1 /* $OpenBSD: nfs_socket.c,v 1.133 2019/05/13 19:21:31 bluhm Exp $ */ 2 /* $NetBSD: nfs_socket.c,v 1.27 1996/04/15 20:20:00 thorpej Exp $ */ 3 4 /* 5 * Copyright (c) 1989, 1991, 1993, 1995 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Rick Macklem at The University of Guelph. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 36 */ 37 38 /* 39 * Socket operations for use by nfs 40 */ 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/proc.h> 45 #include <sys/mount.h> 46 #include <sys/kernel.h> 47 #include <sys/mbuf.h> 48 #include <sys/vnode.h> 49 #include <sys/domain.h> 50 #include <sys/protosw.h> 51 #include <sys/signalvar.h> 52 #include <sys/socket.h> 53 #include <sys/socketvar.h> 54 #include <sys/syslog.h> 55 #include <sys/tprintf.h> 56 #include <sys/namei.h> 57 #include <sys/pool.h> 58 #include <sys/queue.h> 59 60 #include <netinet/in.h> 61 #include <netinet/tcp.h> 62 63 #include <nfs/rpcv2.h> 64 #include <nfs/nfsproto.h> 65 #include <nfs/nfs.h> 66 #include <nfs/xdr_subs.h> 67 #include <nfs/nfsm_subs.h> 68 #include <nfs/nfsmount.h> 69 #include <nfs/nfs_var.h> 70 71 /* External data, mostly RPC constants in XDR form. */ 72 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, 73 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr; 74 extern u_int32_t nfs_prog; 75 extern struct nfsstats nfsstats; 76 extern int nfsv3_procid[NFS_NPROCS]; 77 extern int nfs_ticks; 78 79 extern struct pool nfsrv_descript_pl; 80 81 /* 82 * There is a congestion window for outstanding rpcs maintained per mount 83 * point. The cwnd size is adjusted in roughly the way that: 84 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of 85 * SIGCOMM '88". ACM, August 1988. 86 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout 87 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd 88 * of rpcs is in progress. 89 * (The sent count and cwnd are scaled for integer arith.) 90 * Variants of "slow start" were tried and were found to be too much of a 91 * performance hit (ave. rtt 3 times larger), 92 * I suspect due to the large rtt that nfs rpcs have. 93 */ 94 #define NFS_CWNDSCALE 256 95 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) 96 int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256 }; 97 98 /* RTT estimator */ 99 enum nfs_rto_timers nfs_ptimers[NFS_NPROCS] = { 100 NFS_DEFAULT_TIMER, /* NULL */ 101 NFS_GETATTR_TIMER, /* GETATTR */ 102 NFS_DEFAULT_TIMER, /* SETATTR */ 103 NFS_LOOKUP_TIMER, /* LOOKUP */ 104 NFS_GETATTR_TIMER, /* ACCESS */ 105 NFS_READ_TIMER, /* READLINK */ 106 NFS_READ_TIMER, /* READ */ 107 NFS_WRITE_TIMER, /* WRITE */ 108 NFS_DEFAULT_TIMER, /* CREATE */ 109 NFS_DEFAULT_TIMER, /* MKDIR */ 110 NFS_DEFAULT_TIMER, /* SYMLINK */ 111 NFS_DEFAULT_TIMER, /* MKNOD */ 112 NFS_DEFAULT_TIMER, /* REMOVE */ 113 NFS_DEFAULT_TIMER, /* RMDIR */ 114 NFS_DEFAULT_TIMER, /* RENAME */ 115 NFS_DEFAULT_TIMER, /* LINK */ 116 NFS_READ_TIMER, /* READDIR */ 117 NFS_READ_TIMER, /* READDIRPLUS */ 118 NFS_DEFAULT_TIMER, /* FSSTAT */ 119 NFS_DEFAULT_TIMER, /* FSINFO */ 120 NFS_DEFAULT_TIMER, /* PATHCONF */ 121 NFS_DEFAULT_TIMER, /* COMMIT */ 122 NFS_DEFAULT_TIMER, /* NOOP */ 123 }; 124 125 void nfs_init_rtt(struct nfsmount *); 126 void nfs_update_rtt(struct nfsreq *); 127 int nfs_estimate_rto(struct nfsmount *, u_int32_t procnum); 128 129 void nfs_realign(struct mbuf **, int); 130 void nfs_realign_fixup(struct mbuf *, struct mbuf *, unsigned int *); 131 132 int nfs_rcvlock(struct nfsreq *); 133 int nfs_receive(struct nfsreq *, struct mbuf **, struct mbuf **); 134 int nfs_reconnect(struct nfsreq *); 135 int nfs_reply(struct nfsreq *); 136 void nfs_msg(struct nfsreq *, char *); 137 void nfs_rcvunlock(int *); 138 139 int nfsrv_getstream(struct nfssvc_sock *, int); 140 141 unsigned int nfs_realign_test = 0; 142 unsigned int nfs_realign_count = 0; 143 144 /* Initialize the RTT estimator state for a new mount point. */ 145 void 146 nfs_init_rtt(struct nfsmount *nmp) 147 { 148 int i; 149 150 for (i = 0; i < NFS_MAX_TIMER; i++) 151 nmp->nm_srtt[i] = NFS_INITRTT; 152 for (i = 0; i < NFS_MAX_TIMER; i++) 153 nmp->nm_sdrtt[i] = 0; 154 } 155 156 /* 157 * Update a mount point's RTT estimator state using data from the 158 * passed-in request. 159 * 160 * Use a gain of 0.125 on the mean and a gain of 0.25 on the deviation. 161 * 162 * NB: Since the timer resolution of NFS_HZ is so course, it can often 163 * result in r_rtt == 0. Since r_rtt == N means that the actual RTT is 164 * between N + dt and N + 2 - dt ticks, add 1 before calculating the 165 * update values. 166 */ 167 void 168 nfs_update_rtt(struct nfsreq *rep) 169 { 170 int t1 = rep->r_rtt + 1; 171 int index = nfs_ptimers[rep->r_procnum] - 1; 172 int *srtt = &rep->r_nmp->nm_srtt[index]; 173 int *sdrtt = &rep->r_nmp->nm_sdrtt[index]; 174 175 t1 -= *srtt >> 3; 176 *srtt += t1; 177 if (t1 < 0) 178 t1 = -t1; 179 t1 -= *sdrtt >> 2; 180 *sdrtt += t1; 181 } 182 183 /* 184 * Estimate RTO for an NFS RPC sent via an unreliable datagram. 185 * 186 * Use the mean and mean deviation of RTT for the appropriate type 187 * of RPC for the frequent RPCs and a default for the others. 188 * The justification for doing "other" this way is that these RPCs 189 * happen so infrequently that timer est. would probably be stale. 190 * Also, since many of these RPCs are non-idempotent, a conservative 191 * timeout is desired. 192 * 193 * getattr, lookup - A+2D 194 * read, write - A+4D 195 * other - nm_timeo 196 */ 197 int 198 nfs_estimate_rto(struct nfsmount *nmp, u_int32_t procnum) 199 { 200 enum nfs_rto_timers timer = nfs_ptimers[procnum]; 201 int index = timer - 1; 202 int rto; 203 204 switch (timer) { 205 case NFS_GETATTR_TIMER: 206 case NFS_LOOKUP_TIMER: 207 rto = ((nmp->nm_srtt[index] + 3) >> 2) + 208 ((nmp->nm_sdrtt[index] + 1) >> 1); 209 break; 210 case NFS_READ_TIMER: 211 case NFS_WRITE_TIMER: 212 rto = ((nmp->nm_srtt[index] + 7) >> 3) + 213 (nmp->nm_sdrtt[index] + 1); 214 break; 215 default: 216 rto = nmp->nm_timeo; 217 return (rto); 218 } 219 220 if (rto < NFS_MINRTO) 221 rto = NFS_MINRTO; 222 else if (rto > NFS_MAXRTO) 223 rto = NFS_MAXRTO; 224 225 return (rto); 226 } 227 228 229 230 /* 231 * Initialize sockets and congestion for a new NFS connection. 232 * We do not free the sockaddr if error. 233 */ 234 int 235 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep) 236 { 237 struct socket *so; 238 int s, error, rcvreserve, sndreserve; 239 struct sockaddr *saddr; 240 struct sockaddr_in *sin; 241 struct mbuf *nam = NULL, *mopt = NULL; 242 243 if (!(nmp->nm_sotype == SOCK_DGRAM || nmp->nm_sotype == SOCK_STREAM)) 244 return (EINVAL); 245 246 nmp->nm_so = NULL; 247 saddr = mtod(nmp->nm_nam, struct sockaddr *); 248 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype, 249 nmp->nm_soproto); 250 if (error) { 251 nfs_disconnect(nmp); 252 return (error); 253 } 254 255 /* Allocate mbufs possibly waiting before grabbing the socket lock. */ 256 if (nmp->nm_sotype == SOCK_STREAM || saddr->sa_family == AF_INET) 257 MGET(mopt, M_WAIT, MT_SOOPTS); 258 if (saddr->sa_family == AF_INET) 259 MGET(nam, M_WAIT, MT_SONAME); 260 261 so = nmp->nm_so; 262 s = solock(so); 263 nmp->nm_soflags = so->so_proto->pr_flags; 264 265 /* 266 * Some servers require that the client port be a reserved port number. 267 * We always allocate a reserved port, as this prevents filehandle 268 * disclosure through UDP port capture. 269 */ 270 if (saddr->sa_family == AF_INET) { 271 int *ip; 272 273 mopt->m_len = sizeof(int); 274 ip = mtod(mopt, int *); 275 *ip = IP_PORTRANGE_LOW; 276 error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, mopt); 277 if (error) 278 goto bad; 279 280 sin = mtod(nam, struct sockaddr_in *); 281 memset(sin, 0, sizeof(*sin)); 282 sin->sin_len = nam->m_len = sizeof(struct sockaddr_in); 283 sin->sin_family = AF_INET; 284 sin->sin_addr.s_addr = INADDR_ANY; 285 sin->sin_port = htons(0); 286 error = sobind(so, nam, &proc0); 287 if (error) 288 goto bad; 289 290 mopt->m_len = sizeof(int); 291 ip = mtod(mopt, int *); 292 *ip = IP_PORTRANGE_DEFAULT; 293 error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, mopt); 294 if (error) 295 goto bad; 296 } 297 298 /* 299 * Protocols that do not require connections may be optionally left 300 * unconnected for servers that reply from a port other than NFS_PORT. 301 */ 302 if (nmp->nm_flag & NFSMNT_NOCONN) { 303 if (nmp->nm_soflags & PR_CONNREQUIRED) { 304 error = ENOTCONN; 305 goto bad; 306 } 307 } else { 308 error = soconnect(so, nmp->nm_nam); 309 if (error) 310 goto bad; 311 312 /* 313 * Wait for the connection to complete. Cribbed from the 314 * connect system call but with the wait timing out so 315 * that interruptible mounts don't hang here for a long time. 316 */ 317 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { 318 sosleep(so, &so->so_timeo, PSOCK, "nfscon", 2 * hz); 319 if ((so->so_state & SS_ISCONNECTING) && 320 so->so_error == 0 && rep && 321 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){ 322 so->so_state &= ~SS_ISCONNECTING; 323 goto bad; 324 } 325 } 326 if (so->so_error) { 327 error = so->so_error; 328 so->so_error = 0; 329 goto bad; 330 } 331 } 332 /* 333 * Always set receive timeout to detect server crash and reconnect. 334 * Otherwise, we can get stuck in soreceive forever. 335 */ 336 so->so_rcv.sb_timeo = (5 * hz); 337 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) 338 so->so_snd.sb_timeo = (5 * hz); 339 else 340 so->so_snd.sb_timeo = 0; 341 if (nmp->nm_sotype == SOCK_DGRAM) { 342 sndreserve = nmp->nm_wsize + NFS_MAXPKTHDR; 343 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 344 NFS_MAXPKTHDR) * 2; 345 } else if (nmp->nm_sotype == SOCK_STREAM) { 346 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 347 *mtod(mopt, int32_t *) = 1; 348 mopt->m_len = sizeof(int32_t); 349 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, mopt); 350 } 351 if (so->so_proto->pr_protocol == IPPROTO_TCP) { 352 *mtod(mopt, int32_t *) = 1; 353 mopt->m_len = sizeof(int32_t); 354 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, mopt); 355 } 356 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + 357 sizeof (u_int32_t)) * 2; 358 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + 359 sizeof (u_int32_t)) * 2; 360 } else { 361 panic("%s: nm_sotype %d", __func__, nmp->nm_sotype); 362 } 363 error = soreserve(so, sndreserve, rcvreserve); 364 if (error) 365 goto bad; 366 so->so_rcv.sb_flags |= SB_NOINTR; 367 so->so_snd.sb_flags |= SB_NOINTR; 368 sounlock(so, s); 369 370 m_freem(mopt); 371 m_freem(nam); 372 373 /* Initialize other non-zero congestion variables */ 374 nfs_init_rtt(nmp); 375 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ 376 nmp->nm_sent = 0; 377 nmp->nm_timeouts = 0; 378 return (0); 379 380 bad: 381 sounlock(so, s); 382 383 m_freem(mopt); 384 m_freem(nam); 385 386 nfs_disconnect(nmp); 387 return (error); 388 } 389 390 /* 391 * Reconnect routine: 392 * Called when a connection is broken on a reliable protocol. 393 * - clean up the old socket 394 * - nfs_connect() again 395 * - set R_MUSTRESEND for all outstanding requests on mount point 396 * If this fails the mount point is DEAD! 397 * nb: Must be called with the nfs_sndlock() set on the mount point. 398 */ 399 int 400 nfs_reconnect(struct nfsreq *rep) 401 { 402 struct nfsreq *rp; 403 struct nfsmount *nmp = rep->r_nmp; 404 int error; 405 406 nfs_disconnect(nmp); 407 while ((error = nfs_connect(nmp, rep)) != 0) { 408 if (error == EINTR || error == ERESTART) 409 return (EINTR); 410 (void)tsleep((caddr_t)&lbolt, PSOCK, "nfsrecon", 0); 411 } 412 413 /* 414 * Loop through outstanding request list and fix up all requests 415 * on old socket. 416 */ 417 TAILQ_FOREACH(rp, &nmp->nm_reqsq, r_chain) { 418 rp->r_flags |= R_MUSTRESEND; 419 rp->r_rexmit = 0; 420 } 421 return (0); 422 } 423 424 /* 425 * NFS disconnect. Clean up and unlink. 426 */ 427 void 428 nfs_disconnect(struct nfsmount *nmp) 429 { 430 struct socket *so; 431 432 if (nmp->nm_so) { 433 so = nmp->nm_so; 434 nmp->nm_so = NULL; 435 soshutdown(so, SHUT_RDWR); 436 soclose(so, 0); 437 } 438 } 439 440 /* 441 * This is the nfs send routine. For connection based socket types, it 442 * must be called with an nfs_sndlock() on the socket. 443 * "rep == NULL" indicates that it has been called from a server. 444 * For the client side: 445 * - return EINTR if the RPC is terminated, 0 otherwise 446 * - set R_MUSTRESEND if the send fails for any reason 447 * - do any cleanup required by recoverable socket errors (???) 448 * For the server side: 449 * - return EINTR or ERESTART if interrupted by a signal 450 * - return EPIPE if a connection is lost for connection based sockets (TCP...) 451 * - do any cleanup required by recoverable socket errors (???) 452 */ 453 int 454 nfs_send(struct socket *so, struct mbuf *nam, struct mbuf *top, 455 struct nfsreq *rep) 456 { 457 struct mbuf *sendnam; 458 int error, soflags, flags; 459 460 if (rep) { 461 if (rep->r_flags & R_SOFTTERM) { 462 m_freem(top); 463 return (EINTR); 464 } 465 if ((so = rep->r_nmp->nm_so) == NULL) { 466 rep->r_flags |= R_MUSTRESEND; 467 m_freem(top); 468 return (0); 469 } 470 rep->r_flags &= ~R_MUSTRESEND; 471 soflags = rep->r_nmp->nm_soflags; 472 } else 473 soflags = so->so_proto->pr_flags; 474 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) 475 sendnam = NULL; 476 else 477 sendnam = nam; 478 flags = 0; 479 480 error = sosend(so, sendnam, NULL, top, NULL, flags); 481 if (error) { 482 if (rep) { 483 /* 484 * Deal with errors for the client side. 485 */ 486 if (rep->r_flags & R_SOFTTERM) 487 error = EINTR; 488 else 489 rep->r_flags |= R_MUSTRESEND; 490 } 491 492 /* 493 * Handle any recoverable (soft) socket errors here. (???) 494 */ 495 if (error != EINTR && error != ERESTART && 496 error != EWOULDBLOCK && error != EPIPE) 497 error = 0; 498 } 499 return (error); 500 } 501 502 #ifdef NFSCLIENT 503 /* 504 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all 505 * done by soreceive(), but for SOCK_STREAM we must deal with the Record 506 * Mark and consolidate the data into a new mbuf list. 507 * nb: Sometimes TCP passes the data up to soreceive() in long lists of 508 * small mbufs. 509 * For SOCK_STREAM we must be very careful to read an entire record once 510 * we have read any of it, even if the system call has been interrupted. 511 */ 512 int 513 nfs_receive(struct nfsreq *rep, struct mbuf **aname, struct mbuf **mp) 514 { 515 struct socket *so; 516 struct uio auio; 517 struct iovec aio; 518 struct mbuf *m; 519 struct mbuf *control; 520 u_int32_t len; 521 struct mbuf **getnam; 522 int error, sotype, rcvflg; 523 struct proc *p = curproc; /* XXX */ 524 525 /* 526 * Set up arguments for soreceive() 527 */ 528 *mp = NULL; 529 *aname = NULL; 530 sotype = rep->r_nmp->nm_sotype; 531 532 /* 533 * For reliable protocols, lock against other senders/receivers 534 * in case a reconnect is necessary. 535 * For SOCK_STREAM, first get the Record Mark to find out how much 536 * more there is to get. 537 * We must lock the socket against other receivers 538 * until we have an entire rpc request/reply. 539 */ 540 if (sotype != SOCK_DGRAM) { 541 error = nfs_sndlock(&rep->r_nmp->nm_flag, rep); 542 if (error) 543 return (error); 544 tryagain: 545 /* 546 * Check for fatal errors and resending request. 547 */ 548 /* 549 * Ugh: If a reconnect attempt just happened, nm_so 550 * would have changed. NULL indicates a failed 551 * attempt that has essentially shut down this 552 * mount point. 553 */ 554 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { 555 nfs_sndunlock(&rep->r_nmp->nm_flag); 556 return (EINTR); 557 } 558 so = rep->r_nmp->nm_so; 559 if (!so) { 560 error = nfs_reconnect(rep); 561 if (error) { 562 nfs_sndunlock(&rep->r_nmp->nm_flag); 563 return (error); 564 } 565 goto tryagain; 566 } 567 while (rep->r_flags & R_MUSTRESEND) { 568 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 569 nfsstats.rpcretries++; 570 rep->r_rtt = 0; 571 rep->r_flags &= ~R_TIMING; 572 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep); 573 if (error) { 574 if (error == EINTR || error == ERESTART || 575 (error = nfs_reconnect(rep)) != 0) { 576 nfs_sndunlock(&rep->r_nmp->nm_flag); 577 return (error); 578 } 579 goto tryagain; 580 } 581 } 582 nfs_sndunlock(&rep->r_nmp->nm_flag); 583 if (sotype == SOCK_STREAM) { 584 aio.iov_base = (caddr_t) &len; 585 aio.iov_len = sizeof(u_int32_t); 586 auio.uio_iov = &aio; 587 auio.uio_iovcnt = 1; 588 auio.uio_segflg = UIO_SYSSPACE; 589 auio.uio_rw = UIO_READ; 590 auio.uio_offset = 0; 591 auio.uio_resid = sizeof(u_int32_t); 592 auio.uio_procp = p; 593 do { 594 rcvflg = MSG_WAITALL; 595 error = soreceive(so, NULL, &auio, NULL, NULL, 596 &rcvflg, 0); 597 if (error == EWOULDBLOCK && rep) { 598 if (rep->r_flags & R_SOFTTERM) 599 return (EINTR); 600 /* 601 * looks like the server died after it 602 * received the request, make sure 603 * that we will retransmit and we 604 * don't get stuck here forever. 605 */ 606 if (rep->r_rexmit >= 607 rep->r_nmp->nm_retry) { 608 nfsstats.rpctimeouts++; 609 error = EPIPE; 610 } 611 } 612 } while (error == EWOULDBLOCK); 613 if (!error && auio.uio_resid > 0) { 614 log(LOG_INFO, 615 "short receive (%zu/%zu) from nfs server %s\n", 616 sizeof(u_int32_t) - auio.uio_resid, 617 sizeof(u_int32_t), 618 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 619 error = EPIPE; 620 } 621 if (error) 622 goto errout; 623 624 len = ntohl(len) & ~0x80000000; 625 /* 626 * This is SERIOUS! We are out of sync with the sender 627 * and forcing a disconnect/reconnect is all I can do. 628 */ 629 if (len > NFS_MAXPACKET) { 630 log(LOG_ERR, "%s (%u) from nfs server %s\n", 631 "impossible packet length", 632 len, 633 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 634 error = EFBIG; 635 goto errout; 636 } 637 auio.uio_resid = len; 638 do { 639 rcvflg = MSG_WAITALL; 640 error = soreceive(so, NULL, &auio, mp, NULL, 641 &rcvflg, 0); 642 } while (error == EWOULDBLOCK || error == EINTR || 643 error == ERESTART); 644 if (!error && auio.uio_resid > 0) { 645 log(LOG_INFO, "short receive (%zu/%u) from " 646 "nfs server %s\n", len - auio.uio_resid, 647 len, rep->r_nmp->nm_mountp-> 648 mnt_stat.f_mntfromname); 649 error = EPIPE; 650 } 651 } else { 652 /* 653 * NB: Since uio_resid is big, MSG_WAITALL is ignored 654 * and soreceive() will return when it has either a 655 * control msg or a data msg. 656 * We have no use for control msg., but must grab them 657 * and then throw them away so we know what is going 658 * on. 659 */ 660 auio.uio_resid = len = 100000000; /* Anything Big */ 661 auio.uio_procp = p; 662 do { 663 rcvflg = 0; 664 error = soreceive(so, NULL, &auio, mp, &control, 665 &rcvflg, 0); 666 m_freem(control); 667 if (error == EWOULDBLOCK && rep) { 668 if (rep->r_flags & R_SOFTTERM) 669 return (EINTR); 670 } 671 } while (error == EWOULDBLOCK || 672 (!error && *mp == NULL && control)); 673 if ((rcvflg & MSG_EOR) == 0) 674 printf("Egad!!\n"); 675 if (!error && *mp == NULL) 676 error = EPIPE; 677 len -= auio.uio_resid; 678 } 679 errout: 680 if (error && error != EINTR && error != ERESTART) { 681 m_freemp(mp); 682 if (error != EPIPE) 683 log(LOG_INFO, 684 "receive error %d from nfs server %s\n", 685 error, 686 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 687 error = nfs_sndlock(&rep->r_nmp->nm_flag, rep); 688 if (!error) { 689 error = nfs_reconnect(rep); 690 if (!error) 691 goto tryagain; 692 nfs_sndunlock(&rep->r_nmp->nm_flag); 693 } 694 } 695 } else { 696 if ((so = rep->r_nmp->nm_so) == NULL) 697 return (EACCES); 698 if (so->so_state & SS_ISCONNECTED) 699 getnam = NULL; 700 else 701 getnam = aname; 702 auio.uio_resid = len = 1000000; 703 auio.uio_procp = p; 704 do { 705 rcvflg = 0; 706 error = soreceive(so, getnam, &auio, mp, NULL, 707 &rcvflg, 0); 708 if (error == EWOULDBLOCK && 709 (rep->r_flags & R_SOFTTERM)) 710 return (EINTR); 711 } while (error == EWOULDBLOCK); 712 len -= auio.uio_resid; 713 } 714 if (error) 715 m_freemp(mp); 716 /* 717 * Search for any mbufs that are not a multiple of 4 bytes long 718 * or with m_data not longword aligned. 719 * These could cause pointer alignment problems, so copy them to 720 * well aligned mbufs. 721 */ 722 nfs_realign(mp, 5 * NFSX_UNSIGNED); 723 return (error); 724 } 725 726 /* 727 * Implement receipt of reply on a socket. 728 * We must search through the list of received datagrams matching them 729 * with outstanding requests using the xid, until ours is found. 730 */ 731 int 732 nfs_reply(struct nfsreq *myrep) 733 { 734 struct nfsreq *rep; 735 struct nfsmount *nmp = myrep->r_nmp; 736 struct nfsm_info info; 737 struct mbuf *nam; 738 u_int32_t rxid, *tl, t1; 739 caddr_t cp2; 740 int error; 741 742 /* 743 * Loop around until we get our own reply 744 */ 745 for (;;) { 746 /* 747 * Lock against other receivers so that I don't get stuck in 748 * sbwait() after someone else has received my reply for me. 749 * Also necessary for connection based protocols to avoid 750 * race conditions during a reconnect. 751 */ 752 error = nfs_rcvlock(myrep); 753 if (error) 754 return (error == EALREADY ? 0 : error); 755 756 /* 757 * Get the next Rpc reply off the socket 758 */ 759 error = nfs_receive(myrep, &nam, &info.nmi_mrep); 760 nfs_rcvunlock(&nmp->nm_flag); 761 if (error) { 762 763 /* 764 * Ignore routing errors on connectionless protocols?? 765 */ 766 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 767 if (nmp->nm_so) 768 nmp->nm_so->so_error = 0; 769 continue; 770 } 771 return (error); 772 } 773 m_freem(nam); 774 775 /* 776 * Get the xid and check that it is an rpc reply 777 */ 778 info.nmi_md = info.nmi_mrep; 779 info.nmi_dpos = mtod(info.nmi_md, caddr_t); 780 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 781 rxid = *tl++; 782 if (*tl != rpc_reply) { 783 nfsstats.rpcinvalid++; 784 m_freem(info.nmi_mrep); 785 nfsmout: 786 continue; 787 } 788 789 /* 790 * Loop through the request list to match up the reply 791 * Iff no match, just drop the datagram 792 */ 793 TAILQ_FOREACH(rep, &nmp->nm_reqsq, r_chain) { 794 if (rep->r_mrep == NULL && rxid == rep->r_xid) { 795 /* Found it.. */ 796 rep->r_mrep = info.nmi_mrep; 797 rep->r_md = info.nmi_md; 798 rep->r_dpos = info.nmi_dpos; 799 800 /* 801 * Update congestion window. 802 * Do the additive increase of 803 * one rpc/rtt. 804 */ 805 if (nmp->nm_cwnd <= nmp->nm_sent) { 806 nmp->nm_cwnd += 807 (NFS_CWNDSCALE * NFS_CWNDSCALE + 808 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; 809 if (nmp->nm_cwnd > NFS_MAXCWND) 810 nmp->nm_cwnd = NFS_MAXCWND; 811 } 812 rep->r_flags &= ~R_SENT; 813 nmp->nm_sent -= NFS_CWNDSCALE; 814 815 if (rep->r_flags & R_TIMING) 816 nfs_update_rtt(rep); 817 818 nmp->nm_timeouts = 0; 819 break; 820 } 821 } 822 /* 823 * If not matched to a request, drop it. 824 * If it's mine, get out. 825 */ 826 if (rep == 0) { 827 nfsstats.rpcunexpected++; 828 m_freem(info.nmi_mrep); 829 } else if (rep == myrep) { 830 if (rep->r_mrep == NULL) 831 panic("nfsreply nil"); 832 return (0); 833 } 834 } 835 } 836 837 /* 838 * nfs_request - goes something like this 839 * - fill in request struct 840 * - links it into list 841 * - calls nfs_send() for first transmit 842 * - calls nfs_receive() to get reply 843 * - break down rpc header and return with nfs reply pointed to 844 * by mrep or error 845 * nb: always frees up mreq mbuf list 846 */ 847 int 848 nfs_request(struct vnode *vp, int procnum, struct nfsm_info *infop) 849 { 850 struct mbuf *m; 851 u_int32_t *tl; 852 struct nfsmount *nmp; 853 struct timeval tv; 854 caddr_t cp2; 855 int t1, i, error = 0; 856 int trylater_delay; 857 struct nfsreq *rep; 858 struct nfsm_info info; 859 860 rep = pool_get(&nfsreqpl, PR_WAITOK); 861 rep->r_nmp = VFSTONFS(vp->v_mount); 862 rep->r_vp = vp; 863 rep->r_procp = infop->nmi_procp; 864 rep->r_procnum = procnum; 865 866 /* empty mbuf for AUTH_UNIX header */ 867 rep->r_mreq = m_gethdr(M_WAIT, MT_DATA); 868 rep->r_mreq->m_next = infop->nmi_mreq; 869 rep->r_mreq->m_len = 0; 870 m_calchdrlen(rep->r_mreq); 871 872 trylater_delay = NFS_MINTIMEO; 873 874 nmp = rep->r_nmp; 875 876 /* Get the RPC header with authorization. */ 877 nfsm_rpchead(rep, infop->nmi_cred, RPCAUTH_UNIX); 878 m = rep->r_mreq; 879 880 /* 881 * For stream protocols, insert a Sun RPC Record Mark. 882 */ 883 if (nmp->nm_sotype == SOCK_STREAM) { 884 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT); 885 *mtod(m, u_int32_t *) = htonl(0x80000000 | 886 (m->m_pkthdr.len - NFSX_UNSIGNED)); 887 } 888 889 tryagain: 890 rep->r_rtt = rep->r_rexmit = 0; 891 if (nfs_ptimers[rep->r_procnum] != NFS_DEFAULT_TIMER) 892 rep->r_flags = R_TIMING; 893 else 894 rep->r_flags = 0; 895 rep->r_mrep = NULL; 896 897 /* 898 * Do the client side RPC. 899 */ 900 nfsstats.rpcrequests++; 901 /* 902 * Chain request into list of outstanding requests. Be sure 903 * to put it LAST so timer finds oldest requests first. 904 */ 905 if (TAILQ_EMPTY(&nmp->nm_reqsq)) 906 timeout_add(&nmp->nm_rtimeout, nfs_ticks); 907 TAILQ_INSERT_TAIL(&nmp->nm_reqsq, rep, r_chain); 908 909 /* 910 * If backing off another request or avoiding congestion, don't 911 * send this one now but let timer do it. If not timing a request, 912 * do it now. 913 */ 914 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || 915 (nmp->nm_flag & NFSMNT_DUMBTIMR) || 916 nmp->nm_sent < nmp->nm_cwnd)) { 917 if (nmp->nm_soflags & PR_CONNREQUIRED) 918 error = nfs_sndlock(&nmp->nm_flag, rep); 919 if (!error) { 920 error = nfs_send(nmp->nm_so, nmp->nm_nam, 921 m_copym(m, 0, M_COPYALL, M_WAIT), rep); 922 if (nmp->nm_soflags & PR_CONNREQUIRED) 923 nfs_sndunlock(&nmp->nm_flag); 924 } 925 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) { 926 nmp->nm_sent += NFS_CWNDSCALE; 927 rep->r_flags |= R_SENT; 928 } 929 } else { 930 rep->r_rtt = -1; 931 } 932 933 /* 934 * Wait for the reply from our send or the timer's. 935 */ 936 if (!error || error == EPIPE) 937 error = nfs_reply(rep); 938 939 /* 940 * RPC done, unlink the request. 941 */ 942 TAILQ_REMOVE(&nmp->nm_reqsq, rep, r_chain); 943 if (TAILQ_EMPTY(&nmp->nm_reqsq)) 944 timeout_del(&nmp->nm_rtimeout); 945 946 /* 947 * Decrement the outstanding request count. 948 */ 949 if (rep->r_flags & R_SENT) { 950 rep->r_flags &= ~R_SENT; /* paranoia */ 951 nmp->nm_sent -= NFS_CWNDSCALE; 952 } 953 954 /* 955 * If there was a successful reply and a tprintf msg. 956 * tprintf a response. 957 */ 958 if (!error && (rep->r_flags & R_TPRINTFMSG)) 959 nfs_msg(rep, "is alive again"); 960 info.nmi_mrep = rep->r_mrep; 961 info.nmi_md = rep->r_md; 962 info.nmi_dpos = rep->r_dpos; 963 if (error) { 964 infop->nmi_mrep = NULL; 965 goto nfsmout1; 966 } 967 968 /* 969 * break down the rpc header and check if ok 970 */ 971 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 972 if (*tl++ == rpc_msgdenied) { 973 if (*tl == rpc_mismatch) 974 error = EOPNOTSUPP; 975 else 976 error = EACCES; /* Should be EAUTH. */ 977 infop->nmi_mrep = NULL; 978 goto nfsmout1; 979 } 980 981 /* 982 * Since we only support RPCAUTH_UNIX atm we step over the 983 * reply verifer type, and in the (error) case that there really 984 * is any data in it, we advance over it. 985 */ 986 tl++; /* Step over verifer type */ 987 i = fxdr_unsigned(int32_t, *tl); 988 if (i > 0) 989 nfsm_adv(nfsm_rndup(i)); /* Should not happen */ 990 991 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 992 /* 0 == ok */ 993 if (*tl == 0) { 994 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 995 if (*tl != 0) { 996 error = fxdr_unsigned(int, *tl); 997 if ((nmp->nm_flag & NFSMNT_NFSV3) && 998 error == NFSERR_TRYLATER) { 999 m_freem(info.nmi_mrep); 1000 error = 0; 1001 tv.tv_sec = trylater_delay; 1002 tv.tv_usec = 0; 1003 tsleep(&tv, PSOCK, "nfsretry", tvtohz(&tv)); 1004 trylater_delay *= NFS_TIMEOUTMUL; 1005 if (trylater_delay > NFS_MAXTIMEO) 1006 trylater_delay = NFS_MAXTIMEO; 1007 1008 goto tryagain; 1009 } 1010 1011 /* 1012 * If the File Handle was stale, invalidate the 1013 * lookup cache, just in case. 1014 */ 1015 if (error == ESTALE) 1016 cache_purge(rep->r_vp); 1017 } 1018 goto nfsmout; 1019 } 1020 1021 error = EPROTONOSUPPORT; 1022 1023 nfsmout: 1024 infop->nmi_mrep = info.nmi_mrep; 1025 infop->nmi_md = info.nmi_md; 1026 infop->nmi_dpos = info.nmi_dpos; 1027 nfsmout1: 1028 m_freem(rep->r_mreq); 1029 pool_put(&nfsreqpl, rep); 1030 return (error); 1031 } 1032 #endif /* NFSCLIENT */ 1033 1034 /* 1035 * Generate the rpc reply header 1036 * siz arg. is used to decide if adding a cluster is worthwhile 1037 */ 1038 int 1039 nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp, 1040 int err, struct mbuf **mrq, struct mbuf **mbp) 1041 { 1042 u_int32_t *tl; 1043 struct mbuf *mreq; 1044 struct mbuf *mb; 1045 1046 MGETHDR(mreq, M_WAIT, MT_DATA); 1047 mb = mreq; 1048 /* 1049 * If this is a big reply, use a cluster else 1050 * try and leave leading space for the lower level headers. 1051 */ 1052 siz += RPC_REPLYSIZ; 1053 if (siz >= MHLEN - max_hdr) { 1054 MCLGET(mreq, M_WAIT); 1055 } else 1056 mreq->m_data += max_hdr; 1057 tl = mtod(mreq, u_int32_t *); 1058 mreq->m_len = 6 * NFSX_UNSIGNED; 1059 *tl++ = txdr_unsigned(nd->nd_retxid); 1060 *tl++ = rpc_reply; 1061 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { 1062 *tl++ = rpc_msgdenied; 1063 if (err & NFSERR_AUTHERR) { 1064 *tl++ = rpc_autherr; 1065 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); 1066 mreq->m_len -= NFSX_UNSIGNED; 1067 } else { 1068 *tl++ = rpc_mismatch; 1069 *tl++ = txdr_unsigned(RPC_VER2); 1070 *tl = txdr_unsigned(RPC_VER2); 1071 } 1072 } else { 1073 *tl++ = rpc_msgaccepted; 1074 1075 /* AUTH_UNIX requires RPCAUTH_NULL. */ 1076 *tl++ = 0; 1077 *tl++ = 0; 1078 1079 switch (err) { 1080 case EPROGUNAVAIL: 1081 *tl = txdr_unsigned(RPC_PROGUNAVAIL); 1082 break; 1083 case EPROGMISMATCH: 1084 *tl = txdr_unsigned(RPC_PROGMISMATCH); 1085 tl = nfsm_build(&mb, 2 * NFSX_UNSIGNED); 1086 *tl++ = txdr_unsigned(NFS_VER2); 1087 *tl = txdr_unsigned(NFS_VER3); 1088 break; 1089 case EPROCUNAVAIL: 1090 *tl = txdr_unsigned(RPC_PROCUNAVAIL); 1091 break; 1092 case EBADRPC: 1093 *tl = txdr_unsigned(RPC_GARBAGE); 1094 break; 1095 default: 1096 *tl = 0; 1097 if (err != NFSERR_RETVOID) { 1098 tl = nfsm_build(&mb, NFSX_UNSIGNED); 1099 if (err) 1100 *tl = txdr_unsigned(nfsrv_errmap(nd, err)); 1101 else 1102 *tl = 0; 1103 } 1104 break; 1105 }; 1106 } 1107 1108 *mrq = mreq; 1109 if (mbp != NULL) 1110 *mbp = mb; 1111 if (err != 0 && err != NFSERR_RETVOID) 1112 nfsstats.srvrpc_errs++; 1113 return (0); 1114 } 1115 1116 /* 1117 * nfs timer routine 1118 * Scan the nfsreq list and retranmit any requests that have timed out. 1119 */ 1120 void 1121 nfs_timer(void *arg) 1122 { 1123 struct nfsmount *nmp = arg; 1124 struct nfsreq *rep; 1125 struct mbuf *m; 1126 struct socket *so; 1127 int timeo, error; 1128 1129 NET_LOCK(); 1130 TAILQ_FOREACH(rep, &nmp->nm_reqsq, r_chain) { 1131 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) 1132 continue; 1133 if (nfs_sigintr(nmp, rep, rep->r_procp)) { 1134 rep->r_flags |= R_SOFTTERM; 1135 continue; 1136 } 1137 if (rep->r_rtt >= 0) { 1138 rep->r_rtt++; 1139 if (nmp->nm_flag & NFSMNT_DUMBTIMR) 1140 timeo = nmp->nm_timeo; 1141 else 1142 timeo = nfs_estimate_rto(nmp, rep->r_procnum); 1143 if (nmp->nm_timeouts > 0) 1144 timeo *= nfs_backoff[nmp->nm_timeouts - 1]; 1145 if (rep->r_rtt <= timeo) 1146 continue; 1147 if (nmp->nm_timeouts < nitems(nfs_backoff)) 1148 nmp->nm_timeouts++; 1149 } 1150 1151 /* Check for server not responding. */ 1152 if ((rep->r_flags & R_TPRINTFMSG) == 0 && rep->r_rexmit > 4) { 1153 nfs_msg(rep, "not responding"); 1154 rep->r_flags |= R_TPRINTFMSG; 1155 } 1156 if (rep->r_rexmit >= nmp->nm_retry) { /* too many */ 1157 nfsstats.rpctimeouts++; 1158 rep->r_flags |= R_SOFTTERM; 1159 continue; 1160 } 1161 if (nmp->nm_sotype != SOCK_DGRAM) { 1162 if (++rep->r_rexmit > NFS_MAXREXMIT) 1163 rep->r_rexmit = NFS_MAXREXMIT; 1164 continue; 1165 } 1166 1167 if ((so = nmp->nm_so) == NULL) 1168 continue; 1169 1170 /* 1171 * If there is enough space and the window allows.. 1172 * Resend it 1173 * Set r_rtt to -1 in case we fail to send it now. 1174 */ 1175 rep->r_rtt = -1; 1176 if (sbspace(so, &so->so_snd) >= rep->r_mreq->m_pkthdr.len && 1177 ((nmp->nm_flag & NFSMNT_DUMBTIMR) || 1178 (rep->r_flags & R_SENT) || 1179 nmp->nm_sent < nmp->nm_cwnd) && 1180 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){ 1181 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0) 1182 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, 1183 m, NULL, NULL, curproc); 1184 else 1185 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, 1186 m, nmp->nm_nam, NULL, curproc); 1187 if (error) { 1188 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) 1189 so->so_error = 0; 1190 } else { 1191 /* 1192 * Iff first send, start timing 1193 * else turn timing off, backoff timer 1194 * and divide congestion window by 2. 1195 */ 1196 if (rep->r_flags & R_SENT) { 1197 rep->r_flags &= ~R_TIMING; 1198 if (++rep->r_rexmit > NFS_MAXREXMIT) 1199 rep->r_rexmit = NFS_MAXREXMIT; 1200 nmp->nm_cwnd >>= 1; 1201 if (nmp->nm_cwnd < NFS_CWNDSCALE) 1202 nmp->nm_cwnd = NFS_CWNDSCALE; 1203 nfsstats.rpcretries++; 1204 } else { 1205 rep->r_flags |= R_SENT; 1206 nmp->nm_sent += NFS_CWNDSCALE; 1207 } 1208 rep->r_rtt = 0; 1209 } 1210 } 1211 } 1212 NET_UNLOCK(); 1213 timeout_add(&nmp->nm_rtimeout, nfs_ticks); 1214 } 1215 1216 /* 1217 * Test for a termination condition pending on the process. 1218 * This is used for NFSMNT_INT mounts. 1219 */ 1220 int 1221 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct proc *p) 1222 { 1223 1224 if (rep && (rep->r_flags & R_SOFTTERM)) 1225 return (EINTR); 1226 if (!(nmp->nm_flag & NFSMNT_INT)) 1227 return (0); 1228 if (p && (SIGPENDING(p) & ~p->p_p->ps_sigacts->ps_sigignore & 1229 NFSINT_SIGMASK)) 1230 return (EINTR); 1231 return (0); 1232 } 1233 1234 /* 1235 * Lock a socket against others. 1236 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply 1237 * and also to avoid race conditions between the processes with nfs requests 1238 * in progress when a reconnect is necessary. 1239 */ 1240 int 1241 nfs_sndlock(int *flagp, struct nfsreq *rep) 1242 { 1243 struct proc *p; 1244 int slpflag = 0, slptimeo = 0; 1245 1246 if (rep) { 1247 p = rep->r_procp; 1248 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1249 slpflag = PCATCH; 1250 } else 1251 p = NULL; 1252 while (*flagp & NFSMNT_SNDLOCK) { 1253 if (rep && nfs_sigintr(rep->r_nmp, rep, p)) 1254 return (EINTR); 1255 *flagp |= NFSMNT_WANTSND; 1256 (void)tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck", 1257 slptimeo); 1258 if (slpflag == PCATCH) { 1259 slpflag = 0; 1260 slptimeo = 2 * hz; 1261 } 1262 } 1263 *flagp |= NFSMNT_SNDLOCK; 1264 return (0); 1265 } 1266 1267 /* 1268 * Unlock the stream socket for others. 1269 */ 1270 void 1271 nfs_sndunlock(int *flagp) 1272 { 1273 1274 if ((*flagp & NFSMNT_SNDLOCK) == 0) 1275 panic("nfs sndunlock"); 1276 *flagp &= ~NFSMNT_SNDLOCK; 1277 if (*flagp & NFSMNT_WANTSND) { 1278 *flagp &= ~NFSMNT_WANTSND; 1279 wakeup((caddr_t)flagp); 1280 } 1281 } 1282 1283 int 1284 nfs_rcvlock(struct nfsreq *rep) 1285 { 1286 int *flagp = &rep->r_nmp->nm_flag; 1287 int slpflag, slptimeo = 0; 1288 1289 if (*flagp & NFSMNT_INT) 1290 slpflag = PCATCH; 1291 else 1292 slpflag = 0; 1293 1294 while (*flagp & NFSMNT_RCVLOCK) { 1295 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp)) 1296 return (EINTR); 1297 *flagp |= NFSMNT_WANTRCV; 1298 (void)tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk", 1299 slptimeo); 1300 if (rep->r_mrep != NULL) { 1301 /* 1302 * Don't take the lock if our reply has been received 1303 * while we where sleeping. 1304 */ 1305 return (EALREADY); 1306 } 1307 if (slpflag == PCATCH) { 1308 slpflag = 0; 1309 slptimeo = 2 * hz; 1310 } 1311 } 1312 *flagp |= NFSMNT_RCVLOCK; 1313 return (0); 1314 } 1315 1316 /* 1317 * Unlock the stream socket for others. 1318 */ 1319 void 1320 nfs_rcvunlock(int *flagp) 1321 { 1322 1323 if ((*flagp & NFSMNT_RCVLOCK) == 0) 1324 panic("nfs rcvunlock"); 1325 *flagp &= ~NFSMNT_RCVLOCK; 1326 if (*flagp & NFSMNT_WANTRCV) { 1327 *flagp &= ~NFSMNT_WANTRCV; 1328 wakeup(flagp); 1329 } 1330 } 1331 1332 /* 1333 * Auxiliary routine to align the length of mbuf copies made with m_copyback(). 1334 */ 1335 void 1336 nfs_realign_fixup(struct mbuf *m, struct mbuf *n, unsigned int *off) 1337 { 1338 size_t padding; 1339 1340 /* 1341 * The maximum number of bytes that m_copyback() places in a mbuf is 1342 * always an aligned quantity, so realign happens at the chain's tail. 1343 */ 1344 while (n->m_next != NULL) 1345 n = n->m_next; 1346 1347 /* 1348 * Pad from the next elements in the source chain. Loop until the 1349 * destination chain is aligned, or the end of the source is reached. 1350 */ 1351 do { 1352 m = m->m_next; 1353 if (m == NULL) 1354 return; 1355 1356 padding = min(ALIGN(n->m_len) - n->m_len, m->m_len); 1357 if (padding > m_trailingspace(n)) 1358 panic("nfs_realign_fixup: no memory to pad to"); 1359 1360 bcopy(mtod(m, void *), mtod(n, char *) + n->m_len, padding); 1361 1362 n->m_len += padding; 1363 m_adj(m, padding); 1364 *off += padding; 1365 1366 } while (!ALIGNED_POINTER(n->m_len, void *)); 1367 } 1368 1369 /* 1370 * The NFS RPC parsing code uses the data address and the length of mbuf 1371 * structures to calculate on-memory addresses. This function makes sure these 1372 * parameters are correctly aligned. 1373 */ 1374 void 1375 nfs_realign(struct mbuf **pm, int hsiz) 1376 { 1377 struct mbuf *m; 1378 struct mbuf *n = NULL; 1379 unsigned int off = 0; 1380 1381 ++nfs_realign_test; 1382 while ((m = *pm) != NULL) { 1383 if (!ALIGNED_POINTER(m->m_data, void *) || 1384 !ALIGNED_POINTER(m->m_len, void *)) { 1385 MGET(n, M_WAIT, MT_DATA); 1386 #define ALIGN_POINTER(n) ((u_int)(((n) + sizeof(void *)) & ~sizeof(void *))) 1387 if (ALIGN_POINTER(m->m_len) >= MINCLSIZE) { 1388 MCLGET(n, M_WAIT); 1389 } 1390 n->m_len = 0; 1391 break; 1392 } 1393 pm = &m->m_next; 1394 } 1395 /* 1396 * If n is non-NULL, loop on m copying data, then replace the 1397 * portion of the chain that had to be realigned. 1398 */ 1399 if (n != NULL) { 1400 ++nfs_realign_count; 1401 while (m) { 1402 m_copyback(n, off, m->m_len, mtod(m, caddr_t), M_WAIT); 1403 1404 /* 1405 * If an unaligned amount of memory was copied, fix up 1406 * the last mbuf created by m_copyback(). 1407 */ 1408 if (!ALIGNED_POINTER(m->m_len, void *)) 1409 nfs_realign_fixup(m, n, &off); 1410 1411 off += m->m_len; 1412 m = m->m_next; 1413 } 1414 m_freemp(pm); 1415 *pm = n; 1416 } 1417 } 1418 1419 1420 /* 1421 * Parse an RPC request 1422 * - verify it 1423 * - fill in the cred struct. 1424 */ 1425 int 1426 nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header) 1427 { 1428 int len, i; 1429 u_int32_t *tl; 1430 int32_t t1; 1431 caddr_t cp2; 1432 u_int32_t nfsvers, auth_type; 1433 int error = 0; 1434 struct nfsm_info info; 1435 1436 info.nmi_mrep = nd->nd_mrep; 1437 info.nmi_md = nd->nd_md; 1438 info.nmi_dpos = nd->nd_dpos; 1439 if (has_header) { 1440 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); 1441 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); 1442 if (*tl++ != rpc_call) { 1443 m_freem(info.nmi_mrep); 1444 return (EBADRPC); 1445 } 1446 } else 1447 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 1448 nd->nd_repstat = 0; 1449 nd->nd_flag = 0; 1450 if (*tl++ != rpc_vers) { 1451 nd->nd_repstat = ERPCMISMATCH; 1452 nd->nd_procnum = NFSPROC_NOOP; 1453 return (0); 1454 } 1455 if (*tl != nfs_prog) { 1456 nd->nd_repstat = EPROGUNAVAIL; 1457 nd->nd_procnum = NFSPROC_NOOP; 1458 return (0); 1459 } 1460 tl++; 1461 nfsvers = fxdr_unsigned(u_int32_t, *tl++); 1462 if (nfsvers != NFS_VER2 && nfsvers != NFS_VER3) { 1463 nd->nd_repstat = EPROGMISMATCH; 1464 nd->nd_procnum = NFSPROC_NOOP; 1465 return (0); 1466 } 1467 if (nfsvers == NFS_VER3) 1468 nd->nd_flag = ND_NFSV3; 1469 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); 1470 if (nd->nd_procnum == NFSPROC_NULL) 1471 return (0); 1472 if (nd->nd_procnum >= NFS_NPROCS || 1473 (nd->nd_procnum > NFSPROC_COMMIT) || 1474 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { 1475 nd->nd_repstat = EPROCUNAVAIL; 1476 nd->nd_procnum = NFSPROC_NOOP; 1477 return (0); 1478 } 1479 if ((nd->nd_flag & ND_NFSV3) == 0) 1480 nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; 1481 auth_type = *tl++; 1482 len = fxdr_unsigned(int, *tl++); 1483 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1484 m_freem(info.nmi_mrep); 1485 return (EBADRPC); 1486 } 1487 1488 /* Handle auth_unix */ 1489 if (auth_type == rpc_auth_unix) { 1490 len = fxdr_unsigned(int, *++tl); 1491 if (len < 0 || len > NFS_MAXNAMLEN) { 1492 m_freem(info.nmi_mrep); 1493 return (EBADRPC); 1494 } 1495 nfsm_adv(nfsm_rndup(len)); 1496 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1497 memset(&nd->nd_cr, 0, sizeof (struct ucred)); 1498 nd->nd_cr.cr_ref = 1; 1499 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++); 1500 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++); 1501 len = fxdr_unsigned(int, *tl); 1502 if (len < 0 || len > RPCAUTH_UNIXGIDS) { 1503 m_freem(info.nmi_mrep); 1504 return (EBADRPC); 1505 } 1506 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); 1507 for (i = 0; i < len; i++) { 1508 if (i < NGROUPS_MAX) 1509 nd->nd_cr.cr_groups[i] = 1510 fxdr_unsigned(gid_t, *tl++); 1511 else 1512 tl++; 1513 } 1514 nd->nd_cr.cr_ngroups = (len > NGROUPS_MAX) ? NGROUPS_MAX : len; 1515 len = fxdr_unsigned(int, *++tl); 1516 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1517 m_freem(info.nmi_mrep); 1518 return (EBADRPC); 1519 } 1520 if (len > 0) 1521 nfsm_adv(nfsm_rndup(len)); 1522 } else { 1523 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); 1524 nd->nd_procnum = NFSPROC_NOOP; 1525 return (0); 1526 } 1527 1528 nd->nd_md = info.nmi_md; 1529 nd->nd_dpos = info.nmi_dpos; 1530 return (0); 1531 nfsmout: 1532 return (error); 1533 } 1534 1535 void 1536 nfs_msg(struct nfsreq *rep, char *msg) 1537 { 1538 tpr_t tpr; 1539 1540 if (rep->r_procp) 1541 tpr = tprintf_open(rep->r_procp); 1542 else 1543 tpr = NULL; 1544 1545 tprintf(tpr, "nfs server %s: %s\n", 1546 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname, msg); 1547 tprintf_close(tpr); 1548 } 1549 1550 #ifdef NFSSERVER 1551 /* 1552 * Socket upcall routine for the nfsd sockets. 1553 * The caddr_t arg is a pointer to the "struct nfssvc_sock". 1554 * Essentially do as much as possible non-blocking, else punt and it will 1555 * be called with M_WAIT from an nfsd. 1556 */ 1557 void 1558 nfsrv_rcv(struct socket *so, caddr_t arg, int waitflag) 1559 { 1560 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; 1561 struct mbuf *m; 1562 struct mbuf *mp, *nam; 1563 struct uio auio; 1564 int flags, error; 1565 1566 if ((slp->ns_flag & SLP_VALID) == 0) 1567 return; 1568 1569 /* Defer soreceive() to an nfsd. */ 1570 if (waitflag == M_DONTWAIT) { 1571 slp->ns_flag |= SLP_NEEDQ; 1572 goto dorecs; 1573 } 1574 1575 auio.uio_procp = NULL; 1576 if (so->so_type == SOCK_STREAM) { 1577 /* 1578 * Do soreceive(). 1579 */ 1580 auio.uio_resid = 1000000000; 1581 flags = MSG_DONTWAIT; 1582 error = soreceive(so, &nam, &auio, &mp, NULL, 1583 &flags, 0); 1584 if (error || mp == NULL) { 1585 if (error == EWOULDBLOCK) 1586 slp->ns_flag |= SLP_NEEDQ; 1587 else 1588 slp->ns_flag |= SLP_DISCONN; 1589 goto dorecs; 1590 } 1591 m = mp; 1592 if (slp->ns_rawend) { 1593 slp->ns_rawend->m_next = m; 1594 slp->ns_cc += 1000000000 - auio.uio_resid; 1595 } else { 1596 slp->ns_raw = m; 1597 slp->ns_cc = 1000000000 - auio.uio_resid; 1598 } 1599 while (m->m_next) 1600 m = m->m_next; 1601 slp->ns_rawend = m; 1602 1603 /* 1604 * Now try and parse record(s) out of the raw stream data. 1605 */ 1606 error = nfsrv_getstream(slp, waitflag); 1607 if (error) { 1608 if (error == EPERM) 1609 slp->ns_flag |= SLP_DISCONN; 1610 else 1611 slp->ns_flag |= SLP_NEEDQ; 1612 } 1613 } else { 1614 do { 1615 auio.uio_resid = 1000000000; 1616 flags = MSG_DONTWAIT; 1617 error = soreceive(so, &nam, &auio, &mp, 1618 NULL, &flags, 0); 1619 if (mp) { 1620 if (nam) { 1621 m = nam; 1622 m->m_next = mp; 1623 } else 1624 m = mp; 1625 if (slp->ns_recend) 1626 slp->ns_recend->m_nextpkt = m; 1627 else 1628 slp->ns_rec = m; 1629 slp->ns_recend = m; 1630 m->m_nextpkt = NULL; 1631 } 1632 if (error) { 1633 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) 1634 && error != EWOULDBLOCK) { 1635 slp->ns_flag |= SLP_DISCONN; 1636 goto dorecs; 1637 } 1638 } 1639 } while (mp); 1640 } 1641 1642 /* 1643 * Now try and process the request records, non-blocking. 1644 */ 1645 dorecs: 1646 if (waitflag == M_DONTWAIT && 1647 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) 1648 nfsrv_wakenfsd(slp); 1649 } 1650 1651 /* 1652 * Try and extract an RPC request from the mbuf data list received on a 1653 * stream socket. The "waitflag" argument indicates whether or not it 1654 * can sleep. 1655 */ 1656 int 1657 nfsrv_getstream(struct nfssvc_sock *slp, int waitflag) 1658 { 1659 struct mbuf *m, **mpp; 1660 char *cp1, *cp2; 1661 int len; 1662 struct mbuf *om, *m2, *recm; 1663 u_int32_t recmark; 1664 1665 if (slp->ns_flag & SLP_GETSTREAM) 1666 return (0); 1667 slp->ns_flag |= SLP_GETSTREAM; 1668 for (;;) { 1669 if (slp->ns_reclen == 0) { 1670 if (slp->ns_cc < NFSX_UNSIGNED) { 1671 slp->ns_flag &= ~SLP_GETSTREAM; 1672 return (0); 1673 } 1674 m = slp->ns_raw; 1675 if (m->m_len >= NFSX_UNSIGNED) { 1676 bcopy(mtod(m, caddr_t), &recmark, 1677 NFSX_UNSIGNED); 1678 m->m_data += NFSX_UNSIGNED; 1679 m->m_len -= NFSX_UNSIGNED; 1680 } else { 1681 cp1 = (caddr_t)&recmark; 1682 cp2 = mtod(m, caddr_t); 1683 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) { 1684 while (m->m_len == 0) { 1685 m = m->m_next; 1686 cp2 = mtod(m, caddr_t); 1687 } 1688 *cp1++ = *cp2++; 1689 m->m_data++; 1690 m->m_len--; 1691 } 1692 } 1693 slp->ns_cc -= NFSX_UNSIGNED; 1694 recmark = ntohl(recmark); 1695 slp->ns_reclen = recmark & ~0x80000000; 1696 if (recmark & 0x80000000) 1697 slp->ns_flag |= SLP_LASTFRAG; 1698 else 1699 slp->ns_flag &= ~SLP_LASTFRAG; 1700 if (slp->ns_reclen > NFS_MAXPACKET) { 1701 slp->ns_flag &= ~SLP_GETSTREAM; 1702 return (EPERM); 1703 } 1704 } 1705 1706 /* 1707 * Now get the record part. 1708 */ 1709 recm = NULL; 1710 if (slp->ns_cc == slp->ns_reclen) { 1711 recm = slp->ns_raw; 1712 slp->ns_raw = slp->ns_rawend = NULL; 1713 slp->ns_cc = slp->ns_reclen = 0; 1714 } else if (slp->ns_cc > slp->ns_reclen) { 1715 len = 0; 1716 m = slp->ns_raw; 1717 om = NULL; 1718 while (len < slp->ns_reclen) { 1719 if ((len + m->m_len) > slp->ns_reclen) { 1720 m2 = m_copym(m, 0, slp->ns_reclen - len, 1721 waitflag); 1722 if (m2) { 1723 if (om) { 1724 om->m_next = m2; 1725 recm = slp->ns_raw; 1726 } else 1727 recm = m2; 1728 m->m_data += slp->ns_reclen-len; 1729 m->m_len -= slp->ns_reclen-len; 1730 len = slp->ns_reclen; 1731 } else { 1732 slp->ns_flag &= ~SLP_GETSTREAM; 1733 return (EWOULDBLOCK); 1734 } 1735 } else if ((len + m->m_len) == slp->ns_reclen) { 1736 om = m; 1737 len += m->m_len; 1738 m = m->m_next; 1739 recm = slp->ns_raw; 1740 om->m_next = NULL; 1741 } else { 1742 om = m; 1743 len += m->m_len; 1744 m = m->m_next; 1745 } 1746 } 1747 slp->ns_raw = m; 1748 slp->ns_cc -= len; 1749 slp->ns_reclen = 0; 1750 } else { 1751 slp->ns_flag &= ~SLP_GETSTREAM; 1752 return (0); 1753 } 1754 1755 /* 1756 * Accumulate the fragments into a record. 1757 */ 1758 mpp = &slp->ns_frag; 1759 while (*mpp) 1760 mpp = &((*mpp)->m_next); 1761 *mpp = recm; 1762 if (slp->ns_flag & SLP_LASTFRAG) { 1763 if (slp->ns_recend) 1764 slp->ns_recend->m_nextpkt = slp->ns_frag; 1765 else 1766 slp->ns_rec = slp->ns_frag; 1767 slp->ns_recend = slp->ns_frag; 1768 slp->ns_frag = NULL; 1769 } 1770 } 1771 } 1772 1773 /* 1774 * Parse an RPC header. 1775 */ 1776 int 1777 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd, 1778 struct nfsrv_descript **ndp) 1779 { 1780 struct mbuf *m, *nam; 1781 struct nfsrv_descript *nd; 1782 int error; 1783 1784 *ndp = NULL; 1785 if ((slp->ns_flag & SLP_VALID) == 0 || 1786 (m = slp->ns_rec) == NULL) 1787 return (ENOBUFS); 1788 slp->ns_rec = m->m_nextpkt; 1789 if (slp->ns_rec) 1790 m->m_nextpkt = NULL; 1791 else 1792 slp->ns_recend = NULL; 1793 if (m->m_type == MT_SONAME) { 1794 nam = m; 1795 m = m->m_next; 1796 nam->m_next = NULL; 1797 } else 1798 nam = NULL; 1799 nd = pool_get(&nfsrv_descript_pl, PR_WAITOK); 1800 nfs_realign(&m, 10 * NFSX_UNSIGNED); 1801 nd->nd_md = nd->nd_mrep = m; 1802 nd->nd_nam2 = nam; 1803 nd->nd_dpos = mtod(m, caddr_t); 1804 error = nfs_getreq(nd, nfsd, 1); 1805 if (error) { 1806 m_freem(nam); 1807 pool_put(&nfsrv_descript_pl, nd); 1808 return (error); 1809 } 1810 *ndp = nd; 1811 nfsd->nfsd_nd = nd; 1812 return (0); 1813 } 1814 1815 1816 /* 1817 * Search for a sleeping nfsd and wake it up. 1818 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the 1819 * running nfsds will go look for the work in the nfssvc_sock list. 1820 */ 1821 void 1822 nfsrv_wakenfsd(struct nfssvc_sock *slp) 1823 { 1824 struct nfsd *nfsd; 1825 1826 if ((slp->ns_flag & SLP_VALID) == 0) 1827 return; 1828 1829 TAILQ_FOREACH(nfsd, &nfsd_head, nfsd_chain) { 1830 if (nfsd->nfsd_flag & NFSD_WAITING) { 1831 nfsd->nfsd_flag &= ~NFSD_WAITING; 1832 if (nfsd->nfsd_slp) 1833 panic("nfsd wakeup"); 1834 slp->ns_sref++; 1835 nfsd->nfsd_slp = slp; 1836 wakeup_one(nfsd); 1837 return; 1838 } 1839 } 1840 1841 slp->ns_flag |= SLP_DOREC; 1842 nfsd_head_flag |= NFSD_CHECKSLP; 1843 } 1844 #endif /* NFSSERVER */ 1845