1 /* $OpenBSD: nfs_socket.c,v 1.15 1999/03/02 20:59:55 millert Exp $ */ 2 /* $NetBSD: nfs_socket.c,v 1.27 1996/04/15 20:20:00 thorpej Exp $ */ 3 4 /* 5 * Copyright (c) 1989, 1991, 1993, 1995 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Rick Macklem at The University of Guelph. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the University of 22 * California, Berkeley and its contributors. 23 * 4. Neither the name of the University nor the names of its contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 * 39 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95 40 */ 41 42 /* 43 * Socket operations for use by nfs 44 */ 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/proc.h> 49 #include <sys/mount.h> 50 #include <sys/kernel.h> 51 #include <sys/mbuf.h> 52 #include <sys/vnode.h> 53 #include <sys/domain.h> 54 #include <sys/protosw.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/syslog.h> 58 #include <sys/tprintf.h> 59 #include <sys/namei.h> 60 61 #include <netinet/in.h> 62 #include <netinet/tcp.h> 63 64 #include <nfs/rpcv2.h> 65 #include <nfs/nfsproto.h> 66 #include <nfs/nfs.h> 67 #include <nfs/xdr_subs.h> 68 #include <nfs/nfsm_subs.h> 69 #include <nfs/nfsmount.h> 70 #include <nfs/nfsnode.h> 71 #include <nfs/nfsrtt.h> 72 #include <nfs/nqnfs.h> 73 #include <nfs/nfs_var.h> 74 75 #define TRUE 1 76 #define FALSE 0 77 78 /* 79 * Estimate rto for an nfs rpc sent via. an unreliable datagram. 80 * Use the mean and mean deviation of rtt for the appropriate type of rpc 81 * for the frequent rpcs and a default for the others. 82 * The justification for doing "other" this way is that these rpcs 83 * happen so infrequently that timer est. would probably be stale. 84 * Also, since many of these rpcs are 85 * non-idempotent, a conservative timeout is desired. 86 * getattr, lookup - A+2D 87 * read, write - A+4D 88 * other - nm_timeo 89 */ 90 #define NFS_RTO(n, t) \ 91 ((t) == 0 ? (n)->nm_timeo : \ 92 ((t) < 3 ? \ 93 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \ 94 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1))) 95 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1] 96 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1] 97 /* 98 * External data, mostly RPC constants in XDR form 99 */ 100 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, 101 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr, 102 rpc_auth_kerb; 103 extern u_int32_t nfs_prog, nqnfs_prog; 104 extern time_t nqnfsstarttime; 105 extern struct nfsstats nfsstats; 106 extern int nfsv3_procid[NFS_NPROCS]; 107 extern int nfs_ticks; 108 109 /* 110 * Defines which timer to use for the procnum. 111 * 0 - default 112 * 1 - getattr 113 * 2 - lookup 114 * 3 - read 115 * 4 - write 116 */ 117 static int proct[NFS_NPROCS] = { 118 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 119 0, 0, 0, 120 }; 121 122 /* 123 * There is a congestion window for outstanding rpcs maintained per mount 124 * point. The cwnd size is adjusted in roughly the way that: 125 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of 126 * SIGCOMM '88". ACM, August 1988. 127 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout 128 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd 129 * of rpcs is in progress. 130 * (The sent count and cwnd are scaled for integer arith.) 131 * Variants of "slow start" were tried and were found to be too much of a 132 * performance hit (ave. rtt 3 times larger), 133 * I suspect due to the large rtt that nfs rpcs have. 134 */ 135 #define NFS_CWNDSCALE 256 136 #define NFS_MAXCWND (NFS_CWNDSCALE * 32) 137 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, }; 138 int nfsrtton = 0; 139 struct nfsrtt nfsrtt; 140 141 /* 142 * Initialize sockets and congestion for a new NFS connection. 143 * We do not free the sockaddr if error. 144 */ 145 int 146 nfs_connect(nmp, rep) 147 register struct nfsmount *nmp; 148 struct nfsreq *rep; 149 { 150 register struct socket *so; 151 int s, error, rcvreserve, sndreserve; 152 struct sockaddr *saddr; 153 struct sockaddr_in *sin; 154 struct mbuf *m; 155 156 nmp->nm_so = (struct socket *)0; 157 saddr = mtod(nmp->nm_nam, struct sockaddr *); 158 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype, 159 nmp->nm_soproto); 160 if (error) 161 goto bad; 162 so = nmp->nm_so; 163 nmp->nm_soflags = so->so_proto->pr_flags; 164 165 /* 166 * Some servers require that the client port be a reserved port number. 167 * We always allocate a reserved port, as this prevents filehandle 168 * disclosure through UDP port capture. 169 */ 170 if (saddr->sa_family == AF_INET) { 171 struct mbuf *mopt; 172 int *ip; 173 174 MGET(mopt, M_WAIT, MT_SOOPTS); 175 mopt->m_len = sizeof(int); 176 ip = mtod(mopt, int *); 177 *ip = IP_PORTRANGE_LOW; 178 error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, mopt); 179 if (error) 180 goto bad; 181 182 MGET(m, M_WAIT, MT_SONAME); 183 sin = mtod(m, struct sockaddr_in *); 184 sin->sin_len = m->m_len = sizeof (struct sockaddr_in); 185 sin->sin_family = AF_INET; 186 sin->sin_addr.s_addr = INADDR_ANY; 187 sin->sin_port = htons(0); 188 error = sobind(so, m); 189 m_freem(m); 190 if (error) 191 goto bad; 192 193 MGET(mopt, M_WAIT, MT_SOOPTS); 194 mopt->m_len = sizeof(int); 195 ip = mtod(mopt, int *); 196 *ip = IP_PORTRANGE_DEFAULT; 197 error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, mopt); 198 if (error) 199 goto bad; 200 } 201 202 /* 203 * Protocols that do not require connections may be optionally left 204 * unconnected for servers that reply from a port other than NFS_PORT. 205 */ 206 if (nmp->nm_flag & NFSMNT_NOCONN) { 207 if (nmp->nm_soflags & PR_CONNREQUIRED) { 208 error = ENOTCONN; 209 goto bad; 210 } 211 } else { 212 error = soconnect(so, nmp->nm_nam); 213 if (error) 214 goto bad; 215 216 /* 217 * Wait for the connection to complete. Cribbed from the 218 * connect system call but with the wait timing out so 219 * that interruptible mounts don't hang here for a long time. 220 */ 221 s = splsoftnet(); 222 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { 223 (void) tsleep((caddr_t)&so->so_timeo, PSOCK, 224 "nfscon", 2 * hz); 225 if ((so->so_state & SS_ISCONNECTING) && 226 so->so_error == 0 && rep && 227 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){ 228 so->so_state &= ~SS_ISCONNECTING; 229 splx(s); 230 goto bad; 231 } 232 } 233 if (so->so_error) { 234 error = so->so_error; 235 so->so_error = 0; 236 splx(s); 237 goto bad; 238 } 239 splx(s); 240 } 241 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) { 242 so->so_rcv.sb_timeo = (5 * hz); 243 so->so_snd.sb_timeo = (5 * hz); 244 } else { 245 so->so_rcv.sb_timeo = 0; 246 so->so_snd.sb_timeo = 0; 247 } 248 if (nmp->nm_sotype == SOCK_DGRAM) { 249 sndreserve = nmp->nm_wsize + NFS_MAXPKTHDR; 250 rcvreserve = max(nmp->nm_rsize, nmp->nm_readdirsize) + 251 NFS_MAXPKTHDR; 252 } else if (nmp->nm_sotype == SOCK_SEQPACKET) { 253 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2; 254 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) + 255 NFS_MAXPKTHDR) * 2; 256 } else { 257 if (nmp->nm_sotype != SOCK_STREAM) 258 panic("nfscon sotype"); 259 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 260 MGET(m, M_WAIT, MT_SOOPTS); 261 *mtod(m, int32_t *) = 1; 262 m->m_len = sizeof(int32_t); 263 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m); 264 } 265 if (so->so_proto->pr_protocol == IPPROTO_TCP) { 266 MGET(m, M_WAIT, MT_SOOPTS); 267 *mtod(m, int32_t *) = 1; 268 m->m_len = sizeof(int32_t); 269 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m); 270 } 271 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + 272 sizeof (u_int32_t)) * 2; 273 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + 274 sizeof (u_int32_t)) * 2; 275 } 276 error = soreserve(so, sndreserve, rcvreserve); 277 if (error) 278 goto bad; 279 so->so_rcv.sb_flags |= SB_NOINTR; 280 so->so_snd.sb_flags |= SB_NOINTR; 281 282 /* Initialize other non-zero congestion variables */ 283 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] = 284 nmp->nm_srtt[4] = (NFS_TIMEO << 3); 285 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] = 286 nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0; 287 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */ 288 nmp->nm_sent = 0; 289 nmp->nm_timeouts = 0; 290 return (0); 291 292 bad: 293 nfs_disconnect(nmp); 294 return (error); 295 } 296 297 /* 298 * Reconnect routine: 299 * Called when a connection is broken on a reliable protocol. 300 * - clean up the old socket 301 * - nfs_connect() again 302 * - set R_MUSTRESEND for all outstanding requests on mount point 303 * If this fails the mount point is DEAD! 304 * nb: Must be called with the nfs_sndlock() set on the mount point. 305 */ 306 int 307 nfs_reconnect(rep) 308 register struct nfsreq *rep; 309 { 310 register struct nfsreq *rp; 311 register struct nfsmount *nmp = rep->r_nmp; 312 int error; 313 314 nfs_disconnect(nmp); 315 while ((error = nfs_connect(nmp, rep)) != 0) { 316 if (error == EINTR || error == ERESTART) 317 return (EINTR); 318 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0); 319 } 320 321 /* 322 * Loop through outstanding request list and fix up all requests 323 * on old socket. 324 */ 325 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) { 326 if (rp->r_nmp == nmp) 327 rp->r_flags |= R_MUSTRESEND; 328 } 329 return (0); 330 } 331 332 /* 333 * NFS disconnect. Clean up and unlink. 334 */ 335 void 336 nfs_disconnect(nmp) 337 register struct nfsmount *nmp; 338 { 339 register struct socket *so; 340 341 if (nmp->nm_so) { 342 so = nmp->nm_so; 343 nmp->nm_so = (struct socket *)0; 344 soshutdown(so, 2); 345 soclose(so); 346 } 347 } 348 349 /* 350 * This is the nfs send routine. For connection based socket types, it 351 * must be called with an nfs_sndlock() on the socket. 352 * "rep == NULL" indicates that it has been called from a server. 353 * For the client side: 354 * - return EINTR if the RPC is terminated, 0 otherwise 355 * - set R_MUSTRESEND if the send fails for any reason 356 * - do any cleanup required by recoverable socket errors (???) 357 * For the server side: 358 * - return EINTR or ERESTART if interrupted by a signal 359 * - return EPIPE if a connection is lost for connection based sockets (TCP...) 360 * - do any cleanup required by recoverable socket errors (???) 361 */ 362 int 363 nfs_send(so, nam, top, rep) 364 register struct socket *so; 365 struct mbuf *nam; 366 register struct mbuf *top; 367 struct nfsreq *rep; 368 { 369 struct mbuf *sendnam; 370 int error, soflags, flags; 371 372 if (rep) { 373 if (rep->r_flags & R_SOFTTERM) { 374 m_freem(top); 375 return (EINTR); 376 } 377 if ((so = rep->r_nmp->nm_so) == NULL) { 378 rep->r_flags |= R_MUSTRESEND; 379 m_freem(top); 380 return (0); 381 } 382 rep->r_flags &= ~R_MUSTRESEND; 383 soflags = rep->r_nmp->nm_soflags; 384 } else 385 soflags = so->so_proto->pr_flags; 386 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED)) 387 sendnam = (struct mbuf *)0; 388 else 389 sendnam = nam; 390 if (so->so_type == SOCK_SEQPACKET) 391 flags = MSG_EOR; 392 else 393 flags = 0; 394 395 error = sosend(so, sendnam, (struct uio *)0, top, 396 (struct mbuf *)0, flags); 397 if (error) { 398 if (rep) { 399 log(LOG_INFO, "nfs send error %d for server %s\n",error, 400 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 401 /* 402 * Deal with errors for the client side. 403 */ 404 if (rep->r_flags & R_SOFTTERM) 405 error = EINTR; 406 else 407 rep->r_flags |= R_MUSTRESEND; 408 } else 409 log(LOG_INFO, "nfsd send error %d\n", error); 410 411 /* 412 * Handle any recoverable (soft) socket errors here. (???) 413 */ 414 if (error != EINTR && error != ERESTART && 415 error != EWOULDBLOCK && error != EPIPE) 416 error = 0; 417 } 418 return (error); 419 } 420 421 #ifdef NFSCLIENT 422 /* 423 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all 424 * done by soreceive(), but for SOCK_STREAM we must deal with the Record 425 * Mark and consolidate the data into a new mbuf list. 426 * nb: Sometimes TCP passes the data up to soreceive() in long lists of 427 * small mbufs. 428 * For SOCK_STREAM we must be very careful to read an entire record once 429 * we have read any of it, even if the system call has been interrupted. 430 */ 431 int 432 nfs_receive(rep, aname, mp) 433 register struct nfsreq *rep; 434 struct mbuf **aname; 435 struct mbuf **mp; 436 { 437 register struct socket *so; 438 struct uio auio; 439 struct iovec aio; 440 register struct mbuf *m; 441 struct mbuf *control; 442 u_int32_t len; 443 struct mbuf **getnam; 444 int error, sotype, rcvflg; 445 struct proc *p = curproc; /* XXX */ 446 447 /* 448 * Set up arguments for soreceive() 449 */ 450 *mp = (struct mbuf *)0; 451 *aname = (struct mbuf *)0; 452 sotype = rep->r_nmp->nm_sotype; 453 454 /* 455 * For reliable protocols, lock against other senders/receivers 456 * in case a reconnect is necessary. 457 * For SOCK_STREAM, first get the Record Mark to find out how much 458 * more there is to get. 459 * We must lock the socket against other receivers 460 * until we have an entire rpc request/reply. 461 */ 462 if (sotype != SOCK_DGRAM) { 463 error = nfs_sndlock(&rep->r_nmp->nm_flag, rep); 464 if (error) 465 return (error); 466 tryagain: 467 /* 468 * Check for fatal errors and resending request. 469 */ 470 /* 471 * Ugh: If a reconnect attempt just happened, nm_so 472 * would have changed. NULL indicates a failed 473 * attempt that has essentially shut down this 474 * mount point. 475 */ 476 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) { 477 nfs_sndunlock(&rep->r_nmp->nm_flag); 478 return (EINTR); 479 } 480 so = rep->r_nmp->nm_so; 481 if (!so) { 482 error = nfs_reconnect(rep); 483 if (error) { 484 nfs_sndunlock(&rep->r_nmp->nm_flag); 485 return (error); 486 } 487 goto tryagain; 488 } 489 while (rep->r_flags & R_MUSTRESEND) { 490 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT); 491 nfsstats.rpcretries++; 492 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep); 493 if (error) { 494 if (error == EINTR || error == ERESTART || 495 (error = nfs_reconnect(rep)) != 0) { 496 nfs_sndunlock(&rep->r_nmp->nm_flag); 497 return (error); 498 } 499 goto tryagain; 500 } 501 } 502 nfs_sndunlock(&rep->r_nmp->nm_flag); 503 if (sotype == SOCK_STREAM) { 504 aio.iov_base = (caddr_t) &len; 505 aio.iov_len = sizeof(u_int32_t); 506 auio.uio_iov = &aio; 507 auio.uio_iovcnt = 1; 508 auio.uio_segflg = UIO_SYSSPACE; 509 auio.uio_rw = UIO_READ; 510 auio.uio_offset = 0; 511 auio.uio_resid = sizeof(u_int32_t); 512 auio.uio_procp = p; 513 do { 514 rcvflg = MSG_WAITALL; 515 error = soreceive(so, (struct mbuf **)0, &auio, 516 (struct mbuf **)0, (struct mbuf **)0, &rcvflg); 517 if (error == EWOULDBLOCK && rep) { 518 if (rep->r_flags & R_SOFTTERM) 519 return (EINTR); 520 } 521 } while (error == EWOULDBLOCK); 522 if (!error && auio.uio_resid > 0) { 523 log(LOG_INFO, 524 "short receive (%d/%d) from nfs server %s\n", 525 sizeof(u_int32_t) - auio.uio_resid, 526 sizeof(u_int32_t), 527 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 528 error = EPIPE; 529 } 530 if (error) 531 goto errout; 532 len = ntohl(len) & ~0x80000000; 533 /* 534 * This is SERIOUS! We are out of sync with the sender 535 * and forcing a disconnect/reconnect is all I can do. 536 */ 537 if (len > NFS_MAXPACKET) { 538 log(LOG_ERR, "%s (%d) from nfs server %s\n", 539 "impossible packet length", 540 len, 541 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 542 error = EFBIG; 543 goto errout; 544 } 545 auio.uio_resid = len; 546 do { 547 rcvflg = MSG_WAITALL; 548 error = soreceive(so, (struct mbuf **)0, 549 &auio, mp, (struct mbuf **)0, &rcvflg); 550 } while (error == EWOULDBLOCK || error == EINTR || 551 error == ERESTART); 552 if (!error && auio.uio_resid > 0) { 553 log(LOG_INFO, 554 "short receive (%d/%d) from nfs server %s\n", 555 len - auio.uio_resid, len, 556 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 557 error = EPIPE; 558 } 559 } else { 560 /* 561 * NB: Since uio_resid is big, MSG_WAITALL is ignored 562 * and soreceive() will return when it has either a 563 * control msg or a data msg. 564 * We have no use for control msg., but must grab them 565 * and then throw them away so we know what is going 566 * on. 567 */ 568 auio.uio_resid = len = 100000000; /* Anything Big */ 569 auio.uio_procp = p; 570 do { 571 rcvflg = 0; 572 error = soreceive(so, (struct mbuf **)0, 573 &auio, mp, &control, &rcvflg); 574 if (control) 575 m_freem(control); 576 if (error == EWOULDBLOCK && rep) { 577 if (rep->r_flags & R_SOFTTERM) 578 return (EINTR); 579 } 580 } while (error == EWOULDBLOCK || 581 (!error && *mp == NULL && control)); 582 if ((rcvflg & MSG_EOR) == 0) 583 printf("Egad!!\n"); 584 if (!error && *mp == NULL) 585 error = EPIPE; 586 len -= auio.uio_resid; 587 } 588 errout: 589 if (error && error != EINTR && error != ERESTART) { 590 m_freem(*mp); 591 *mp = (struct mbuf *)0; 592 if (error != EPIPE) 593 log(LOG_INFO, 594 "receive error %d from nfs server %s\n", 595 error, 596 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname); 597 error = nfs_sndlock(&rep->r_nmp->nm_flag, rep); 598 if (!error) 599 error = nfs_reconnect(rep); 600 if (!error) 601 goto tryagain; 602 } 603 } else { 604 if ((so = rep->r_nmp->nm_so) == NULL) 605 return (EACCES); 606 if (so->so_state & SS_ISCONNECTED) 607 getnam = (struct mbuf **)0; 608 else 609 getnam = aname; 610 auio.uio_resid = len = 1000000; 611 auio.uio_procp = p; 612 do { 613 rcvflg = 0; 614 error = soreceive(so, getnam, &auio, mp, 615 (struct mbuf **)0, &rcvflg); 616 if (error == EWOULDBLOCK && 617 (rep->r_flags & R_SOFTTERM)) 618 return (EINTR); 619 } while (error == EWOULDBLOCK); 620 len -= auio.uio_resid; 621 } 622 if (error) { 623 m_freem(*mp); 624 *mp = (struct mbuf *)0; 625 } 626 /* 627 * Search for any mbufs that are not a multiple of 4 bytes long 628 * or with m_data not longword aligned. 629 * These could cause pointer alignment problems, so copy them to 630 * well aligned mbufs. 631 */ 632 nfs_realign(*mp, 5 * NFSX_UNSIGNED); 633 return (error); 634 } 635 636 /* 637 * Implement receipt of reply on a socket. 638 * We must search through the list of received datagrams matching them 639 * with outstanding requests using the xid, until ours is found. 640 */ 641 /* ARGSUSED */ 642 int 643 nfs_reply(myrep) 644 struct nfsreq *myrep; 645 { 646 register struct nfsreq *rep; 647 register struct nfsmount *nmp = myrep->r_nmp; 648 register int32_t t1; 649 struct mbuf *mrep, *nam, *md; 650 u_int32_t rxid, *tl; 651 caddr_t dpos, cp2; 652 int error; 653 654 /* 655 * Loop around until we get our own reply 656 */ 657 for (;;) { 658 /* 659 * Lock against other receivers so that I don't get stuck in 660 * sbwait() after someone else has received my reply for me. 661 * Also necessary for connection based protocols to avoid 662 * race conditions during a reconnect. 663 */ 664 error = nfs_rcvlock(myrep); 665 if (error) 666 return (error); 667 /* Already received, bye bye */ 668 if (myrep->r_mrep != NULL) { 669 nfs_rcvunlock(&nmp->nm_flag); 670 return (0); 671 } 672 /* 673 * Get the next Rpc reply off the socket 674 */ 675 error = nfs_receive(myrep, &nam, &mrep); 676 nfs_rcvunlock(&nmp->nm_flag); 677 if (error) { 678 679 /* 680 * Ignore routing errors on connectionless protocols?? 681 */ 682 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) { 683 nmp->nm_so->so_error = 0; 684 if (myrep->r_flags & R_GETONEREP) 685 return (0); 686 continue; 687 } 688 return (error); 689 } 690 if (nam) 691 m_freem(nam); 692 693 /* 694 * Get the xid and check that it is an rpc reply 695 */ 696 md = mrep; 697 dpos = mtod(md, caddr_t); 698 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED); 699 rxid = *tl++; 700 if (*tl != rpc_reply) { 701 if (nmp->nm_flag & NFSMNT_NQNFS) { 702 if (nqnfs_callback(nmp, mrep, md, dpos)) 703 nfsstats.rpcinvalid++; 704 } else { 705 nfsstats.rpcinvalid++; 706 m_freem(mrep); 707 } 708 nfsmout: 709 if (myrep->r_flags & R_GETONEREP) 710 return (0); 711 continue; 712 } 713 714 /* 715 * Loop through the request list to match up the reply 716 * Iff no match, just drop the datagram 717 */ 718 for (rep = nfs_reqq.tqh_first; rep != 0; 719 rep = rep->r_chain.tqe_next) { 720 if (rep->r_mrep == NULL && rxid == rep->r_xid) { 721 /* Found it.. */ 722 rep->r_mrep = mrep; 723 rep->r_md = md; 724 rep->r_dpos = dpos; 725 if (nfsrtton) { 726 struct rttl *rt; 727 728 rt = &nfsrtt.rttl[nfsrtt.pos]; 729 rt->proc = rep->r_procnum; 730 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]); 731 rt->sent = nmp->nm_sent; 732 rt->cwnd = nmp->nm_cwnd; 733 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1]; 734 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1]; 735 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid; 736 rt->tstamp = time; 737 if (rep->r_flags & R_TIMING) 738 rt->rtt = rep->r_rtt; 739 else 740 rt->rtt = 1000000; 741 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ; 742 } 743 /* 744 * Update congestion window. 745 * Do the additive increase of 746 * one rpc/rtt. 747 */ 748 if (nmp->nm_cwnd <= nmp->nm_sent) { 749 nmp->nm_cwnd += 750 (NFS_CWNDSCALE * NFS_CWNDSCALE + 751 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd; 752 if (nmp->nm_cwnd > NFS_MAXCWND) 753 nmp->nm_cwnd = NFS_MAXCWND; 754 } 755 rep->r_flags &= ~R_SENT; 756 nmp->nm_sent -= NFS_CWNDSCALE; 757 /* 758 * Update rtt using a gain of 0.125 on the mean 759 * and a gain of 0.25 on the deviation. 760 */ 761 if (rep->r_flags & R_TIMING) { 762 /* 763 * Since the timer resolution of 764 * NFS_HZ is so course, it can often 765 * result in r_rtt == 0. Since 766 * r_rtt == N means that the actual 767 * rtt is between N+dt and N+2-dt ticks, 768 * add 1. 769 */ 770 t1 = rep->r_rtt + 1; 771 t1 -= (NFS_SRTT(rep) >> 3); 772 NFS_SRTT(rep) += t1; 773 if (t1 < 0) 774 t1 = -t1; 775 t1 -= (NFS_SDRTT(rep) >> 2); 776 NFS_SDRTT(rep) += t1; 777 } 778 nmp->nm_timeouts = 0; 779 break; 780 } 781 } 782 /* 783 * If not matched to a request, drop it. 784 * If it's mine, get out. 785 */ 786 if (rep == 0) { 787 nfsstats.rpcunexpected++; 788 m_freem(mrep); 789 } else if (rep == myrep) { 790 if (rep->r_mrep == NULL) 791 panic("nfsreply nil"); 792 return (0); 793 } 794 if (myrep->r_flags & R_GETONEREP) 795 return (0); 796 } 797 } 798 799 /* 800 * nfs_request - goes something like this 801 * - fill in request struct 802 * - links it into list 803 * - calls nfs_send() for first transmit 804 * - calls nfs_receive() to get reply 805 * - break down rpc header and return with nfs reply pointed to 806 * by mrep or error 807 * nb: always frees up mreq mbuf list 808 */ 809 int 810 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp) 811 struct vnode *vp; 812 struct mbuf *mrest; 813 int procnum; 814 struct proc *procp; 815 struct ucred *cred; 816 struct mbuf **mrp; 817 struct mbuf **mdp; 818 caddr_t *dposp; 819 { 820 register struct mbuf *m, *mrep; 821 register struct nfsreq *rep; 822 register u_int32_t *tl; 823 register int i; 824 struct nfsmount *nmp; 825 struct mbuf *md, *mheadend; 826 struct nfsnode *np; 827 char nickv[RPCX_NICKVERF]; 828 time_t reqtime, waituntil; 829 caddr_t dpos, cp2; 830 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type; 831 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0; 832 int verf_len, verf_type; 833 u_int32_t xid; 834 u_quad_t frev; 835 char *auth_str, *verf_str; 836 NFSKERBKEY_T key; /* save session key */ 837 838 nmp = VFSTONFS(vp->v_mount); 839 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK); 840 rep->r_nmp = nmp; 841 rep->r_vp = vp; 842 rep->r_procp = procp; 843 rep->r_procnum = procnum; 844 i = 0; 845 m = mrest; 846 while (m) { 847 i += m->m_len; 848 m = m->m_next; 849 } 850 mrest_len = i; 851 852 /* 853 * Get the RPC header with authorization. 854 */ 855 kerbauth: 856 verf_str = auth_str = (char *)0; 857 if (nmp->nm_flag & NFSMNT_KERB) { 858 verf_str = nickv; 859 verf_len = sizeof (nickv); 860 auth_type = RPCAUTH_KERB4; 861 bzero((caddr_t)key, sizeof (key)); 862 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str, 863 &auth_len, verf_str, verf_len)) { 864 error = nfs_getauth(nmp, rep, cred, &auth_str, 865 &auth_len, verf_str, &verf_len, key); 866 if (error) { 867 free((caddr_t)rep, M_NFSREQ); 868 m_freem(mrest); 869 return (error); 870 } 871 } 872 } else { 873 auth_type = RPCAUTH_UNIX; 874 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ? 875 nmp->nm_numgrps : cred->cr_ngroups) << 2) + 876 5 * NFSX_UNSIGNED; 877 } 878 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len, 879 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid); 880 if (auth_str) 881 free(auth_str, M_TEMP); 882 883 /* 884 * For stream protocols, insert a Sun RPC Record Mark. 885 */ 886 if (nmp->nm_sotype == SOCK_STREAM) { 887 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT); 888 *mtod(m, u_int32_t *) = htonl(0x80000000 | 889 (m->m_pkthdr.len - NFSX_UNSIGNED)); 890 } 891 rep->r_mreq = m; 892 rep->r_xid = xid; 893 tryagain: 894 if (nmp->nm_flag & NFSMNT_SOFT) 895 rep->r_retry = nmp->nm_retry; 896 else 897 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */ 898 rep->r_rtt = rep->r_rexmit = 0; 899 if (proct[procnum] > 0) 900 rep->r_flags = R_TIMING; 901 else 902 rep->r_flags = 0; 903 rep->r_mrep = NULL; 904 905 /* 906 * Do the client side RPC. 907 */ 908 nfsstats.rpcrequests++; 909 /* 910 * Chain request into list of outstanding requests. Be sure 911 * to put it LAST so timer finds oldest requests first. 912 */ 913 s = splsoftclock(); 914 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain); 915 916 /* Get send time for nqnfs */ 917 reqtime = time.tv_sec; 918 919 /* 920 * If backing off another request or avoiding congestion, don't 921 * send this one now but let timer do it. If not timing a request, 922 * do it now. 923 */ 924 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM || 925 (nmp->nm_flag & NFSMNT_DUMBTIMR) || 926 nmp->nm_sent < nmp->nm_cwnd)) { 927 splx(s); 928 if (nmp->nm_soflags & PR_CONNREQUIRED) 929 error = nfs_sndlock(&nmp->nm_flag, rep); 930 if (!error) { 931 error = nfs_send(nmp->nm_so, nmp->nm_nam, 932 m_copym(m, 0, M_COPYALL, M_WAIT), 933 rep); 934 if (nmp->nm_soflags & PR_CONNREQUIRED) 935 nfs_sndunlock(&nmp->nm_flag); 936 } 937 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) { 938 nmp->nm_sent += NFS_CWNDSCALE; 939 rep->r_flags |= R_SENT; 940 } 941 } else { 942 splx(s); 943 rep->r_rtt = -1; 944 } 945 946 /* 947 * Wait for the reply from our send or the timer's. 948 */ 949 if (!error || error == EPIPE) 950 error = nfs_reply(rep); 951 952 /* 953 * RPC done, unlink the request. 954 */ 955 s = splsoftclock(); 956 TAILQ_REMOVE(&nfs_reqq, rep, r_chain); 957 splx(s); 958 959 /* 960 * Decrement the outstanding request count. 961 */ 962 if (rep->r_flags & R_SENT) { 963 rep->r_flags &= ~R_SENT; /* paranoia */ 964 nmp->nm_sent -= NFS_CWNDSCALE; 965 } 966 967 /* 968 * If there was a successful reply and a tprintf msg. 969 * tprintf a response. 970 */ 971 if (!error && (rep->r_flags & R_TPRINTFMSG)) 972 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname, 973 "is alive again"); 974 mrep = rep->r_mrep; 975 md = rep->r_md; 976 dpos = rep->r_dpos; 977 if (error) { 978 m_freem(rep->r_mreq); 979 free((caddr_t)rep, M_NFSREQ); 980 return (error); 981 } 982 983 /* 984 * break down the rpc header and check if ok 985 */ 986 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 987 if (*tl++ == rpc_msgdenied) { 988 if (*tl == rpc_mismatch) 989 error = EOPNOTSUPP; 990 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) { 991 if (!failed_auth) { 992 failed_auth++; 993 mheadend->m_next = (struct mbuf *)0; 994 m_freem(mrep); 995 m_freem(rep->r_mreq); 996 goto kerbauth; 997 } else 998 error = EAUTH; 999 } else 1000 error = EACCES; 1001 m_freem(mrep); 1002 m_freem(rep->r_mreq); 1003 free((caddr_t)rep, M_NFSREQ); 1004 return (error); 1005 } 1006 1007 /* 1008 * Grab any Kerberos verifier, otherwise just throw it away. 1009 */ 1010 verf_type = fxdr_unsigned(int, *tl++); 1011 i = fxdr_unsigned(int32_t, *tl); 1012 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) { 1013 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep); 1014 if (error) 1015 goto nfsmout; 1016 } else if (i > 0) 1017 nfsm_adv(nfsm_rndup(i)); 1018 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1019 /* 0 == ok */ 1020 if (*tl == 0) { 1021 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1022 if (*tl != 0) { 1023 error = fxdr_unsigned(int, *tl); 1024 if ((nmp->nm_flag & NFSMNT_NFSV3) && 1025 error == NFSERR_TRYLATER) { 1026 m_freem(mrep); 1027 error = 0; 1028 waituntil = time.tv_sec + trylater_delay; 1029 while (time.tv_sec < waituntil) 1030 (void) tsleep((caddr_t)&lbolt, 1031 PSOCK, "nqnfstry", 0); 1032 trylater_delay *= nfs_backoff[trylater_cnt]; 1033 if (trylater_cnt < 7) 1034 trylater_cnt++; 1035 goto tryagain; 1036 } 1037 1038 /* 1039 * If the File Handle was stale, invalidate the 1040 * lookup cache, just in case. 1041 */ 1042 if (error == ESTALE) 1043 cache_purge(vp); 1044 if (nmp->nm_flag & NFSMNT_NFSV3) { 1045 *mrp = mrep; 1046 *mdp = md; 1047 *dposp = dpos; 1048 error |= NFSERR_RETERR; 1049 } else 1050 m_freem(mrep); 1051 m_freem(rep->r_mreq); 1052 free((caddr_t)rep, M_NFSREQ); 1053 return (error); 1054 } 1055 1056 /* 1057 * For nqnfs, get any lease in reply 1058 */ 1059 if (nmp->nm_flag & NFSMNT_NQNFS) { 1060 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1061 if (*tl) { 1062 np = VTONFS(vp); 1063 nqlflag = fxdr_unsigned(int, *tl); 1064 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED); 1065 cachable = fxdr_unsigned(int, *tl++); 1066 reqtime += fxdr_unsigned(int, *tl++); 1067 if (reqtime > time.tv_sec) { 1068 frev = fxdr_hyper(tl); 1069 nqnfs_clientlease(nmp, np, nqlflag, 1070 cachable, reqtime, frev); 1071 } 1072 } 1073 } 1074 *mrp = mrep; 1075 *mdp = md; 1076 *dposp = dpos; 1077 m_freem(rep->r_mreq); 1078 FREE((caddr_t)rep, M_NFSREQ); 1079 return (0); 1080 } 1081 m_freem(mrep); 1082 error = EPROTONOSUPPORT; 1083 nfsmout: 1084 m_freem(rep->r_mreq); 1085 free((caddr_t)rep, M_NFSREQ); 1086 return (error); 1087 } 1088 #endif /* NFSCLIENT */ 1089 1090 /* 1091 * Generate the rpc reply header 1092 * siz arg. is used to decide if adding a cluster is worthwhile 1093 */ 1094 int 1095 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp) 1096 int siz; 1097 struct nfsrv_descript *nd; 1098 struct nfssvc_sock *slp; 1099 int err; 1100 int cache; 1101 u_quad_t *frev; 1102 struct mbuf **mrq; 1103 struct mbuf **mbp; 1104 caddr_t *bposp; 1105 { 1106 register u_int32_t *tl; 1107 register struct mbuf *mreq; 1108 caddr_t bpos; 1109 struct mbuf *mb, *mb2; 1110 1111 MGETHDR(mreq, M_WAIT, MT_DATA); 1112 mb = mreq; 1113 /* 1114 * If this is a big reply, use a cluster else 1115 * try and leave leading space for the lower level headers. 1116 */ 1117 siz += RPC_REPLYSIZ; 1118 if (siz >= MINCLSIZE) { 1119 MCLGET(mreq, M_WAIT); 1120 } else 1121 mreq->m_data += max_hdr; 1122 tl = mtod(mreq, u_int32_t *); 1123 mreq->m_len = 6 * NFSX_UNSIGNED; 1124 bpos = ((caddr_t)tl) + mreq->m_len; 1125 *tl++ = txdr_unsigned(nd->nd_retxid); 1126 *tl++ = rpc_reply; 1127 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) { 1128 *tl++ = rpc_msgdenied; 1129 if (err & NFSERR_AUTHERR) { 1130 *tl++ = rpc_autherr; 1131 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR); 1132 mreq->m_len -= NFSX_UNSIGNED; 1133 bpos -= NFSX_UNSIGNED; 1134 } else { 1135 *tl++ = rpc_mismatch; 1136 *tl++ = txdr_unsigned(RPC_VER2); 1137 *tl = txdr_unsigned(RPC_VER2); 1138 } 1139 } else { 1140 *tl++ = rpc_msgaccepted; 1141 1142 /* 1143 * For Kerberos authentication, we must send the nickname 1144 * verifier back, otherwise just RPCAUTH_NULL. 1145 */ 1146 if (nd->nd_flag & ND_KERBFULL) { 1147 register struct nfsuid *nuidp; 1148 struct timeval ktvin, ktvout; 1149 1150 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first; 1151 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1152 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid && 1153 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp), 1154 &nuidp->nu_haddr, nd->nd_nam2))) 1155 break; 1156 } 1157 if (nuidp) { 1158 ktvin.tv_sec = 1159 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1); 1160 ktvin.tv_usec = 1161 txdr_unsigned(nuidp->nu_timestamp.tv_usec); 1162 1163 /* 1164 * Encrypt the timestamp in ecb mode using the 1165 * session key. 1166 */ 1167 #ifdef NFSKERB 1168 XXX 1169 #endif 1170 1171 *tl++ = rpc_auth_kerb; 1172 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED); 1173 *tl = ktvout.tv_sec; 1174 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1175 *tl++ = ktvout.tv_usec; 1176 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid); 1177 } else { 1178 *tl++ = 0; 1179 *tl++ = 0; 1180 } 1181 } else { 1182 *tl++ = 0; 1183 *tl++ = 0; 1184 } 1185 switch (err) { 1186 case EPROGUNAVAIL: 1187 *tl = txdr_unsigned(RPC_PROGUNAVAIL); 1188 break; 1189 case EPROGMISMATCH: 1190 *tl = txdr_unsigned(RPC_PROGMISMATCH); 1191 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1192 if (nd->nd_flag & ND_NQNFS) { 1193 *tl++ = txdr_unsigned(3); 1194 *tl = txdr_unsigned(3); 1195 } else { 1196 *tl++ = txdr_unsigned(2); 1197 *tl = txdr_unsigned(3); 1198 } 1199 break; 1200 case EPROCUNAVAIL: 1201 *tl = txdr_unsigned(RPC_PROCUNAVAIL); 1202 break; 1203 case EBADRPC: 1204 *tl = txdr_unsigned(RPC_GARBAGE); 1205 break; 1206 default: 1207 *tl = 0; 1208 if (err != NFSERR_RETVOID) { 1209 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1210 if (err) 1211 *tl = txdr_unsigned(nfsrv_errmap(nd, err)); 1212 else 1213 *tl = 0; 1214 } 1215 break; 1216 }; 1217 } 1218 1219 /* 1220 * For nqnfs, piggyback lease as requested. 1221 */ 1222 if ((nd->nd_flag & ND_NQNFS) && err == 0) { 1223 if (nd->nd_flag & ND_LEASE) { 1224 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED); 1225 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE); 1226 *tl++ = txdr_unsigned(cache); 1227 *tl++ = txdr_unsigned(nd->nd_duration); 1228 txdr_hyper(*frev, tl); 1229 } else { 1230 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED); 1231 *tl = 0; 1232 } 1233 } 1234 *mrq = mreq; 1235 if (mrq != NULL) 1236 *mbp = mb; 1237 *bposp = bpos; 1238 if (err != 0 && err != NFSERR_RETVOID) 1239 nfsstats.srvrpc_errs++; 1240 return (0); 1241 } 1242 1243 /* 1244 * Nfs timer routine 1245 * Scan the nfsreq list and retranmit any requests that have timed out 1246 * To avoid retransmission attempts on STREAM sockets (in the future) make 1247 * sure to set the r_retry field to 0 (implies nm_retry == 0). 1248 */ 1249 void 1250 nfs_timer(arg) 1251 void *arg; /* never used */ 1252 { 1253 register struct nfsreq *rep; 1254 register struct mbuf *m; 1255 register struct socket *so; 1256 register struct nfsmount *nmp; 1257 register int timeo; 1258 int s, error; 1259 #ifdef NFSSERVER 1260 register struct nfssvc_sock *slp; 1261 static long lasttime = 0; 1262 u_quad_t cur_usec; 1263 #endif 1264 1265 s = splsoftnet(); 1266 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) { 1267 nmp = rep->r_nmp; 1268 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) 1269 continue; 1270 if (nfs_sigintr(nmp, rep, rep->r_procp)) { 1271 rep->r_flags |= R_SOFTTERM; 1272 continue; 1273 } 1274 if (rep->r_rtt >= 0) { 1275 rep->r_rtt++; 1276 if (nmp->nm_flag & NFSMNT_DUMBTIMR) 1277 timeo = nmp->nm_timeo; 1278 else 1279 timeo = NFS_RTO(nmp, proct[rep->r_procnum]); 1280 if (nmp->nm_timeouts > 0) 1281 timeo *= nfs_backoff[nmp->nm_timeouts - 1]; 1282 if (rep->r_rtt <= timeo) 1283 continue; 1284 if (nmp->nm_timeouts < 8) 1285 nmp->nm_timeouts++; 1286 } 1287 /* 1288 * Check for server not responding 1289 */ 1290 if ((rep->r_flags & R_TPRINTFMSG) == 0 && 1291 rep->r_rexmit > nmp->nm_deadthresh) { 1292 nfs_msg(rep->r_procp, 1293 nmp->nm_mountp->mnt_stat.f_mntfromname, 1294 "not responding"); 1295 rep->r_flags |= R_TPRINTFMSG; 1296 } 1297 if (rep->r_rexmit >= rep->r_retry) { /* too many */ 1298 nfsstats.rpctimeouts++; 1299 rep->r_flags |= R_SOFTTERM; 1300 continue; 1301 } 1302 if (nmp->nm_sotype != SOCK_DGRAM) { 1303 if (++rep->r_rexmit > NFS_MAXREXMIT) 1304 rep->r_rexmit = NFS_MAXREXMIT; 1305 continue; 1306 } 1307 if ((so = nmp->nm_so) == NULL) 1308 continue; 1309 1310 /* 1311 * If there is enough space and the window allows.. 1312 * Resend it 1313 * Set r_rtt to -1 in case we fail to send it now. 1314 */ 1315 rep->r_rtt = -1; 1316 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len && 1317 ((nmp->nm_flag & NFSMNT_DUMBTIMR) || 1318 (rep->r_flags & R_SENT) || 1319 nmp->nm_sent < nmp->nm_cwnd) && 1320 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){ 1321 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0) 1322 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, 1323 (struct mbuf *)0, (struct mbuf *)0); 1324 else 1325 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m, 1326 nmp->nm_nam, (struct mbuf *)0); 1327 if (error) { 1328 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) 1329 so->so_error = 0; 1330 } else { 1331 /* 1332 * Iff first send, start timing 1333 * else turn timing off, backoff timer 1334 * and divide congestion window by 2. 1335 */ 1336 if (rep->r_flags & R_SENT) { 1337 rep->r_flags &= ~R_TIMING; 1338 if (++rep->r_rexmit > NFS_MAXREXMIT) 1339 rep->r_rexmit = NFS_MAXREXMIT; 1340 nmp->nm_cwnd >>= 1; 1341 if (nmp->nm_cwnd < NFS_CWNDSCALE) 1342 nmp->nm_cwnd = NFS_CWNDSCALE; 1343 nfsstats.rpcretries++; 1344 } else { 1345 rep->r_flags |= R_SENT; 1346 nmp->nm_sent += NFS_CWNDSCALE; 1347 } 1348 rep->r_rtt = 0; 1349 } 1350 } 1351 } 1352 1353 #ifdef NFSSERVER 1354 /* 1355 * Call the nqnfs server timer once a second to handle leases. 1356 */ 1357 if (lasttime != time.tv_sec) { 1358 lasttime = time.tv_sec; 1359 nqnfs_serverd(); 1360 } 1361 1362 /* 1363 * Scan the write gathering queues for writes that need to be 1364 * completed now. 1365 */ 1366 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec; 1367 for (slp = nfssvc_sockhead.tqh_first; slp != 0; 1368 slp = slp->ns_chain.tqe_next) { 1369 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec) 1370 nfsrv_wakenfsd(slp); 1371 } 1372 #endif /* NFSSERVER */ 1373 splx(s); 1374 timeout(nfs_timer, (void *)0, nfs_ticks); 1375 } 1376 1377 /* 1378 * Test for a termination condition pending on the process. 1379 * This is used for NFSMNT_INT mounts. 1380 */ 1381 int 1382 nfs_sigintr(nmp, rep, p) 1383 struct nfsmount *nmp; 1384 struct nfsreq *rep; 1385 register struct proc *p; 1386 { 1387 1388 if (rep && (rep->r_flags & R_SOFTTERM)) 1389 return (EINTR); 1390 if (!(nmp->nm_flag & NFSMNT_INT)) 1391 return (0); 1392 if (p && p->p_siglist && 1393 (((p->p_siglist & ~p->p_sigmask) & ~p->p_sigignore) & 1394 NFSINT_SIGMASK)) 1395 return (EINTR); 1396 return (0); 1397 } 1398 1399 /* 1400 * Lock a socket against others. 1401 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply 1402 * and also to avoid race conditions between the processes with nfs requests 1403 * in progress when a reconnect is necessary. 1404 */ 1405 int 1406 nfs_sndlock(flagp, rep) 1407 register int *flagp; 1408 struct nfsreq *rep; 1409 { 1410 struct proc *p; 1411 int slpflag = 0, slptimeo = 0; 1412 1413 if (rep) { 1414 p = rep->r_procp; 1415 if (rep->r_nmp->nm_flag & NFSMNT_INT) 1416 slpflag = PCATCH; 1417 } else 1418 p = (struct proc *)0; 1419 while (*flagp & NFSMNT_SNDLOCK) { 1420 if (nfs_sigintr(rep->r_nmp, rep, p)) 1421 return (EINTR); 1422 *flagp |= NFSMNT_WANTSND; 1423 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck", 1424 slptimeo); 1425 if (slpflag == PCATCH) { 1426 slpflag = 0; 1427 slptimeo = 2 * hz; 1428 } 1429 } 1430 *flagp |= NFSMNT_SNDLOCK; 1431 return (0); 1432 } 1433 1434 /* 1435 * Unlock the stream socket for others. 1436 */ 1437 void 1438 nfs_sndunlock(flagp) 1439 register int *flagp; 1440 { 1441 1442 if ((*flagp & NFSMNT_SNDLOCK) == 0) 1443 panic("nfs sndunlock"); 1444 *flagp &= ~NFSMNT_SNDLOCK; 1445 if (*flagp & NFSMNT_WANTSND) { 1446 *flagp &= ~NFSMNT_WANTSND; 1447 wakeup((caddr_t)flagp); 1448 } 1449 } 1450 1451 int 1452 nfs_rcvlock(rep) 1453 register struct nfsreq *rep; 1454 { 1455 register int *flagp = &rep->r_nmp->nm_flag; 1456 int slpflag, slptimeo = 0; 1457 1458 if (*flagp & NFSMNT_INT) 1459 slpflag = PCATCH; 1460 else 1461 slpflag = 0; 1462 while (*flagp & NFSMNT_RCVLOCK) { 1463 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp)) 1464 return (EINTR); 1465 *flagp |= NFSMNT_WANTRCV; 1466 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk", 1467 slptimeo); 1468 if (slpflag == PCATCH) { 1469 slpflag = 0; 1470 slptimeo = 2 * hz; 1471 } 1472 } 1473 *flagp |= NFSMNT_RCVLOCK; 1474 return (0); 1475 } 1476 1477 /* 1478 * Unlock the stream socket for others. 1479 */ 1480 void 1481 nfs_rcvunlock(flagp) 1482 register int *flagp; 1483 { 1484 1485 if ((*flagp & NFSMNT_RCVLOCK) == 0) 1486 panic("nfs rcvunlock"); 1487 *flagp &= ~NFSMNT_RCVLOCK; 1488 if (*flagp & NFSMNT_WANTRCV) { 1489 *flagp &= ~NFSMNT_WANTRCV; 1490 wakeup((caddr_t)flagp); 1491 } 1492 } 1493 1494 /* 1495 * Check for badly aligned mbuf data areas and 1496 * realign data in an mbuf list by copying the data areas up, as required. 1497 */ 1498 void 1499 nfs_realign(m, hsiz) 1500 register struct mbuf *m; 1501 int hsiz; 1502 { 1503 register struct mbuf *m2; 1504 register int siz, mlen, olen; 1505 register caddr_t tcp, fcp; 1506 struct mbuf *mnew; 1507 1508 while (m) { 1509 /* 1510 * This never happens for UDP, rarely happens for TCP 1511 * but frequently happens for iso transport. 1512 */ 1513 if ((m->m_len & 0x3) || (mtod(m, long) & 0x3)) { 1514 olen = m->m_len; 1515 fcp = mtod(m, caddr_t); 1516 if ((long)fcp & 0x3) { 1517 m->m_flags &= ~M_PKTHDR; 1518 if (m->m_flags & M_EXT) 1519 m->m_data = m->m_ext.ext_buf + 1520 ((m->m_ext.ext_size - olen) & ~0x3); 1521 else 1522 m->m_data = m->m_dat; 1523 } 1524 m->m_len = 0; 1525 tcp = mtod(m, caddr_t); 1526 mnew = m; 1527 m2 = m->m_next; 1528 1529 /* 1530 * If possible, only put the first invariant part 1531 * of the RPC header in the first mbuf. 1532 */ 1533 mlen = M_TRAILINGSPACE(m); 1534 if (olen <= hsiz && mlen > hsiz) 1535 mlen = hsiz; 1536 1537 /* 1538 * Loop through the mbuf list consolidating data. 1539 */ 1540 while (m) { 1541 while (olen > 0) { 1542 if (mlen == 0) { 1543 m2->m_flags &= ~M_PKTHDR; 1544 if (m2->m_flags & M_EXT) 1545 m2->m_data = m2->m_ext.ext_buf; 1546 else 1547 m2->m_data = m2->m_dat; 1548 m2->m_len = 0; 1549 mlen = M_TRAILINGSPACE(m2); 1550 tcp = mtod(m2, caddr_t); 1551 mnew = m2; 1552 m2 = m2->m_next; 1553 } 1554 siz = min(mlen, olen); 1555 if (tcp != fcp) 1556 bcopy(fcp, tcp, siz); 1557 mnew->m_len += siz; 1558 mlen -= siz; 1559 olen -= siz; 1560 tcp += siz; 1561 fcp += siz; 1562 } 1563 m = m->m_next; 1564 if (m) { 1565 olen = m->m_len; 1566 fcp = mtod(m, caddr_t); 1567 } 1568 } 1569 1570 /* 1571 * Finally, set m_len == 0 for any trailing mbufs that have 1572 * been copied out of. 1573 */ 1574 while (m2) { 1575 m2->m_len = 0; 1576 m2 = m2->m_next; 1577 } 1578 return; 1579 } 1580 m = m->m_next; 1581 } 1582 } 1583 1584 /* 1585 * Parse an RPC request 1586 * - verify it 1587 * - fill in the cred struct. 1588 */ 1589 int 1590 nfs_getreq(nd, nfsd, has_header) 1591 register struct nfsrv_descript *nd; 1592 struct nfsd *nfsd; 1593 int has_header; 1594 { 1595 register int len, i; 1596 register u_int32_t *tl; 1597 register int32_t t1; 1598 struct uio uio; 1599 struct iovec iov; 1600 caddr_t dpos, cp2, cp; 1601 u_int32_t nfsvers, auth_type; 1602 uid_t nickuid; 1603 int error = 0, nqnfs = 0, ticklen; 1604 struct mbuf *mrep, *md; 1605 register struct nfsuid *nuidp; 1606 struct timeval tvin, tvout; 1607 1608 mrep = nd->nd_mrep; 1609 md = nd->nd_md; 1610 dpos = nd->nd_dpos; 1611 if (has_header) { 1612 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED); 1613 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++); 1614 if (*tl++ != rpc_call) { 1615 m_freem(mrep); 1616 return (EBADRPC); 1617 } 1618 } else 1619 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED); 1620 nd->nd_repstat = 0; 1621 nd->nd_flag = 0; 1622 if (*tl++ != rpc_vers) { 1623 nd->nd_repstat = ERPCMISMATCH; 1624 nd->nd_procnum = NFSPROC_NOOP; 1625 return (0); 1626 } 1627 if (*tl != nfs_prog) { 1628 if (*tl == nqnfs_prog) 1629 nqnfs++; 1630 else { 1631 nd->nd_repstat = EPROGUNAVAIL; 1632 nd->nd_procnum = NFSPROC_NOOP; 1633 return (0); 1634 } 1635 } 1636 tl++; 1637 nfsvers = fxdr_unsigned(u_int32_t, *tl++); 1638 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) || 1639 (nfsvers != NQNFS_VER3 && nqnfs)) { 1640 nd->nd_repstat = EPROGMISMATCH; 1641 nd->nd_procnum = NFSPROC_NOOP; 1642 return (0); 1643 } 1644 if (nqnfs) 1645 nd->nd_flag = (ND_NFSV3 | ND_NQNFS); 1646 else if (nfsvers == NFS_VER3) 1647 nd->nd_flag = ND_NFSV3; 1648 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++); 1649 if (nd->nd_procnum == NFSPROC_NULL) 1650 return (0); 1651 if (nd->nd_procnum >= NFS_NPROCS || 1652 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) || 1653 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) { 1654 nd->nd_repstat = EPROCUNAVAIL; 1655 nd->nd_procnum = NFSPROC_NOOP; 1656 return (0); 1657 } 1658 if ((nd->nd_flag & ND_NFSV3) == 0) 1659 nd->nd_procnum = nfsv3_procid[nd->nd_procnum]; 1660 auth_type = *tl++; 1661 len = fxdr_unsigned(int, *tl++); 1662 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1663 m_freem(mrep); 1664 return (EBADRPC); 1665 } 1666 1667 nd->nd_flag &= ~ND_KERBAUTH; 1668 /* 1669 * Handle auth_unix or auth_kerb. 1670 */ 1671 if (auth_type == rpc_auth_unix) { 1672 len = fxdr_unsigned(int, *++tl); 1673 if (len < 0 || len > NFS_MAXNAMLEN) { 1674 m_freem(mrep); 1675 return (EBADRPC); 1676 } 1677 nfsm_adv(nfsm_rndup(len)); 1678 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1679 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred)); 1680 nd->nd_cr.cr_ref = 1; 1681 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++); 1682 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++); 1683 len = fxdr_unsigned(int, *tl); 1684 if (len < 0 || len > RPCAUTH_UNIXGIDS) { 1685 m_freem(mrep); 1686 return (EBADRPC); 1687 } 1688 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED); 1689 for (i = 0; i < len; i++) 1690 if (i < NGROUPS) 1691 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++); 1692 else 1693 tl++; 1694 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len; 1695 if (nd->nd_cr.cr_ngroups > 1) 1696 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups); 1697 len = fxdr_unsigned(int, *++tl); 1698 if (len < 0 || len > RPCAUTH_MAXSIZ) { 1699 m_freem(mrep); 1700 return (EBADRPC); 1701 } 1702 if (len > 0) 1703 nfsm_adv(nfsm_rndup(len)); 1704 } else if (auth_type == rpc_auth_kerb) { 1705 switch (fxdr_unsigned(int, *tl++)) { 1706 case RPCAKN_FULLNAME: 1707 ticklen = fxdr_unsigned(int, *tl); 1708 *((u_int32_t *)nfsd->nfsd_authstr) = *tl; 1709 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED; 1710 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED; 1711 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) { 1712 m_freem(mrep); 1713 return (EBADRPC); 1714 } 1715 uio.uio_offset = 0; 1716 uio.uio_iov = &iov; 1717 uio.uio_iovcnt = 1; 1718 uio.uio_segflg = UIO_SYSSPACE; 1719 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4]; 1720 iov.iov_len = RPCAUTH_MAXSIZ - 4; 1721 nfsm_mtouio(&uio, uio.uio_resid); 1722 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1723 if (*tl++ != rpc_auth_kerb || 1724 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) { 1725 printf("Bad kerb verifier\n"); 1726 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1727 nd->nd_procnum = NFSPROC_NOOP; 1728 return (0); 1729 } 1730 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED); 1731 tl = (u_int32_t *)cp; 1732 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) { 1733 printf("Not fullname kerb verifier\n"); 1734 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1735 nd->nd_procnum = NFSPROC_NOOP; 1736 return (0); 1737 } 1738 cp += NFSX_UNSIGNED; 1739 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED); 1740 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED; 1741 nd->nd_flag |= ND_KERBFULL; 1742 nfsd->nfsd_flag |= NFSD_NEEDAUTH; 1743 break; 1744 case RPCAKN_NICKNAME: 1745 if (len != 2 * NFSX_UNSIGNED) { 1746 printf("Kerb nickname short\n"); 1747 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED); 1748 nd->nd_procnum = NFSPROC_NOOP; 1749 return (0); 1750 } 1751 nickuid = fxdr_unsigned(uid_t, *tl); 1752 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED); 1753 if (*tl++ != rpc_auth_kerb || 1754 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) { 1755 printf("Kerb nick verifier bad\n"); 1756 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF); 1757 nd->nd_procnum = NFSPROC_NOOP; 1758 return (0); 1759 } 1760 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED); 1761 tvin.tv_sec = *tl++; 1762 tvin.tv_usec = *tl; 1763 1764 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first; 1765 nuidp != 0; nuidp = nuidp->nu_hash.le_next) { 1766 if (nuidp->nu_cr.cr_uid == nickuid && 1767 (!nd->nd_nam2 || 1768 netaddr_match(NU_NETFAM(nuidp), 1769 &nuidp->nu_haddr, nd->nd_nam2))) 1770 break; 1771 } 1772 if (!nuidp) { 1773 nd->nd_repstat = 1774 (NFSERR_AUTHERR|AUTH_REJECTCRED); 1775 nd->nd_procnum = NFSPROC_NOOP; 1776 return (0); 1777 } 1778 1779 /* 1780 * Now, decrypt the timestamp using the session key 1781 * and validate it. 1782 */ 1783 #ifdef NFSKERB 1784 XXX 1785 #endif 1786 1787 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec); 1788 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec); 1789 if (nuidp->nu_expire < time.tv_sec || 1790 nuidp->nu_timestamp.tv_sec > tvout.tv_sec || 1791 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec && 1792 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) { 1793 nuidp->nu_expire = 0; 1794 nd->nd_repstat = 1795 (NFSERR_AUTHERR|AUTH_REJECTVERF); 1796 nd->nd_procnum = NFSPROC_NOOP; 1797 return (0); 1798 } 1799 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr); 1800 nd->nd_flag |= ND_KERBNICK; 1801 }; 1802 } else { 1803 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED); 1804 nd->nd_procnum = NFSPROC_NOOP; 1805 return (0); 1806 } 1807 1808 /* 1809 * For nqnfs, get piggybacked lease request. 1810 */ 1811 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) { 1812 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1813 nd->nd_flag |= fxdr_unsigned(int, *tl); 1814 if (nd->nd_flag & ND_LEASE) { 1815 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED); 1816 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl); 1817 } else 1818 nd->nd_duration = NQ_MINLEASE; 1819 } else 1820 nd->nd_duration = NQ_MINLEASE; 1821 nd->nd_md = md; 1822 nd->nd_dpos = dpos; 1823 return (0); 1824 nfsmout: 1825 return (error); 1826 } 1827 1828 int 1829 nfs_msg(p, server, msg) 1830 struct proc *p; 1831 char *server, *msg; 1832 { 1833 tpr_t tpr; 1834 1835 if (p) 1836 tpr = tprintf_open(p); 1837 else 1838 tpr = NULL; 1839 tprintf(tpr, "nfs server %s: %s\n", server, msg); 1840 tprintf_close(tpr); 1841 return (0); 1842 } 1843 1844 #ifdef NFSSERVER 1845 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *, 1846 struct nfssvc_sock *, struct proc *, 1847 struct mbuf **)) = { 1848 nfsrv_null, 1849 nfsrv_getattr, 1850 nfsrv_setattr, 1851 nfsrv_lookup, 1852 nfsrv3_access, 1853 nfsrv_readlink, 1854 nfsrv_read, 1855 nfsrv_write, 1856 nfsrv_create, 1857 nfsrv_mkdir, 1858 nfsrv_symlink, 1859 nfsrv_mknod, 1860 nfsrv_remove, 1861 nfsrv_rmdir, 1862 nfsrv_rename, 1863 nfsrv_link, 1864 nfsrv_readdir, 1865 nfsrv_readdirplus, 1866 nfsrv_statfs, 1867 nfsrv_fsinfo, 1868 nfsrv_pathconf, 1869 nfsrv_commit, 1870 nqnfsrv_getlease, 1871 nqnfsrv_vacated, 1872 nfsrv_noop, 1873 nfsrv_noop 1874 }; 1875 1876 /* 1877 * Socket upcall routine for the nfsd sockets. 1878 * The caddr_t arg is a pointer to the "struct nfssvc_sock". 1879 * Essentially do as much as possible non-blocking, else punt and it will 1880 * be called with M_WAIT from an nfsd. 1881 */ 1882 void 1883 nfsrv_rcv(so, arg, waitflag) 1884 struct socket *so; 1885 caddr_t arg; 1886 int waitflag; 1887 { 1888 register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg; 1889 register struct mbuf *m; 1890 struct mbuf *mp, *nam; 1891 struct uio auio; 1892 int flags, error; 1893 1894 if ((slp->ns_flag & SLP_VALID) == 0) 1895 return; 1896 #ifdef notdef 1897 /* 1898 * Define this to test for nfsds handling this under heavy load. 1899 */ 1900 if (waitflag == M_DONTWAIT) { 1901 slp->ns_flag |= SLP_NEEDQ; goto dorecs; 1902 } 1903 #endif 1904 auio.uio_procp = NULL; 1905 if (so->so_type == SOCK_STREAM) { 1906 /* 1907 * If there are already records on the queue, defer soreceive() 1908 * to an nfsd so that there is feedback to the TCP layer that 1909 * the nfs servers are heavily loaded. 1910 */ 1911 if (slp->ns_rec && waitflag == M_DONTWAIT) { 1912 slp->ns_flag |= SLP_NEEDQ; 1913 goto dorecs; 1914 } 1915 1916 /* 1917 * Do soreceive(). 1918 */ 1919 auio.uio_resid = 1000000000; 1920 flags = MSG_DONTWAIT; 1921 error = soreceive(so, &nam, &auio, &mp, (struct mbuf **)0, &flags); 1922 if (error || mp == (struct mbuf *)0) { 1923 if (error == EWOULDBLOCK) 1924 slp->ns_flag |= SLP_NEEDQ; 1925 else 1926 slp->ns_flag |= SLP_DISCONN; 1927 goto dorecs; 1928 } 1929 m = mp; 1930 if (slp->ns_rawend) { 1931 slp->ns_rawend->m_next = m; 1932 slp->ns_cc += 1000000000 - auio.uio_resid; 1933 } else { 1934 slp->ns_raw = m; 1935 slp->ns_cc = 1000000000 - auio.uio_resid; 1936 } 1937 while (m->m_next) 1938 m = m->m_next; 1939 slp->ns_rawend = m; 1940 1941 /* 1942 * Now try and parse record(s) out of the raw stream data. 1943 */ 1944 error = nfsrv_getstream(slp, waitflag); 1945 if (error) { 1946 if (error == EPERM) 1947 slp->ns_flag |= SLP_DISCONN; 1948 else 1949 slp->ns_flag |= SLP_NEEDQ; 1950 } 1951 } else { 1952 do { 1953 auio.uio_resid = 1000000000; 1954 flags = MSG_DONTWAIT; 1955 error = soreceive(so, &nam, &auio, &mp, 1956 (struct mbuf **)0, &flags); 1957 if (mp) { 1958 nfs_realign(mp, 10 * NFSX_UNSIGNED); 1959 if (nam) { 1960 m = nam; 1961 m->m_next = mp; 1962 } else 1963 m = mp; 1964 if (slp->ns_recend) 1965 slp->ns_recend->m_nextpkt = m; 1966 else 1967 slp->ns_rec = m; 1968 slp->ns_recend = m; 1969 m->m_nextpkt = (struct mbuf *)0; 1970 } 1971 if (error) { 1972 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) 1973 && error != EWOULDBLOCK) { 1974 slp->ns_flag |= SLP_DISCONN; 1975 goto dorecs; 1976 } 1977 } 1978 } while (mp); 1979 } 1980 1981 /* 1982 * Now try and process the request records, non-blocking. 1983 */ 1984 dorecs: 1985 if (waitflag == M_DONTWAIT && 1986 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) 1987 nfsrv_wakenfsd(slp); 1988 } 1989 1990 /* 1991 * Try and extract an RPC request from the mbuf data list received on a 1992 * stream socket. The "waitflag" argument indicates whether or not it 1993 * can sleep. 1994 */ 1995 int 1996 nfsrv_getstream(slp, waitflag) 1997 register struct nfssvc_sock *slp; 1998 int waitflag; 1999 { 2000 register struct mbuf *m, **mpp; 2001 register char *cp1, *cp2; 2002 register int len; 2003 struct mbuf *om, *m2, *recm = NULL; 2004 u_int32_t recmark; 2005 2006 if (slp->ns_flag & SLP_GETSTREAM) 2007 panic("nfs getstream"); 2008 slp->ns_flag |= SLP_GETSTREAM; 2009 for (;;) { 2010 if (slp->ns_reclen == 0) { 2011 if (slp->ns_cc < NFSX_UNSIGNED) { 2012 slp->ns_flag &= ~SLP_GETSTREAM; 2013 return (0); 2014 } 2015 m = slp->ns_raw; 2016 if (m->m_len >= NFSX_UNSIGNED) { 2017 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED); 2018 m->m_data += NFSX_UNSIGNED; 2019 m->m_len -= NFSX_UNSIGNED; 2020 } else { 2021 cp1 = (caddr_t)&recmark; 2022 cp2 = mtod(m, caddr_t); 2023 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) { 2024 while (m->m_len == 0) { 2025 m = m->m_next; 2026 cp2 = mtod(m, caddr_t); 2027 } 2028 *cp1++ = *cp2++; 2029 m->m_data++; 2030 m->m_len--; 2031 } 2032 } 2033 slp->ns_cc -= NFSX_UNSIGNED; 2034 recmark = ntohl(recmark); 2035 slp->ns_reclen = recmark & ~0x80000000; 2036 if (recmark & 0x80000000) 2037 slp->ns_flag |= SLP_LASTFRAG; 2038 else 2039 slp->ns_flag &= ~SLP_LASTFRAG; 2040 if (slp->ns_reclen > NFS_MAXPACKET) { 2041 slp->ns_flag &= ~SLP_GETSTREAM; 2042 return (EPERM); 2043 } 2044 } 2045 2046 /* 2047 * Now get the record part. 2048 */ 2049 if (slp->ns_cc == slp->ns_reclen) { 2050 recm = slp->ns_raw; 2051 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0; 2052 slp->ns_cc = slp->ns_reclen = 0; 2053 } else if (slp->ns_cc > slp->ns_reclen) { 2054 len = 0; 2055 m = slp->ns_raw; 2056 om = (struct mbuf *)0; 2057 while (len < slp->ns_reclen) { 2058 if ((len + m->m_len) > slp->ns_reclen) { 2059 m2 = m_copym(m, 0, slp->ns_reclen - len, 2060 waitflag); 2061 if (m2) { 2062 if (om) { 2063 om->m_next = m2; 2064 recm = slp->ns_raw; 2065 } else 2066 recm = m2; 2067 m->m_data += slp->ns_reclen - len; 2068 m->m_len -= slp->ns_reclen - len; 2069 len = slp->ns_reclen; 2070 } else { 2071 slp->ns_flag &= ~SLP_GETSTREAM; 2072 return (EWOULDBLOCK); 2073 } 2074 } else if ((len + m->m_len) == slp->ns_reclen) { 2075 om = m; 2076 len += m->m_len; 2077 m = m->m_next; 2078 recm = slp->ns_raw; 2079 om->m_next = (struct mbuf *)0; 2080 } else { 2081 om = m; 2082 len += m->m_len; 2083 m = m->m_next; 2084 } 2085 } 2086 slp->ns_raw = m; 2087 slp->ns_cc -= len; 2088 slp->ns_reclen = 0; 2089 } else { 2090 slp->ns_flag &= ~SLP_GETSTREAM; 2091 return (0); 2092 } 2093 2094 /* 2095 * Accumulate the fragments into a record. 2096 */ 2097 mpp = &slp->ns_frag; 2098 while (*mpp) 2099 mpp = &((*mpp)->m_next); 2100 *mpp = recm; 2101 if (slp->ns_flag & SLP_LASTFRAG) { 2102 nfs_realign(slp->ns_frag, 10 * NFSX_UNSIGNED); 2103 if (slp->ns_recend) 2104 slp->ns_recend->m_nextpkt = slp->ns_frag; 2105 else 2106 slp->ns_rec = slp->ns_frag; 2107 slp->ns_recend = slp->ns_frag; 2108 slp->ns_frag = (struct mbuf *)0; 2109 } 2110 } 2111 } 2112 2113 /* 2114 * Parse an RPC header. 2115 */ 2116 int 2117 nfsrv_dorec(slp, nfsd, ndp) 2118 register struct nfssvc_sock *slp; 2119 struct nfsd *nfsd; 2120 struct nfsrv_descript **ndp; 2121 { 2122 register struct mbuf *m, *nam; 2123 register struct nfsrv_descript *nd; 2124 int error; 2125 2126 *ndp = NULL; 2127 if ((slp->ns_flag & SLP_VALID) == 0 || 2128 (m = slp->ns_rec) == (struct mbuf *)0) 2129 return (ENOBUFS); 2130 slp->ns_rec = m->m_nextpkt; 2131 if (slp->ns_rec) 2132 m->m_nextpkt = (struct mbuf *)0; 2133 else 2134 slp->ns_recend = (struct mbuf *)0; 2135 if (m->m_type == MT_SONAME) { 2136 nam = m; 2137 m = m->m_next; 2138 nam->m_next = NULL; 2139 } else 2140 nam = NULL; 2141 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript), 2142 M_NFSRVDESC, M_WAITOK); 2143 nd->nd_md = nd->nd_mrep = m; 2144 nd->nd_nam2 = nam; 2145 nd->nd_dpos = mtod(m, caddr_t); 2146 error = nfs_getreq(nd, nfsd, TRUE); 2147 if (error) { 2148 m_freem(nam); 2149 free((caddr_t)nd, M_NFSRVDESC); 2150 return (error); 2151 } 2152 *ndp = nd; 2153 nfsd->nfsd_nd = nd; 2154 return (0); 2155 } 2156 2157 2158 /* 2159 * Search for a sleeping nfsd and wake it up. 2160 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the 2161 * running nfsds will go look for the work in the nfssvc_sock list. 2162 */ 2163 void 2164 nfsrv_wakenfsd(slp) 2165 struct nfssvc_sock *slp; 2166 { 2167 register struct nfsd *nd; 2168 2169 if ((slp->ns_flag & SLP_VALID) == 0) 2170 return; 2171 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) { 2172 if (nd->nfsd_flag & NFSD_WAITING) { 2173 nd->nfsd_flag &= ~NFSD_WAITING; 2174 if (nd->nfsd_slp) 2175 panic("nfsd wakeup"); 2176 slp->ns_sref++; 2177 nd->nfsd_slp = slp; 2178 wakeup((caddr_t)nd); 2179 return; 2180 } 2181 } 2182 slp->ns_flag |= SLP_DOREC; 2183 nfsd_head_flag |= NFSD_CHECKSLP; 2184 } 2185 #endif /* NFSSERVER */ 2186