pages = pages;
558 
559 	return 0;
560 }
561 
562 int
563 uao_grow_hash(struct uvm_object *uobj, int pages)
564 {
565 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
566 	struct uao_swhash *new_swhash;
567 	struct uao_swhash_elt *elt;
568 	unsigned long new_hashmask;
569 	int i;
570 
571 	KASSERT(pages > UAO_SWHASH_THRESHOLD);
572 
573 	/*
574 	 * If the size of the hash table doesn't change, all we need to do is
575 	 * to adjust the page count.
576 	 */
577 	if (UAO_SWHASH_BUCKETS(aobj->u_pages) == UAO_SWHASH_BUCKETS(pages)) {
578 		aobj->u_pages = pages;
579 		return 0;
580 	}
581 
582 	KASSERT(UAO_SWHASH_BUCKETS(aobj->u_pages) < UAO_SWHASH_BUCKETS(pages));
583 
584 	new_swhash = hashinit(UAO_SWHASH_BUCKETS(pages), M_UVMAOBJ,
585 	    M_WAITOK | M_CANFAIL, &new_hashmask);
586 	if (new_swhash == NULL)
587 		return ENOMEM;
588 
589 	for (i = 0; i < UAO_SWHASH_BUCKETS(aobj->u_pages); i++) {
590 		while (LIST_EMPTY(&aobj->u_swhash[i]) == 0) {
591 			elt = LIST_FIRST(&aobj->u_swhash[i]);
592 			LIST_REMOVE(elt, list);
593 			LIST_INSERT_HEAD(&new_swhash[i], elt, list);
594 		}
595 	}
596 
597 	hashfree(aobj->u_swhash, UAO_SWHASH_BUCKETS(aobj->u_pages), M_UVMAOBJ);
598 
599 	aobj->u_swhash = new_swhash;
600 	aobj->u_pages = pages;
601 	aobj->u_swhashmask = new_hashmask;
602 
603 	return 0;
604 }
605 
606 int
607 uao_grow_convert(struct uvm_object *uobj, int pages)
608 {
609 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
610 	struct uao_swhash *new_swhash;
611 	struct uao_swhash_elt *elt;
612 	unsigned long new_hashmask;
613 	int i, *old_swslots;
614 
615 	new_swhash = hashinit(UAO_SWHASH_BUCKETS(pages), M_UVMAOBJ,
616 	    M_WAITOK | M_CANFAIL, &new_hashmask);
617 	if (new_swhash == NULL)
618 		return ENOMEM;
619 
620 	/* Set these now, so we can use uao_find_swhash_elt(). */
621 	old_swslots = aobj->u_swslots;
622 	aobj->u_swhash = new_swhash;
623 	aobj->u_swhashmask = new_hashmask;
624 
625 	for (i = 0; i < aobj->u_pages; i++) {
626 		if (old_swslots[i] != 0) {
627 			elt = uao_find_swhash_elt(aobj, i, TRUE);
628 			elt->count++;
629 			UAO_SWHASH_ELT_PAGESLOT(elt, i) = old_swslots[i];
630 		}
631 	}
632 
633 	free(old_swslots, M_UVMAOBJ, aobj->u_pages * sizeof(int));
634 	aobj->u_pages = pages;
635 
636 	return 0;
637 }
638 
639 int
640 uao_grow(struct uvm_object *uobj, int pages)
641 {
642 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
643 
644 	KASSERT(pages > aobj->u_pages);
645 
646 	/*
647 	 * Distinguish between three possible cases:
648 	 * 1. aobj uses hash and hash size needs to be adjusted.
649 	 * 2. aobj uses array and array size needs to be adjusted.
650 	 * 3. aobj uses array and must be converted to hash.
651 	 */
652 	if (pages <= UAO_SWHASH_THRESHOLD)
653 		return uao_grow_array(uobj, pages);	/* case 2 */
654 	else if (aobj->u_pages > UAO_SWHASH_THRESHOLD)
655 		return uao_grow_hash(uobj, pages);	/* case 1 */
656 	else
657 		return uao_grow_convert(uobj, pages);
658 }
659 #endif /* TMPFS */
660 
661 /*
662  * uao_create: create an aobj of the given size and return its uvm_object.
663  *
664  * => for normal use, flags are zero or UAO_FLAG_CANFAIL.
665  * => for the kernel object, the flags are:
666  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
667  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
668  */
669 struct uvm_object *
670 uao_create(vsize_t size, int flags)
671 {
672 	static struct uvm_aobj kernel_object_store;
673 	static int kobj_alloced = 0;
674 	int pages = round_page(size) >> PAGE_SHIFT;
675 	int refs = UVM_OBJ_KERN;
676 	int mflags;
677 	struct uvm_aobj *aobj;
678 
679 	/*
680 	 * Allocate a new aobj, unless kernel object is requested.
681 	 */
682 	if (flags & UAO_FLAG_KERNOBJ) {
683 		if (kobj_alloced)
684 			panic("uao_create: kernel object already allocated");
685 
686 		aobj = &kernel_object_store;
687 		aobj->u_pages = pages;
688 		aobj->u_flags = UAO_FLAG_NOSWAP;
689 		kobj_alloced = UAO_FLAG_KERNOBJ;
690 	} else if (flags & UAO_FLAG_KERNSWAP) {
691 		aobj = &kernel_object_store;
692 		if (kobj_alloced != UAO_FLAG_KERNOBJ)
693 		    panic("uao_create: asked to enable swap on kernel object");
694 		kobj_alloced = UAO_FLAG_KERNSWAP;
695 	} else {
696 		aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
697 		aobj->u_pages = pages;
698 		aobj->u_flags = 0;
699 		refs = 1;
700 	}
701 
702 	/*
703 	 * allocate hash/array if necessary
704 	 */
705  	if (flags == 0 || (flags & (UAO_FLAG_KERNSWAP | UAO_FLAG_CANFAIL))) {
706 		if (flags)
707 			mflags = M_NOWAIT;
708 		else
709 			mflags = M_WAITOK;
710 
711 		/* allocate hash table or array depending on object size */
712 		if (UAO_USES_SWHASH(aobj)) {
713 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(pages),
714 			    M_UVMAOBJ, mflags, &aobj->u_swhashmask);
715 			if (aobj->u_swhash == NULL) {
716 				if (flags & UAO_FLAG_CANFAIL) {
717 					pool_put(&uvm_aobj_pool, aobj);
718 					return NULL;
719 				}
720 				panic("uao_create: hashinit swhash failed");
721 			}
722 		} else {
723 			aobj->u_swslots = mallocarray(pages, sizeof(int),
724 			    M_UVMAOBJ, mflags|M_ZERO);
725 			if (aobj->u_swslots == NULL) {
726 				if (flags & UAO_FLAG_CANFAIL) {
727 					pool_put(&uvm_aobj_pool, aobj);
728 					return NULL;
729 				}
730 				panic("uao_create: malloc swslots failed");
731 			}
732 		}
733 
734 		if (flags & UAO_FLAG_KERNSWAP) {
735 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
736 			return &aobj->u_obj;
737 			/* done! */
738 		}
739 	}
740 
741 	/*
742 	 * Initialise UVM object.
743 	 */
744 	uvm_obj_init(&aobj->u_obj, &aobj_pager, refs);
745 
746 	/*
747  	 * now that aobj is ready, add it to the global list
748  	 */
749 	mtx_enter(&uao_list_lock);
750 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
751 	mtx_leave(&uao_list_lock);
752 
753 	return &aobj->u_obj;
754 }
755 
756 
757 
758 /*
759  * uao_init: set up aobj pager subsystem
760  *
761  * => called at boot time from uvm_pager_init()
762  */
763 void
764 uao_init(void)
765 {
766 	/*
767 	 * NOTE: Pages for this pool must not come from a pageable
768 	 * kernel map!
769 	 */
770 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0,
771 	    IPL_NONE, PR_WAITOK, "uaoeltpl", NULL);
772 	pool_init(&uvm_aobj_pool, sizeof(struct uvm_aobj), 0,
773 	    IPL_NONE, PR_WAITOK, "aobjpl", NULL);
774 }
775 
776 /*
777  * uao_reference: hold a reference to an anonymous UVM object.
778  */
779 void
780 uao_reference(struct uvm_object *uobj)
781 {
782 	/* Kernel object is persistent. */
783 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
784 		return;
785 
786 	atomic_inc_int(&uobj->uo_refs);
787 }
788 
789 
790 /*
791  * uao_detach: drop a reference to an anonymous UVM object.
792  */
793 void
794 uao_detach(struct uvm_object *uobj)
795 {
796 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
797 	struct vm_page *pg;
798 
799 	/*
800 	 * Detaching from kernel_object is a NOP.
801 	 */
802 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
803 		return;
804 
805 	/*
806 	 * Drop the reference.  If it was the last one, destroy the object.
807 	 */
808 	if (atomic_dec_int_nv(&uobj->uo_refs) > 0) {
809 		return;
810 	}
811 
812 	/*
813 	 * Remove the aobj from the global list.
814 	 */
815 	mtx_enter(&uao_list_lock);
816 	LIST_REMOVE(aobj, u_list);
817 	mtx_leave(&uao_list_lock);
818 
819 	/*
820 	 * Free all the pages left in the aobj.  For each page, when the
821 	 * page is no longer busy (and thus after any disk I/O that it is
822 	 * involved in is complete), release any swap resources and free
823 	 * the page itself.
824 	 */
825 	uvm_lock_pageq();
826 	while((pg = RBT_ROOT(uvm_objtree, &uobj->memt)) != NULL) {
827 		if (pg->pg_flags & PG_BUSY) {
828 			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
829 			uvm_unlock_pageq();
830 			tsleep_nsec(pg, PVM, "uao_det", INFSLP);
831 			uvm_lock_pageq();
832 			continue;
833 		}
834 		pmap_page_protect(pg, PROT_NONE);
835 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
836 		uvm_pagefree(pg);
837 	}
838 	uvm_unlock_pageq();
839 
840 	/*
841 	 * Finally, free the anonymous UVM object itself.
842 	 */
843 	uao_free(aobj);
844 }
845 
846 /*
847  * uao_flush: flush pages out of a uvm object
848  *
849  * => if PGO_CLEANIT is not set, then we will not block.
850  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
851  *	for flushing.
852  * => NOTE: we are allowed to lock the page queues, so the caller
853  *	must not be holding the lock on them [e.g. pagedaemon had
854  *	better not call us with the queues locked]
855  * => we return TRUE unless we encountered some sort of I/O error
856  *	XXXJRT currently never happens, as we never directly initiate
857  *	XXXJRT I/O
858  */
859 boolean_t
860 uao_flush(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
861 {
862 	struct uvm_aobj *aobj = (struct uvm_aobj *) uobj;
863 	struct vm_page *pp;
864 	voff_t curoff;
865 
866 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
867 	KERNEL_ASSERT_LOCKED();
868 
869 	if (flags & PGO_ALLPAGES) {
870 		start = 0;
871 		stop = (voff_t)aobj->u_pages << PAGE_SHIFT;
872 	} else {
873 		start = trunc_page(start);
874 		stop = round_page(stop);
875 		if (stop > ((voff_t)aobj->u_pages << PAGE_SHIFT)) {
876 			printf("uao_flush: strange, got an out of range "
877 			    "flush (fixed)\n");
878 			stop = (voff_t)aobj->u_pages << PAGE_SHIFT;
879 		}
880 	}
881 
882 	/*
883 	 * Don't need to do any work here if we're not freeing
884 	 * or deactivating pages.
885 	 */
886 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0)
887 		return TRUE;
888 
889 	curoff = start;
890 	for (;;) {
891 		if (curoff < stop) {
892 			pp = uvm_pagelookup(uobj, curoff);
893 			curoff += PAGE_SIZE;
894 			if (pp == NULL)
895 				continue;
896 		} else {
897 			break;
898 		}
899 
900 		/* Make sure page is unbusy, else wait for it. */
901 		if (pp->pg_flags & PG_BUSY) {
902 			atomic_setbits_int(&pp->pg_flags, PG_WANTED);
903 			tsleep_nsec(pp, PVM, "uaoflsh", INFSLP);
904 			curoff -= PAGE_SIZE;
905 			continue;
906 		}
907 
908 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
909 		/*
910 		 * XXX In these first 3 cases, we always just
911 		 * XXX deactivate the page.  We may want to
912 		 * XXX handle the different cases more specifically
913 		 * XXX in the future.
914 		 */
915 		case PGO_CLEANIT|PGO_FREE:
916 			/* FALLTHROUGH */
917 		case PGO_CLEANIT|PGO_DEACTIVATE:
918 			/* FALLTHROUGH */
919 		case PGO_DEACTIVATE:
920  deactivate_it:
921 			if (pp->wire_count != 0)
922 				continue;
923 
924 			uvm_lock_pageq();
925 			pmap_page_protect(pp, PROT_NONE);
926 			uvm_pagedeactivate(pp);
927 			uvm_unlock_pageq();
928 
929 			continue;
930 		case PGO_FREE:
931 			/*
932 			 * If there are multiple references to
933 			 * the object, just deactivate the page.
934 			 */
935 			if (uobj->uo_refs > 1)
936 				goto deactivate_it;
937 
938 			/* XXX skip the page if it's wired */
939 			if (pp->wire_count != 0)
940 				continue;
941 
942 			/*
943 			 * free the swap slot and the page.
944 			 */
945 			pmap_page_protect(pp, PROT_NONE);
946 
947 			/*
948 			 * freeing swapslot here is not strictly necessary.
949 			 * however, leaving it here doesn't save much
950 			 * because we need to update swap accounting anyway.
951 			 */
952 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
953 			uvm_lock_pageq();
954 			uvm_pagefree(pp);
955 			uvm_unlock_pageq();
956 
957 			continue;
958 		default:
959 			panic("uao_flush: weird flags");
960 		}
961 	}
962 
963 	return TRUE;
964 }
965 
966 /*
967  * uao_get: fetch me a page
968  *
969  * we have three cases:
970  * 1: page is resident     -> just return the page.
971  * 2: page is zero-fill    -> allocate a new page and zero it.
972  * 3: page is swapped out  -> fetch the page from swap.
973  *
974  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
975  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
976  * then we will need to return VM_PAGER_UNLOCK.
977  *
978  * => flags: PGO_ALLPAGES: get all of the pages
979  *           PGO_LOCKED: fault data structures are locked
980  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
981  * => NOTE: caller must check for released pages!!
982  */
983 static int
984 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
985     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
986 {
987 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
988 	voff_t current_offset;
989 	vm_page_t ptmp;
990 	int lcv, gotpages, maxpages, swslot, rv, pageidx;
991 	boolean_t done;
992 
993 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
994 	KERNEL_ASSERT_LOCKED();
995 
996 	/*
997  	 * get number of pages
998  	 */
999 	maxpages = *npagesp;
1000 
1001 	if (flags & PGO_LOCKED) {
1002 		/*
1003  		 * step 1a: get pages that are already resident.   only do
1004 		 * this if the data structures are locked (i.e. the first
1005 		 * time through).
1006  		 */
1007 
1008 		done = TRUE;	/* be optimistic */
1009 		gotpages = 0;	/* # of pages we got so far */
1010 
1011 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1012 		    lcv++, current_offset += PAGE_SIZE) {
1013 			/* do we care about this page?  if not, skip it */
1014 			if (pps[lcv] == PGO_DONTCARE)
1015 				continue;
1016 
1017 			ptmp = uvm_pagelookup(uobj, current_offset);
1018 
1019 			/*
1020  			 * if page is new, attempt to allocate the page,
1021 			 * zero-fill'd.
1022  			 */
1023 			if (ptmp == NULL && uao_find_swslot(uobj,
1024 			    current_offset >> PAGE_SHIFT) == 0) {
1025 				ptmp = uvm_pagealloc(uobj, current_offset,
1026 				    NULL, UVM_PGA_ZERO);
1027 				if (ptmp) {
1028 					/* new page */
1029 					atomic_clearbits_int(&ptmp->pg_flags,
1030 					    PG_BUSY|PG_FAKE);
1031 					atomic_setbits_int(&ptmp->pg_flags,
1032 					    PQ_AOBJ);
1033 					UVM_PAGE_OWN(ptmp, NULL);
1034 				}
1035 			}
1036 
1037 			/*
1038 			 * to be useful must get a non-busy page
1039 			 */
1040 			if (ptmp == NULL ||
1041 			    (ptmp->pg_flags & PG_BUSY) != 0) {
1042 				if (lcv == centeridx ||
1043 				    (flags & PGO_ALLPAGES) != 0)
1044 					/* need to do a wait or I/O! */
1045 					done = FALSE;
1046 				continue;
1047 			}
1048 
1049 			/*
1050 			 * useful page: plug it in our result array
1051 			 */
1052 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
1053 			UVM_PAGE_OWN(ptmp, "uao_get1");
1054 			pps[lcv] = ptmp;
1055 			gotpages++;
1056 
1057 		}
1058 
1059 		/*
1060  		 * step 1b: now we've either done everything needed or we
1061 		 * to unlock and do some waiting or I/O.
1062  		 */
1063 		*npagesp = gotpages;
1064 		if (done)
1065 			/* bingo! */
1066 			return VM_PAGER_OK;
1067 		else
1068 			/* EEK!   Need to unlock and I/O */
1069 			return VM_PAGER_UNLOCK;
1070 	}
1071 
1072 	/*
1073  	 * step 2: get non-resident or busy pages.
1074  	 * data structures are unlocked.
1075  	 */
1076 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1077 	    lcv++, current_offset += PAGE_SIZE) {
1078 		/*
1079 		 * - skip over pages we've already gotten or don't want
1080 		 * - skip over pages we don't _have_ to get
1081 		 */
1082 		if (pps[lcv] != NULL ||
1083 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1084 			continue;
1085 
1086 		pageidx = current_offset >> PAGE_SHIFT;
1087 
1088 		/*
1089  		 * we have yet to locate the current page (pps[lcv]).   we
1090 		 * first look for a page that is already at the current offset.
1091 		 * if we find a page, we check to see if it is busy or
1092 		 * released.  if that is the case, then we sleep on the page
1093 		 * until it is no longer busy or released and repeat the lookup.
1094 		 * if the page we found is neither busy nor released, then we
1095 		 * busy it (so we own it) and plug it into pps[lcv].   this
1096 		 * 'break's the following while loop and indicates we are
1097 		 * ready to move on to the next page in the "lcv" loop above.
1098  		 *
1099  		 * if we exit the while loop with pps[lcv] still set to NULL,
1100 		 * then it means that we allocated a new busy/fake/clean page
1101 		 * ptmp in the object and we need to do I/O to fill in the data.
1102  		 */
1103 
1104 		/* top of "pps" while loop */
1105 		while (pps[lcv] == NULL) {
1106 			/* look for a resident page */
1107 			ptmp = uvm_pagelookup(uobj, current_offset);
1108 
1109 			/* not resident?   allocate one now (if we can) */
1110 			if (ptmp == NULL) {
1111 
1112 				ptmp = uvm_pagealloc(uobj, current_offset,
1113 				    NULL, 0);
1114 
1115 				/* out of RAM? */
1116 				if (ptmp == NULL) {
1117 					uvm_wait("uao_getpage");
1118 					continue;
1119 				}
1120 
1121 				/*
1122 				 * safe with PQ's unlocked: because we just
1123 				 * alloc'd the page
1124 				 */
1125 				atomic_setbits_int(&ptmp->pg_flags, PQ_AOBJ);
1126 
1127 				/*
1128 				 * got new page ready for I/O.  break pps while
1129 				 * loop.  pps[lcv] is still NULL.
1130 				 */
1131 				break;
1132 			}
1133 
1134 			/* page is there, see if we need to wait on it */
1135 			if ((ptmp->pg_flags & PG_BUSY) != 0) {
1136 				atomic_setbits_int(&ptmp->pg_flags, PG_WANTED);
1137 				tsleep_nsec(ptmp, PVM, "uao_get", INFSLP);
1138 				continue;	/* goto top of pps while loop */
1139 			}
1140 
1141 			/*
1142  			 * if we get here then the page is resident and
1143 			 * unbusy.  we busy it now (so we own it).
1144  			 */
1145 			/* we own it, caller must un-busy */
1146 			atomic_setbits_int(&ptmp->pg_flags, PG_BUSY);
1147 			UVM_PAGE_OWN(ptmp, "uao_get2");
1148 			pps[lcv] = ptmp;
1149 		}
1150 
1151 		/*
1152  		 * if we own the valid page at the correct offset, pps[lcv] will
1153  		 * point to it.   nothing more to do except go to the next page.
1154  		 */
1155 		if (pps[lcv])
1156 			continue;			/* next lcv */
1157 
1158 		/*
1159  		 * we have a "fake/busy/clean" page that we just allocated.
1160  		 * do the needed "i/o", either reading from swap or zeroing.
1161  		 */
1162 		swslot = uao_find_swslot(uobj, pageidx);
1163 
1164 		/* just zero the page if there's nothing in swap.  */
1165 		if (swslot == 0) {
1166 			/* page hasn't existed before, just zero it. */
1167 			uvm_pagezero(ptmp);
1168 		} else {
1169 			/*
1170 			 * page in the swapped-out page.
1171 			 */
1172 			rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1173 
1174 			/*
1175 			 * I/O done.  check for errors.
1176 			 */
1177 			if (rv != VM_PAGER_OK) {
1178 				/*
1179 				 * remove the swap slot from the aobj
1180 				 * and mark the aobj as having no real slot.
1181 				 * don't free the swap slot, thus preventing
1182 				 * it from being used again.
1183 				 */
1184 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1185 							SWSLOT_BAD);
1186 				uvm_swap_markbad(swslot, 1);
1187 
1188 				if (ptmp->pg_flags & PG_WANTED)
1189 					wakeup(ptmp);
1190 				atomic_clearbits_int(&ptmp->pg_flags,
1191 				    PG_WANTED|PG_BUSY);
1192 				UVM_PAGE_OWN(ptmp, NULL);
1193 				uvm_lock_pageq();
1194 				uvm_pagefree(ptmp);
1195 				uvm_unlock_pageq();
1196 
1197 				return rv;
1198 			}
1199 		}
1200 
1201 		/*
1202  		 * we got the page!   clear the fake flag (indicates valid
1203 		 * data now in page) and plug into our result array.   note
1204 		 * that page is still busy.
1205  		 *
1206  		 * it is the callers job to:
1207  		 * => check if the page is released
1208  		 * => unbusy the page
1209  		 * => activate the page
1210  		 */
1211 		atomic_clearbits_int(&ptmp->pg_flags, PG_FAKE);
1212 		pmap_clear_modify(ptmp);		/* ... and clean */
1213 		pps[lcv] = ptmp;
1214 
1215 	}	/* lcv loop */
1216 
1217 	return VM_PAGER_OK;
1218 }
1219 
1220 /*
1221  * uao_dropswap:  release any swap resources from this aobj page.
1222  */
1223 int
1224 uao_dropswap(struct uvm_object *uobj, int pageidx)
1225 {
1226 	int slot;
1227 
1228 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
1229 
1230 	slot = uao_set_swslot(uobj, pageidx, 0);
1231 	if (slot) {
1232 		uvm_swap_free(slot, 1);
1233 	}
1234 	return slot;
1235 }
1236 
1237 /*
1238  * page in every page in every aobj that is paged-out to a range of swslots.
1239  *
1240  * => returns TRUE if pagein was aborted due to lack of memory.
1241  */
1242 boolean_t
1243 uao_swap_off(int startslot, int endslot)
1244 {
1245 	struct uvm_aobj *aobj;
1246 
1247 	/*
1248 	 * Walk the list of all anonymous UVM objects.  Grab the first.
1249 	 */
1250 	mtx_enter(&uao_list_lock);
1251 	if ((aobj = LIST_FIRST(&uao_list)) == NULL) {
1252 		mtx_leave(&uao_list_lock);
1253 		return FALSE;
1254 	}
1255 	uao_reference(&aobj->u_obj);
1256 
1257 	do {
1258 		struct uvm_aobj *nextaobj;
1259 		boolean_t rv;
1260 
1261 		/*
1262 		 * Prefetch the next object and immediately hold a reference
1263 		 * on it, so neither the current nor the next entry could
1264 		 * disappear while we are iterating.
1265 		 */
1266 		if ((nextaobj = LIST_NEXT(aobj, u_list)) != NULL) {
1267 			uao_reference(&nextaobj->u_obj);
1268 		}
1269 		mtx_leave(&uao_list_lock);
1270 
1271 		/*
1272 		 * Page in all pages in the swap slot range.
1273 		 */
1274 		rv = uao_pagein(aobj, startslot, endslot);
1275 
1276 		/* Drop the reference of the current object. */
1277 		uao_detach(&aobj->u_obj);
1278 		if (rv) {
1279 			if (nextaobj) {
1280 				uao_detach(&nextaobj->u_obj);
1281 			}
1282 			return rv;
1283 		}
1284 
1285 		aobj = nextaobj;
1286 		mtx_enter(&uao_list_lock);
1287 	} while (aobj);
1288 
1289 	/*
1290 	 * done with traversal, unlock the list
1291 	 */
1292 	mtx_leave(&uao_list_lock);
1293 	return FALSE;
1294 }
1295 
1296 /*
1297  * page in any pages from aobj in the given range.
1298  *
1299  * => returns TRUE if pagein was aborted due to lack of memory.
1300  */
1301 static boolean_t
1302 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1303 {
1304 	boolean_t rv;
1305 
1306 	if (UAO_USES_SWHASH(aobj)) {
1307 		struct uao_swhash_elt *elt;
1308 		int bucket;
1309 
1310 restart:
1311 		for (bucket = aobj->u_swhashmask; bucket >= 0; bucket--) {
1312 			for (elt = LIST_FIRST(&aobj->u_swhash[bucket]);
1313 			     elt != NULL;
1314 			     elt = LIST_NEXT(elt, list)) {
1315 				int i;
1316 
1317 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1318 					int slot = elt->slots[i];
1319 
1320 					/*
1321 					 * if the slot isn't in range, skip it.
1322 					 */
1323 					if (slot < startslot ||
1324 					    slot >= endslot) {
1325 						continue;
1326 					}
1327 
1328 					/*
1329 					 * process the page,
1330 					 * the start over on this object
1331 					 * since the swhash elt
1332 					 * may have been freed.
1333 					 */
1334 					rv = uao_pagein_page(aobj,
1335 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1336 					if (rv) {
1337 						return rv;
1338 					}
1339 					goto restart;
1340 				}
1341 			}
1342 		}
1343 	} else {
1344 		int i;
1345 
1346 		for (i = 0; i < aobj->u_pages; i++) {
1347 			int slot = aobj->u_swslots[i];
1348 
1349 			/*
1350 			 * if the slot isn't in range, skip it
1351 			 */
1352 			if (slot < startslot || slot >= endslot) {
1353 				continue;
1354 			}
1355 
1356 			/*
1357 			 * process the page.
1358 			 */
1359 			rv = uao_pagein_page(aobj, i);
1360 			if (rv) {
1361 				return rv;
1362 			}
1363 		}
1364 	}
1365 
1366 	return FALSE;
1367 }
1368 
1369 /*
1370  * uao_pagein_page: page in a single page from an anonymous UVM object.
1371  *
1372  * => Returns TRUE if pagein was aborted due to lack of memory.
1373  */
1374 static boolean_t
1375 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1376 {
1377 	struct vm_page *pg;
1378 	int rv, slot, npages;
1379 
1380 	pg = NULL;
1381 	npages = 1;
1382 	rv = uao_get(&aobj->u_obj, (voff_t)pageidx << PAGE_SHIFT,
1383 	    &pg, &npages, 0, PROT_READ | PROT_WRITE, 0, 0);
1384 
1385 	switch (rv) {
1386 	case VM_PAGER_OK:
1387 		break;
1388 
1389 	case VM_PAGER_ERROR:
1390 	case VM_PAGER_REFAULT:
1391 		/*
1392 		 * nothing more to do on errors.
1393 		 * VM_PAGER_REFAULT can only mean that the anon was freed,
1394 		 * so again there's nothing to do.
1395 		 */
1396 		return FALSE;
1397 	}
1398 
1399 	/*
1400 	 * ok, we've got the page now.
1401 	 * mark it as dirty, clear its swslot and un-busy it.
1402 	 */
1403 	slot = uao_set_swslot(&aobj->u_obj, pageidx, 0);
1404 	uvm_swap_free(slot, 1);
1405 	atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_CLEAN|PG_FAKE);
1406 	UVM_PAGE_OWN(pg, NULL);
1407 
1408 	/*
1409 	 * deactivate the page (to put it on a page queue).
1410 	 */
1411 	pmap_clear_reference(pg);
1412 	uvm_lock_pageq();
1413 	uvm_pagedeactivate(pg);
1414 	uvm_unlock_pageq();
1415 
1416 	return FALSE;
1417 }
1418 
1419 /*
1420  * uao_dropswap_range: drop swapslots in the range.
1421  *
1422  * => aobj must be locked and is returned locked.
1423  * => start is inclusive.  end is exclusive.
1424  */
1425 void
1426 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1427 {
1428 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1429 	int swpgonlydelta = 0;
1430 
1431 	KASSERT(UVM_OBJ_IS_AOBJ(uobj));
1432 	/* KASSERT(mutex_owned(uobj->vmobjlock)); */
1433 
1434 	if (end == 0) {
1435 		end = INT64_MAX;
1436 	}
1437 
1438 	if (UAO_USES_SWHASH(aobj)) {
1439 		int i, hashbuckets = aobj->u_swhashmask + 1;
1440 		voff_t taghi;
1441 		voff_t taglo;
1442 
1443 		taglo = UAO_SWHASH_ELT_TAG(start);
1444 		taghi = UAO_SWHASH_ELT_TAG(end);
1445 
1446 		for (i = 0; i < hashbuckets; i++) {
1447 			struct uao_swhash_elt *elt, *next;
1448 
1449 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1450 			     elt != NULL;
1451 			     elt = next) {
1452 				int startidx, endidx;
1453 				int j;
1454 
1455 				next = LIST_NEXT(elt, list);
1456 
1457 				if (elt->tag < taglo || taghi < elt->tag) {
1458 					continue;
1459 				}
1460 
1461 				if (elt->tag == taglo) {
1462 					startidx =
1463 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1464 				} else {
1465 					startidx = 0;
1466 				}
1467 
1468 				if (elt->tag == taghi) {
1469 					endidx =
1470 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1471 				} else {
1472 					endidx = UAO_SWHASH_CLUSTER_SIZE;
1473 				}
1474 
1475 				for (j = startidx; j < endidx; j++) {
1476 					int slot = elt->slots[j];
1477 
1478 					KASSERT(uvm_pagelookup(&aobj->u_obj,
1479 					    (voff_t)(UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1480 					    + j) << PAGE_SHIFT) == NULL);
1481 
1482 					if (slot > 0) {
1483 						uvm_swap_free(slot, 1);
1484 						swpgonlydelta++;
1485 						KASSERT(elt->count > 0);
1486 						elt->slots[j] = 0;
1487 						elt->count--;
1488 					}
1489 				}
1490 
1491 				if (elt->count == 0) {
1492 					LIST_REMOVE(elt, list);
1493 					pool_put(&uao_swhash_elt_pool, elt);
1494 				}
1495 			}
1496 		}
1497 	} else {
1498 		int i;
1499 
1500 		if (aobj->u_pages < end) {
1501 			end = aobj->u_pages;
1502 		}
1503 		for (i = start; i < end; i++) {
1504 			int slot = aobj->u_swslots[i];
1505 
1506 			if (slot > 0) {
1507 				uvm_swap_free(slot, 1);
1508 				swpgonlydelta++;
1509 			}
1510 		}
1511 	}
1512 
1513 	/*
1514 	 * adjust the counter of pages only in swap for all
1515 	 * the swap slots we've freed.
1516 	 */
1517 	if (swpgonlydelta > 0) {
1518 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1519 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
1520 	}
1521 }
1522