1 /* $OpenBSD: nd6.c,v 1.91 2012/01/03 23:41:51 bluhm Exp $ */ 2 /* $KAME: nd6.c,v 1.280 2002/06/08 19:52:07 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/timeout.h> 36 #include <sys/malloc.h> 37 #include <sys/mbuf.h> 38 #include <sys/socket.h> 39 #include <sys/sockio.h> 40 #include <sys/time.h> 41 #include <sys/kernel.h> 42 #include <sys/protosw.h> 43 #include <sys/errno.h> 44 #include <sys/ioctl.h> 45 #include <sys/syslog.h> 46 #include <sys/queue.h> 47 #include <dev/rndvar.h> 48 49 #include <net/if.h> 50 #include <net/if_dl.h> 51 #include <net/if_types.h> 52 #include <net/if_fddi.h> 53 #include <net/route.h> 54 55 #include <netinet/in.h> 56 #include <netinet/if_ether.h> 57 #include <netinet/ip_ipsp.h> 58 59 #include <netinet6/in6_var.h> 60 #include <netinet/ip6.h> 61 #include <netinet6/ip6_var.h> 62 #include <netinet6/nd6.h> 63 #include <netinet/icmp6.h> 64 65 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 66 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 67 68 #define SIN6(s) ((struct sockaddr_in6 *)s) 69 #define SDL(s) ((struct sockaddr_dl *)s) 70 71 /* timer values */ 72 int nd6_prune = 1; /* walk list every 1 seconds */ 73 int nd6_delay = 5; /* delay first probe time 5 second */ 74 int nd6_umaxtries = 3; /* maximum unicast query */ 75 int nd6_mmaxtries = 3; /* maximum multicast query */ 76 int nd6_useloopback = 1; /* use loopback interface for local traffic */ 77 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */ 78 79 /* preventing too many loops in ND option parsing */ 80 int nd6_maxndopt = 10; /* max # of ND options allowed */ 81 82 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */ 83 84 #ifdef ND6_DEBUG 85 int nd6_debug = 1; 86 #else 87 int nd6_debug = 0; 88 #endif 89 90 static int nd6_inuse, nd6_allocated; 91 92 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6}; 93 struct nd_drhead nd_defrouter; 94 struct nd_prhead nd_prefix = { 0 }; 95 96 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL; 97 static struct sockaddr_in6 all1_sa; 98 99 void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 100 void nd6_slowtimo(void *); 101 struct llinfo_nd6 *nd6_free(struct rtentry *, int); 102 void nd6_llinfo_timer(void *); 103 104 struct timeout nd6_slowtimo_ch; 105 struct timeout nd6_timer_ch; 106 extern struct timeout in6_tmpaddrtimer_ch; 107 108 int fill_drlist(void *, size_t *, size_t); 109 int fill_prlist(void *, size_t *, size_t); 110 111 #define LN_DEQUEUE(ln) do { \ 112 (ln)->ln_next->ln_prev = (ln)->ln_prev; \ 113 (ln)->ln_prev->ln_next = (ln)->ln_next; \ 114 } while (0) 115 #define LN_INSERTHEAD(ln) do { \ 116 (ln)->ln_next = llinfo_nd6.ln_next; \ 117 llinfo_nd6.ln_next = (ln); \ 118 (ln)->ln_prev = &llinfo_nd6; \ 119 (ln)->ln_next->ln_prev = (ln); \ 120 } while (0) 121 122 void 123 nd6_init(void) 124 { 125 static int nd6_init_done = 0; 126 int i; 127 128 if (nd6_init_done) { 129 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n"); 130 return; 131 } 132 133 all1_sa.sin6_family = AF_INET6; 134 all1_sa.sin6_len = sizeof(struct sockaddr_in6); 135 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++) 136 all1_sa.sin6_addr.s6_addr[i] = 0xff; 137 138 /* initialization of the default router list */ 139 TAILQ_INIT(&nd_defrouter); 140 141 nd6_init_done = 1; 142 143 /* start timer */ 144 timeout_set(&nd6_slowtimo_ch, nd6_slowtimo, NULL); 145 timeout_add_sec(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL); 146 } 147 148 struct nd_ifinfo * 149 nd6_ifattach(struct ifnet *ifp) 150 { 151 struct nd_ifinfo *nd; 152 153 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 154 155 nd->initialized = 1; 156 157 nd->chlim = IPV6_DEFHLIM; 158 nd->basereachable = REACHABLE_TIME; 159 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 160 nd->retrans = RETRANS_TIMER; 161 /* 162 * Note that the default value of ip6_accept_rtadv is 0, which means 163 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV 164 * here. 165 */ 166 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV); 167 168 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 169 nd6_setmtu0(ifp, nd); 170 171 return nd; 172 } 173 174 void 175 nd6_ifdetach(struct nd_ifinfo *nd) 176 { 177 178 free(nd, M_IP6NDP); 179 } 180 181 void 182 nd6_setmtu(struct ifnet *ifp) 183 { 184 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 185 } 186 187 void 188 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 189 { 190 u_int32_t omaxmtu; 191 192 omaxmtu = ndi->maxmtu; 193 194 if (ifp->if_type == IFT_FDDI) 195 ndi->maxmtu = MIN(FDDIMTU, ifp->if_mtu); 196 else 197 ndi->maxmtu = ifp->if_mtu; 198 199 /* 200 * Decreasing the interface MTU under IPV6 minimum MTU may cause 201 * undesirable situation. We thus notify the operator of the change 202 * explicitly. The check for omaxmtu is necessary to restrict the 203 * log to the case of changing the MTU, not initializing it. 204 */ 205 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 206 log(LOG_NOTICE, "nd6_setmtu0: " 207 "new link MTU on %s (%lu) is too small for IPv6\n", 208 ifp->if_xname, (unsigned long)ndi->maxmtu); 209 } 210 211 if (ndi->maxmtu > in6_maxmtu) 212 in6_setmaxmtu(); /* check all interfaces just in case */ 213 } 214 215 void 216 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 217 { 218 bzero(ndopts, sizeof(*ndopts)); 219 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 220 ndopts->nd_opts_last 221 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 222 223 if (icmp6len == 0) { 224 ndopts->nd_opts_done = 1; 225 ndopts->nd_opts_search = NULL; 226 } 227 } 228 229 /* 230 * Take one ND option. 231 */ 232 struct nd_opt_hdr * 233 nd6_option(union nd_opts *ndopts) 234 { 235 struct nd_opt_hdr *nd_opt; 236 int olen; 237 238 if (!ndopts) 239 panic("ndopts == NULL in nd6_option"); 240 if (!ndopts->nd_opts_last) 241 panic("uninitialized ndopts in nd6_option"); 242 if (!ndopts->nd_opts_search) 243 return NULL; 244 if (ndopts->nd_opts_done) 245 return NULL; 246 247 nd_opt = ndopts->nd_opts_search; 248 249 /* make sure nd_opt_len is inside the buffer */ 250 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 251 bzero(ndopts, sizeof(*ndopts)); 252 return NULL; 253 } 254 255 olen = nd_opt->nd_opt_len << 3; 256 if (olen == 0) { 257 /* 258 * Message validation requires that all included 259 * options have a length that is greater than zero. 260 */ 261 bzero(ndopts, sizeof(*ndopts)); 262 return NULL; 263 } 264 265 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 266 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 267 /* option overruns the end of buffer, invalid */ 268 bzero(ndopts, sizeof(*ndopts)); 269 return NULL; 270 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 271 /* reached the end of options chain */ 272 ndopts->nd_opts_done = 1; 273 ndopts->nd_opts_search = NULL; 274 } 275 return nd_opt; 276 } 277 278 /* 279 * Parse multiple ND options. 280 * This function is much easier to use, for ND routines that do not need 281 * multiple options of the same type. 282 */ 283 int 284 nd6_options(union nd_opts *ndopts) 285 { 286 struct nd_opt_hdr *nd_opt; 287 int i = 0; 288 289 if (!ndopts) 290 panic("ndopts == NULL in nd6_options"); 291 if (!ndopts->nd_opts_last) 292 panic("uninitialized ndopts in nd6_options"); 293 if (!ndopts->nd_opts_search) 294 return 0; 295 296 while (1) { 297 nd_opt = nd6_option(ndopts); 298 if (!nd_opt && !ndopts->nd_opts_last) { 299 /* 300 * Message validation requires that all included 301 * options have a length that is greater than zero. 302 */ 303 icmp6stat.icp6s_nd_badopt++; 304 bzero(ndopts, sizeof(*ndopts)); 305 return -1; 306 } 307 308 if (!nd_opt) 309 goto skip1; 310 311 switch (nd_opt->nd_opt_type) { 312 case ND_OPT_SOURCE_LINKADDR: 313 case ND_OPT_TARGET_LINKADDR: 314 case ND_OPT_MTU: 315 case ND_OPT_REDIRECTED_HEADER: 316 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 317 nd6log((LOG_INFO, 318 "duplicated ND6 option found (type=%d)\n", 319 nd_opt->nd_opt_type)); 320 /* XXX bark? */ 321 } else { 322 ndopts->nd_opt_array[nd_opt->nd_opt_type] 323 = nd_opt; 324 } 325 break; 326 case ND_OPT_PREFIX_INFORMATION: 327 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 328 ndopts->nd_opt_array[nd_opt->nd_opt_type] 329 = nd_opt; 330 } 331 ndopts->nd_opts_pi_end = 332 (struct nd_opt_prefix_info *)nd_opt; 333 break; 334 default: 335 /* 336 * Unknown options must be silently ignored, 337 * to accommodate future extension to the protocol. 338 */ 339 nd6log((LOG_DEBUG, 340 "nd6_options: unsupported option %d - " 341 "option ignored\n", nd_opt->nd_opt_type)); 342 } 343 344 skip1: 345 i++; 346 if (i > nd6_maxndopt) { 347 icmp6stat.icp6s_nd_toomanyopt++; 348 nd6log((LOG_INFO, "too many loop in nd opt\n")); 349 break; 350 } 351 352 if (ndopts->nd_opts_done) 353 break; 354 } 355 356 return 0; 357 } 358 359 /* 360 * ND6 timer routine to handle ND6 entries 361 */ 362 void 363 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long tick) 364 { 365 int s; 366 367 s = splsoftnet(); 368 369 if (tick < 0) { 370 ln->ln_expire = 0; 371 ln->ln_ntick = 0; 372 timeout_del(&ln->ln_timer_ch); 373 } else { 374 ln->ln_expire = time_second + tick / hz; 375 if (tick > INT_MAX) { 376 ln->ln_ntick = tick - INT_MAX; 377 timeout_add(&ln->ln_timer_ch, INT_MAX); 378 } else { 379 ln->ln_ntick = 0; 380 timeout_add(&ln->ln_timer_ch, tick); 381 } 382 } 383 384 splx(s); 385 } 386 387 void 388 nd6_llinfo_timer(void *arg) 389 { 390 int s; 391 struct llinfo_nd6 *ln; 392 struct rtentry *rt; 393 struct sockaddr_in6 *dst; 394 struct ifnet *ifp; 395 struct nd_ifinfo *ndi = NULL; 396 397 s = splsoftnet(); 398 399 ln = (struct llinfo_nd6 *)arg; 400 401 if (ln->ln_ntick > 0) { 402 if (ln->ln_ntick > INT_MAX) { 403 ln->ln_ntick -= INT_MAX; 404 nd6_llinfo_settimer(ln, INT_MAX); 405 } else { 406 ln->ln_ntick = 0; 407 nd6_llinfo_settimer(ln, ln->ln_ntick); 408 } 409 splx(s); 410 return; 411 } 412 413 if ((rt = ln->ln_rt) == NULL) 414 panic("ln->ln_rt == NULL"); 415 if ((ifp = rt->rt_ifp) == NULL) 416 panic("ln->ln_rt->rt_ifp == NULL"); 417 ndi = ND_IFINFO(ifp); 418 dst = (struct sockaddr_in6 *)rt_key(rt); 419 420 /* sanity check */ 421 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln) 422 panic("rt_llinfo(%p) is not equal to ln(%p)", 423 rt->rt_llinfo, ln); 424 if (!dst) 425 panic("dst=0 in nd6_timer(ln=%p)", ln); 426 427 switch (ln->ln_state) { 428 case ND6_LLINFO_INCOMPLETE: 429 if (ln->ln_asked < nd6_mmaxtries) { 430 ln->ln_asked++; 431 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 432 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 433 } else { 434 struct mbuf *m = ln->ln_hold; 435 if (m) { 436 ln->ln_hold = NULL; 437 /* 438 * Fake rcvif to make the ICMP error 439 * more helpful in diagnosing for the 440 * receiver. 441 * XXX: should we consider 442 * older rcvif? 443 */ 444 m->m_pkthdr.rcvif = rt->rt_ifp; 445 446 icmp6_error(m, ICMP6_DST_UNREACH, 447 ICMP6_DST_UNREACH_ADDR, 0); 448 if (ln->ln_hold == m) { 449 /* m is back in ln_hold. Discard. */ 450 m_freem(ln->ln_hold); 451 ln->ln_hold = NULL; 452 } 453 } 454 (void)nd6_free(rt, 0); 455 ln = NULL; 456 } 457 break; 458 case ND6_LLINFO_REACHABLE: 459 if (!ND6_LLINFO_PERMANENT(ln)) { 460 ln->ln_state = ND6_LLINFO_STALE; 461 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 462 } 463 break; 464 465 case ND6_LLINFO_STALE: 466 case ND6_LLINFO_PURGE: 467 /* Garbage Collection(RFC 2461 5.3) */ 468 if (!ND6_LLINFO_PERMANENT(ln)) { 469 (void)nd6_free(rt, 1); 470 ln = NULL; 471 } 472 break; 473 474 case ND6_LLINFO_DELAY: 475 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 476 /* We need NUD */ 477 ln->ln_asked = 1; 478 ln->ln_state = ND6_LLINFO_PROBE; 479 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 480 nd6_ns_output(ifp, &dst->sin6_addr, 481 &dst->sin6_addr, ln, 0); 482 } else { 483 ln->ln_state = ND6_LLINFO_STALE; /* XXX */ 484 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 485 } 486 break; 487 case ND6_LLINFO_PROBE: 488 if (ln->ln_asked < nd6_umaxtries) { 489 ln->ln_asked++; 490 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000); 491 nd6_ns_output(ifp, &dst->sin6_addr, 492 &dst->sin6_addr, ln, 0); 493 } else { 494 (void)nd6_free(rt, 0); 495 ln = NULL; 496 } 497 break; 498 } 499 500 splx(s); 501 } 502 503 /* 504 * ND6 timer routine to expire default route list and prefix list 505 */ 506 void 507 nd6_timer(void *ignored_arg) 508 { 509 int s; 510 struct nd_defrouter *dr, *ndr; 511 struct nd_prefix *pr; 512 struct in6_ifaddr *ia6, *nia6; 513 514 s = splsoftnet(); 515 timeout_set(&nd6_timer_ch, nd6_timer, NULL); 516 timeout_add_sec(&nd6_timer_ch, nd6_prune); 517 518 /* expire default router list */ 519 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) 520 if (dr->expire && dr->expire < time_second) 521 defrtrlist_del(dr); 522 523 /* 524 * expire interface addresses. 525 * in the past the loop was inside prefix expiry processing. 526 * However, from a stricter spec-conformance standpoint, we should 527 * rather separate address lifetimes and prefix lifetimes. 528 */ 529 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) { 530 nia6 = ia6->ia_next; 531 /* check address lifetime */ 532 if (IFA6_IS_INVALID(ia6)) { 533 in6_purgeaddr(&ia6->ia_ifa); 534 } else if (IFA6_IS_DEPRECATED(ia6)) { 535 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 536 } else { 537 /* 538 * A new RA might have made a deprecated address 539 * preferred. 540 */ 541 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 542 } 543 } 544 545 /* expire prefix list */ 546 pr = LIST_FIRST(&nd_prefix); 547 while (pr != NULL) { 548 /* 549 * check prefix lifetime. 550 * since pltime is just for autoconf, pltime processing for 551 * prefix is not necessary. 552 */ 553 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME && 554 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) { 555 struct nd_prefix *t; 556 t = LIST_NEXT(pr, ndpr_entry); 557 558 /* 559 * address expiration and prefix expiration are 560 * separate. NEVER perform in6_purgeaddr here. 561 */ 562 563 prelist_remove(pr); 564 pr = t; 565 } else 566 pr = LIST_NEXT(pr, ndpr_entry); 567 } 568 splx(s); 569 } 570 571 /* 572 * Nuke neighbor cache/prefix/default router management table, right before 573 * ifp goes away. 574 */ 575 void 576 nd6_purge(struct ifnet *ifp) 577 { 578 struct llinfo_nd6 *ln, *nln; 579 struct nd_defrouter *dr, *ndr; 580 struct nd_prefix *pr, *npr; 581 582 /* 583 * Nuke default router list entries toward ifp. 584 * We defer removal of default router list entries that is installed 585 * in the routing table, in order to keep additional side effects as 586 * small as possible. 587 */ 588 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) { 589 if (dr->installed) 590 continue; 591 592 if (dr->ifp == ifp) 593 defrtrlist_del(dr); 594 } 595 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) { 596 if (!dr->installed) 597 continue; 598 599 if (dr->ifp == ifp) 600 defrtrlist_del(dr); 601 } 602 603 /* Nuke prefix list entries toward ifp */ 604 for (pr = LIST_FIRST(&nd_prefix); pr != NULL; pr = npr) { 605 npr = LIST_NEXT(pr, ndpr_entry); 606 if (pr->ndpr_ifp == ifp) { 607 /* 608 * Because if_detach() does *not* release prefixes 609 * while purging addresses the reference count will 610 * still be above zero. We therefore reset it to 611 * make sure that the prefix really gets purged. 612 */ 613 pr->ndpr_refcnt = 0; 614 /* 615 * Previously, pr->ndpr_addr is removed as well, 616 * but I strongly believe we don't have to do it. 617 * nd6_purge() is only called from in6_ifdetach(), 618 * which removes all the associated interface addresses 619 * by itself. 620 * (jinmei@kame.net 20010129) 621 */ 622 prelist_remove(pr); 623 } 624 } 625 626 /* cancel default outgoing interface setting */ 627 if (nd6_defifindex == ifp->if_index) 628 nd6_setdefaultiface(0); 629 630 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */ 631 /* refresh default router list */ 632 defrouter_select(); 633 } 634 635 /* 636 * Nuke neighbor cache entries for the ifp. 637 * Note that rt->rt_ifp may not be the same as ifp, 638 * due to KAME goto ours hack. See RTM_RESOLVE case in 639 * nd6_rtrequest(), and ip6_input(). 640 */ 641 ln = llinfo_nd6.ln_next; 642 while (ln && ln != &llinfo_nd6) { 643 struct rtentry *rt; 644 struct sockaddr_dl *sdl; 645 646 nln = ln->ln_next; 647 rt = ln->ln_rt; 648 if (rt && rt->rt_gateway && 649 rt->rt_gateway->sa_family == AF_LINK) { 650 sdl = (struct sockaddr_dl *)rt->rt_gateway; 651 if (sdl->sdl_index == ifp->if_index) 652 nln = nd6_free(rt, 0); 653 } 654 ln = nln; 655 } 656 } 657 658 struct rtentry * 659 nd6_lookup(struct in6_addr *addr6, int create, struct ifnet *ifp) 660 { 661 struct rtentry *rt; 662 struct sockaddr_in6 sin6; 663 664 bzero(&sin6, sizeof(sin6)); 665 sin6.sin6_len = sizeof(struct sockaddr_in6); 666 sin6.sin6_family = AF_INET6; 667 sin6.sin6_addr = *addr6; 668 669 rt = rtalloc1((struct sockaddr *)&sin6, create, ifp->if_rdomain); 670 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) { 671 /* 672 * This is the case for the default route. 673 * If we want to create a neighbor cache for the address, we 674 * should free the route for the destination and allocate an 675 * interface route. 676 */ 677 if (create) { 678 RTFREE(rt); 679 rt = 0; 680 } 681 } 682 if (!rt) { 683 if (create && ifp) { 684 struct rt_addrinfo info; 685 int e; 686 687 /* 688 * If no route is available and create is set, 689 * we allocate a host route for the destination 690 * and treat it like an interface route. 691 * This hack is necessary for a neighbor which can't 692 * be covered by our own prefix. 693 */ 694 struct ifaddr *ifa = 695 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp); 696 if (ifa == NULL) 697 return (NULL); 698 699 /* 700 * Create a new route. RTF_LLINFO is necessary 701 * to create a Neighbor Cache entry for the 702 * destination in nd6_rtrequest which will be 703 * called in rtrequest1 via ifa->ifa_rtrequest. 704 */ 705 bzero(&info, sizeof(info)); 706 info.rti_flags = (ifa->ifa_flags | RTF_HOST | 707 RTF_LLINFO) & ~RTF_CLONING; 708 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 709 info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr; 710 info.rti_info[RTAX_NETMASK] = 711 (struct sockaddr *)&all1_sa; 712 if ((e = rtrequest1(RTM_ADD, &info, RTP_CONNECTED, 713 &rt, ifp->if_rdomain)) != 0) { 714 #if 0 715 log(LOG_ERR, 716 "nd6_lookup: failed to add route for a " 717 "neighbor(%s), errno=%d\n", 718 ip6_sprintf(addr6), e); 719 #endif 720 return (NULL); 721 } 722 if (rt == NULL) 723 return (NULL); 724 if (rt->rt_llinfo) { 725 struct llinfo_nd6 *ln = 726 (struct llinfo_nd6 *)rt->rt_llinfo; 727 ln->ln_state = ND6_LLINFO_NOSTATE; 728 } 729 } else 730 return (NULL); 731 } 732 rt->rt_refcnt--; 733 /* 734 * Validation for the entry. 735 * Note that the check for rt_llinfo is necessary because a cloned 736 * route from a parent route that has the L flag (e.g. the default 737 * route to a p2p interface) may have the flag, too, while the 738 * destination is not actually a neighbor. 739 * XXX: we can't use rt->rt_ifp to check for the interface, since 740 * it might be the loopback interface if the entry is for our 741 * own address on a non-loopback interface. Instead, we should 742 * use rt->rt_ifa->ifa_ifp, which would specify the REAL 743 * interface. 744 */ 745 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 || 746 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL || 747 (ifp && rt->rt_ifa->ifa_ifp != ifp)) { 748 if (create) { 749 nd6log((LOG_DEBUG, 750 "nd6_lookup: failed to lookup %s (if = %s)\n", 751 ip6_sprintf(addr6), 752 ifp ? ifp->if_xname : "unspec")); 753 } 754 return (NULL); 755 } 756 return (rt); 757 } 758 759 /* 760 * Detect if a given IPv6 address identifies a neighbor on a given link. 761 * XXX: should take care of the destination of a p2p link? 762 */ 763 int 764 nd6_is_addr_neighbor(struct sockaddr_in6 *addr, struct ifnet *ifp) 765 { 766 struct nd_prefix *pr; 767 struct rtentry *rt; 768 769 /* 770 * A link-local address is always a neighbor. 771 * XXX: we should use the sin6_scope_id field rather than the embedded 772 * interface index. 773 * XXX: a link does not necessarily specify a single interface. 774 */ 775 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) && 776 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index) 777 return (1); 778 779 /* 780 * If the address matches one of our on-link prefixes, it should be a 781 * neighbor. 782 */ 783 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { 784 if (pr->ndpr_ifp != ifp) 785 continue; 786 787 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) 788 continue; 789 790 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 791 &addr->sin6_addr, &pr->ndpr_mask)) 792 return (1); 793 } 794 795 /* 796 * If the default router list is empty, all addresses are regarded 797 * as on-link, and thus, as a neighbor. 798 * XXX: we restrict the condition to hosts, because routers usually do 799 * not have the "default router list". 800 */ 801 if (!ip6_forwarding && TAILQ_EMPTY(&nd_defrouter) && 802 nd6_defifindex == ifp->if_index) { 803 return (1); 804 } 805 806 /* 807 * Even if the address matches none of our addresses, it might be 808 * in the neighbor cache. 809 */ 810 if ((rt = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) 811 return (1); 812 813 return (0); 814 } 815 816 /* 817 * Free an nd6 llinfo entry. 818 * Since the function would cause significant changes in the kernel, DO NOT 819 * make it global, unless you have a strong reason for the change, and are sure 820 * that the change is safe. 821 */ 822 struct llinfo_nd6 * 823 nd6_free(struct rtentry *rt, int gc) 824 { 825 struct rt_addrinfo info; 826 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next; 827 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr; 828 struct nd_defrouter *dr; 829 830 /* 831 * we used to have pfctlinput(PRC_HOSTDEAD) here. 832 * even though it is not harmful, it was not really necessary. 833 */ 834 835 if (!ip6_forwarding) { 836 int s; 837 s = splsoftnet(); 838 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr, 839 rt->rt_ifp); 840 841 if (dr != NULL && dr->expire && 842 ln->ln_state == ND6_LLINFO_STALE && gc) { 843 /* 844 * If the reason for the deletion is just garbage 845 * collection, and the neighbor is an active default 846 * router, do not delete it. Instead, reset the GC 847 * timer using the router's lifetime. 848 * Simply deleting the entry would affect default 849 * router selection, which is not necessarily a good 850 * thing, especially when we're using router preference 851 * values. 852 * XXX: the check for ln_state would be redundant, 853 * but we intentionally keep it just in case. 854 */ 855 if (dr->expire > time_second * hz) { 856 nd6_llinfo_settimer(ln, 857 dr->expire - time_second * hz); 858 } else 859 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 860 splx(s); 861 return (ln->ln_next); 862 } 863 864 if (ln->ln_router || dr) { 865 /* 866 * rt6_flush must be called whether or not the neighbor 867 * is in the Default Router List. 868 * See a corresponding comment in nd6_na_input(). 869 */ 870 rt6_flush(&in6, rt->rt_ifp); 871 } 872 873 if (dr) { 874 /* 875 * Unreachability of a router might affect the default 876 * router selection and on-link detection of advertised 877 * prefixes. 878 */ 879 880 /* 881 * Temporarily fake the state to choose a new default 882 * router and to perform on-link determination of 883 * prefixes correctly. 884 * Below the state will be set correctly, 885 * or the entry itself will be deleted. 886 */ 887 ln->ln_state = ND6_LLINFO_INCOMPLETE; 888 889 /* 890 * Since defrouter_select() does not affect the 891 * on-link determination and MIP6 needs the check 892 * before the default router selection, we perform 893 * the check now. 894 */ 895 pfxlist_onlink_check(); 896 897 /* 898 * refresh default router list 899 */ 900 defrouter_select(); 901 } 902 splx(s); 903 } 904 905 /* 906 * Before deleting the entry, remember the next entry as the 907 * return value. We need this because pfxlist_onlink_check() above 908 * might have freed other entries (particularly the old next entry) as 909 * a side effect (XXX). 910 */ 911 next = ln->ln_next; 912 913 /* 914 * Detach the route from the routing tree and the list of neighbor 915 * caches, and disable the route entry not to be used in already 916 * cached routes. 917 */ 918 bzero(&info, sizeof(info)); 919 info.rti_info[RTAX_DST] = rt_key(rt); 920 info.rti_info[RTAX_NETMASK] = rt_mask(rt); 921 rtrequest1(RTM_DELETE, &info, rt->rt_priority, NULL, 922 rt->rt_ifp->if_rdomain); 923 924 return (next); 925 } 926 927 /* 928 * Upper-layer reachability hint for Neighbor Unreachability Detection. 929 * 930 * XXX cost-effective methods? 931 */ 932 void 933 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force) 934 { 935 struct llinfo_nd6 *ln; 936 937 /* 938 * If the caller specified "rt", use that. Otherwise, resolve the 939 * routing table by supplied "dst6". 940 */ 941 if (!rt) { 942 if (!dst6) 943 return; 944 if (!(rt = nd6_lookup(dst6, 0, NULL))) 945 return; 946 } 947 948 if ((rt->rt_flags & RTF_GATEWAY) != 0 || 949 (rt->rt_flags & RTF_LLINFO) == 0 || 950 !rt->rt_llinfo || !rt->rt_gateway || 951 rt->rt_gateway->sa_family != AF_LINK) { 952 /* This is not a host route. */ 953 return; 954 } 955 956 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 957 if (ln->ln_state < ND6_LLINFO_REACHABLE) 958 return; 959 960 /* 961 * if we get upper-layer reachability confirmation many times, 962 * it is possible we have false information. 963 */ 964 if (!force) { 965 ln->ln_byhint++; 966 if (ln->ln_byhint > nd6_maxnudhint) 967 return; 968 } 969 970 ln->ln_state = ND6_LLINFO_REACHABLE; 971 if (!ND6_LLINFO_PERMANENT(ln)) { 972 nd6_llinfo_settimer(ln, 973 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz); 974 } 975 } 976 977 /* 978 * info - XXX: unused 979 */ 980 981 void 982 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 983 { 984 struct sockaddr *gate = rt->rt_gateway; 985 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo; 986 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK}; 987 struct ifnet *ifp = rt->rt_ifp; 988 struct ifaddr *ifa; 989 struct nd_defrouter *dr; 990 991 if (req == RTM_DELETE && (rt->rt_flags & RTF_GATEWAY) && 992 (IN6_ARE_ADDR_EQUAL(&(satosin6(rt_key(rt)))->sin6_addr, 993 &in6addr_any) && rt_mask(rt) && (rt_mask(rt)->sa_len == 0 || 994 IN6_ARE_ADDR_EQUAL(&(satosin6(rt_mask(rt)))->sin6_addr, 995 &in6addr_any)))) { 996 dr = defrouter_lookup(&SIN6(gate)->sin6_addr, ifp); 997 if (dr) 998 dr->installed = 0; 999 } 1000 1001 if ((rt->rt_flags & RTF_GATEWAY) != 0) 1002 return; 1003 1004 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) { 1005 /* 1006 * This is probably an interface direct route for a link 1007 * which does not need neighbor caches (e.g. fe80::%lo0/64). 1008 * We do not need special treatment below for such a route. 1009 * Moreover, the RTF_LLINFO flag which would be set below 1010 * would annoy the ndp(8) command. 1011 */ 1012 return; 1013 } 1014 1015 if (req == RTM_RESOLVE && nd6_need_cache(ifp) == 0) { 1016 /* 1017 * For routing daemons like ospf6d we allow neighbor discovery 1018 * based on the cloning route only. This allows us to sent 1019 * packets directly into a network without having an address 1020 * with matching prefix on the interface. If the cloning 1021 * route is used for an stf interface, we would mistakenly 1022 * make a neighbor cache for the host route, and would see 1023 * strange neighbor solicitation for the corresponding 1024 * destination. In order to avoid confusion, we check if the 1025 * interface is suitable for neighbor discovery, and stop the 1026 * process if not. Additionally, we remove the LLINFO flag 1027 * so that ndp(8) will not try to get the neighbor information 1028 * of the destination. 1029 */ 1030 rt->rt_flags &= ~RTF_LLINFO; 1031 return; 1032 } 1033 1034 switch (req) { 1035 case RTM_ADD: 1036 /* 1037 * There is no backward compatibility :) 1038 * 1039 * if ((rt->rt_flags & RTF_HOST) == 0 && 1040 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff) 1041 * rt->rt_flags |= RTF_CLONING; 1042 */ 1043 if ((rt->rt_flags & RTF_CLONING) || 1044 ((rt->rt_flags & RTF_LLINFO) && !ln)) { 1045 /* 1046 * Case 1: This route should come from a route to 1047 * interface (RTF_CLONING case) or the route should be 1048 * treated as on-link but is currently not 1049 * (RTF_LLINFO && !ln case). 1050 */ 1051 rt_setgate(rt, rt_key(rt), 1052 (struct sockaddr *)&null_sdl, 0); 1053 gate = rt->rt_gateway; 1054 SDL(gate)->sdl_type = ifp->if_type; 1055 SDL(gate)->sdl_index = ifp->if_index; 1056 if (ln) 1057 nd6_llinfo_settimer(ln, 0); 1058 if ((rt->rt_flags & RTF_CLONING) != 0) 1059 break; 1060 } 1061 /* 1062 * In IPv4 code, we try to announce new RTF_ANNOUNCE entry here. 1063 * We don't do that here since llinfo is not ready yet. 1064 * 1065 * There are also couple of other things to be discussed: 1066 * - unsolicited NA code needs improvement beforehand 1067 * - RFC2461 says we MAY send multicast unsolicited NA 1068 * (7.2.6 paragraph 4), however, it also says that we 1069 * SHOULD provide a mechanism to prevent multicast NA storm. 1070 * we don't have anything like it right now. 1071 * note that the mechanism needs a mutual agreement 1072 * between proxies, which means that we need to implement 1073 * a new protocol, or a new kludge. 1074 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA. 1075 * we need to check ip6forwarding before sending it. 1076 * (or should we allow proxy ND configuration only for 1077 * routers? there's no mention about proxy ND from hosts) 1078 */ 1079 #if 0 1080 /* XXX it does not work */ 1081 if (rt->rt_flags & RTF_ANNOUNCE) 1082 nd6_na_output(ifp, 1083 &SIN6(rt_key(rt))->sin6_addr, 1084 &SIN6(rt_key(rt))->sin6_addr, 1085 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0, 1086 1, NULL); 1087 #endif 1088 /* FALLTHROUGH */ 1089 case RTM_RESOLVE: 1090 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) { 1091 /* 1092 * Address resolution isn't necessary for a point to 1093 * point link, so we can skip this test for a p2p link. 1094 */ 1095 if (gate->sa_family != AF_LINK || 1096 gate->sa_len < sizeof(null_sdl)) { 1097 log(LOG_DEBUG, 1098 "nd6_rtrequest: bad gateway value: %s\n", 1099 ifp->if_xname); 1100 break; 1101 } 1102 SDL(gate)->sdl_type = ifp->if_type; 1103 SDL(gate)->sdl_index = ifp->if_index; 1104 } 1105 if (ln != NULL) 1106 break; /* This happens on a route change */ 1107 /* 1108 * Case 2: This route may come from cloning, or a manual route 1109 * add with a LL address. 1110 */ 1111 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln)); 1112 rt->rt_llinfo = (caddr_t)ln; 1113 if (!ln) { 1114 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n"); 1115 break; 1116 } 1117 nd6_inuse++; 1118 nd6_allocated++; 1119 Bzero(ln, sizeof(*ln)); 1120 ln->ln_rt = rt; 1121 timeout_set(&ln->ln_timer_ch, nd6_llinfo_timer, ln); 1122 /* this is required for "ndp" command. - shin */ 1123 if (req == RTM_ADD) { 1124 /* 1125 * gate should have some valid AF_LINK entry, 1126 * and ln->ln_expire should have some lifetime 1127 * which is specified by ndp command. 1128 */ 1129 ln->ln_state = ND6_LLINFO_REACHABLE; 1130 ln->ln_byhint = 0; 1131 } else { 1132 /* 1133 * When req == RTM_RESOLVE, rt is created and 1134 * initialized in rtrequest(), so rt_expire is 0. 1135 */ 1136 ln->ln_state = ND6_LLINFO_NOSTATE; 1137 nd6_llinfo_settimer(ln, 0); 1138 } 1139 rt->rt_flags |= RTF_LLINFO; 1140 ln->ln_next = llinfo_nd6.ln_next; 1141 llinfo_nd6.ln_next = ln; 1142 ln->ln_prev = &llinfo_nd6; 1143 ln->ln_next->ln_prev = ln; 1144 1145 /* 1146 * If we have too many cache entries, initiate immediate 1147 * purging for some "less recently used" entries. Note that 1148 * we cannot directly call nd6_free() here because it would 1149 * cause re-entering rtable related routines triggering an LOR 1150 * problem for FreeBSD. 1151 */ 1152 if (ip6_neighborgcthresh >= 0 && 1153 nd6_inuse >= ip6_neighborgcthresh) { 1154 int i; 1155 1156 for (i = 0; i < 10 && llinfo_nd6.ln_prev != ln; i++) { 1157 struct llinfo_nd6 *ln_end = llinfo_nd6.ln_prev; 1158 1159 /* Move this entry to the head */ 1160 LN_DEQUEUE(ln_end); 1161 LN_INSERTHEAD(ln_end); 1162 1163 if (ND6_LLINFO_PERMANENT(ln_end)) 1164 continue; 1165 1166 if (ln_end->ln_state > ND6_LLINFO_INCOMPLETE) 1167 ln_end->ln_state = ND6_LLINFO_STALE; 1168 else 1169 ln_end->ln_state = ND6_LLINFO_PURGE; 1170 nd6_llinfo_settimer(ln_end, 0); 1171 } 1172 } 1173 1174 /* 1175 * check if rt_key(rt) is one of my address assigned 1176 * to the interface. 1177 */ 1178 ifa = &in6ifa_ifpwithaddr(rt->rt_ifp, 1179 &SIN6(rt_key(rt))->sin6_addr)->ia_ifa; 1180 if (ifa) { 1181 caddr_t macp = nd6_ifptomac(ifp); 1182 nd6_llinfo_settimer(ln, -1); 1183 ln->ln_state = ND6_LLINFO_REACHABLE; 1184 ln->ln_byhint = 0; 1185 if (macp) { 1186 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen); 1187 SDL(gate)->sdl_alen = ifp->if_addrlen; 1188 } 1189 if (nd6_useloopback) { 1190 rt->rt_ifp = lo0ifp; /*XXX*/ 1191 /* 1192 * Make sure rt_ifa be equal to the ifaddr 1193 * corresponding to the address. 1194 * We need this because when we refer 1195 * rt_ifa->ia6_flags in ip6_input, we assume 1196 * that the rt_ifa points to the address instead 1197 * of the loopback address. 1198 */ 1199 if (ifa != rt->rt_ifa) { 1200 IFAFREE(rt->rt_ifa); 1201 ifa->ifa_refcnt++; 1202 rt->rt_ifa = ifa; 1203 } 1204 } 1205 } else if (rt->rt_flags & RTF_ANNOUNCE) { 1206 nd6_llinfo_settimer(ln, -1); 1207 ln->ln_state = ND6_LLINFO_REACHABLE; 1208 ln->ln_byhint = 0; 1209 1210 /* join solicited node multicast for proxy ND */ 1211 if (ifp->if_flags & IFF_MULTICAST) { 1212 struct in6_addr llsol; 1213 int error; 1214 1215 llsol = SIN6(rt_key(rt))->sin6_addr; 1216 llsol.s6_addr16[0] = htons(0xff02); 1217 llsol.s6_addr16[1] = htons(ifp->if_index); 1218 llsol.s6_addr32[1] = 0; 1219 llsol.s6_addr32[2] = htonl(1); 1220 llsol.s6_addr8[12] = 0xff; 1221 1222 if (in6_addmulti(&llsol, ifp, &error)) { 1223 nd6log((LOG_ERR, "%s: failed to join " 1224 "%s (errno=%d)\n", ifp->if_xname, 1225 ip6_sprintf(&llsol), error)); 1226 } 1227 } 1228 } 1229 break; 1230 1231 case RTM_DELETE: 1232 if (!ln) 1233 break; 1234 /* leave from solicited node multicast for proxy ND */ 1235 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 && 1236 (ifp->if_flags & IFF_MULTICAST) != 0) { 1237 struct in6_addr llsol; 1238 struct in6_multi *in6m; 1239 1240 llsol = SIN6(rt_key(rt))->sin6_addr; 1241 llsol.s6_addr16[0] = htons(0xff02); 1242 llsol.s6_addr16[1] = htons(ifp->if_index); 1243 llsol.s6_addr32[1] = 0; 1244 llsol.s6_addr32[2] = htonl(1); 1245 llsol.s6_addr8[12] = 0xff; 1246 1247 IN6_LOOKUP_MULTI(llsol, ifp, in6m); 1248 if (in6m) 1249 in6_delmulti(in6m); 1250 } 1251 nd6_inuse--; 1252 ln->ln_next->ln_prev = ln->ln_prev; 1253 ln->ln_prev->ln_next = ln->ln_next; 1254 ln->ln_prev = NULL; 1255 nd6_llinfo_settimer(ln, -1); 1256 rt->rt_llinfo = 0; 1257 rt->rt_flags &= ~RTF_LLINFO; 1258 if (ln->ln_hold) 1259 m_freem(ln->ln_hold); 1260 Free((caddr_t)ln); 1261 } 1262 } 1263 1264 int 1265 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1266 { 1267 struct in6_drlist *drl = (struct in6_drlist *)data; 1268 struct in6_oprlist *oprl = (struct in6_oprlist *)data; 1269 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1270 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1271 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1272 struct nd_defrouter *dr; 1273 struct nd_prefix *pr; 1274 struct rtentry *rt; 1275 int i = 0, error = 0; 1276 int s; 1277 1278 switch (cmd) { 1279 case SIOCGDRLST_IN6: 1280 /* 1281 * obsolete API, use sysctl under net.inet6.icmp6 1282 */ 1283 bzero(drl, sizeof(*drl)); 1284 s = splsoftnet(); 1285 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) { 1286 if (i >= DRLSTSIZ) 1287 break; 1288 drl->defrouter[i].rtaddr = dr->rtaddr; 1289 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) { 1290 /* XXX: need to this hack for KAME stack */ 1291 drl->defrouter[i].rtaddr.s6_addr16[1] = 0; 1292 } else 1293 log(LOG_ERR, 1294 "default router list contains a " 1295 "non-linklocal address(%s)\n", 1296 ip6_sprintf(&drl->defrouter[i].rtaddr)); 1297 1298 drl->defrouter[i].flags = dr->flags; 1299 drl->defrouter[i].rtlifetime = dr->rtlifetime; 1300 drl->defrouter[i].expire = dr->expire; 1301 drl->defrouter[i].if_index = dr->ifp->if_index; 1302 i++; 1303 } 1304 splx(s); 1305 break; 1306 case SIOCGPRLST_IN6: 1307 /* 1308 * obsolete API, use sysctl under net.inet6.icmp6 1309 * 1310 * XXX the structure in6_prlist was changed in backward- 1311 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6, 1312 * in6_prlist is used for nd6_sysctl() - fill_prlist(). 1313 */ 1314 /* 1315 * XXX meaning of fields, especially "raflags", is very 1316 * different between RA prefix list and RR/static prefix list. 1317 * how about separating ioctls into two? 1318 */ 1319 bzero(oprl, sizeof(*oprl)); 1320 s = splsoftnet(); 1321 pr = LIST_FIRST(&nd_prefix); 1322 while (pr && i < PRLSTSIZ) { 1323 struct nd_pfxrouter *pfr; 1324 int j; 1325 1326 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr; 1327 oprl->prefix[i].raflags = pr->ndpr_raf; 1328 oprl->prefix[i].prefixlen = pr->ndpr_plen; 1329 oprl->prefix[i].vltime = pr->ndpr_vltime; 1330 oprl->prefix[i].pltime = pr->ndpr_pltime; 1331 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index; 1332 oprl->prefix[i].expire = pr->ndpr_expire; 1333 1334 pfr = LIST_FIRST(&pr->ndpr_advrtrs); 1335 j = 0; 1336 while(pfr) { 1337 if (j < DRLSTSIZ) { 1338 #define RTRADDR oprl->prefix[i].advrtr[j] 1339 RTRADDR = pfr->router->rtaddr; 1340 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) { 1341 /* XXX: hack for KAME */ 1342 RTRADDR.s6_addr16[1] = 0; 1343 } else 1344 log(LOG_ERR, 1345 "a router(%s) advertises " 1346 "a prefix with " 1347 "non-link local address\n", 1348 ip6_sprintf(&RTRADDR)); 1349 #undef RTRADDR 1350 } 1351 j++; 1352 pfr = LIST_NEXT(pfr, pfr_entry); 1353 } 1354 oprl->prefix[i].advrtrs = j; 1355 oprl->prefix[i].origin = PR_ORIG_RA; 1356 1357 i++; 1358 pr = LIST_NEXT(pr, ndpr_entry); 1359 } 1360 splx(s); 1361 1362 break; 1363 case OSIOCGIFINFO_IN6: 1364 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1365 bzero(&ndi->ndi, sizeof(ndi->ndi)); 1366 ndi->ndi.linkmtu = IN6_LINKMTU(ifp); 1367 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu; 1368 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable; 1369 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable; 1370 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans; 1371 ndi->ndi.flags = ND_IFINFO(ifp)->flags; 1372 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm; 1373 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim; 1374 break; 1375 case SIOCGIFINFO_IN6: 1376 ndi->ndi = *ND_IFINFO(ifp); 1377 break; 1378 case SIOCSIFINFO_FLAGS: 1379 ND_IFINFO(ifp)->flags = ndi->ndi.flags; 1380 break; 1381 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1382 /* sync kernel routing table with the default router list */ 1383 defrouter_reset(); 1384 defrouter_select(); 1385 break; 1386 case SIOCSPFXFLUSH_IN6: 1387 { 1388 /* flush all the prefix advertised by routers */ 1389 struct nd_prefix *pr, *next; 1390 1391 s = splsoftnet(); 1392 for (pr = LIST_FIRST(&nd_prefix); pr; pr = next) { 1393 struct in6_ifaddr *ia, *ia_next; 1394 1395 next = LIST_NEXT(pr, ndpr_entry); 1396 1397 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1398 continue; /* XXX */ 1399 1400 /* do we really have to remove addresses as well? */ 1401 for (ia = in6_ifaddr; ia; ia = ia_next) { 1402 /* ia might be removed. keep the next ptr. */ 1403 ia_next = ia->ia_next; 1404 1405 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1406 continue; 1407 1408 if (ia->ia6_ndpr == pr) 1409 in6_purgeaddr(&ia->ia_ifa); 1410 } 1411 prelist_remove(pr); 1412 } 1413 splx(s); 1414 break; 1415 } 1416 case SIOCSRTRFLUSH_IN6: 1417 { 1418 /* flush all the default routers */ 1419 struct nd_defrouter *dr, *ndr; 1420 1421 s = splsoftnet(); 1422 defrouter_reset(); 1423 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) 1424 defrtrlist_del(dr); 1425 defrouter_select(); 1426 splx(s); 1427 break; 1428 } 1429 case SIOCGNBRINFO_IN6: 1430 { 1431 struct llinfo_nd6 *ln; 1432 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1433 1434 /* 1435 * XXX: KAME specific hack for scoped addresses 1436 * XXXX: for other scopes than link-local? 1437 */ 1438 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) || 1439 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) { 1440 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2]; 1441 1442 if (*idp == 0) 1443 *idp = htons(ifp->if_index); 1444 } 1445 1446 s = splsoftnet(); 1447 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL || 1448 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) { 1449 error = EINVAL; 1450 splx(s); 1451 break; 1452 } 1453 nbi->state = ln->ln_state; 1454 nbi->asked = ln->ln_asked; 1455 nbi->isrouter = ln->ln_router; 1456 nbi->expire = ln->ln_expire; 1457 splx(s); 1458 1459 break; 1460 } 1461 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1462 ndif->ifindex = nd6_defifindex; 1463 break; 1464 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1465 return (nd6_setdefaultiface(ndif->ifindex)); 1466 break; 1467 } 1468 return (error); 1469 } 1470 1471 /* 1472 * Create neighbor cache entry and cache link-layer address, 1473 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1474 * 1475 * type - ICMP6 type 1476 * code - type dependent information 1477 */ 1478 struct rtentry * 1479 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1480 int lladdrlen, int type, int code) 1481 { 1482 struct rtentry *rt = NULL; 1483 struct llinfo_nd6 *ln = NULL; 1484 int is_newentry; 1485 struct sockaddr_dl *sdl = NULL; 1486 int do_update; 1487 int olladdr; 1488 int llchange; 1489 int newstate = 0; 1490 1491 if (!ifp) 1492 panic("ifp == NULL in nd6_cache_lladdr"); 1493 if (!from) 1494 panic("from == NULL in nd6_cache_lladdr"); 1495 1496 /* nothing must be updated for unspecified address */ 1497 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1498 return NULL; 1499 1500 /* 1501 * Validation about ifp->if_addrlen and lladdrlen must be done in 1502 * the caller. 1503 * 1504 * XXX If the link does not have link-layer address, what should 1505 * we do? (ifp->if_addrlen == 0) 1506 * Spec says nothing in sections for RA, RS and NA. There's small 1507 * description on it in NS section (RFC 2461 7.2.3). 1508 */ 1509 1510 rt = nd6_lookup(from, 0, ifp); 1511 if (!rt) { 1512 #if 0 1513 /* nothing must be done if there's no lladdr */ 1514 if (!lladdr || !lladdrlen) 1515 return NULL; 1516 #endif 1517 1518 rt = nd6_lookup(from, RT_REPORT, ifp); 1519 is_newentry = 1; 1520 } else { 1521 /* do nothing if static ndp is set */ 1522 if (rt->rt_flags & RTF_STATIC) 1523 return NULL; 1524 is_newentry = 0; 1525 } 1526 1527 if (!rt) 1528 return NULL; 1529 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) { 1530 fail: 1531 (void)nd6_free(rt, 0); 1532 return NULL; 1533 } 1534 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1535 if (!ln) 1536 goto fail; 1537 if (!rt->rt_gateway) 1538 goto fail; 1539 if (rt->rt_gateway->sa_family != AF_LINK) 1540 goto fail; 1541 sdl = SDL(rt->rt_gateway); 1542 1543 olladdr = (sdl->sdl_alen) ? 1 : 0; 1544 if (olladdr && lladdr) { 1545 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen)) 1546 llchange = 1; 1547 else 1548 llchange = 0; 1549 } else 1550 llchange = 0; 1551 1552 /* 1553 * newentry olladdr lladdr llchange (*=record) 1554 * 0 n n -- (1) 1555 * 0 y n -- (2) 1556 * 0 n y -- (3) * STALE 1557 * 0 y y n (4) * 1558 * 0 y y y (5) * STALE 1559 * 1 -- n -- (6) NOSTATE(= PASSIVE) 1560 * 1 -- y -- (7) * STALE 1561 */ 1562 1563 if (llchange) { 1564 log(LOG_INFO, "ndp info overwritten for %s by %s on %s\n", 1565 ip6_sprintf(from), ether_sprintf(lladdr), ifp->if_xname); 1566 } 1567 if (lladdr) { /* (3-5) and (7) */ 1568 /* 1569 * Record source link-layer address 1570 * XXX is it dependent to ifp->if_type? 1571 */ 1572 sdl->sdl_alen = ifp->if_addrlen; 1573 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen); 1574 } 1575 1576 if (!is_newentry) { 1577 if ((!olladdr && lladdr) || /* (3) */ 1578 (olladdr && lladdr && llchange)) { /* (5) */ 1579 do_update = 1; 1580 newstate = ND6_LLINFO_STALE; 1581 } else /* (1-2,4) */ 1582 do_update = 0; 1583 } else { 1584 do_update = 1; 1585 if (!lladdr) /* (6) */ 1586 newstate = ND6_LLINFO_NOSTATE; 1587 else /* (7) */ 1588 newstate = ND6_LLINFO_STALE; 1589 } 1590 1591 if (do_update) { 1592 /* 1593 * Update the state of the neighbor cache. 1594 */ 1595 ln->ln_state = newstate; 1596 1597 if (ln->ln_state == ND6_LLINFO_STALE) { 1598 /* 1599 * XXX: since nd6_output() below will cause 1600 * state transition to DELAY and reset the timer, 1601 * we must set the timer now, although it is actually 1602 * meaningless. 1603 */ 1604 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1605 1606 if (ln->ln_hold) { 1607 struct mbuf *n = ln->ln_hold; 1608 ln->ln_hold = NULL; 1609 /* 1610 * we assume ifp is not a p2p here, so just 1611 * set the 2nd argument as the 1st one. 1612 */ 1613 nd6_output(ifp, ifp, n, 1614 (struct sockaddr_in6 *)rt_key(rt), rt); 1615 if (ln->ln_hold == n) { 1616 /* n is back in ln_hold. Discard. */ 1617 m_freem(ln->ln_hold); 1618 ln->ln_hold = NULL; 1619 } 1620 } 1621 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) { 1622 /* probe right away */ 1623 nd6_llinfo_settimer((void *)ln, 0); 1624 } 1625 } 1626 1627 /* 1628 * ICMP6 type dependent behavior. 1629 * 1630 * NS: clear IsRouter if new entry 1631 * RS: clear IsRouter 1632 * RA: set IsRouter if there's lladdr 1633 * redir: clear IsRouter if new entry 1634 * 1635 * RA case, (1): 1636 * The spec says that we must set IsRouter in the following cases: 1637 * - If lladdr exist, set IsRouter. This means (1-5). 1638 * - If it is old entry (!newentry), set IsRouter. This means (7). 1639 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1640 * A question arises for (1) case. (1) case has no lladdr in the 1641 * neighbor cache, this is similar to (6). 1642 * This case is rare but we figured that we MUST NOT set IsRouter. 1643 * 1644 * newentry olladdr lladdr llchange NS RS RA redir 1645 * D R 1646 * 0 n n -- (1) c ? s 1647 * 0 y n -- (2) c s s 1648 * 0 n y -- (3) c s s 1649 * 0 y y n (4) c s s 1650 * 0 y y y (5) c s s 1651 * 1 -- n -- (6) c c c s 1652 * 1 -- y -- (7) c c s c s 1653 * 1654 * (c=clear s=set) 1655 */ 1656 switch (type & 0xff) { 1657 case ND_NEIGHBOR_SOLICIT: 1658 /* 1659 * New entry must have is_router flag cleared. 1660 */ 1661 if (is_newentry) /* (6-7) */ 1662 ln->ln_router = 0; 1663 break; 1664 case ND_REDIRECT: 1665 /* 1666 * If the icmp is a redirect to a better router, always set the 1667 * is_router flag. Otherwise, if the entry is newly created, 1668 * clear the flag. [RFC 2461, sec 8.3] 1669 */ 1670 if (code == ND_REDIRECT_ROUTER) 1671 ln->ln_router = 1; 1672 else if (is_newentry) /* (6-7) */ 1673 ln->ln_router = 0; 1674 break; 1675 case ND_ROUTER_SOLICIT: 1676 /* 1677 * is_router flag must always be cleared. 1678 */ 1679 ln->ln_router = 0; 1680 break; 1681 case ND_ROUTER_ADVERT: 1682 /* 1683 * Mark an entry with lladdr as a router. 1684 */ 1685 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */ 1686 (is_newentry && lladdr)) { /* (7) */ 1687 ln->ln_router = 1; 1688 } 1689 break; 1690 } 1691 1692 /* 1693 * When the link-layer address of a router changes, select the 1694 * best router again. In particular, when the neighbor entry is newly 1695 * created, it might affect the selection policy. 1696 * Question: can we restrict the first condition to the "is_newentry" 1697 * case? 1698 * XXX: when we hear an RA from a new router with the link-layer 1699 * address option, defrouter_select() is called twice, since 1700 * defrtrlist_update called the function as well. However, I believe 1701 * we can compromise the overhead, since it only happens the first 1702 * time. 1703 * XXX: although defrouter_select() should not have a bad effect 1704 * for those are not autoconfigured hosts, we explicitly avoid such 1705 * cases for safety. 1706 */ 1707 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv) 1708 defrouter_select(); 1709 1710 return rt; 1711 } 1712 1713 void 1714 nd6_slowtimo(void *ignored_arg) 1715 { 1716 int s = splsoftnet(); 1717 struct nd_ifinfo *nd6if; 1718 struct ifnet *ifp; 1719 1720 timeout_set(&nd6_slowtimo_ch, nd6_slowtimo, NULL); 1721 timeout_add_sec(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL); 1722 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list)) 1723 { 1724 nd6if = ND_IFINFO(ifp); 1725 if (nd6if->basereachable && /* already initialized */ 1726 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 1727 /* 1728 * Since reachable time rarely changes by router 1729 * advertisements, we SHOULD insure that a new random 1730 * value gets recomputed at least once every few hours. 1731 * (RFC 2461, 6.3.4) 1732 */ 1733 nd6if->recalctm = nd6_recalc_reachtm_interval; 1734 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 1735 } 1736 } 1737 splx(s); 1738 } 1739 1740 #define senderr(e) { error = (e); goto bad;} 1741 int 1742 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0, 1743 struct sockaddr_in6 *dst, struct rtentry *rt0) 1744 { 1745 struct mbuf *m = m0; 1746 struct rtentry *rt = rt0; 1747 struct sockaddr_in6 *gw6 = NULL; 1748 struct llinfo_nd6 *ln = NULL; 1749 int error = 0; 1750 #ifdef IPSEC 1751 struct m_tag *mtag; 1752 #endif /* IPSEC */ 1753 1754 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr)) 1755 goto sendpkt; 1756 1757 if (nd6_need_cache(ifp) == 0) 1758 goto sendpkt; 1759 1760 /* 1761 * next hop determination. This routine is derived from ether_output. 1762 */ 1763 if (rt) { 1764 if ((rt->rt_flags & RTF_UP) == 0) { 1765 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1766 RT_REPORT, m->m_pkthdr.rdomain)) != NULL) 1767 { 1768 rt->rt_refcnt--; 1769 if (rt->rt_ifp != ifp) 1770 senderr(EHOSTUNREACH); 1771 } else 1772 senderr(EHOSTUNREACH); 1773 } 1774 1775 if (rt->rt_flags & RTF_GATEWAY) { 1776 gw6 = (struct sockaddr_in6 *)rt->rt_gateway; 1777 1778 /* 1779 * We skip link-layer address resolution and NUD 1780 * if the gateway is not a neighbor from ND point 1781 * of view, regardless of the value of nd_ifinfo.flags. 1782 * The second condition is a bit tricky; we skip 1783 * if the gateway is our own address, which is 1784 * sometimes used to install a route to a p2p link. 1785 */ 1786 if (!nd6_is_addr_neighbor(gw6, ifp) || 1787 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) { 1788 /* 1789 * We allow this kind of tricky route only 1790 * when the outgoing interface is p2p. 1791 * XXX: we may need a more generic rule here. 1792 */ 1793 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) 1794 senderr(EHOSTUNREACH); 1795 1796 goto sendpkt; 1797 } 1798 1799 if (rt->rt_gwroute == 0) 1800 goto lookup; 1801 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) { 1802 rtfree(rt); rt = rt0; 1803 lookup: 1804 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1805 RT_REPORT, m->m_pkthdr.rdomain); 1806 if ((rt = rt->rt_gwroute) == 0) 1807 senderr(EHOSTUNREACH); 1808 } 1809 } 1810 } 1811 1812 /* 1813 * Address resolution or Neighbor Unreachability Detection 1814 * for the next hop. 1815 * At this point, the destination of the packet must be a unicast 1816 * or an anycast address(i.e. not a multicast). 1817 */ 1818 1819 /* Look up the neighbor cache for the nexthop */ 1820 if (rt && (rt->rt_flags & RTF_LLINFO) != 0) 1821 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1822 else { 1823 /* 1824 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 1825 * the condition below is not very efficient. But we believe 1826 * it is tolerable, because this should be a rare case. 1827 */ 1828 if (nd6_is_addr_neighbor(dst, ifp) && 1829 (rt = nd6_lookup(&dst->sin6_addr, RT_REPORT, ifp)) != NULL) 1830 ln = (struct llinfo_nd6 *)rt->rt_llinfo; 1831 } 1832 if (!ln || !rt) { 1833 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 && 1834 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) { 1835 log(LOG_DEBUG, 1836 "nd6_output: can't allocate llinfo for %s " 1837 "(ln=%p, rt=%p)\n", 1838 ip6_sprintf(&dst->sin6_addr), ln, rt); 1839 senderr(EIO); /* XXX: good error? */ 1840 } 1841 1842 goto sendpkt; /* send anyway */ 1843 } 1844 1845 /* 1846 * Move this entry to the head of the queue so that it is less likely 1847 * for this entry to be a target of forced garbage collection (see 1848 * nd6_rtrequest()). 1849 */ 1850 LN_DEQUEUE(ln); 1851 LN_INSERTHEAD(ln); 1852 1853 /* We don't have to do link-layer address resolution on a p2p link. */ 1854 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 && 1855 ln->ln_state < ND6_LLINFO_REACHABLE) { 1856 ln->ln_state = ND6_LLINFO_STALE; 1857 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz); 1858 } 1859 1860 /* 1861 * The first time we send a packet to a neighbor whose entry is 1862 * STALE, we have to change the state to DELAY and a sets a timer to 1863 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 1864 * neighbor unreachability detection on expiration. 1865 * (RFC 2461 7.3.3) 1866 */ 1867 if (ln->ln_state == ND6_LLINFO_STALE) { 1868 ln->ln_asked = 0; 1869 ln->ln_state = ND6_LLINFO_DELAY; 1870 nd6_llinfo_settimer(ln, nd6_delay * hz); 1871 } 1872 1873 /* 1874 * If the neighbor cache entry has a state other than INCOMPLETE 1875 * (i.e. its link-layer address is already resolved), just 1876 * send the packet. 1877 */ 1878 if (ln->ln_state > ND6_LLINFO_INCOMPLETE) 1879 goto sendpkt; 1880 1881 /* 1882 * There is a neighbor cache entry, but no ethernet address 1883 * response yet. Replace the held mbuf (if any) with this 1884 * latest one. 1885 */ 1886 if (ln->ln_state == ND6_LLINFO_NOSTATE) 1887 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1888 if (ln->ln_hold) 1889 m_freem(ln->ln_hold); 1890 ln->ln_hold = m; 1891 /* 1892 * If there has been no NS for the neighbor after entering the 1893 * INCOMPLETE state, send the first solicitation. 1894 */ 1895 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) { 1896 ln->ln_asked++; 1897 nd6_llinfo_settimer(ln, 1898 (long)ND_IFINFO(ifp)->retrans * hz / 1000); 1899 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0); 1900 } 1901 return (0); 1902 1903 sendpkt: 1904 #ifdef IPSEC 1905 /* 1906 * If we got here and IPsec crypto processing didn't happen, drop it. 1907 */ 1908 mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL); 1909 #endif /* IPSEC */ 1910 1911 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 1912 #ifdef IPSEC 1913 if (mtag != NULL) { 1914 /* Tell IPsec to do its own crypto. */ 1915 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1)); 1916 error = EACCES; 1917 goto bad; 1918 } 1919 #endif /* IPSEC */ 1920 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst, 1921 rt)); 1922 } 1923 #ifdef IPSEC 1924 if (mtag != NULL) { 1925 /* Tell IPsec to do its own crypto. */ 1926 ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1)); 1927 error = EACCES; 1928 goto bad; 1929 } 1930 #endif /* IPSEC */ 1931 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt)); 1932 1933 bad: 1934 if (m) 1935 m_freem(m); 1936 return (error); 1937 } 1938 #undef senderr 1939 1940 int 1941 nd6_need_cache(struct ifnet *ifp) 1942 { 1943 /* 1944 * XXX: we currently do not make neighbor cache on any interface 1945 * other than Ethernet, FDDI and GIF. 1946 * 1947 * RFC2893 says: 1948 * - unidirectional tunnels needs no ND 1949 */ 1950 switch (ifp->if_type) { 1951 case IFT_ETHER: 1952 case IFT_FDDI: 1953 case IFT_IEEE1394: 1954 case IFT_PROPVIRTUAL: 1955 case IFT_L2VLAN: 1956 case IFT_IEEE80211: 1957 case IFT_CARP: 1958 case IFT_GIF: /* XXX need more cases? */ 1959 return (1); 1960 default: 1961 return (0); 1962 } 1963 } 1964 1965 int 1966 nd6_storelladdr(struct ifnet *ifp, struct rtentry *rt, struct mbuf *m, 1967 struct sockaddr *dst, u_char *desten) 1968 { 1969 struct sockaddr_dl *sdl; 1970 1971 if (m->m_flags & M_MCAST) { 1972 switch (ifp->if_type) { 1973 case IFT_ETHER: 1974 case IFT_FDDI: 1975 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, 1976 desten); 1977 return (1); 1978 break; 1979 default: 1980 m_freem(m); 1981 return (0); 1982 } 1983 } 1984 1985 if (rt == NULL) { 1986 /* this could happen, if we could not allocate memory */ 1987 m_freem(m); 1988 return (0); 1989 } 1990 if (rt->rt_gateway->sa_family != AF_LINK) { 1991 printf("nd6_storelladdr: something odd happens\n"); 1992 m_freem(m); 1993 return (0); 1994 } 1995 sdl = SDL(rt->rt_gateway); 1996 if (sdl->sdl_alen == 0) { 1997 /* this should be impossible, but we bark here for debugging */ 1998 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n", 1999 ip6_sprintf(&SIN6(dst)->sin6_addr), ifp->if_xname); 2000 m_freem(m); 2001 return (0); 2002 } 2003 2004 bcopy(LLADDR(sdl), desten, sdl->sdl_alen); 2005 return (1); 2006 } 2007 2008 /* 2009 * oldp - syscall arg, need copyout 2010 * newp - syscall arg, need copyin 2011 */ 2012 2013 int 2014 nd6_sysctl(int name, void *oldp, size_t *oldlenp, void *newp, size_t newlen) 2015 { 2016 void *p; 2017 size_t ol; 2018 int error; 2019 2020 error = 0; 2021 2022 if (newp) 2023 return EPERM; 2024 if (oldp && !oldlenp) 2025 return EINVAL; 2026 ol = oldlenp ? *oldlenp : 0; 2027 2028 if (oldp) { 2029 p = malloc(*oldlenp, M_TEMP, M_WAITOK | M_CANFAIL); 2030 if (!p) 2031 return ENOMEM; 2032 } else 2033 p = NULL; 2034 switch (name) { 2035 case ICMPV6CTL_ND6_DRLIST: 2036 error = fill_drlist(p, oldlenp, ol); 2037 if (!error && p && oldp) 2038 error = copyout(p, oldp, *oldlenp); 2039 break; 2040 2041 case ICMPV6CTL_ND6_PRLIST: 2042 error = fill_prlist(p, oldlenp, ol); 2043 if (!error && p && oldp) 2044 error = copyout(p, oldp, *oldlenp); 2045 break; 2046 2047 default: 2048 error = ENOPROTOOPT; 2049 break; 2050 } 2051 if (p) 2052 free(p, M_TEMP); 2053 2054 return (error); 2055 } 2056 2057 int 2058 fill_drlist(void *oldp, size_t *oldlenp, size_t ol) 2059 { 2060 int error = 0, s; 2061 struct in6_defrouter *d = NULL, *de = NULL; 2062 struct nd_defrouter *dr; 2063 size_t l; 2064 2065 s = splsoftnet(); 2066 2067 if (oldp) { 2068 d = (struct in6_defrouter *)oldp; 2069 de = (struct in6_defrouter *)((caddr_t)oldp + *oldlenp); 2070 } 2071 l = 0; 2072 2073 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) { 2074 if (oldp && d + 1 <= de) { 2075 bzero(d, sizeof(*d)); 2076 d->rtaddr.sin6_family = AF_INET6; 2077 d->rtaddr.sin6_len = sizeof(struct sockaddr_in6); 2078 d->rtaddr.sin6_addr = dr->rtaddr; 2079 in6_recoverscope(&d->rtaddr, &d->rtaddr.sin6_addr, 2080 dr->ifp); 2081 d->flags = dr->flags; 2082 d->rtlifetime = dr->rtlifetime; 2083 d->expire = dr->expire; 2084 d->if_index = dr->ifp->if_index; 2085 } 2086 2087 l += sizeof(*d); 2088 if (d) 2089 d++; 2090 } 2091 2092 if (oldp) { 2093 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */ 2094 if (l > ol) 2095 error = ENOMEM; 2096 } else 2097 *oldlenp = l; 2098 2099 splx(s); 2100 2101 return (error); 2102 } 2103 2104 int 2105 fill_prlist(void *oldp, size_t *oldlenp, size_t ol) 2106 { 2107 int error = 0, s; 2108 struct nd_prefix *pr; 2109 struct in6_prefix *p = NULL; 2110 struct in6_prefix *pe = NULL; 2111 size_t l; 2112 2113 s = splsoftnet(); 2114 2115 if (oldp) { 2116 p = (struct in6_prefix *)oldp; 2117 pe = (struct in6_prefix *)((caddr_t)oldp + *oldlenp); 2118 } 2119 l = 0; 2120 2121 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) { 2122 u_short advrtrs; 2123 size_t advance; 2124 struct sockaddr_in6 *sin6; 2125 struct sockaddr_in6 *s6; 2126 struct nd_pfxrouter *pfr; 2127 2128 if (oldp && p + 1 <= pe) 2129 { 2130 bzero(p, sizeof(*p)); 2131 sin6 = (struct sockaddr_in6 *)(p + 1); 2132 2133 p->prefix = pr->ndpr_prefix; 2134 if (in6_recoverscope(&p->prefix, 2135 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0) 2136 log(LOG_ERR, 2137 "scope error in prefix list (%s)\n", 2138 ip6_sprintf(&p->prefix.sin6_addr)); 2139 p->raflags = pr->ndpr_raf; 2140 p->prefixlen = pr->ndpr_plen; 2141 p->vltime = pr->ndpr_vltime; 2142 p->pltime = pr->ndpr_pltime; 2143 p->if_index = pr->ndpr_ifp->if_index; 2144 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2145 p->expire = 0; 2146 else { 2147 time_t maxexpire; 2148 2149 /* XXX: we assume time_t is signed. */ 2150 maxexpire = (-1) & 2151 ~(1 << ((sizeof(maxexpire) * 8) - 1)); 2152 if (pr->ndpr_vltime < 2153 maxexpire - pr->ndpr_lastupdate) { 2154 p->expire = pr->ndpr_lastupdate + 2155 pr->ndpr_vltime; 2156 } else 2157 p->expire = maxexpire; 2158 } 2159 p->refcnt = pr->ndpr_refcnt; 2160 p->flags = pr->ndpr_stateflags; 2161 p->origin = PR_ORIG_RA; 2162 advrtrs = 0; 2163 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2164 if ((void *)&sin6[advrtrs + 1] > (void *)pe) { 2165 advrtrs++; 2166 continue; 2167 } 2168 s6 = &sin6[advrtrs]; 2169 s6->sin6_family = AF_INET6; 2170 s6->sin6_len = sizeof(struct sockaddr_in6); 2171 s6->sin6_addr = pfr->router->rtaddr; 2172 in6_recoverscope(s6, &pfr->router->rtaddr, 2173 pfr->router->ifp); 2174 advrtrs++; 2175 } 2176 p->advrtrs = advrtrs; 2177 } 2178 else { 2179 advrtrs = 0; 2180 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2181 advrtrs++; 2182 } 2183 2184 advance = sizeof(*p) + sizeof(*sin6) * advrtrs; 2185 l += advance; 2186 if (p) 2187 p = (struct in6_prefix *)((caddr_t)p + advance); 2188 } 2189 2190 if (oldp) { 2191 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */ 2192 if (l > ol) 2193 error = ENOMEM; 2194 } else 2195 *oldlenp = l; 2196 2197 splx(s); 2198 2199 return (error); 2200 } 2201