1 /* $OpenBSD: nfs_bio.c,v 1.72 2010/08/07 03:50:02 krw Exp $ */ 2 /* $NetBSD: nfs_bio.c,v 1.25.4.2 1996/07/08 20:47:04 jtc Exp $ */ 3 4 /* 5 * Copyright (c) 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * This code is derived from software contributed to Berkeley by 9 * Rick Macklem at The University of Guelph. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95 36 */ 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/resourcevar.h> 41 #include <sys/signalvar.h> 42 #include <sys/proc.h> 43 #include <sys/buf.h> 44 #include <sys/vnode.h> 45 #include <sys/mount.h> 46 #include <sys/kernel.h> 47 #include <sys/namei.h> 48 #include <sys/queue.h> 49 #include <sys/time.h> 50 51 #include <uvm/uvm_extern.h> 52 53 #include <nfs/rpcv2.h> 54 #include <nfs/nfsproto.h> 55 #include <nfs/nfs.h> 56 #include <nfs/nfsmount.h> 57 #include <nfs/nfsnode.h> 58 #include <nfs/nfs_var.h> 59 60 extern int nfs_numasync; 61 extern struct nfsstats nfsstats; 62 struct nfs_bufqhead nfs_bufq; 63 uint32_t nfs_bufqmax, nfs_bufqlen; 64 65 /* 66 * Vnode op for read using bio 67 * Any similarity to readip() is purely coincidental 68 */ 69 int 70 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred) 71 { 72 struct nfsnode *np = VTONFS(vp); 73 int biosize, diff; 74 struct buf *bp = NULL, *rabp; 75 struct vattr vattr; 76 struct proc *p; 77 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 78 daddr64_t lbn, bn, rabn; 79 caddr_t baddr; 80 int got_buf = 0, nra, error = 0, n = 0, on = 0, not_readin; 81 off_t offdiff; 82 83 #ifdef DIAGNOSTIC 84 if (uio->uio_rw != UIO_READ) 85 panic("nfs_read mode"); 86 #endif 87 if (uio->uio_resid == 0) 88 return (0); 89 if (uio->uio_offset < 0) 90 return (EINVAL); 91 p = uio->uio_procp; 92 if ((nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_GOTFSINFO)) == NFSMNT_NFSV3) 93 (void)nfs_fsinfo(nmp, vp, cred, p); 94 biosize = nmp->nm_rsize; 95 /* 96 * For nfs, cache consistency can only be maintained approximately. 97 * Although RFC1094 does not specify the criteria, the following is 98 * believed to be compatible with the reference port. 99 * For nfs: 100 * If the file's modify time on the server has changed since the 101 * last read rpc or you have written to the file, 102 * you may have lost data cache consistency with the 103 * server, so flush all of the file's data out of the cache. 104 * Then force a getattr rpc to ensure that you have up to date 105 * attributes. 106 */ 107 if (np->n_flag & NMODIFIED) { 108 NFS_INVALIDATE_ATTRCACHE(np); 109 error = VOP_GETATTR(vp, &vattr, cred, p); 110 if (error) 111 return (error); 112 np->n_mtime = vattr.va_mtime; 113 } else { 114 error = VOP_GETATTR(vp, &vattr, cred, p); 115 if (error) 116 return (error); 117 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) { 118 error = nfs_vinvalbuf(vp, V_SAVE, cred, p); 119 if (error) 120 return (error); 121 np->n_mtime = vattr.va_mtime; 122 } 123 } 124 125 /* 126 * update the cache read creds for this vnode 127 */ 128 if (np->n_rcred) 129 crfree(np->n_rcred); 130 np->n_rcred = cred; 131 crhold(cred); 132 133 do { 134 if ((vp->v_flag & VROOT) && vp->v_type == VLNK) { 135 return (nfs_readlinkrpc(vp, uio, cred)); 136 } 137 baddr = (caddr_t)0; 138 switch (vp->v_type) { 139 case VREG: 140 nfsstats.biocache_reads++; 141 lbn = uio->uio_offset / biosize; 142 on = uio->uio_offset & (biosize - 1); 143 bn = lbn * (biosize / DEV_BSIZE); 144 not_readin = 1; 145 146 /* 147 * Start the read ahead(s), as required. 148 */ 149 if (nfs_numasync > 0 && nmp->nm_readahead > 0) { 150 for (nra = 0; nra < nmp->nm_readahead && 151 (lbn + 1 + nra) * biosize < np->n_size; nra++) { 152 rabn = (lbn + 1 + nra) * (biosize / DEV_BSIZE); 153 if (!incore(vp, rabn)) { 154 rabp = nfs_getcacheblk(vp, rabn, biosize, p); 155 if (!rabp) 156 return (EINTR); 157 if ((rabp->b_flags & (B_DELWRI | B_DONE)) == 0) { 158 rabp->b_flags |= (B_READ | B_ASYNC); 159 if (nfs_asyncio(rabp, 1)) { 160 rabp->b_flags |= B_INVAL; 161 brelse(rabp); 162 } 163 } else 164 brelse(rabp); 165 } 166 } 167 } 168 169 again: 170 bp = nfs_getcacheblk(vp, bn, biosize, p); 171 if (!bp) 172 return (EINTR); 173 got_buf = 1; 174 if ((bp->b_flags & (B_DONE | B_DELWRI)) == 0) { 175 bp->b_flags |= B_READ; 176 not_readin = 0; 177 error = nfs_doio(bp, p); 178 if (error) { 179 brelse(bp); 180 return (error); 181 } 182 } 183 n = min((unsigned)(biosize - on), uio->uio_resid); 184 offdiff = np->n_size - uio->uio_offset; 185 if (offdiff < (off_t)n) 186 n = (int)offdiff; 187 if (not_readin && n > 0) { 188 if (on < bp->b_validoff || (on + n) > bp->b_validend) { 189 bp->b_flags |= B_INVAFTERWRITE; 190 if (bp->b_dirtyend > 0) { 191 if ((bp->b_flags & B_DELWRI) == 0) 192 panic("nfsbioread"); 193 if (VOP_BWRITE(bp) == EINTR) 194 return (EINTR); 195 } else 196 brelse(bp); 197 goto again; 198 } 199 } 200 diff = (on >= bp->b_validend) ? 0 : (bp->b_validend - on); 201 if (diff < n) 202 n = diff; 203 break; 204 case VLNK: 205 nfsstats.biocache_readlinks++; 206 bp = nfs_getcacheblk(vp, 0, NFS_MAXPATHLEN, p); 207 if (!bp) 208 return (EINTR); 209 if ((bp->b_flags & B_DONE) == 0) { 210 bp->b_flags |= B_READ; 211 error = nfs_doio(bp, p); 212 if (error) { 213 brelse(bp); 214 return (error); 215 } 216 } 217 n = min(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid); 218 got_buf = 1; 219 on = 0; 220 break; 221 default: 222 panic("nfsbioread: type %x unexpected", vp->v_type); 223 break; 224 } 225 226 if (n > 0) { 227 if (!baddr) 228 baddr = bp->b_data; 229 error = uiomove(baddr + on, (int)n, uio); 230 } 231 232 if (vp->v_type == VLNK) 233 n = 0; 234 235 if (got_buf) 236 brelse(bp); 237 } while (error == 0 && uio->uio_resid > 0 && n > 0); 238 return (error); 239 } 240 241 /* 242 * Vnode op for write using bio 243 */ 244 int 245 nfs_write(void *v) 246 { 247 struct vop_write_args *ap = v; 248 int biosize; 249 struct uio *uio = ap->a_uio; 250 struct proc *p = uio->uio_procp; 251 struct vnode *vp = ap->a_vp; 252 struct nfsnode *np = VTONFS(vp); 253 struct ucred *cred = ap->a_cred; 254 int ioflag = ap->a_ioflag; 255 struct buf *bp; 256 struct vattr vattr; 257 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 258 daddr64_t lbn, bn; 259 int n, on, error = 0, extended = 0, wrotedta = 0, truncated = 0; 260 261 #ifdef DIAGNOSTIC 262 if (uio->uio_rw != UIO_WRITE) 263 panic("nfs_write mode"); 264 if (uio->uio_segflg == UIO_USERSPACE && uio->uio_procp != curproc) 265 panic("nfs_write proc"); 266 #endif 267 if (vp->v_type != VREG) 268 return (EIO); 269 if (np->n_flag & NWRITEERR) { 270 np->n_flag &= ~NWRITEERR; 271 return (np->n_error); 272 } 273 if ((nmp->nm_flag & (NFSMNT_NFSV3 | NFSMNT_GOTFSINFO)) == NFSMNT_NFSV3) 274 (void)nfs_fsinfo(nmp, vp, cred, p); 275 if (ioflag & (IO_APPEND | IO_SYNC)) { 276 if (np->n_flag & NMODIFIED) { 277 NFS_INVALIDATE_ATTRCACHE(np); 278 error = nfs_vinvalbuf(vp, V_SAVE, cred, p); 279 if (error) 280 return (error); 281 } 282 if (ioflag & IO_APPEND) { 283 NFS_INVALIDATE_ATTRCACHE(np); 284 error = VOP_GETATTR(vp, &vattr, cred, p); 285 if (error) 286 return (error); 287 uio->uio_offset = np->n_size; 288 } 289 } 290 if (uio->uio_offset < 0) 291 return (EINVAL); 292 if (uio->uio_resid == 0) 293 return (0); 294 /* 295 * Maybe this should be above the vnode op call, but so long as 296 * file servers have no limits, i don't think it matters 297 */ 298 if (p && uio->uio_offset + uio->uio_resid > 299 p->p_rlimit[RLIMIT_FSIZE].rlim_cur) { 300 psignal(p, SIGXFSZ); 301 return (EFBIG); 302 } 303 304 /* 305 * update the cache write creds for this node. 306 */ 307 if (np->n_wcred) 308 crfree(np->n_wcred); 309 np->n_wcred = cred; 310 crhold(cred); 311 312 /* 313 * I use nm_rsize, not nm_wsize so that all buffer cache blocks 314 * will be the same size within a filesystem. nfs_writerpc will 315 * still use nm_wsize when sizing the rpc's. 316 */ 317 biosize = nmp->nm_rsize; 318 do { 319 320 /* 321 * XXX make sure we aren't cached in the VM page cache 322 */ 323 uvm_vnp_uncache(vp); 324 325 nfsstats.biocache_writes++; 326 lbn = uio->uio_offset / biosize; 327 on = uio->uio_offset & (biosize-1); 328 n = min((unsigned)(biosize - on), uio->uio_resid); 329 bn = lbn * (biosize / DEV_BSIZE); 330 again: 331 bp = nfs_getcacheblk(vp, bn, biosize, p); 332 if (!bp) 333 return (EINTR); 334 np->n_flag |= NMODIFIED; 335 if (uio->uio_offset + n > np->n_size) { 336 np->n_size = uio->uio_offset + n; 337 uvm_vnp_setsize(vp, (u_long)np->n_size); 338 extended = 1; 339 } else if (uio->uio_offset + n < np->n_size) 340 truncated = 1; 341 342 /* 343 * If the new write will leave a contiguous dirty 344 * area, just update the b_dirtyoff and b_dirtyend, 345 * otherwise force a write rpc of the old dirty area. 346 */ 347 if (bp->b_dirtyend > 0 && 348 (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) { 349 bp->b_proc = p; 350 if (VOP_BWRITE(bp) == EINTR) 351 return (EINTR); 352 goto again; 353 } 354 355 error = uiomove((char *)bp->b_data + on, n, uio); 356 if (error) { 357 bp->b_flags |= B_ERROR; 358 brelse(bp); 359 return (error); 360 } 361 if (bp->b_dirtyend > 0) { 362 bp->b_dirtyoff = min(on, bp->b_dirtyoff); 363 bp->b_dirtyend = max((on + n), bp->b_dirtyend); 364 } else { 365 bp->b_dirtyoff = on; 366 bp->b_dirtyend = on + n; 367 } 368 if (bp->b_validend == 0 || bp->b_validend < bp->b_dirtyoff || 369 bp->b_validoff > bp->b_dirtyend) { 370 bp->b_validoff = bp->b_dirtyoff; 371 bp->b_validend = bp->b_dirtyend; 372 } else { 373 bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff); 374 bp->b_validend = max(bp->b_validend, bp->b_dirtyend); 375 } 376 377 wrotedta = 1; 378 379 /* 380 * Since this block is being modified, it must be written 381 * again and not just committed. 382 */ 383 384 if (NFS_ISV3(vp)) { 385 rw_enter_write(&np->n_commitlock); 386 if (bp->b_flags & B_NEEDCOMMIT) { 387 bp->b_flags &= ~B_NEEDCOMMIT; 388 nfs_del_tobecommitted_range(vp, bp); 389 } 390 nfs_del_committed_range(vp, bp); 391 rw_exit_write(&np->n_commitlock); 392 } else 393 bp->b_flags &= ~B_NEEDCOMMIT; 394 395 if (ioflag & IO_SYNC) { 396 bp->b_proc = p; 397 error = VOP_BWRITE(bp); 398 if (error) 399 return (error); 400 } else if ((n + on) == biosize) { 401 bp->b_proc = NULL; 402 bp->b_flags |= B_ASYNC; 403 (void)nfs_writebp(bp, 0); 404 } else { 405 bdwrite(bp); 406 } 407 } while (uio->uio_resid > 0 && n > 0); 408 409 if (wrotedta) 410 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0) | 411 (truncated ? NOTE_TRUNCATE : 0)); 412 413 return (0); 414 } 415 416 /* 417 * Get an nfs cache block. 418 * Allocate a new one if the block isn't currently in the cache 419 * and return the block marked busy. If the calling process is 420 * interrupted by a signal for an interruptible mount point, return 421 * NULL. 422 */ 423 struct buf * 424 nfs_getcacheblk(struct vnode *vp, daddr64_t bn, int size, struct proc *p) 425 { 426 struct buf *bp; 427 struct nfsmount *nmp = VFSTONFS(vp->v_mount); 428 429 if (nmp->nm_flag & NFSMNT_INT) { 430 bp = getblk(vp, bn, size, PCATCH, 0); 431 while (bp == NULL) { 432 if (nfs_sigintr(nmp, NULL, p)) 433 return (NULL); 434 bp = getblk(vp, bn, size, 0, 2 * hz); 435 } 436 } else 437 bp = getblk(vp, bn, size, 0, 0); 438 return (bp); 439 } 440 441 /* 442 * Flush and invalidate all dirty buffers. If another process is already 443 * doing the flush, just wait for completion. 444 */ 445 int 446 nfs_vinvalbuf(struct vnode *vp, int flags, struct ucred *cred, struct proc *p) 447 { 448 struct nfsmount *nmp= VFSTONFS(vp->v_mount); 449 struct nfsnode *np = VTONFS(vp); 450 int error, sintr, stimeo; 451 452 error = sintr = stimeo = 0; 453 454 if (ISSET(nmp->nm_flag, NFSMNT_INT)) { 455 sintr = PCATCH; 456 stimeo = 2 * hz; 457 } 458 459 /* First wait for any other process doing a flush to complete. */ 460 while (np->n_flag & NFLUSHINPROG) { 461 np->n_flag |= NFLUSHWANT; 462 error = tsleep(&np->n_flag, PRIBIO|sintr, "nfsvinval", stimeo); 463 if (error && sintr && nfs_sigintr(nmp, NULL, p)) 464 return (EINTR); 465 } 466 467 /* Now, flush as required. */ 468 np->n_flag |= NFLUSHINPROG; 469 error = vinvalbuf(vp, flags, cred, p, sintr, 0); 470 while (error) { 471 if (sintr && nfs_sigintr(nmp, NULL, p)) { 472 np->n_flag &= ~NFLUSHINPROG; 473 if (np->n_flag & NFLUSHWANT) { 474 np->n_flag &= ~NFLUSHWANT; 475 wakeup(&np->n_flag); 476 } 477 return (EINTR); 478 } 479 error = vinvalbuf(vp, flags, cred, p, 0, stimeo); 480 } 481 np->n_flag &= ~(NMODIFIED | NFLUSHINPROG); 482 if (np->n_flag & NFLUSHWANT) { 483 np->n_flag &= ~NFLUSHWANT; 484 wakeup(&np->n_flag); 485 } 486 return (0); 487 } 488 489 /* 490 * Initiate asynchronous I/O. Return an error if no nfsiods are available. 491 * This is mainly to avoid queueing async I/O requests when the nfsiods 492 * are all hung on a dead server. 493 */ 494 int 495 nfs_asyncio(struct buf *bp, int readahead) 496 { 497 if (nfs_numasync == 0) 498 goto out; 499 500 while (nfs_bufqlen > nfs_bufqmax) 501 if (readahead) 502 goto out; 503 else 504 tsleep(&nfs_bufqlen, PRIBIO, "nfs_bufq", 0); 505 506 if ((bp->b_flags & B_READ) == 0) { 507 bp->b_flags |= B_WRITEINPROG; 508 } 509 510 TAILQ_INSERT_TAIL(&nfs_bufq, bp, b_freelist); 511 nfs_bufqlen++; 512 513 wakeup_one(&nfs_bufq); 514 return (0); 515 516 out: 517 nfsstats.forcedsync++; 518 return (EIO); 519 } 520 521 /* 522 * Do an I/O operation to/from a cache block. This may be called 523 * synchronously or from an nfsiod. 524 */ 525 int 526 nfs_doio(struct buf *bp, struct proc *p) 527 { 528 struct uio *uiop; 529 struct vnode *vp; 530 struct nfsnode *np; 531 struct nfsmount *nmp; 532 int s, error = 0, diff, len, iomode, must_commit = 0; 533 struct uio uio; 534 struct iovec io; 535 536 vp = bp->b_vp; 537 np = VTONFS(vp); 538 nmp = VFSTONFS(vp->v_mount); 539 uiop = &uio; 540 uiop->uio_iov = &io; 541 uiop->uio_iovcnt = 1; 542 uiop->uio_segflg = UIO_SYSSPACE; 543 uiop->uio_procp = p; 544 545 /* 546 * Historically, paging was done with physio, but no more. 547 */ 548 if (bp->b_flags & B_PHYS) { 549 io.iov_len = uiop->uio_resid = bp->b_bcount; 550 /* mapping was done by vmapbuf() */ 551 io.iov_base = bp->b_data; 552 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT; 553 if (bp->b_flags & B_READ) { 554 uiop->uio_rw = UIO_READ; 555 nfsstats.read_physios++; 556 error = nfs_readrpc(vp, uiop); 557 } else { 558 iomode = NFSV3WRITE_DATASYNC; 559 uiop->uio_rw = UIO_WRITE; 560 nfsstats.write_physios++; 561 error = nfs_writerpc(vp, uiop, &iomode, &must_commit); 562 } 563 if (error) { 564 bp->b_flags |= B_ERROR; 565 bp->b_error = error; 566 } 567 } else if (bp->b_flags & B_READ) { 568 io.iov_len = uiop->uio_resid = bp->b_bcount; 569 io.iov_base = bp->b_data; 570 uiop->uio_rw = UIO_READ; 571 switch (vp->v_type) { 572 case VREG: 573 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT; 574 nfsstats.read_bios++; 575 bcstats.pendingreads++; 576 bcstats.numreads++; 577 error = nfs_readrpc(vp, uiop); 578 if (!error) { 579 bp->b_validoff = 0; 580 if (uiop->uio_resid) { 581 /* 582 * If len > 0, there is a hole in the file and 583 * no writes after the hole have been pushed to 584 * the server yet. 585 * Just zero fill the rest of the valid area. 586 */ 587 diff = bp->b_bcount - uiop->uio_resid; 588 len = np->n_size - ((((off_t)bp->b_blkno) << DEV_BSHIFT) 589 + diff); 590 if (len > 0) { 591 len = min(len, uiop->uio_resid); 592 bzero((char *)bp->b_data + diff, len); 593 bp->b_validend = diff + len; 594 } else 595 bp->b_validend = diff; 596 } else 597 bp->b_validend = bp->b_bcount; 598 } 599 if (p && (vp->v_flag & VTEXT) && 600 (timespeccmp(&np->n_mtime, &np->n_vattr.va_mtime, !=))) { 601 uprintf("Process killed due to text file modification\n"); 602 psignal(p, SIGKILL); 603 } 604 break; 605 case VLNK: 606 uiop->uio_offset = (off_t)0; 607 nfsstats.readlink_bios++; 608 bcstats.pendingreads++; 609 bcstats.numreads++; 610 error = nfs_readlinkrpc(vp, uiop, curproc->p_ucred); 611 break; 612 default: 613 panic("nfs_doio: type %x unexpected", vp->v_type); 614 break; 615 }; 616 if (error) { 617 bp->b_flags |= B_ERROR; 618 bp->b_error = error; 619 } 620 } else { 621 io.iov_len = uiop->uio_resid = bp->b_dirtyend 622 - bp->b_dirtyoff; 623 uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE 624 + bp->b_dirtyoff; 625 io.iov_base = (char *)bp->b_data + bp->b_dirtyoff; 626 uiop->uio_rw = UIO_WRITE; 627 nfsstats.write_bios++; 628 bcstats.pendingwrites++; 629 bcstats.numwrites++; 630 if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE)) == B_ASYNC) 631 iomode = NFSV3WRITE_UNSTABLE; 632 else 633 iomode = NFSV3WRITE_FILESYNC; 634 bp->b_flags |= B_WRITEINPROG; 635 error = nfs_writerpc(vp, uiop, &iomode, &must_commit); 636 637 rw_enter_write(&np->n_commitlock); 638 if (!error && iomode == NFSV3WRITE_UNSTABLE) { 639 bp->b_flags |= B_NEEDCOMMIT; 640 nfs_add_tobecommitted_range(vp, bp); 641 } else { 642 bp->b_flags &= ~B_NEEDCOMMIT; 643 nfs_del_committed_range(vp, bp); 644 } 645 rw_exit_write(&np->n_commitlock); 646 647 bp->b_flags &= ~B_WRITEINPROG; 648 649 /* 650 * For an interrupted write, the buffer is still valid and the 651 * write hasn't been pushed to the server yet, so we can't set 652 * B_ERROR and report the interruption by setting B_EINTR. For 653 * the B_ASYNC case, B_EINTR is not relevant, so the rpc attempt 654 * is essentially a noop. 655 * For the case of a V3 write rpc not being committed to stable 656 * storage, the block is still dirty and requires either a commit 657 * rpc or another write rpc with iomode == NFSV3WRITE_FILESYNC 658 * before the block is reused. This is indicated by setting the 659 * B_DELWRI and B_NEEDCOMMIT flags. 660 */ 661 if (error == EINTR || (!error && (bp->b_flags & B_NEEDCOMMIT))) { 662 s = splbio(); 663 buf_dirty(bp); 664 splx(s); 665 666 if (!(bp->b_flags & B_ASYNC) && error) 667 bp->b_flags |= B_EINTR; 668 } else { 669 if (error) { 670 bp->b_flags |= B_ERROR; 671 bp->b_error = np->n_error = error; 672 np->n_flag |= NWRITEERR; 673 } 674 bp->b_dirtyoff = bp->b_dirtyend = 0; 675 } 676 } 677 bp->b_resid = uiop->uio_resid; 678 if (must_commit) 679 nfs_clearcommit(vp->v_mount); 680 s = splbio(); 681 biodone(bp); 682 splx(s); 683 return (error); 684 } 685