1 /* $OpenBSD: ffs_alloc.c,v 1.108 2016/05/23 20:47:49 tb Exp $ */ 2 /* $NetBSD: ffs_alloc.c,v 1.11 1996/05/11 18:27:09 mycroft Exp $ */ 3 4 /* 5 * Copyright (c) 2002 Networks Associates Technology, Inc. 6 * All rights reserved. 7 * 8 * This software was developed for the FreeBSD Project by Marshall 9 * Kirk McKusick and Network Associates Laboratories, the Security 10 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 11 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 12 * research program. 13 * 14 * Copyright (c) 1982, 1986, 1989, 1993 15 * The Regents of the University of California. All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions 19 * are met: 20 * 1. Redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer. 22 * 2. Redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution. 25 * 3. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * @(#)ffs_alloc.c 8.11 (Berkeley) 10/27/94 42 */ 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/buf.h> 47 #include <sys/vnode.h> 48 #include <sys/mount.h> 49 #include <sys/syslog.h> 50 #include <sys/stdint.h> 51 #include <sys/time.h> 52 53 #include <ufs/ufs/quota.h> 54 #include <ufs/ufs/inode.h> 55 #include <ufs/ufs/ufsmount.h> 56 #include <ufs/ufs/ufs_extern.h> 57 58 #include <ufs/ffs/fs.h> 59 #include <ufs/ffs/ffs_extern.h> 60 61 #define ffs_fserr(fs, uid, cp) do { \ 62 log(LOG_ERR, "uid %u on %s: %s\n", (uid), \ 63 (fs)->fs_fsmnt, (cp)); \ 64 } while (0) 65 66 daddr_t ffs_alloccg(struct inode *, int, daddr_t, int); 67 struct buf * ffs_cgread(struct fs *, struct inode *, int); 68 daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t); 69 ufsino_t ffs_dirpref(struct inode *); 70 daddr_t ffs_fragextend(struct inode *, int, daddr_t, int, int); 71 daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int, 72 daddr_t (*)(struct inode *, int, daddr_t, int)); 73 daddr_t ffs_nodealloccg(struct inode *, int, daddr_t, int); 74 daddr_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int); 75 76 static const struct timeval fserr_interval = { 2, 0 }; 77 78 79 /* 80 * Allocate a block in the file system. 81 * 82 * The size of the requested block is given, which must be some 83 * multiple of fs_fsize and <= fs_bsize. 84 * A preference may be optionally specified. If a preference is given 85 * the following hierarchy is used to allocate a block: 86 * 1) allocate the requested block. 87 * 2) allocate a rotationally optimal block in the same cylinder. 88 * 3) allocate a block in the same cylinder group. 89 * 4) quadratically rehash into other cylinder groups, until an 90 * available block is located. 91 * If no block preference is given the following hierarchy is used 92 * to allocate a block: 93 * 1) allocate a block in the cylinder group that contains the 94 * inode for the file. 95 * 2) quadratically rehash into other cylinder groups, until an 96 * available block is located. 97 */ 98 int 99 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size, 100 struct ucred *cred, daddr_t *bnp) 101 { 102 static struct timeval fsfull_last; 103 struct fs *fs; 104 daddr_t bno; 105 int cg; 106 int error; 107 108 *bnp = 0; 109 fs = ip->i_fs; 110 #ifdef DIAGNOSTIC 111 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 112 printf("dev = 0x%x, bsize = %d, size = %d, fs = %s\n", 113 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 114 panic("ffs_alloc: bad size"); 115 } 116 if (cred == NOCRED) 117 panic("ffs_alloc: missing credential"); 118 #endif /* DIAGNOSTIC */ 119 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 120 goto nospace; 121 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 122 goto nospace; 123 124 if ((error = ufs_quota_alloc_blocks(ip, btodb(size), cred)) != 0) 125 return (error); 126 127 /* 128 * Start allocation in the preferred block's cylinder group or 129 * the file's inode's cylinder group if no preferred block was 130 * specified. 131 */ 132 if (bpref >= fs->fs_size) 133 bpref = 0; 134 if (bpref == 0) 135 cg = ino_to_cg(fs, ip->i_number); 136 else 137 cg = dtog(fs, bpref); 138 139 /* Try allocating a block. */ 140 bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg); 141 if (bno > 0) { 142 /* allocation successful, update inode data */ 143 DIP_ADD(ip, blocks, btodb(size)); 144 ip->i_flag |= IN_CHANGE | IN_UPDATE; 145 *bnp = bno; 146 return (0); 147 } 148 149 /* Restore user's disk quota because allocation failed. */ 150 (void) ufs_quota_free_blocks(ip, btodb(size), cred); 151 152 nospace: 153 if (ratecheck(&fsfull_last, &fserr_interval)) { 154 ffs_fserr(fs, cred->cr_uid, "file system full"); 155 uprintf("\n%s: write failed, file system is full\n", 156 fs->fs_fsmnt); 157 } 158 return (ENOSPC); 159 } 160 161 /* 162 * Reallocate a fragment to a bigger size 163 * 164 * The number and size of the old block is given, and a preference 165 * and new size is also specified. The allocator attempts to extend 166 * the original block. Failing that, the regular block allocator is 167 * invoked to get an appropriate block. 168 */ 169 int 170 ffs_realloccg(struct inode *ip, daddr_t lbprev, daddr_t bpref, int osize, 171 int nsize, struct ucred *cred, struct buf **bpp, daddr_t *blknop) 172 { 173 static struct timeval fsfull_last; 174 struct fs *fs; 175 struct buf *bp = NULL; 176 daddr_t quota_updated = 0; 177 int cg, request, error; 178 daddr_t bprev, bno; 179 180 if (bpp != NULL) 181 *bpp = NULL; 182 fs = ip->i_fs; 183 #ifdef DIAGNOSTIC 184 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 185 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 186 printf( 187 "dev = 0x%x, bsize = %d, osize = %d, nsize = %d, fs = %s\n", 188 ip->i_dev, fs->fs_bsize, osize, nsize, fs->fs_fsmnt); 189 panic("ffs_realloccg: bad size"); 190 } 191 if (cred == NOCRED) 192 panic("ffs_realloccg: missing credential"); 193 #endif /* DIAGNOSTIC */ 194 if (cred->cr_uid != 0 && freespace(fs, fs->fs_minfree) <= 0) 195 goto nospace; 196 197 bprev = DIP(ip, db[lbprev]); 198 199 if (bprev == 0) { 200 printf("dev = 0x%x, bsize = %d, bprev = %lld, fs = %s\n", 201 ip->i_dev, fs->fs_bsize, (long long)bprev, fs->fs_fsmnt); 202 panic("ffs_realloccg: bad bprev"); 203 } 204 205 /* 206 * Allocate the extra space in the buffer. 207 */ 208 if (bpp != NULL) { 209 if ((error = bread(ITOV(ip), lbprev, fs->fs_bsize, &bp)) != 0) 210 goto error; 211 buf_adjcnt(bp, osize); 212 } 213 214 if ((error = ufs_quota_alloc_blocks(ip, btodb(nsize - osize), cred)) 215 != 0) 216 goto error; 217 218 quota_updated = btodb(nsize - osize); 219 220 /* 221 * Check for extension in the existing location. 222 */ 223 cg = dtog(fs, bprev); 224 if ((bno = ffs_fragextend(ip, cg, bprev, osize, nsize)) != 0) { 225 DIP_ADD(ip, blocks, btodb(nsize - osize)); 226 ip->i_flag |= IN_CHANGE | IN_UPDATE; 227 if (bpp != NULL) { 228 if (bp->b_blkno != fsbtodb(fs, bno)) 229 panic("ffs_realloccg: bad blockno"); 230 #ifdef DIAGNOSTIC 231 if (nsize > bp->b_bufsize) 232 panic("ffs_realloccg: small buf"); 233 #endif 234 buf_adjcnt(bp, nsize); 235 bp->b_flags |= B_DONE; 236 memset(bp->b_data + osize, 0, nsize - osize); 237 *bpp = bp; 238 } 239 if (blknop != NULL) { 240 *blknop = bno; 241 } 242 return (0); 243 } 244 /* 245 * Allocate a new disk location. 246 */ 247 if (bpref >= fs->fs_size) 248 bpref = 0; 249 switch (fs->fs_optim) { 250 case FS_OPTSPACE: 251 /* 252 * Allocate an exact sized fragment. Although this makes 253 * best use of space, we will waste time relocating it if 254 * the file continues to grow. If the fragmentation is 255 * less than half of the minimum free reserve, we choose 256 * to begin optimizing for time. 257 */ 258 request = nsize; 259 if (fs->fs_minfree < 5 || 260 fs->fs_cstotal.cs_nffree > 261 fs->fs_dsize * fs->fs_minfree / (2 * 100)) 262 break; 263 fs->fs_optim = FS_OPTTIME; 264 break; 265 case FS_OPTTIME: 266 /* 267 * At this point we have discovered a file that is trying to 268 * grow a small fragment to a larger fragment. To save time, 269 * we allocate a full sized block, then free the unused portion. 270 * If the file continues to grow, the `ffs_fragextend' call 271 * above will be able to grow it in place without further 272 * copying. If aberrant programs cause disk fragmentation to 273 * grow within 2% of the free reserve, we choose to begin 274 * optimizing for space. 275 */ 276 request = fs->fs_bsize; 277 if (fs->fs_cstotal.cs_nffree < 278 fs->fs_dsize * (fs->fs_minfree - 2) / 100) 279 break; 280 fs->fs_optim = FS_OPTSPACE; 281 break; 282 default: 283 printf("dev = 0x%x, optim = %d, fs = %s\n", 284 ip->i_dev, fs->fs_optim, fs->fs_fsmnt); 285 panic("ffs_realloccg: bad optim"); 286 /* NOTREACHED */ 287 } 288 bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg); 289 if (bno <= 0) 290 goto nospace; 291 292 (void) uvm_vnp_uncache(ITOV(ip)); 293 if (!DOINGSOFTDEP(ITOV(ip))) 294 ffs_blkfree(ip, bprev, (long)osize); 295 if (nsize < request) 296 ffs_blkfree(ip, bno + numfrags(fs, nsize), 297 (long)(request - nsize)); 298 DIP_ADD(ip, blocks, btodb(nsize - osize)); 299 ip->i_flag |= IN_CHANGE | IN_UPDATE; 300 if (bpp != NULL) { 301 bp->b_blkno = fsbtodb(fs, bno); 302 #ifdef DIAGNOSTIC 303 if (nsize > bp->b_bufsize) 304 panic("ffs_realloccg: small buf 2"); 305 #endif 306 buf_adjcnt(bp, nsize); 307 bp->b_flags |= B_DONE; 308 memset(bp->b_data + osize, 0, nsize - osize); 309 *bpp = bp; 310 } 311 if (blknop != NULL) { 312 *blknop = bno; 313 } 314 return (0); 315 316 nospace: 317 if (ratecheck(&fsfull_last, &fserr_interval)) { 318 ffs_fserr(fs, cred->cr_uid, "file system full"); 319 uprintf("\n%s: write failed, file system is full\n", 320 fs->fs_fsmnt); 321 } 322 error = ENOSPC; 323 324 error: 325 if (bp != NULL) { 326 brelse(bp); 327 bp = NULL; 328 } 329 330 /* 331 * Restore user's disk quota because allocation failed. 332 */ 333 if (quota_updated != 0) 334 (void)ufs_quota_free_blocks(ip, quota_updated, cred); 335 336 return error; 337 } 338 339 /* 340 * Allocate an inode in the file system. 341 * 342 * If allocating a directory, use ffs_dirpref to select the inode. 343 * If allocating in a directory, the following hierarchy is followed: 344 * 1) allocate the preferred inode. 345 * 2) allocate an inode in the same cylinder group. 346 * 3) quadratically rehash into other cylinder groups, until an 347 * available inode is located. 348 * If no inode preference is given the following hierarchy is used 349 * to allocate an inode: 350 * 1) allocate an inode in cylinder group 0. 351 * 2) quadratically rehash into other cylinder groups, until an 352 * available inode is located. 353 */ 354 int 355 ffs_inode_alloc(struct inode *pip, mode_t mode, struct ucred *cred, 356 struct vnode **vpp) 357 { 358 static struct timeval fsnoinodes_last; 359 struct vnode *pvp = ITOV(pip); 360 struct fs *fs; 361 struct inode *ip; 362 ufsino_t ino, ipref; 363 int cg, error; 364 365 *vpp = NULL; 366 fs = pip->i_fs; 367 if (fs->fs_cstotal.cs_nifree == 0) 368 goto noinodes; 369 370 if ((mode & IFMT) == IFDIR) 371 ipref = ffs_dirpref(pip); 372 else 373 ipref = pip->i_number; 374 if (ipref >= fs->fs_ncg * fs->fs_ipg) 375 ipref = 0; 376 cg = ino_to_cg(fs, ipref); 377 378 /* 379 * Track number of dirs created one after another 380 * in a same cg without intervening by files. 381 */ 382 if ((mode & IFMT) == IFDIR) { 383 if (fs->fs_contigdirs[cg] < 255) 384 fs->fs_contigdirs[cg]++; 385 } else { 386 if (fs->fs_contigdirs[cg] > 0) 387 fs->fs_contigdirs[cg]--; 388 } 389 ino = (ufsino_t)ffs_hashalloc(pip, cg, ipref, mode, ffs_nodealloccg); 390 if (ino == 0) 391 goto noinodes; 392 error = VFS_VGET(pvp->v_mount, ino, vpp); 393 if (error) { 394 ffs_inode_free(pip, ino, mode); 395 return (error); 396 } 397 398 ip = VTOI(*vpp); 399 400 if (DIP(ip, mode)) { 401 printf("mode = 0%o, inum = %u, fs = %s\n", 402 DIP(ip, mode), ip->i_number, fs->fs_fsmnt); 403 panic("ffs_valloc: dup alloc"); 404 } 405 406 if (DIP(ip, blocks)) { 407 printf("free inode %s/%d had %lld blocks\n", 408 fs->fs_fsmnt, ino, (long long)DIP(ip, blocks)); 409 DIP_ASSIGN(ip, blocks, 0); 410 } 411 412 DIP_ASSIGN(ip, flags, 0); 413 414 /* 415 * Set up a new generation number for this inode. 416 * XXX - just increment for now, this is wrong! (millert) 417 * Need a way to preserve randomization. 418 */ 419 if (DIP(ip, gen) != 0) 420 DIP_ADD(ip, gen, 1); 421 if (DIP(ip, gen) == 0) 422 DIP_ASSIGN(ip, gen, arc4random() & INT_MAX); 423 424 if (DIP(ip, gen) == 0 || DIP(ip, gen) == -1) 425 DIP_ASSIGN(ip, gen, 1); /* Shouldn't happen */ 426 427 return (0); 428 429 noinodes: 430 if (ratecheck(&fsnoinodes_last, &fserr_interval)) { 431 ffs_fserr(fs, cred->cr_uid, "out of inodes"); 432 uprintf("\n%s: create/symlink failed, no inodes free\n", 433 fs->fs_fsmnt); 434 } 435 return (ENOSPC); 436 } 437 438 /* 439 * Find a cylinder group to place a directory. 440 * 441 * The policy implemented by this algorithm is to allocate a 442 * directory inode in the same cylinder group as its parent 443 * directory, but also to reserve space for its files inodes 444 * and data. Restrict the number of directories which may be 445 * allocated one after another in the same cylinder group 446 * without intervening allocation of files. 447 * 448 * If we allocate a first level directory then force allocation 449 * in another cylinder group. 450 */ 451 ufsino_t 452 ffs_dirpref(struct inode *pip) 453 { 454 struct fs *fs; 455 int cg, prefcg, dirsize, cgsize; 456 int avgifree, avgbfree, avgndir, curdirsize; 457 int minifree, minbfree, maxndir; 458 int mincg, minndir; 459 int maxcontigdirs; 460 461 fs = pip->i_fs; 462 463 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 464 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 465 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 466 467 /* 468 * Force allocation in another cg if creating a first level dir. 469 */ 470 if (ITOV(pip)->v_flag & VROOT) { 471 prefcg = arc4random_uniform(fs->fs_ncg); 472 mincg = prefcg; 473 minndir = fs->fs_ipg; 474 for (cg = prefcg; cg < fs->fs_ncg; cg++) 475 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 476 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 477 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 478 mincg = cg; 479 minndir = fs->fs_cs(fs, cg).cs_ndir; 480 } 481 for (cg = 0; cg < prefcg; cg++) 482 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 483 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 484 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 485 mincg = cg; 486 minndir = fs->fs_cs(fs, cg).cs_ndir; 487 } 488 cg = mincg; 489 goto end; 490 } else 491 prefcg = ino_to_cg(fs, pip->i_number); 492 493 /* 494 * Count various limits which used for 495 * optimal allocation of a directory inode. 496 */ 497 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 498 minifree = avgifree - (avgifree / 4); 499 if (minifree < 1) 500 minifree = 1; 501 minbfree = avgbfree - (avgbfree / 4); 502 if (minbfree < 1) 503 minbfree = 1; 504 505 cgsize = fs->fs_fsize * fs->fs_fpg; 506 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 507 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 508 if (dirsize < curdirsize) 509 dirsize = curdirsize; 510 if (dirsize <= 0) 511 maxcontigdirs = 0; /* dirsize overflowed */ 512 else 513 maxcontigdirs = min(avgbfree * fs->fs_bsize / dirsize, 255); 514 if (fs->fs_avgfpdir > 0) 515 maxcontigdirs = min(maxcontigdirs, 516 fs->fs_ipg / fs->fs_avgfpdir); 517 if (maxcontigdirs == 0) 518 maxcontigdirs = 1; 519 520 /* 521 * Limit number of dirs in one cg and reserve space for 522 * regular files, but only if we have no deficit in 523 * inodes or space. 524 * 525 * We are trying to find a suitable cylinder group nearby 526 * our preferred cylinder group to place a new directory. 527 * We scan from our preferred cylinder group forward looking 528 * for a cylinder group that meets our criterion. If we get 529 * to the final cylinder group and do not find anything, 530 * we start scanning backwards from our preferred cylinder 531 * group. The ideal would be to alternate looking forward 532 * and backward, but tha tis just too complex to code for 533 * the gain it would get. The most likely place where the 534 * backward scan would take effect is when we start near 535 * the end of the filesystem and do not find anything from 536 * where we are to the end. In that case, scanning backward 537 * will likely find us a suitable cylinder group much closer 538 * to our desired location than if we were to start scanning 539 * forward from the beginning for the filesystem. 540 */ 541 for (cg = prefcg; cg < fs->fs_ncg; cg++) 542 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 543 fs->fs_cs(fs, cg).cs_nifree >= minifree && 544 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 545 if (fs->fs_contigdirs[cg] < maxcontigdirs) 546 goto end; 547 } 548 for (cg = prefcg - 1; cg >= 0; cg--) 549 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 550 fs->fs_cs(fs, cg).cs_nifree >= minifree && 551 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 552 if (fs->fs_contigdirs[cg] < maxcontigdirs) 553 goto end; 554 } 555 /* 556 * This is a backstop when we have deficit in space. 557 */ 558 for (cg = prefcg; cg < fs->fs_ncg; cg++) 559 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 560 goto end; 561 for (cg = prefcg - 1; cg >= 0; cg--) 562 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 563 goto end; 564 end: 565 return ((ufsino_t)(fs->fs_ipg * cg)); 566 } 567 568 /* 569 * Select the desired position for the next block in a file. The file is 570 * logically divided into sections. The first section is composed of the 571 * direct blocks. Each additional section contains fs_maxbpg blocks. 572 * 573 * If no blocks have been allocated in the first section, the policy is to 574 * request a block in the same cylinder group as the inode that describes 575 * the file. The first indirect is allocated immediately following the last 576 * direct block and the data blocks for the first indirect immediately 577 * follow it. 578 * 579 * If no blocks have been allocated in any other section, the indirect 580 * block(s) are allocated in the same cylinder group as its inode in an 581 * area reserved immediately following the inode blocks. The policy for 582 * the data blocks is to place them in a cylinder group with a greater than 583 * average number of free blocks. An appropriate cylinder group is found 584 * by using a rotor that sweeps the cylinder groups. When a new group of 585 * blocks is needed, the sweep begins in the cylinder group following the 586 * cylinder group from which the previous allocation was made. The sweep 587 * continues until a cylinder group with greater than the average number 588 * of free blocks is found. If the allocation is for the first block in an 589 * indirect block, the information on the previous allocation is unavailable; 590 * here a best guess is made based upon the logical block number being 591 * allocated. 592 */ 593 int32_t 594 ffs1_blkpref(struct inode *ip, daddr_t lbn, int indx, int32_t *bap) 595 { 596 struct fs *fs; 597 int cg, inocg, avgbfree, startcg; 598 uint32_t pref; 599 600 KASSERT(indx <= 0 || bap != NULL); 601 fs = ip->i_fs; 602 /* 603 * Allocation of indirect blocks is indicated by passing negative 604 * values in indx: -1 for single indirect, -2 for double indirect, 605 * -3 for triple indirect. As noted below, we attempt to allocate 606 * the first indirect inline with the file data. For all later 607 * indirect blocks, the data is often allocated in other cylinder 608 * groups. However to speed random file access and to speed up 609 * fsck, the filesystem reserves the first fs_metaspace blocks 610 * (typically half of fs_minfree) of the data area of each cylinder 611 * group to hold these later indirect blocks. 612 */ 613 inocg = ino_to_cg(fs, ip->i_number); 614 if (indx < 0) { 615 /* 616 * Our preference for indirect blocks is the zone at the 617 * beginning of the inode's cylinder group data area that 618 * we try to reserve for indirect blocks. 619 */ 620 pref = cgmeta(fs, inocg); 621 /* 622 * If we are allocating the first indirect block, try to 623 * place it immediately following the last direct block. 624 */ 625 if (indx == -1 && lbn < NDADDR + NINDIR(fs) && 626 ip->i_din1->di_db[NDADDR - 1] != 0) 627 pref = ip->i_din1->di_db[NDADDR - 1] + fs->fs_frag; 628 return (pref); 629 } 630 /* 631 * If we are allocating the first data block in the first indirect 632 * block and the indirect has been allocated in the data block area, 633 * try to place it immediately following the indirect block. 634 */ 635 if (lbn == NDADDR) { 636 pref = ip->i_din1->di_ib[0]; 637 if (pref != 0 && pref >= cgdata(fs, inocg) && 638 pref < cgbase(fs, inocg + 1)) 639 return (pref + fs->fs_frag); 640 } 641 /* 642 * If we are the beginning of a file, or we have already allocated 643 * the maximum number of blocks per cylinder group, or we do not 644 * have a block allocated immediately preceding us, then we need 645 * to decide where to start allocating new blocks. 646 */ 647 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 648 /* 649 * If we are allocating a directory data block, we want 650 * to place it in the metadata area. 651 */ 652 if ((DIP(ip, mode) & IFMT) == IFDIR) 653 return (cgmeta(fs, inocg)); 654 /* 655 * Until we fill all the direct and all the first indirect's 656 * blocks, we try to allocate in the data area of the inode's 657 * cylinder group. 658 */ 659 if (lbn < NDADDR + NINDIR(fs)) 660 return (cgdata(fs, inocg)); 661 /* 662 * Find a cylinder with greater than average number of 663 * unused data blocks. 664 */ 665 if (indx == 0 || bap[indx - 1] == 0) 666 startcg = inocg + lbn / fs->fs_maxbpg; 667 else 668 startcg = dtog(fs, bap[indx - 1]) + 1; 669 startcg %= fs->fs_ncg; 670 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 671 for (cg = startcg; cg < fs->fs_ncg; cg++) 672 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 673 fs->fs_cgrotor = cg; 674 return (cgdata(fs, cg)); 675 } 676 for (cg = 0; cg <= startcg; cg++) 677 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 678 fs->fs_cgrotor = cg; 679 return (cgdata(fs, cg)); 680 } 681 return (0); 682 } 683 /* 684 * Otherwise, we just always try to lay things out contiguously. 685 */ 686 return (bap[indx - 1] + fs->fs_frag); 687 } 688 689 /* 690 * Same as above, for UFS2. 691 */ 692 #ifdef FFS2 693 int64_t 694 ffs2_blkpref(struct inode *ip, daddr_t lbn, int indx, int64_t *bap) 695 { 696 struct fs *fs; 697 int cg, inocg, avgbfree, startcg; 698 uint64_t pref; 699 700 KASSERT(indx <= 0 || bap != NULL); 701 fs = ip->i_fs; 702 /* 703 * Allocation of indirect blocks is indicated by passing negative 704 * values in indx: -1 for single indirect, -2 for double indirect, 705 * -3 for triple indirect. As noted below, we attempt to allocate 706 * the first indirect inline with the file data. For all later 707 * indirect blocks, the data is often allocated in other cylinder 708 * groups. However to speed random file access and to speed up 709 * fsck, the filesystem reserves the first fs_metaspace blocks 710 * (typically half of fs_minfree) of the data area of each cylinder 711 * group to hold these later indirect blocks. 712 */ 713 inocg = ino_to_cg(fs, ip->i_number); 714 if (indx < 0) { 715 /* 716 * Our preference for indirect blocks is the zone at the 717 * beginning of the inode's cylinder group data area that 718 * we try to reserve for indirect blocks. 719 */ 720 pref = cgmeta(fs, inocg); 721 /* 722 * If we are allocating the first indirect block, try to 723 * place it immediately following the last direct block. 724 */ 725 if (indx == -1 && lbn < NDADDR + NINDIR(fs) && 726 ip->i_din2->di_db[NDADDR - 1] != 0) 727 pref = ip->i_din2->di_db[NDADDR - 1] + fs->fs_frag; 728 return (pref); 729 } 730 /* 731 * If we are allocating the first data block in the first indirect 732 * block and the indirect has been allocated in the data block area, 733 * try to place it immediately following the indirect block. 734 */ 735 if (lbn == NDADDR) { 736 pref = ip->i_din2->di_ib[0]; 737 if (pref != 0 && pref >= cgdata(fs, inocg) && 738 pref < cgbase(fs, inocg + 1)) 739 return (pref + fs->fs_frag); 740 } 741 /* 742 * If we are the beginning of a file, or we have already allocated 743 * the maximum number of blocks per cylinder group, or we do not 744 * have a block allocated immediately preceding us, then we need 745 * to decide where to start allocating new blocks. 746 */ 747 748 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 749 /* 750 * If we are allocating a directory data block, we want 751 * to place it in the metadata area. 752 */ 753 if ((DIP(ip, mode) & IFMT) == IFDIR) 754 return (cgmeta(fs, inocg)); 755 /* 756 * Until we fill all the direct and all the first indirect's 757 * blocks, we try to allocate in the data area of the inode's 758 * cylinder group. 759 */ 760 if (lbn < NDADDR + NINDIR(fs)) 761 return (cgdata(fs, inocg)); 762 /* 763 * Find a cylinder with greater than average number of 764 * unused data blocks. 765 */ 766 if (indx == 0 || bap[indx - 1] == 0) 767 startcg = inocg + lbn / fs->fs_maxbpg; 768 else 769 startcg = dtog(fs, bap[indx - 1] + 1); 770 771 startcg %= fs->fs_ncg; 772 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 773 774 for (cg = startcg; cg < fs->fs_ncg; cg++) 775 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) 776 return (cgbase(fs, cg) + fs->fs_frag); 777 778 for (cg = 0; cg < startcg; cg++) 779 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) 780 return (cgbase(fs, cg) + fs->fs_frag); 781 782 return (0); 783 } 784 785 /* 786 * Otherwise, we just always try to lay things out contiguously. 787 */ 788 return (bap[indx - 1] + fs->fs_frag); 789 } 790 #endif /* FFS2 */ 791 792 /* 793 * Implement the cylinder overflow algorithm. 794 * 795 * The policy implemented by this algorithm is: 796 * 1) allocate the block in its requested cylinder group. 797 * 2) quadratically rehash on the cylinder group number. 798 * 3) brute force search for a free block. 799 */ 800 daddr_t 801 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref, int size, 802 daddr_t (*allocator)(struct inode *, int, daddr_t, int)) 803 { 804 struct fs *fs; 805 daddr_t result; 806 int i, icg = cg; 807 808 fs = ip->i_fs; 809 /* 810 * 1: preferred cylinder group 811 */ 812 result = (*allocator)(ip, cg, pref, size); 813 if (result) 814 return (result); 815 /* 816 * 2: quadratic rehash 817 */ 818 for (i = 1; i < fs->fs_ncg; i *= 2) { 819 cg += i; 820 if (cg >= fs->fs_ncg) 821 cg -= fs->fs_ncg; 822 result = (*allocator)(ip, cg, 0, size); 823 if (result) 824 return (result); 825 } 826 /* 827 * 3: brute force search 828 * Note that we start at i == 2, since 0 was checked initially, 829 * and 1 is always checked in the quadratic rehash. 830 */ 831 cg = (icg + 2) % fs->fs_ncg; 832 for (i = 2; i < fs->fs_ncg; i++) { 833 result = (*allocator)(ip, cg, 0, size); 834 if (result) 835 return (result); 836 cg++; 837 if (cg == fs->fs_ncg) 838 cg = 0; 839 } 840 return (0); 841 } 842 843 struct buf * 844 ffs_cgread(struct fs *fs, struct inode *ip, int cg) 845 { 846 struct buf *bp; 847 848 if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), 849 (int)fs->fs_cgsize, &bp)) { 850 brelse(bp); 851 return (NULL); 852 } 853 854 if (!cg_chkmagic((struct cg *)bp->b_data)) { 855 brelse(bp); 856 return (NULL); 857 } 858 859 return bp; 860 } 861 862 /* 863 * Determine whether a fragment can be extended. 864 * 865 * Check to see if the necessary fragments are available, and 866 * if they are, allocate them. 867 */ 868 daddr_t 869 ffs_fragextend(struct inode *ip, int cg, daddr_t bprev, int osize, int nsize) 870 { 871 struct fs *fs; 872 struct cg *cgp; 873 struct buf *bp; 874 daddr_t bno; 875 int i, frags, bbase; 876 877 fs = ip->i_fs; 878 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 879 return (0); 880 frags = numfrags(fs, nsize); 881 bbase = fragnum(fs, bprev); 882 if (bbase > fragnum(fs, (bprev + frags - 1))) { 883 /* cannot extend across a block boundary */ 884 return (0); 885 } 886 887 if (!(bp = ffs_cgread(fs, ip, cg))) 888 return (0); 889 890 cgp = (struct cg *)bp->b_data; 891 cgp->cg_ffs2_time = cgp->cg_time = time_second; 892 893 bno = dtogd(fs, bprev); 894 for (i = numfrags(fs, osize); i < frags; i++) 895 if (isclr(cg_blksfree(cgp), bno + i)) { 896 brelse(bp); 897 return (0); 898 } 899 /* 900 * the current fragment can be extended 901 * deduct the count on fragment being extended into 902 * increase the count on the remaining fragment (if any) 903 * allocate the extended piece 904 */ 905 for (i = frags; i < fs->fs_frag - bbase; i++) 906 if (isclr(cg_blksfree(cgp), bno + i)) 907 break; 908 cgp->cg_frsum[i - numfrags(fs, osize)]--; 909 if (i != frags) 910 cgp->cg_frsum[i - frags]++; 911 for (i = numfrags(fs, osize); i < frags; i++) { 912 clrbit(cg_blksfree(cgp), bno + i); 913 cgp->cg_cs.cs_nffree--; 914 fs->fs_cstotal.cs_nffree--; 915 fs->fs_cs(fs, cg).cs_nffree--; 916 } 917 fs->fs_fmod = 1; 918 if (DOINGSOFTDEP(ITOV(ip))) 919 softdep_setup_blkmapdep(bp, fs, bprev); 920 921 bdwrite(bp); 922 return (bprev); 923 } 924 925 /* 926 * Determine whether a block can be allocated. 927 * 928 * Check to see if a block of the appropriate size is available, 929 * and if it is, allocate it. 930 */ 931 daddr_t 932 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size) 933 { 934 struct fs *fs; 935 struct cg *cgp; 936 struct buf *bp; 937 daddr_t bno, blkno; 938 int i, frags, allocsiz; 939 940 fs = ip->i_fs; 941 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 942 return (0); 943 944 if (!(bp = ffs_cgread(fs, ip, cg))) 945 return (0); 946 947 cgp = (struct cg *)bp->b_data; 948 if (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize) { 949 brelse(bp); 950 return (0); 951 } 952 953 cgp->cg_ffs2_time = cgp->cg_time = time_second; 954 955 if (size == fs->fs_bsize) { 956 /* allocate and return a complete data block */ 957 bno = ffs_alloccgblk(ip, bp, bpref); 958 bdwrite(bp); 959 return (bno); 960 } 961 /* 962 * check to see if any fragments are already available 963 * allocsiz is the size which will be allocated, hacking 964 * it down to a smaller size if necessary 965 */ 966 frags = numfrags(fs, size); 967 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 968 if (cgp->cg_frsum[allocsiz] != 0) 969 break; 970 if (allocsiz == fs->fs_frag) { 971 /* 972 * no fragments were available, so a block will be 973 * allocated, and hacked up 974 */ 975 if (cgp->cg_cs.cs_nbfree == 0) { 976 brelse(bp); 977 return (0); 978 } 979 bno = ffs_alloccgblk(ip, bp, bpref); 980 bpref = dtogd(fs, bno); 981 for (i = frags; i < fs->fs_frag; i++) 982 setbit(cg_blksfree(cgp), bpref + i); 983 i = fs->fs_frag - frags; 984 cgp->cg_cs.cs_nffree += i; 985 fs->fs_cstotal.cs_nffree += i; 986 fs->fs_cs(fs, cg).cs_nffree += i; 987 fs->fs_fmod = 1; 988 cgp->cg_frsum[i]++; 989 bdwrite(bp); 990 return (bno); 991 } 992 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 993 if (bno < 0) { 994 brelse(bp); 995 return (0); 996 } 997 998 for (i = 0; i < frags; i++) 999 clrbit(cg_blksfree(cgp), bno + i); 1000 cgp->cg_cs.cs_nffree -= frags; 1001 fs->fs_cstotal.cs_nffree -= frags; 1002 fs->fs_cs(fs, cg).cs_nffree -= frags; 1003 fs->fs_fmod = 1; 1004 cgp->cg_frsum[allocsiz]--; 1005 if (frags != allocsiz) 1006 cgp->cg_frsum[allocsiz - frags]++; 1007 1008 blkno = cgbase(fs, cg) + bno; 1009 if (DOINGSOFTDEP(ITOV(ip))) 1010 softdep_setup_blkmapdep(bp, fs, blkno); 1011 bdwrite(bp); 1012 return (blkno); 1013 } 1014 1015 /* 1016 * Allocate a block in a cylinder group. 1017 * Note that this routine only allocates fs_bsize blocks; these 1018 * blocks may be fragmented by the routine that allocates them. 1019 */ 1020 daddr_t 1021 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref) 1022 { 1023 struct fs *fs; 1024 struct cg *cgp; 1025 daddr_t bno, blkno; 1026 u_int8_t *blksfree; 1027 int cylno, cgbpref; 1028 1029 fs = ip->i_fs; 1030 cgp = (struct cg *) bp->b_data; 1031 blksfree = cg_blksfree(cgp); 1032 1033 if (bpref == 0) { 1034 bpref = cgp->cg_rotor; 1035 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1036 /* map bpref to correct zone in this cg */ 1037 if (bpref < cgdata(fs, cgbpref)) 1038 bpref = cgmeta(fs, cgp->cg_cgx); 1039 else 1040 bpref = cgdata(fs, cgp->cg_cgx); 1041 } 1042 /* 1043 * If the requested block is available, use it. 1044 */ 1045 bno = dtogd(fs, blknum(fs, bpref)); 1046 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1047 goto gotit; 1048 /* 1049 * Take the next available block in this cylinder group. 1050 */ 1051 bno = ffs_mapsearch(fs, cgp, bpref, (int) fs->fs_frag); 1052 if (bno < 0) 1053 return (0); 1054 1055 /* Update cg_rotor only if allocated from the data zone */ 1056 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1057 cgp->cg_rotor = bno; 1058 1059 gotit: 1060 blkno = fragstoblks(fs, bno); 1061 ffs_clrblock(fs, blksfree, blkno); 1062 ffs_clusteracct(fs, cgp, blkno, -1); 1063 cgp->cg_cs.cs_nbfree--; 1064 fs->fs_cstotal.cs_nbfree--; 1065 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1066 1067 if (fs->fs_magic != FS_UFS2_MAGIC) { 1068 cylno = cbtocylno(fs, bno); 1069 cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--; 1070 cg_blktot(cgp)[cylno]--; 1071 } 1072 1073 fs->fs_fmod = 1; 1074 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1075 1076 if (DOINGSOFTDEP(ITOV(ip))) 1077 softdep_setup_blkmapdep(bp, fs, blkno); 1078 1079 return (blkno); 1080 } 1081 1082 /* inode allocation routine */ 1083 daddr_t 1084 ffs_nodealloccg(struct inode *ip, int cg, daddr_t ipref, int mode) 1085 { 1086 struct fs *fs; 1087 struct cg *cgp; 1088 struct buf *bp; 1089 int start, len, loc, map, i; 1090 #ifdef FFS2 1091 struct buf *ibp = NULL; 1092 struct ufs2_dinode *dp2; 1093 #endif 1094 1095 /* 1096 * For efficiency, before looking at the bitmaps for free inodes, 1097 * check the counters kept in the superblock cylinder group summaries, 1098 * and in the cylinder group itself. 1099 */ 1100 fs = ip->i_fs; 1101 if (fs->fs_cs(fs, cg).cs_nifree == 0) 1102 return (0); 1103 1104 if (!(bp = ffs_cgread(fs, ip, cg))) 1105 return (0); 1106 1107 cgp = (struct cg *)bp->b_data; 1108 if (cgp->cg_cs.cs_nifree == 0) { 1109 brelse(bp); 1110 return (0); 1111 } 1112 1113 /* 1114 * We are committed to the allocation from now on, so update the time 1115 * on the cylinder group. 1116 */ 1117 cgp->cg_ffs2_time = cgp->cg_time = time_second; 1118 1119 /* 1120 * If there was a preferred location for the new inode, try to find it. 1121 */ 1122 if (ipref) { 1123 ipref %= fs->fs_ipg; 1124 if (isclr(cg_inosused(cgp), ipref)) 1125 goto gotit; /* inode is free, grab it. */ 1126 } 1127 1128 /* 1129 * Otherwise, look for the next available inode, starting at cg_irotor 1130 * (the position in the bitmap of the last used inode). 1131 */ 1132 start = cgp->cg_irotor / NBBY; 1133 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 1134 loc = skpc(0xff, len, &cg_inosused(cgp)[start]); 1135 if (loc == 0) { 1136 /* 1137 * If we didn't find a free inode in the upper part of the 1138 * bitmap (from cg_irotor to the end), then look at the bottom 1139 * part (from 0 to cg_irotor). 1140 */ 1141 len = start + 1; 1142 start = 0; 1143 loc = skpc(0xff, len, &cg_inosused(cgp)[0]); 1144 if (loc == 0) { 1145 /* 1146 * If we failed again, then either the bitmap or the 1147 * counters kept for the cylinder group are wrong. 1148 */ 1149 printf("cg = %d, irotor = %d, fs = %s\n", 1150 cg, cgp->cg_irotor, fs->fs_fsmnt); 1151 panic("ffs_nodealloccg: map corrupted"); 1152 /* NOTREACHED */ 1153 } 1154 } 1155 1156 /* skpc() returns the position relative to the end */ 1157 i = start + len - loc; 1158 1159 /* 1160 * Okay, so now in 'i' we have the location in the bitmap of a byte 1161 * holding a free inode. Find the corresponding bit and set it, 1162 * updating cg_irotor as well, accordingly. 1163 */ 1164 map = cg_inosused(cgp)[i]; 1165 ipref = i * NBBY; 1166 for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) { 1167 if ((map & i) == 0) { 1168 cgp->cg_irotor = ipref; 1169 goto gotit; 1170 } 1171 } 1172 1173 printf("fs = %s\n", fs->fs_fsmnt); 1174 panic("ffs_nodealloccg: block not in map"); 1175 /* NOTREACHED */ 1176 1177 gotit: 1178 1179 #ifdef FFS2 1180 /* 1181 * For FFS2, check if all inodes in this cylinder group have been used 1182 * at least once. If they haven't, and we are allocating an inode past 1183 * the last allocated block of inodes, read in a block and initialize 1184 * all inodes in it. 1185 */ 1186 if (fs->fs_magic == FS_UFS2_MAGIC && 1187 /* Inode is beyond last initialized block of inodes? */ 1188 ipref + INOPB(fs) > cgp->cg_initediblk && 1189 /* Has any inode not been used at least once? */ 1190 cgp->cg_initediblk < cgp->cg_ffs2_niblk) { 1191 1192 ibp = getblk(ip->i_devvp, fsbtodb(fs, 1193 ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)), 1194 (int)fs->fs_bsize, 0, 0); 1195 1196 memset(ibp->b_data, 0, fs->fs_bsize); 1197 dp2 = (struct ufs2_dinode *)(ibp->b_data); 1198 1199 /* Give each inode a positive generation number */ 1200 for (i = 0; i < INOPB(fs); i++) { 1201 dp2->di_gen = (arc4random() & INT32_MAX) / 2 + 1; 1202 dp2++; 1203 } 1204 1205 /* Update the counter of initialized inodes */ 1206 cgp->cg_initediblk += INOPB(fs); 1207 } 1208 #endif /* FFS2 */ 1209 1210 if (DOINGSOFTDEP(ITOV(ip))) 1211 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref); 1212 1213 setbit(cg_inosused(cgp), ipref); 1214 1215 /* Update the counters we keep on free inodes */ 1216 cgp->cg_cs.cs_nifree--; 1217 fs->fs_cstotal.cs_nifree--; 1218 fs->fs_cs(fs, cg).cs_nifree--; 1219 fs->fs_fmod = 1; /* file system was modified */ 1220 1221 /* Update the counters we keep on allocated directories */ 1222 if ((mode & IFMT) == IFDIR) { 1223 cgp->cg_cs.cs_ndir++; 1224 fs->fs_cstotal.cs_ndir++; 1225 fs->fs_cs(fs, cg).cs_ndir++; 1226 } 1227 1228 bdwrite(bp); 1229 1230 #ifdef FFS2 1231 if (ibp != NULL) 1232 bawrite(ibp); 1233 #endif 1234 1235 /* Return the allocated inode number */ 1236 return (cg * fs->fs_ipg + ipref); 1237 } 1238 1239 /* 1240 * Free a block or fragment. 1241 * 1242 * The specified block or fragment is placed back in the 1243 * free map. If a fragment is deallocated, a possible 1244 * block reassembly is checked. 1245 */ 1246 void 1247 ffs_blkfree(struct inode *ip, daddr_t bno, long size) 1248 { 1249 struct fs *fs; 1250 struct cg *cgp; 1251 struct buf *bp; 1252 daddr_t blkno; 1253 int i, cg, blk, frags, bbase; 1254 1255 fs = ip->i_fs; 1256 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 1257 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 1258 printf("dev = 0x%x, bsize = %d, size = %ld, fs = %s\n", 1259 ip->i_dev, fs->fs_bsize, size, fs->fs_fsmnt); 1260 panic("ffs_blkfree: bad size"); 1261 } 1262 cg = dtog(fs, bno); 1263 if ((u_int)bno >= fs->fs_size) { 1264 printf("bad block %lld, ino %u\n", (long long)bno, 1265 ip->i_number); 1266 ffs_fserr(fs, DIP(ip, uid), "bad block"); 1267 return; 1268 } 1269 if (!(bp = ffs_cgread(fs, ip, cg))) 1270 return; 1271 1272 cgp = (struct cg *)bp->b_data; 1273 cgp->cg_ffs2_time = cgp->cg_time = time_second; 1274 1275 bno = dtogd(fs, bno); 1276 if (size == fs->fs_bsize) { 1277 blkno = fragstoblks(fs, bno); 1278 if (!ffs_isfreeblock(fs, cg_blksfree(cgp), blkno)) { 1279 printf("dev = 0x%x, block = %lld, fs = %s\n", 1280 ip->i_dev, (long long)bno, fs->fs_fsmnt); 1281 panic("ffs_blkfree: freeing free block"); 1282 } 1283 ffs_setblock(fs, cg_blksfree(cgp), blkno); 1284 ffs_clusteracct(fs, cgp, blkno, 1); 1285 cgp->cg_cs.cs_nbfree++; 1286 fs->fs_cstotal.cs_nbfree++; 1287 fs->fs_cs(fs, cg).cs_nbfree++; 1288 1289 if (fs->fs_magic != FS_UFS2_MAGIC) { 1290 i = cbtocylno(fs, bno); 1291 cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++; 1292 cg_blktot(cgp)[i]++; 1293 } 1294 1295 } else { 1296 bbase = bno - fragnum(fs, bno); 1297 /* 1298 * decrement the counts associated with the old frags 1299 */ 1300 blk = blkmap(fs, cg_blksfree(cgp), bbase); 1301 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 1302 /* 1303 * deallocate the fragment 1304 */ 1305 frags = numfrags(fs, size); 1306 for (i = 0; i < frags; i++) { 1307 if (isset(cg_blksfree(cgp), bno + i)) { 1308 printf("dev = 0x%x, block = %lld, fs = %s\n", 1309 ip->i_dev, (long long)(bno + i), 1310 fs->fs_fsmnt); 1311 panic("ffs_blkfree: freeing free frag"); 1312 } 1313 setbit(cg_blksfree(cgp), bno + i); 1314 } 1315 cgp->cg_cs.cs_nffree += i; 1316 fs->fs_cstotal.cs_nffree += i; 1317 fs->fs_cs(fs, cg).cs_nffree += i; 1318 /* 1319 * add back in counts associated with the new frags 1320 */ 1321 blk = blkmap(fs, cg_blksfree(cgp), bbase); 1322 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 1323 /* 1324 * if a complete block has been reassembled, account for it 1325 */ 1326 blkno = fragstoblks(fs, bbase); 1327 if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) { 1328 cgp->cg_cs.cs_nffree -= fs->fs_frag; 1329 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 1330 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 1331 ffs_clusteracct(fs, cgp, blkno, 1); 1332 cgp->cg_cs.cs_nbfree++; 1333 fs->fs_cstotal.cs_nbfree++; 1334 fs->fs_cs(fs, cg).cs_nbfree++; 1335 1336 if (fs->fs_magic != FS_UFS2_MAGIC) { 1337 i = cbtocylno(fs, bbase); 1338 cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++; 1339 cg_blktot(cgp)[i]++; 1340 } 1341 } 1342 } 1343 fs->fs_fmod = 1; 1344 bdwrite(bp); 1345 } 1346 1347 int 1348 ffs_inode_free(struct inode *pip, ufsino_t ino, mode_t mode) 1349 { 1350 struct vnode *pvp = ITOV(pip); 1351 1352 if (DOINGSOFTDEP(pvp)) { 1353 softdep_freefile(pvp, ino, mode); 1354 return (0); 1355 } 1356 1357 return (ffs_freefile(pip, ino, mode)); 1358 } 1359 1360 /* 1361 * Do the actual free operation. 1362 * The specified inode is placed back in the free map. 1363 */ 1364 int 1365 ffs_freefile(struct inode *pip, ufsino_t ino, mode_t mode) 1366 { 1367 struct fs *fs; 1368 struct cg *cgp; 1369 struct buf *bp; 1370 int cg; 1371 1372 fs = pip->i_fs; 1373 if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg) 1374 panic("ffs_freefile: range: dev = 0x%x, ino = %d, fs = %s", 1375 pip->i_dev, ino, fs->fs_fsmnt); 1376 1377 cg = ino_to_cg(fs, ino); 1378 if (!(bp = ffs_cgread(fs, pip, cg))) 1379 return (0); 1380 1381 cgp = (struct cg *)bp->b_data; 1382 cgp->cg_ffs2_time = cgp->cg_time = time_second; 1383 1384 ino %= fs->fs_ipg; 1385 if (isclr(cg_inosused(cgp), ino)) { 1386 printf("dev = 0x%x, ino = %u, fs = %s\n", 1387 pip->i_dev, ino, fs->fs_fsmnt); 1388 if (fs->fs_ronly == 0) 1389 panic("ffs_freefile: freeing free inode"); 1390 } 1391 clrbit(cg_inosused(cgp), ino); 1392 if (ino < cgp->cg_irotor) 1393 cgp->cg_irotor = ino; 1394 cgp->cg_cs.cs_nifree++; 1395 fs->fs_cstotal.cs_nifree++; 1396 fs->fs_cs(fs, cg).cs_nifree++; 1397 if ((mode & IFMT) == IFDIR) { 1398 cgp->cg_cs.cs_ndir--; 1399 fs->fs_cstotal.cs_ndir--; 1400 fs->fs_cs(fs, cg).cs_ndir--; 1401 } 1402 fs->fs_fmod = 1; 1403 bdwrite(bp); 1404 return (0); 1405 } 1406 1407 1408 /* 1409 * Find a block of the specified size in the specified cylinder group. 1410 * 1411 * It is a panic if a request is made to find a block if none are 1412 * available. 1413 */ 1414 daddr_t 1415 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz) 1416 { 1417 daddr_t bno; 1418 int start, len, loc, i; 1419 int blk, field, subfield, pos; 1420 1421 /* 1422 * find the fragment by searching through the free block 1423 * map for an appropriate bit pattern 1424 */ 1425 if (bpref) 1426 start = dtogd(fs, bpref) / NBBY; 1427 else 1428 start = cgp->cg_frotor / NBBY; 1429 len = howmany(fs->fs_fpg, NBBY) - start; 1430 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start], 1431 (u_char *)fragtbl[fs->fs_frag], 1432 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1433 if (loc == 0) { 1434 len = start + 1; 1435 start = 0; 1436 loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0], 1437 (u_char *)fragtbl[fs->fs_frag], 1438 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 1439 if (loc == 0) { 1440 printf("start = %d, len = %d, fs = %s\n", 1441 start, len, fs->fs_fsmnt); 1442 panic("ffs_alloccg: map corrupted"); 1443 /* NOTREACHED */ 1444 } 1445 } 1446 bno = (start + len - loc) * NBBY; 1447 cgp->cg_frotor = bno; 1448 /* 1449 * found the byte in the map 1450 * sift through the bits to find the selected frag 1451 */ 1452 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 1453 blk = blkmap(fs, cg_blksfree(cgp), bno); 1454 blk <<= 1; 1455 field = around[allocsiz]; 1456 subfield = inside[allocsiz]; 1457 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 1458 if ((blk & field) == subfield) 1459 return (bno + pos); 1460 field <<= 1; 1461 subfield <<= 1; 1462 } 1463 } 1464 printf("bno = %lld, fs = %s\n", (long long)bno, fs->fs_fsmnt); 1465 panic("ffs_alloccg: block not in map"); 1466 return (-1); 1467 } 1468 1469 /* 1470 * Update the cluster map because of an allocation or free. 1471 * 1472 * Cnt == 1 means free; cnt == -1 means allocating. 1473 */ 1474 void 1475 ffs_clusteracct(struct fs *fs, struct cg *cgp, daddr_t blkno, int cnt) 1476 { 1477 int32_t *sump; 1478 int32_t *lp; 1479 u_char *freemapp, *mapp; 1480 int i, start, end, forw, back, map, bit; 1481 1482 if (fs->fs_contigsumsize <= 0) 1483 return; 1484 freemapp = cg_clustersfree(cgp); 1485 sump = cg_clustersum(cgp); 1486 /* 1487 * Allocate or clear the actual block. 1488 */ 1489 if (cnt > 0) 1490 setbit(freemapp, blkno); 1491 else 1492 clrbit(freemapp, blkno); 1493 /* 1494 * Find the size of the cluster going forward. 1495 */ 1496 start = blkno + 1; 1497 end = start + fs->fs_contigsumsize; 1498 if (end >= cgp->cg_nclusterblks) 1499 end = cgp->cg_nclusterblks; 1500 mapp = &freemapp[start / NBBY]; 1501 map = *mapp++; 1502 bit = 1 << (start % NBBY); 1503 for (i = start; i < end; i++) { 1504 if ((map & bit) == 0) 1505 break; 1506 if ((i & (NBBY - 1)) != (NBBY - 1)) { 1507 bit <<= 1; 1508 } else { 1509 map = *mapp++; 1510 bit = 1; 1511 } 1512 } 1513 forw = i - start; 1514 /* 1515 * Find the size of the cluster going backward. 1516 */ 1517 start = blkno - 1; 1518 end = start - fs->fs_contigsumsize; 1519 if (end < 0) 1520 end = -1; 1521 mapp = &freemapp[start / NBBY]; 1522 map = *mapp--; 1523 bit = 1 << (start % NBBY); 1524 for (i = start; i > end; i--) { 1525 if ((map & bit) == 0) 1526 break; 1527 if ((i & (NBBY - 1)) != 0) { 1528 bit >>= 1; 1529 } else { 1530 map = *mapp--; 1531 bit = 1 << (NBBY - 1); 1532 } 1533 } 1534 back = start - i; 1535 /* 1536 * Account for old cluster and the possibly new forward and 1537 * back clusters. 1538 */ 1539 i = back + forw + 1; 1540 if (i > fs->fs_contigsumsize) 1541 i = fs->fs_contigsumsize; 1542 sump[i] += cnt; 1543 if (back > 0) 1544 sump[back] -= cnt; 1545 if (forw > 0) 1546 sump[forw] -= cnt; 1547 /* 1548 * Update cluster summary information. 1549 */ 1550 lp = &sump[fs->fs_contigsumsize]; 1551 for (i = fs->fs_contigsumsize; i > 0; i--) 1552 if (*lp-- > 0) 1553 break; 1554 fs->fs_maxcluster[cgp->cg_cgx] = i; 1555 } 1556