1 /* $OpenBSD: ip6_output.c,v 1.277 2023/05/22 16:08:34 bluhm Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include "pf.h" 65 66 #include <sys/param.h> 67 #include <sys/malloc.h> 68 #include <sys/mbuf.h> 69 #include <sys/errno.h> 70 #include <sys/protosw.h> 71 #include <sys/socket.h> 72 #include <sys/socketvar.h> 73 #include <sys/proc.h> 74 #include <sys/systm.h> 75 76 #include <net/if.h> 77 #include <net/if_var.h> 78 #include <net/if_enc.h> 79 #include <net/route.h> 80 81 #include <netinet/in.h> 82 #include <netinet/ip.h> 83 #include <netinet/in_pcb.h> 84 #include <netinet/udp.h> 85 #include <netinet/tcp.h> 86 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp_timer.h> 89 #include <netinet/tcp_var.h> 90 #include <netinet/udp_var.h> 91 92 #include <netinet6/in6_var.h> 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/nd6.h> 97 98 #include <crypto/idgen.h> 99 100 #if NPF > 0 101 #include <net/pfvar.h> 102 #endif 103 104 #ifdef IPSEC 105 #include <netinet/ip_ipsp.h> 106 #include <netinet/ip_ah.h> 107 #include <netinet/ip_esp.h> 108 109 #ifdef ENCDEBUG 110 #define DPRINTF(fmt, args...) \ 111 do { \ 112 if (encdebug) \ 113 printf("%s: " fmt "\n", __func__, ## args); \ 114 } while (0) 115 #else 116 #define DPRINTF(fmt, args...) \ 117 do { } while (0) 118 #endif 119 #endif /* IPSEC */ 120 121 struct ip6_exthdrs { 122 struct mbuf *ip6e_ip6; 123 struct mbuf *ip6e_hbh; 124 struct mbuf *ip6e_dest1; 125 struct mbuf *ip6e_rthdr; 126 struct mbuf *ip6e_dest2; 127 }; 128 129 int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, int, int); 130 int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf *); 131 int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int, int, int); 132 int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *, unsigned int); 133 int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf *); 134 int ip6_copyexthdr(struct mbuf **, caddr_t, int); 135 int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 136 struct ip6_frag **); 137 int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 138 int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 139 int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *); 140 int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *); 141 static __inline u_int16_t __attribute__((__unused__)) 142 in6_cksum_phdr(const struct in6_addr *, const struct in6_addr *, 143 u_int32_t, u_int32_t); 144 void in6_delayed_cksum(struct mbuf *, u_int8_t); 145 146 int ip6_output_ipsec_pmtu_update(struct tdb *, struct route_in6 *, 147 struct in6_addr *, int, int, int); 148 149 /* Context for non-repeating IDs */ 150 struct idgen32_ctx ip6_id_ctx; 151 152 /* 153 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 154 * header (with pri, len, nxt, hlim, src, dst). 155 * This function may modify ver and hlim only. 156 * The mbuf chain containing the packet will be freed. 157 * The mbuf opt, if present, will not be freed. 158 * 159 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int. 160 * We use u_long to hold largest one, * which is rt_mtu. 161 */ 162 int 163 ip6_output(struct mbuf *m, struct ip6_pktopts *opt, struct route_in6 *ro, 164 int flags, struct ip6_moptions *im6o, struct inpcb *inp) 165 { 166 struct ip6_hdr *ip6; 167 struct ifnet *ifp = NULL; 168 struct mbuf_list ml; 169 int hlen, tlen; 170 struct route_in6 ip6route; 171 struct rtentry *rt = NULL; 172 struct sockaddr_in6 *dst, dstsock; 173 int error = 0; 174 u_long mtu; 175 int dontfrag; 176 u_int16_t src_scope, dst_scope; 177 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 178 struct ip6_exthdrs exthdrs; 179 struct in6_addr finaldst; 180 struct route_in6 *ro_pmtu = NULL; 181 int hdrsplit = 0; 182 u_int8_t sproto = 0; 183 u_char nextproto; 184 #ifdef IPSEC 185 struct tdb *tdb = NULL; 186 #endif /* IPSEC */ 187 188 #ifdef IPSEC 189 if (inp && (inp->inp_flags & INP_IPV6) == 0) 190 panic("%s: IPv4 pcb is passed", __func__); 191 #endif /* IPSEC */ 192 193 ip6 = mtod(m, struct ip6_hdr *); 194 finaldst = ip6->ip6_dst; 195 196 #define MAKE_EXTHDR(hp, mp) \ 197 do { \ 198 if (hp) { \ 199 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 200 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 201 ((eh)->ip6e_len + 1) << 3); \ 202 if (error) \ 203 goto freehdrs; \ 204 } \ 205 } while (0) 206 207 bzero(&exthdrs, sizeof(exthdrs)); 208 209 if (opt) { 210 /* Hop-by-Hop options header */ 211 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 212 /* Destination options header(1st part) */ 213 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 214 /* Routing header */ 215 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 216 /* Destination options header(2nd part) */ 217 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 218 } 219 220 #ifdef IPSEC 221 if (ipsec_in_use || inp != NULL) { 222 error = ip6_output_ipsec_lookup(m, inp, &tdb); 223 if (error) { 224 /* 225 * -EINVAL is used to indicate that the packet should 226 * be silently dropped, typically because we've asked 227 * key management for an SA. 228 */ 229 if (error == -EINVAL) /* Should silently drop packet */ 230 error = 0; 231 232 goto freehdrs; 233 } 234 } 235 #endif /* IPSEC */ 236 237 /* 238 * Calculate the total length of the extension header chain. 239 * Keep the length of the unfragmentable part for fragmentation. 240 */ 241 optlen = 0; 242 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 243 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 244 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 245 unfragpartlen = optlen + sizeof(struct ip6_hdr); 246 /* NOTE: we don't add AH/ESP length here. do that later. */ 247 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 248 249 /* 250 * If we need IPsec, or there is at least one extension header, 251 * separate IP6 header from the payload. 252 */ 253 if ((sproto || optlen) && !hdrsplit) { 254 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 255 m = NULL; 256 goto freehdrs; 257 } 258 m = exthdrs.ip6e_ip6; 259 hdrsplit++; 260 } 261 262 /* adjust pointer */ 263 ip6 = mtod(m, struct ip6_hdr *); 264 265 /* adjust mbuf packet header length */ 266 m->m_pkthdr.len += optlen; 267 plen = m->m_pkthdr.len - sizeof(*ip6); 268 269 /* If this is a jumbo payload, insert a jumbo payload option. */ 270 if (plen > IPV6_MAXPACKET) { 271 if (!hdrsplit) { 272 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 273 m = NULL; 274 goto freehdrs; 275 } 276 m = exthdrs.ip6e_ip6; 277 hdrsplit++; 278 } 279 /* adjust pointer */ 280 ip6 = mtod(m, struct ip6_hdr *); 281 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 282 goto freehdrs; 283 ip6->ip6_plen = 0; 284 } else 285 ip6->ip6_plen = htons(plen); 286 287 /* 288 * Concatenate headers and fill in next header fields. 289 * Here we have, on "m" 290 * IPv6 payload 291 * and we insert headers accordingly. Finally, we should be getting: 292 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 293 * 294 * during the header composing process, "m" points to IPv6 header. 295 * "mprev" points to an extension header prior to esp. 296 */ 297 { 298 u_char *nexthdrp = &ip6->ip6_nxt; 299 struct mbuf *mprev = m; 300 301 /* 302 * we treat dest2 specially. this makes IPsec processing 303 * much easier. the goal here is to make mprev point the 304 * mbuf prior to dest2. 305 * 306 * result: IPv6 dest2 payload 307 * m and mprev will point to IPv6 header. 308 */ 309 if (exthdrs.ip6e_dest2) { 310 if (!hdrsplit) 311 panic("%s: assumption failed: hdr not split", 312 __func__); 313 exthdrs.ip6e_dest2->m_next = m->m_next; 314 m->m_next = exthdrs.ip6e_dest2; 315 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 316 ip6->ip6_nxt = IPPROTO_DSTOPTS; 317 } 318 319 #define MAKE_CHAIN(m, mp, p, i)\ 320 do {\ 321 if (m) {\ 322 if (!hdrsplit) \ 323 panic("assumption failed: hdr not split"); \ 324 *mtod((m), u_char *) = *(p);\ 325 *(p) = (i);\ 326 p = mtod((m), u_char *);\ 327 (m)->m_next = (mp)->m_next;\ 328 (mp)->m_next = (m);\ 329 (mp) = (m);\ 330 }\ 331 } while (0) 332 /* 333 * result: IPv6 hbh dest1 rthdr dest2 payload 334 * m will point to IPv6 header. mprev will point to the 335 * extension header prior to dest2 (rthdr in the above case). 336 */ 337 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 338 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 339 IPPROTO_DSTOPTS); 340 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 341 IPPROTO_ROUTING); 342 } 343 344 /* 345 * If there is a routing header, replace the destination address field 346 * with the first hop of the routing header. 347 */ 348 if (exthdrs.ip6e_rthdr) { 349 struct ip6_rthdr *rh; 350 struct ip6_rthdr0 *rh0; 351 struct in6_addr *addr; 352 353 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 354 struct ip6_rthdr *)); 355 switch (rh->ip6r_type) { 356 case IPV6_RTHDR_TYPE_0: 357 rh0 = (struct ip6_rthdr0 *)rh; 358 addr = (struct in6_addr *)(rh0 + 1); 359 ip6->ip6_dst = addr[0]; 360 bcopy(&addr[1], &addr[0], 361 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)); 362 addr[rh0->ip6r0_segleft - 1] = finaldst; 363 break; 364 default: /* is it possible? */ 365 error = EINVAL; 366 goto bad; 367 } 368 } 369 370 /* Source address validation */ 371 if (!(flags & IPV6_UNSPECSRC) && 372 IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 373 /* 374 * XXX: we can probably assume validation in the caller, but 375 * we explicitly check the address here for safety. 376 */ 377 error = EOPNOTSUPP; 378 ip6stat_inc(ip6s_badscope); 379 goto bad; 380 } 381 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 382 error = EOPNOTSUPP; 383 ip6stat_inc(ip6s_badscope); 384 goto bad; 385 } 386 387 ip6stat_inc(ip6s_localout); 388 389 /* 390 * Route packet. 391 */ 392 #if NPF > 0 393 reroute: 394 #endif 395 396 /* initialize cached route */ 397 if (ro == NULL) { 398 ro = &ip6route; 399 bzero((caddr_t)ro, sizeof(*ro)); 400 } 401 ro_pmtu = ro; 402 if (opt && opt->ip6po_rthdr) 403 ro = &opt->ip6po_route; 404 dst = &ro->ro_dst; 405 406 /* 407 * if specified, try to fill in the traffic class field. 408 * do not override if a non-zero value is already set. 409 * we check the diffserv field and the ecn field separately. 410 */ 411 if (opt && opt->ip6po_tclass >= 0) { 412 int mask = 0; 413 414 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 415 mask |= 0xfc; 416 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 417 mask |= 0x03; 418 if (mask != 0) 419 ip6->ip6_flow |= 420 htonl((opt->ip6po_tclass & mask) << 20); 421 } 422 423 /* fill in or override the hop limit field, if necessary. */ 424 if (opt && opt->ip6po_hlim != -1) 425 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 426 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 427 if (im6o != NULL) 428 ip6->ip6_hlim = im6o->im6o_hlim; 429 else 430 ip6->ip6_hlim = ip6_defmcasthlim; 431 } 432 433 #ifdef IPSEC 434 if (tdb != NULL) { 435 /* 436 * XXX what should we do if ip6_hlim == 0 and the 437 * packet gets tunneled? 438 */ 439 /* 440 * if we are source-routing, do not attempt to tunnel the 441 * packet just because ip6_dst is different from what tdb has. 442 * XXX 443 */ 444 error = ip6_output_ipsec_send(tdb, m, ro, 445 exthdrs.ip6e_rthdr ? 1 : 0, 0); 446 goto done; 447 } 448 #endif /* IPSEC */ 449 450 bzero(&dstsock, sizeof(dstsock)); 451 dstsock.sin6_family = AF_INET6; 452 dstsock.sin6_addr = ip6->ip6_dst; 453 dstsock.sin6_len = sizeof(dstsock); 454 ro->ro_tableid = m->m_pkthdr.ph_rtableid; 455 456 if (IN6_IS_ADDR_MULTICAST(&dstsock.sin6_addr)) { 457 struct in6_pktinfo *pi = NULL; 458 459 /* 460 * If the caller specify the outgoing interface 461 * explicitly, use it. 462 */ 463 if (opt != NULL && (pi = opt->ip6po_pktinfo) != NULL) 464 ifp = if_get(pi->ipi6_ifindex); 465 466 if (ifp == NULL && im6o != NULL) 467 ifp = if_get(im6o->im6o_ifidx); 468 } 469 470 if (ifp == NULL) { 471 rt = in6_selectroute(&dstsock, opt, ro, ro->ro_tableid); 472 if (rt == NULL) { 473 ip6stat_inc(ip6s_noroute); 474 error = EHOSTUNREACH; 475 goto bad; 476 } 477 if (ISSET(rt->rt_flags, RTF_LOCAL)) 478 ifp = if_get(rtable_loindex(m->m_pkthdr.ph_rtableid)); 479 else 480 ifp = if_get(rt->rt_ifidx); 481 /* 482 * We aren't using rtisvalid() here because the UP/DOWN state 483 * machine is broken with some Ethernet drivers like em(4). 484 * As a result we might try to use an invalid cached route 485 * entry while an interface is being detached. 486 */ 487 if (ifp == NULL) { 488 ip6stat_inc(ip6s_noroute); 489 error = EHOSTUNREACH; 490 goto bad; 491 } 492 } else { 493 *dst = dstsock; 494 } 495 496 if (rt && (rt->rt_flags & RTF_GATEWAY) && 497 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 498 dst = satosin6(rt->rt_gateway); 499 500 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 501 /* Unicast */ 502 503 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 504 } else { 505 /* Multicast */ 506 507 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 508 509 /* 510 * Confirm that the outgoing interface supports multicast. 511 */ 512 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 513 ip6stat_inc(ip6s_noroute); 514 error = ENETUNREACH; 515 goto bad; 516 } 517 518 if ((im6o == NULL || im6o->im6o_loop) && 519 in6_hasmulti(&ip6->ip6_dst, ifp)) { 520 /* 521 * If we belong to the destination multicast group 522 * on the outgoing interface, and the caller did not 523 * forbid loopback, loop back a copy. 524 * Can't defer TCP/UDP checksumming, do the 525 * computation now. 526 */ 527 in6_proto_cksum_out(m, NULL); 528 ip6_mloopback(ifp, m, dst); 529 } 530 #ifdef MROUTING 531 else { 532 /* 533 * If we are acting as a multicast router, perform 534 * multicast forwarding as if the packet had just 535 * arrived on the interface to which we are about 536 * to send. The multicast forwarding function 537 * recursively calls this function, using the 538 * IPV6_FORWARDING flag to prevent infinite recursion. 539 * 540 * Multicasts that are looped back by ip6_mloopback(), 541 * above, will be forwarded by the ip6_input() routine, 542 * if necessary. 543 */ 544 if (ip6_mforwarding && ip6_mrouter[ifp->if_rdomain] && 545 (flags & IPV6_FORWARDING) == 0) { 546 if (ip6_mforward(ip6, ifp, m) != 0) { 547 m_freem(m); 548 goto done; 549 } 550 } 551 } 552 #endif 553 /* 554 * Multicasts with a hoplimit of zero may be looped back, 555 * above, but must not be transmitted on a network. 556 * Also, multicasts addressed to the loopback interface 557 * are not sent -- the above call to ip6_mloopback() will 558 * loop back a copy if this host actually belongs to the 559 * destination group on the loopback interface. 560 */ 561 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 562 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 563 m_freem(m); 564 goto done; 565 } 566 } 567 568 /* 569 * If this packet is going through a loopback interface we won't 570 * be able to restore its scope ID using the interface index. 571 */ 572 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { 573 if (ifp->if_flags & IFF_LOOPBACK) 574 src_scope = ip6->ip6_src.s6_addr16[1]; 575 ip6->ip6_src.s6_addr16[1] = 0; 576 } 577 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { 578 if (ifp->if_flags & IFF_LOOPBACK) 579 dst_scope = ip6->ip6_dst.s6_addr16[1]; 580 ip6->ip6_dst.s6_addr16[1] = 0; 581 } 582 583 /* Determine path MTU. */ 584 if ((error = ip6_getpmtu(ro_pmtu->ro_rt, ifp, &mtu)) != 0) 585 goto bad; 586 587 /* 588 * The caller of this function may specify to use the minimum MTU 589 * in some cases. 590 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 591 * setting. The logic is a bit complicated; by default, unicast 592 * packets will follow path MTU while multicast packets will be sent at 593 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 594 * including unicast ones will be sent at the minimum MTU. Multicast 595 * packets will always be sent at the minimum MTU unless 596 * IP6PO_MINMTU_DISABLE is explicitly specified. 597 * See RFC 3542 for more details. 598 */ 599 if (mtu > IPV6_MMTU) { 600 if ((flags & IPV6_MINMTU)) 601 mtu = IPV6_MMTU; 602 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 603 mtu = IPV6_MMTU; 604 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && (opt == NULL || 605 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 606 mtu = IPV6_MMTU; 607 } 608 } 609 610 /* 611 * If the outgoing packet contains a hop-by-hop options header, 612 * it must be examined and processed even by the source node. 613 * (RFC 2460, section 4.) 614 */ 615 if (exthdrs.ip6e_hbh) { 616 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 617 u_int32_t rtalert; /* returned value is ignored */ 618 u_int32_t plen = 0; /* no more than 1 jumbo payload option! */ 619 620 m->m_pkthdr.ph_ifidx = ifp->if_index; 621 if (ip6_process_hopopts(&m, (u_int8_t *)(hbh + 1), 622 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 623 &rtalert, &plen) < 0) { 624 /* m was already freed at this point */ 625 error = EINVAL;/* better error? */ 626 goto done; 627 } 628 m->m_pkthdr.ph_ifidx = 0; 629 } 630 631 #if NPF > 0 632 if (pf_test(AF_INET6, PF_OUT, ifp, &m) != PF_PASS) { 633 error = EACCES; 634 m_freem(m); 635 goto done; 636 } 637 if (m == NULL) 638 goto done; 639 ip6 = mtod(m, struct ip6_hdr *); 640 if ((m->m_pkthdr.pf.flags & (PF_TAG_REROUTE | PF_TAG_GENERATED)) == 641 (PF_TAG_REROUTE | PF_TAG_GENERATED)) { 642 /* already rerun the route lookup, go on */ 643 m->m_pkthdr.pf.flags &= ~(PF_TAG_GENERATED | PF_TAG_REROUTE); 644 } else if (m->m_pkthdr.pf.flags & PF_TAG_REROUTE) { 645 /* tag as generated to skip over pf_test on rerun */ 646 m->m_pkthdr.pf.flags |= PF_TAG_GENERATED; 647 finaldst = ip6->ip6_dst; 648 ro = NULL; 649 if_put(ifp); /* drop reference since destination changed */ 650 ifp = NULL; 651 goto reroute; 652 } 653 #endif 654 655 /* 656 * If the packet is not going on the wire it can be destined 657 * to any local address. In this case do not clear its scopes 658 * to let ip6_input() find a matching local route. 659 */ 660 if (ifp->if_flags & IFF_LOOPBACK) { 661 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 662 ip6->ip6_src.s6_addr16[1] = src_scope; 663 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 664 ip6->ip6_dst.s6_addr16[1] = dst_scope; 665 } 666 667 /* 668 * Send the packet to the outgoing interface. 669 * If necessary, do IPv6 fragmentation before sending. 670 * 671 * the logic here is rather complex: 672 * 1: normal case (dontfrag == 0) 673 * 1-a: send as is if tlen <= path mtu 674 * 1-b: fragment if tlen > path mtu 675 * 676 * 2: if user asks us not to fragment (dontfrag == 1) 677 * 2-a: send as is if tlen <= interface mtu 678 * 2-b: error if tlen > interface mtu 679 */ 680 tlen = m->m_pkthdr.len; 681 682 if (ISSET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT)) { 683 CLR(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT); 684 dontfrag = 1; 685 } else if (opt && ISSET(opt->ip6po_flags, IP6PO_DONTFRAG)) 686 dontfrag = 1; 687 else 688 dontfrag = 0; 689 if (dontfrag && /* case 2-b */ 690 (ISSET(m->m_pkthdr.csum_flags, M_TCP_TSO) ? 691 m->m_pkthdr.csum_flags : tlen) > ifp->if_mtu) { 692 #ifdef IPSEC 693 if (ip_mtudisc) 694 ipsec_adjust_mtu(m, mtu); 695 #endif 696 error = EMSGSIZE; 697 goto bad; 698 } 699 700 /* 701 * transmit packet without fragmentation 702 */ 703 if (dontfrag || tlen <= mtu) { /* case 1-a and 2-a */ 704 in6_proto_cksum_out(m, ifp); 705 error = ifp->if_output(ifp, m, sin6tosa(dst), ro->ro_rt); 706 goto done; 707 } 708 709 error = tcp_if_output_tso(ifp, &m, sin6tosa(dst), ro->ro_rt, 710 IFCAP_TSOv6, mtu); 711 if (error || m == NULL) 712 goto done; 713 714 /* 715 * try to fragment the packet. case 1-b 716 */ 717 if (mtu < IPV6_MMTU) { 718 /* path MTU cannot be less than IPV6_MMTU */ 719 error = EMSGSIZE; 720 goto bad; 721 } else if (ip6->ip6_plen == 0) { 722 /* jumbo payload cannot be fragmented */ 723 error = EMSGSIZE; 724 goto bad; 725 } 726 727 /* 728 * Too large for the destination or interface; 729 * fragment if possible. 730 * Must be able to put at least 8 bytes per fragment. 731 */ 732 hlen = unfragpartlen; 733 if (mtu > IPV6_MAXPACKET) 734 mtu = IPV6_MAXPACKET; 735 736 /* 737 * If we are doing fragmentation, we can't defer TCP/UDP 738 * checksumming; compute the checksum and clear the flag. 739 */ 740 in6_proto_cksum_out(m, NULL); 741 742 /* 743 * Change the next header field of the last header in the 744 * unfragmentable part. 745 */ 746 if (exthdrs.ip6e_rthdr) { 747 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 748 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 749 } else if (exthdrs.ip6e_dest1) { 750 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 751 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 752 } else if (exthdrs.ip6e_hbh) { 753 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 754 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 755 } else { 756 nextproto = ip6->ip6_nxt; 757 ip6->ip6_nxt = IPPROTO_FRAGMENT; 758 } 759 760 if ((error = ip6_fragment(m, &ml, hlen, nextproto, mtu)) || 761 (error = if_output_ml(ifp, &ml, sin6tosa(dst), ro->ro_rt))) 762 goto done; 763 ip6stat_inc(ip6s_fragmented); 764 765 done: 766 if (ro == &ip6route && ro->ro_rt) { 767 rtfree(ro->ro_rt); 768 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 769 rtfree(ro_pmtu->ro_rt); 770 } 771 if_put(ifp); 772 #ifdef IPSEC 773 tdb_unref(tdb); 774 #endif /* IPSEC */ 775 return (error); 776 777 freehdrs: 778 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 779 m_freem(exthdrs.ip6e_dest1); 780 m_freem(exthdrs.ip6e_rthdr); 781 m_freem(exthdrs.ip6e_dest2); 782 /* FALLTHROUGH */ 783 bad: 784 m_freem(m); 785 goto done; 786 } 787 788 int 789 ip6_fragment(struct mbuf *m0, struct mbuf_list *ml, int hlen, u_char nextproto, 790 u_long mtu) 791 { 792 struct ip6_hdr *ip6; 793 u_int32_t id; 794 int tlen, len, off; 795 int error; 796 797 ml_init(ml); 798 799 ip6 = mtod(m0, struct ip6_hdr *); 800 tlen = m0->m_pkthdr.len; 801 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 802 if (len < 8) { 803 error = EMSGSIZE; 804 goto bad; 805 } 806 id = htonl(ip6_randomid()); 807 808 /* 809 * Loop through length of payload, 810 * make new header and copy data of each part and link onto chain. 811 */ 812 for (off = hlen; off < tlen; off += len) { 813 struct mbuf *m; 814 struct mbuf *mlast; 815 struct ip6_hdr *mhip6; 816 struct ip6_frag *ip6f; 817 818 MGETHDR(m, M_DONTWAIT, MT_HEADER); 819 if (m == NULL) { 820 error = ENOBUFS; 821 goto bad; 822 } 823 ml_enqueue(ml, m); 824 if ((error = m_dup_pkthdr(m, m0, M_DONTWAIT)) != 0) 825 goto bad; 826 m->m_data += max_linkhdr; 827 mhip6 = mtod(m, struct ip6_hdr *); 828 *mhip6 = *ip6; 829 m->m_len = sizeof(struct ip6_hdr); 830 831 if ((error = ip6_insertfraghdr(m0, m, hlen, &ip6f)) != 0) 832 goto bad; 833 ip6f->ip6f_offlg = htons((off - hlen) & ~7); 834 if (off + len >= tlen) 835 len = tlen - off; 836 else 837 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 838 839 m->m_pkthdr.len = hlen + sizeof(struct ip6_frag) + len; 840 mhip6->ip6_plen = htons(m->m_pkthdr.len - 841 sizeof(struct ip6_hdr)); 842 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 843 ; 844 mlast->m_next = m_copym(m0, off, len, M_DONTWAIT); 845 if (mlast->m_next == NULL) { 846 error = ENOBUFS; 847 goto bad; 848 } 849 850 ip6f->ip6f_reserved = 0; 851 ip6f->ip6f_ident = id; 852 ip6f->ip6f_nxt = nextproto; 853 } 854 855 ip6stat_add(ip6s_ofragments, ml_len(ml)); 856 m_freem(m0); 857 return (0); 858 859 bad: 860 ip6stat_inc(ip6s_odropped); 861 ml_purge(ml); 862 m_freem(m0); 863 return (error); 864 } 865 866 int 867 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 868 { 869 struct mbuf *m; 870 871 if (hlen > MCLBYTES) 872 return (ENOBUFS); /* XXX */ 873 874 MGET(m, M_DONTWAIT, MT_DATA); 875 if (!m) 876 return (ENOBUFS); 877 878 if (hlen > MLEN) { 879 MCLGET(m, M_DONTWAIT); 880 if ((m->m_flags & M_EXT) == 0) { 881 m_free(m); 882 return (ENOBUFS); 883 } 884 } 885 m->m_len = hlen; 886 if (hdr) 887 memcpy(mtod(m, caddr_t), hdr, hlen); 888 889 *mp = m; 890 return (0); 891 } 892 893 /* 894 * Insert jumbo payload option. 895 */ 896 int 897 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 898 { 899 struct mbuf *mopt; 900 u_int8_t *optbuf; 901 u_int32_t v; 902 903 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 904 905 /* 906 * If there is no hop-by-hop options header, allocate new one. 907 * If there is one but it doesn't have enough space to store the 908 * jumbo payload option, allocate a cluster to store the whole options. 909 * Otherwise, use it to store the options. 910 */ 911 if (exthdrs->ip6e_hbh == 0) { 912 MGET(mopt, M_DONTWAIT, MT_DATA); 913 if (mopt == NULL) 914 return (ENOBUFS); 915 mopt->m_len = JUMBOOPTLEN; 916 optbuf = mtod(mopt, u_int8_t *); 917 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 918 exthdrs->ip6e_hbh = mopt; 919 } else { 920 struct ip6_hbh *hbh; 921 922 mopt = exthdrs->ip6e_hbh; 923 if (m_trailingspace(mopt) < JUMBOOPTLEN) { 924 /* 925 * XXX assumption: 926 * - exthdrs->ip6e_hbh is not referenced from places 927 * other than exthdrs. 928 * - exthdrs->ip6e_hbh is not an mbuf chain. 929 */ 930 int oldoptlen = mopt->m_len; 931 struct mbuf *n; 932 933 /* 934 * XXX: give up if the whole (new) hbh header does 935 * not fit even in an mbuf cluster. 936 */ 937 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 938 return (ENOBUFS); 939 940 /* 941 * As a consequence, we must always prepare a cluster 942 * at this point. 943 */ 944 MGET(n, M_DONTWAIT, MT_DATA); 945 if (n) { 946 MCLGET(n, M_DONTWAIT); 947 if ((n->m_flags & M_EXT) == 0) { 948 m_freem(n); 949 n = NULL; 950 } 951 } 952 if (!n) 953 return (ENOBUFS); 954 n->m_len = oldoptlen + JUMBOOPTLEN; 955 memcpy(mtod(n, caddr_t), mtod(mopt, caddr_t), 956 oldoptlen); 957 optbuf = mtod(n, u_int8_t *) + oldoptlen; 958 m_freem(mopt); 959 mopt = exthdrs->ip6e_hbh = n; 960 } else { 961 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 962 mopt->m_len += JUMBOOPTLEN; 963 } 964 optbuf[0] = IP6OPT_PADN; 965 optbuf[1] = 0; 966 967 /* 968 * Adjust the header length according to the pad and 969 * the jumbo payload option. 970 */ 971 hbh = mtod(mopt, struct ip6_hbh *); 972 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 973 } 974 975 /* fill in the option. */ 976 optbuf[2] = IP6OPT_JUMBO; 977 optbuf[3] = 4; 978 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 979 memcpy(&optbuf[4], &v, sizeof(u_int32_t)); 980 981 /* finally, adjust the packet header length */ 982 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 983 984 return (0); 985 #undef JUMBOOPTLEN 986 } 987 988 /* 989 * Insert fragment header and copy unfragmentable header portions. 990 */ 991 int 992 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 993 struct ip6_frag **frghdrp) 994 { 995 struct mbuf *n, *mlast; 996 997 if (hlen > sizeof(struct ip6_hdr)) { 998 n = m_copym(m0, sizeof(struct ip6_hdr), 999 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1000 if (n == NULL) 1001 return (ENOBUFS); 1002 m->m_next = n; 1003 } else 1004 n = m; 1005 1006 /* Search for the last mbuf of unfragmentable part. */ 1007 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1008 ; 1009 1010 if ((mlast->m_flags & M_EXT) == 0 && 1011 m_trailingspace(mlast) >= sizeof(struct ip6_frag)) { 1012 /* use the trailing space of the last mbuf for fragment hdr */ 1013 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1014 mlast->m_len); 1015 mlast->m_len += sizeof(struct ip6_frag); 1016 m->m_pkthdr.len += sizeof(struct ip6_frag); 1017 } else { 1018 /* allocate a new mbuf for the fragment header */ 1019 struct mbuf *mfrg; 1020 1021 MGET(mfrg, M_DONTWAIT, MT_DATA); 1022 if (mfrg == NULL) 1023 return (ENOBUFS); 1024 mfrg->m_len = sizeof(struct ip6_frag); 1025 *frghdrp = mtod(mfrg, struct ip6_frag *); 1026 mlast->m_next = mfrg; 1027 } 1028 1029 return (0); 1030 } 1031 1032 int 1033 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup) 1034 { 1035 u_int32_t mtu = 0; 1036 int error = 0; 1037 1038 if (rt != NULL) { 1039 mtu = rt->rt_mtu; 1040 if (mtu == 0) 1041 mtu = ifp->if_mtu; 1042 else if (mtu < IPV6_MMTU) { 1043 /* RFC8021 IPv6 Atomic Fragments Considered Harmful */ 1044 mtu = IPV6_MMTU; 1045 } else if (mtu > ifp->if_mtu) { 1046 /* 1047 * The MTU on the route is larger than the MTU on 1048 * the interface! This shouldn't happen, unless the 1049 * MTU of the interface has been changed after the 1050 * interface was brought up. Change the MTU in the 1051 * route to match the interface MTU (as long as the 1052 * field isn't locked). 1053 */ 1054 mtu = ifp->if_mtu; 1055 if (!(rt->rt_locks & RTV_MTU)) 1056 rt->rt_mtu = mtu; 1057 } 1058 } else { 1059 mtu = ifp->if_mtu; 1060 } 1061 1062 *mtup = mtu; 1063 return (error); 1064 } 1065 1066 /* 1067 * IP6 socket option processing. 1068 */ 1069 int 1070 ip6_ctloutput(int op, struct socket *so, int level, int optname, 1071 struct mbuf *m) 1072 { 1073 int privileged, optdatalen, uproto; 1074 void *optdata; 1075 struct inpcb *inp = sotoinpcb(so); 1076 int error, optval; 1077 struct proc *p = curproc; /* For IPsec and rdomain */ 1078 u_int rtableid, rtid = 0; 1079 1080 error = optval = 0; 1081 1082 privileged = (inp->inp_socket->so_state & SS_PRIV); 1083 uproto = (int)so->so_proto->pr_protocol; 1084 1085 if (level != IPPROTO_IPV6) 1086 return (EINVAL); 1087 1088 rtableid = p->p_p->ps_rtableid; 1089 1090 switch (op) { 1091 case PRCO_SETOPT: 1092 switch (optname) { 1093 /* 1094 * Use of some Hop-by-Hop options or some 1095 * Destination options, might require special 1096 * privilege. That is, normal applications 1097 * (without special privilege) might be forbidden 1098 * from setting certain options in outgoing packets, 1099 * and might never see certain options in received 1100 * packets. [RFC 2292 Section 6] 1101 * KAME specific note: 1102 * KAME prevents non-privileged users from sending or 1103 * receiving ANY hbh/dst options in order to avoid 1104 * overhead of parsing options in the kernel. 1105 */ 1106 case IPV6_RECVHOPOPTS: 1107 case IPV6_RECVDSTOPTS: 1108 if (!privileged) { 1109 error = EPERM; 1110 break; 1111 } 1112 /* FALLTHROUGH */ 1113 case IPV6_UNICAST_HOPS: 1114 case IPV6_MINHOPCOUNT: 1115 case IPV6_HOPLIMIT: 1116 1117 case IPV6_RECVPKTINFO: 1118 case IPV6_RECVHOPLIMIT: 1119 case IPV6_RECVRTHDR: 1120 case IPV6_RECVPATHMTU: 1121 case IPV6_RECVTCLASS: 1122 case IPV6_V6ONLY: 1123 case IPV6_AUTOFLOWLABEL: 1124 case IPV6_RECVDSTPORT: 1125 if (m == NULL || m->m_len != sizeof(int)) { 1126 error = EINVAL; 1127 break; 1128 } 1129 optval = *mtod(m, int *); 1130 switch (optname) { 1131 1132 case IPV6_UNICAST_HOPS: 1133 if (optval < -1 || optval >= 256) 1134 error = EINVAL; 1135 else { 1136 /* -1 = kernel default */ 1137 inp->inp_hops = optval; 1138 } 1139 break; 1140 1141 case IPV6_MINHOPCOUNT: 1142 if (optval < 0 || optval > 255) 1143 error = EINVAL; 1144 else 1145 inp->inp_ip6_minhlim = optval; 1146 break; 1147 1148 #define OPTSET(bit) \ 1149 do { \ 1150 if (optval) \ 1151 inp->inp_flags |= (bit); \ 1152 else \ 1153 inp->inp_flags &= ~(bit); \ 1154 } while (/*CONSTCOND*/ 0) 1155 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1156 1157 case IPV6_RECVPKTINFO: 1158 OPTSET(IN6P_PKTINFO); 1159 break; 1160 1161 case IPV6_HOPLIMIT: 1162 { 1163 struct ip6_pktopts **optp; 1164 1165 optp = &inp->inp_outputopts6; 1166 error = ip6_pcbopt(IPV6_HOPLIMIT, 1167 (u_char *)&optval, sizeof(optval), optp, 1168 privileged, uproto); 1169 break; 1170 } 1171 1172 case IPV6_RECVHOPLIMIT: 1173 OPTSET(IN6P_HOPLIMIT); 1174 break; 1175 1176 case IPV6_RECVHOPOPTS: 1177 OPTSET(IN6P_HOPOPTS); 1178 break; 1179 1180 case IPV6_RECVDSTOPTS: 1181 OPTSET(IN6P_DSTOPTS); 1182 break; 1183 1184 case IPV6_RECVRTHDR: 1185 OPTSET(IN6P_RTHDR); 1186 break; 1187 1188 case IPV6_RECVPATHMTU: 1189 /* 1190 * We ignore this option for TCP 1191 * sockets. 1192 * (RFC3542 leaves this case 1193 * unspecified.) 1194 */ 1195 if (uproto != IPPROTO_TCP) 1196 OPTSET(IN6P_MTU); 1197 break; 1198 1199 case IPV6_V6ONLY: 1200 /* 1201 * make setsockopt(IPV6_V6ONLY) 1202 * available only prior to bind(2). 1203 * see ipng mailing list, Jun 22 2001. 1204 */ 1205 if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED( 1206 &inp->inp_laddr6)) { 1207 error = EINVAL; 1208 break; 1209 } 1210 /* No support for IPv4-mapped addresses. */ 1211 if (!optval) 1212 error = EINVAL; 1213 else 1214 error = 0; 1215 break; 1216 case IPV6_RECVTCLASS: 1217 OPTSET(IN6P_TCLASS); 1218 break; 1219 case IPV6_AUTOFLOWLABEL: 1220 OPTSET(IN6P_AUTOFLOWLABEL); 1221 break; 1222 1223 case IPV6_RECVDSTPORT: 1224 OPTSET(IN6P_RECVDSTPORT); 1225 break; 1226 } 1227 break; 1228 1229 case IPV6_TCLASS: 1230 case IPV6_DONTFRAG: 1231 case IPV6_USE_MIN_MTU: 1232 if (m == NULL || m->m_len != sizeof(optval)) { 1233 error = EINVAL; 1234 break; 1235 } 1236 optval = *mtod(m, int *); 1237 { 1238 struct ip6_pktopts **optp; 1239 optp = &inp->inp_outputopts6; 1240 error = ip6_pcbopt(optname, (u_char *)&optval, 1241 sizeof(optval), optp, privileged, uproto); 1242 break; 1243 } 1244 1245 case IPV6_PKTINFO: 1246 case IPV6_HOPOPTS: 1247 case IPV6_RTHDR: 1248 case IPV6_DSTOPTS: 1249 case IPV6_RTHDRDSTOPTS: 1250 { 1251 /* new advanced API (RFC3542) */ 1252 u_char *optbuf; 1253 int optbuflen; 1254 struct ip6_pktopts **optp; 1255 1256 if (m && m->m_next) { 1257 error = EINVAL; /* XXX */ 1258 break; 1259 } 1260 if (m) { 1261 optbuf = mtod(m, u_char *); 1262 optbuflen = m->m_len; 1263 } else { 1264 optbuf = NULL; 1265 optbuflen = 0; 1266 } 1267 optp = &inp->inp_outputopts6; 1268 error = ip6_pcbopt(optname, optbuf, optbuflen, optp, 1269 privileged, uproto); 1270 break; 1271 } 1272 #undef OPTSET 1273 1274 case IPV6_MULTICAST_IF: 1275 case IPV6_MULTICAST_HOPS: 1276 case IPV6_MULTICAST_LOOP: 1277 case IPV6_JOIN_GROUP: 1278 case IPV6_LEAVE_GROUP: 1279 error = ip6_setmoptions(optname, 1280 &inp->inp_moptions6, 1281 m, inp->inp_rtableid); 1282 break; 1283 1284 case IPV6_PORTRANGE: 1285 if (m == NULL || m->m_len != sizeof(int)) { 1286 error = EINVAL; 1287 break; 1288 } 1289 optval = *mtod(m, int *); 1290 1291 switch (optval) { 1292 case IPV6_PORTRANGE_DEFAULT: 1293 inp->inp_flags &= ~(IN6P_LOWPORT); 1294 inp->inp_flags &= ~(IN6P_HIGHPORT); 1295 break; 1296 1297 case IPV6_PORTRANGE_HIGH: 1298 inp->inp_flags &= ~(IN6P_LOWPORT); 1299 inp->inp_flags |= IN6P_HIGHPORT; 1300 break; 1301 1302 case IPV6_PORTRANGE_LOW: 1303 inp->inp_flags &= ~(IN6P_HIGHPORT); 1304 inp->inp_flags |= IN6P_LOWPORT; 1305 break; 1306 1307 default: 1308 error = EINVAL; 1309 break; 1310 } 1311 break; 1312 1313 case IPSEC6_OUTSA: 1314 error = EINVAL; 1315 break; 1316 1317 case IPV6_AUTH_LEVEL: 1318 case IPV6_ESP_TRANS_LEVEL: 1319 case IPV6_ESP_NETWORK_LEVEL: 1320 case IPV6_IPCOMP_LEVEL: 1321 #ifndef IPSEC 1322 error = EINVAL; 1323 #else 1324 if (m == NULL || m->m_len != sizeof(int)) { 1325 error = EINVAL; 1326 break; 1327 } 1328 optval = *mtod(m, int *); 1329 1330 if (optval < IPSEC_LEVEL_BYPASS || 1331 optval > IPSEC_LEVEL_UNIQUE) { 1332 error = EINVAL; 1333 break; 1334 } 1335 1336 switch (optname) { 1337 case IPV6_AUTH_LEVEL: 1338 if (optval < IPSEC_AUTH_LEVEL_DEFAULT && 1339 suser(p)) { 1340 error = EACCES; 1341 break; 1342 } 1343 inp->inp_seclevel[SL_AUTH] = optval; 1344 break; 1345 1346 case IPV6_ESP_TRANS_LEVEL: 1347 if (optval < IPSEC_ESP_TRANS_LEVEL_DEFAULT && 1348 suser(p)) { 1349 error = EACCES; 1350 break; 1351 } 1352 inp->inp_seclevel[SL_ESP_TRANS] = optval; 1353 break; 1354 1355 case IPV6_ESP_NETWORK_LEVEL: 1356 if (optval < IPSEC_ESP_NETWORK_LEVEL_DEFAULT && 1357 suser(p)) { 1358 error = EACCES; 1359 break; 1360 } 1361 inp->inp_seclevel[SL_ESP_NETWORK] = optval; 1362 break; 1363 1364 case IPV6_IPCOMP_LEVEL: 1365 if (optval < IPSEC_IPCOMP_LEVEL_DEFAULT && 1366 suser(p)) { 1367 error = EACCES; 1368 break; 1369 } 1370 inp->inp_seclevel[SL_IPCOMP] = optval; 1371 break; 1372 } 1373 #endif 1374 break; 1375 case SO_RTABLE: 1376 if (m == NULL || m->m_len < sizeof(u_int)) { 1377 error = EINVAL; 1378 break; 1379 } 1380 rtid = *mtod(m, u_int *); 1381 if (inp->inp_rtableid == rtid) 1382 break; 1383 /* needs privileges to switch when already set */ 1384 if (rtableid != rtid && rtableid != 0 && 1385 (error = suser(p)) != 0) 1386 break; 1387 /* table must exist */ 1388 if (!rtable_exists(rtid)) { 1389 error = EINVAL; 1390 break; 1391 } 1392 if (inp->inp_lport) { 1393 error = EBUSY; 1394 break; 1395 } 1396 inp->inp_rtableid = rtid; 1397 in_pcbrehash(inp); 1398 break; 1399 case IPV6_PIPEX: 1400 if (m != NULL && m->m_len == sizeof(int)) 1401 inp->inp_pipex = *mtod(m, int *); 1402 else 1403 error = EINVAL; 1404 break; 1405 1406 default: 1407 error = ENOPROTOOPT; 1408 break; 1409 } 1410 break; 1411 1412 case PRCO_GETOPT: 1413 switch (optname) { 1414 1415 case IPV6_RECVHOPOPTS: 1416 case IPV6_RECVDSTOPTS: 1417 case IPV6_UNICAST_HOPS: 1418 case IPV6_MINHOPCOUNT: 1419 case IPV6_RECVPKTINFO: 1420 case IPV6_RECVHOPLIMIT: 1421 case IPV6_RECVRTHDR: 1422 case IPV6_RECVPATHMTU: 1423 1424 case IPV6_V6ONLY: 1425 case IPV6_PORTRANGE: 1426 case IPV6_RECVTCLASS: 1427 case IPV6_AUTOFLOWLABEL: 1428 case IPV6_RECVDSTPORT: 1429 switch (optname) { 1430 1431 case IPV6_RECVHOPOPTS: 1432 optval = OPTBIT(IN6P_HOPOPTS); 1433 break; 1434 1435 case IPV6_RECVDSTOPTS: 1436 optval = OPTBIT(IN6P_DSTOPTS); 1437 break; 1438 1439 case IPV6_UNICAST_HOPS: 1440 optval = inp->inp_hops; 1441 break; 1442 1443 case IPV6_MINHOPCOUNT: 1444 optval = inp->inp_ip6_minhlim; 1445 break; 1446 1447 case IPV6_RECVPKTINFO: 1448 optval = OPTBIT(IN6P_PKTINFO); 1449 break; 1450 1451 case IPV6_RECVHOPLIMIT: 1452 optval = OPTBIT(IN6P_HOPLIMIT); 1453 break; 1454 1455 case IPV6_RECVRTHDR: 1456 optval = OPTBIT(IN6P_RTHDR); 1457 break; 1458 1459 case IPV6_RECVPATHMTU: 1460 optval = OPTBIT(IN6P_MTU); 1461 break; 1462 1463 case IPV6_V6ONLY: 1464 optval = 1; 1465 break; 1466 1467 case IPV6_PORTRANGE: 1468 { 1469 int flags; 1470 flags = inp->inp_flags; 1471 if (flags & IN6P_HIGHPORT) 1472 optval = IPV6_PORTRANGE_HIGH; 1473 else if (flags & IN6P_LOWPORT) 1474 optval = IPV6_PORTRANGE_LOW; 1475 else 1476 optval = 0; 1477 break; 1478 } 1479 case IPV6_RECVTCLASS: 1480 optval = OPTBIT(IN6P_TCLASS); 1481 break; 1482 1483 case IPV6_AUTOFLOWLABEL: 1484 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1485 break; 1486 1487 case IPV6_RECVDSTPORT: 1488 optval = OPTBIT(IN6P_RECVDSTPORT); 1489 break; 1490 } 1491 if (error) 1492 break; 1493 m->m_len = sizeof(int); 1494 *mtod(m, int *) = optval; 1495 break; 1496 1497 case IPV6_PATHMTU: 1498 { 1499 u_long pmtu = 0; 1500 struct ip6_mtuinfo mtuinfo; 1501 struct ifnet *ifp; 1502 struct rtentry *rt; 1503 1504 if (!(so->so_state & SS_ISCONNECTED)) 1505 return (ENOTCONN); 1506 1507 rt = in_pcbrtentry(inp); 1508 if (!rtisvalid(rt)) 1509 return (EHOSTUNREACH); 1510 1511 ifp = if_get(rt->rt_ifidx); 1512 if (ifp == NULL) 1513 return (EHOSTUNREACH); 1514 /* 1515 * XXX: we dot not consider the case of source 1516 * routing, or optional information to specify 1517 * the outgoing interface. 1518 */ 1519 error = ip6_getpmtu(rt, ifp, &pmtu); 1520 if_put(ifp); 1521 if (error) 1522 break; 1523 if (pmtu > IPV6_MAXPACKET) 1524 pmtu = IPV6_MAXPACKET; 1525 1526 bzero(&mtuinfo, sizeof(mtuinfo)); 1527 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1528 optdata = (void *)&mtuinfo; 1529 optdatalen = sizeof(mtuinfo); 1530 if (optdatalen > MCLBYTES) 1531 return (EMSGSIZE); /* XXX */ 1532 if (optdatalen > MLEN) 1533 MCLGET(m, M_WAIT); 1534 m->m_len = optdatalen; 1535 bcopy(optdata, mtod(m, void *), optdatalen); 1536 break; 1537 } 1538 1539 case IPV6_PKTINFO: 1540 case IPV6_HOPOPTS: 1541 case IPV6_RTHDR: 1542 case IPV6_DSTOPTS: 1543 case IPV6_RTHDRDSTOPTS: 1544 case IPV6_TCLASS: 1545 case IPV6_DONTFRAG: 1546 case IPV6_USE_MIN_MTU: 1547 error = ip6_getpcbopt(inp->inp_outputopts6, 1548 optname, m); 1549 break; 1550 1551 case IPV6_MULTICAST_IF: 1552 case IPV6_MULTICAST_HOPS: 1553 case IPV6_MULTICAST_LOOP: 1554 case IPV6_JOIN_GROUP: 1555 case IPV6_LEAVE_GROUP: 1556 error = ip6_getmoptions(optname, 1557 inp->inp_moptions6, m); 1558 break; 1559 1560 case IPSEC6_OUTSA: 1561 error = EINVAL; 1562 break; 1563 1564 case IPV6_AUTH_LEVEL: 1565 case IPV6_ESP_TRANS_LEVEL: 1566 case IPV6_ESP_NETWORK_LEVEL: 1567 case IPV6_IPCOMP_LEVEL: 1568 #ifndef IPSEC 1569 m->m_len = sizeof(int); 1570 *mtod(m, int *) = IPSEC_LEVEL_NONE; 1571 #else 1572 m->m_len = sizeof(int); 1573 switch (optname) { 1574 case IPV6_AUTH_LEVEL: 1575 optval = inp->inp_seclevel[SL_AUTH]; 1576 break; 1577 1578 case IPV6_ESP_TRANS_LEVEL: 1579 optval = 1580 inp->inp_seclevel[SL_ESP_TRANS]; 1581 break; 1582 1583 case IPV6_ESP_NETWORK_LEVEL: 1584 optval = 1585 inp->inp_seclevel[SL_ESP_NETWORK]; 1586 break; 1587 1588 case IPV6_IPCOMP_LEVEL: 1589 optval = inp->inp_seclevel[SL_IPCOMP]; 1590 break; 1591 } 1592 *mtod(m, int *) = optval; 1593 #endif 1594 break; 1595 case SO_RTABLE: 1596 m->m_len = sizeof(u_int); 1597 *mtod(m, u_int *) = inp->inp_rtableid; 1598 break; 1599 case IPV6_PIPEX: 1600 m->m_len = sizeof(int); 1601 *mtod(m, int *) = inp->inp_pipex; 1602 break; 1603 1604 default: 1605 error = ENOPROTOOPT; 1606 break; 1607 } 1608 break; 1609 } 1610 return (error); 1611 } 1612 1613 int 1614 ip6_raw_ctloutput(int op, struct socket *so, int level, int optname, 1615 struct mbuf *m) 1616 { 1617 int error = 0, optval; 1618 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1619 struct inpcb *inp = sotoinpcb(so); 1620 1621 if (level != IPPROTO_IPV6) 1622 return (EINVAL); 1623 1624 switch (optname) { 1625 case IPV6_CHECKSUM: 1626 /* 1627 * For ICMPv6 sockets, no modification allowed for checksum 1628 * offset, permit "no change" values to help existing apps. 1629 * 1630 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 1631 * for an ICMPv6 socket will fail." 1632 * The current behavior does not meet RFC3542. 1633 */ 1634 switch (op) { 1635 case PRCO_SETOPT: 1636 if (m == NULL || m->m_len != sizeof(int)) { 1637 error = EINVAL; 1638 break; 1639 } 1640 optval = *mtod(m, int *); 1641 if (optval < -1 || 1642 (optval > 0 && (optval % 2) != 0)) { 1643 /* 1644 * The API assumes non-negative even offset 1645 * values or -1 as a special value. 1646 */ 1647 error = EINVAL; 1648 } else if (so->so_proto->pr_protocol == 1649 IPPROTO_ICMPV6) { 1650 if (optval != icmp6off) 1651 error = EINVAL; 1652 } else 1653 inp->inp_cksum6 = optval; 1654 break; 1655 1656 case PRCO_GETOPT: 1657 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1658 optval = icmp6off; 1659 else 1660 optval = inp->inp_cksum6; 1661 1662 m->m_len = sizeof(int); 1663 *mtod(m, int *) = optval; 1664 break; 1665 1666 default: 1667 error = EINVAL; 1668 break; 1669 } 1670 break; 1671 1672 default: 1673 error = ENOPROTOOPT; 1674 break; 1675 } 1676 1677 return (error); 1678 } 1679 1680 /* 1681 * initialize ip6_pktopts. beware that there are non-zero default values in 1682 * the struct. 1683 */ 1684 void 1685 ip6_initpktopts(struct ip6_pktopts *opt) 1686 { 1687 bzero(opt, sizeof(*opt)); 1688 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 1689 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 1690 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 1691 } 1692 1693 int 1694 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 1695 int priv, int uproto) 1696 { 1697 struct ip6_pktopts *opt; 1698 1699 if (*pktopt == NULL) { 1700 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 1701 M_WAITOK); 1702 ip6_initpktopts(*pktopt); 1703 } 1704 opt = *pktopt; 1705 1706 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, uproto)); 1707 } 1708 1709 int 1710 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf *m) 1711 { 1712 void *optdata = NULL; 1713 int optdatalen = 0; 1714 struct ip6_ext *ip6e; 1715 int error = 0; 1716 struct in6_pktinfo null_pktinfo; 1717 int deftclass = 0, on; 1718 int defminmtu = IP6PO_MINMTU_MCASTONLY; 1719 1720 switch (optname) { 1721 case IPV6_PKTINFO: 1722 if (pktopt && pktopt->ip6po_pktinfo) 1723 optdata = (void *)pktopt->ip6po_pktinfo; 1724 else { 1725 /* XXX: we don't have to do this every time... */ 1726 bzero(&null_pktinfo, sizeof(null_pktinfo)); 1727 optdata = (void *)&null_pktinfo; 1728 } 1729 optdatalen = sizeof(struct in6_pktinfo); 1730 break; 1731 case IPV6_TCLASS: 1732 if (pktopt && pktopt->ip6po_tclass >= 0) 1733 optdata = (void *)&pktopt->ip6po_tclass; 1734 else 1735 optdata = (void *)&deftclass; 1736 optdatalen = sizeof(int); 1737 break; 1738 case IPV6_HOPOPTS: 1739 if (pktopt && pktopt->ip6po_hbh) { 1740 optdata = (void *)pktopt->ip6po_hbh; 1741 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 1742 optdatalen = (ip6e->ip6e_len + 1) << 3; 1743 } 1744 break; 1745 case IPV6_RTHDR: 1746 if (pktopt && pktopt->ip6po_rthdr) { 1747 optdata = (void *)pktopt->ip6po_rthdr; 1748 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 1749 optdatalen = (ip6e->ip6e_len + 1) << 3; 1750 } 1751 break; 1752 case IPV6_RTHDRDSTOPTS: 1753 if (pktopt && pktopt->ip6po_dest1) { 1754 optdata = (void *)pktopt->ip6po_dest1; 1755 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 1756 optdatalen = (ip6e->ip6e_len + 1) << 3; 1757 } 1758 break; 1759 case IPV6_DSTOPTS: 1760 if (pktopt && pktopt->ip6po_dest2) { 1761 optdata = (void *)pktopt->ip6po_dest2; 1762 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 1763 optdatalen = (ip6e->ip6e_len + 1) << 3; 1764 } 1765 break; 1766 case IPV6_USE_MIN_MTU: 1767 if (pktopt) 1768 optdata = (void *)&pktopt->ip6po_minmtu; 1769 else 1770 optdata = (void *)&defminmtu; 1771 optdatalen = sizeof(int); 1772 break; 1773 case IPV6_DONTFRAG: 1774 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 1775 on = 1; 1776 else 1777 on = 0; 1778 optdata = (void *)&on; 1779 optdatalen = sizeof(on); 1780 break; 1781 default: /* should not happen */ 1782 #ifdef DIAGNOSTIC 1783 panic("%s: unexpected option", __func__); 1784 #endif 1785 return (ENOPROTOOPT); 1786 } 1787 1788 if (optdatalen > MCLBYTES) 1789 return (EMSGSIZE); /* XXX */ 1790 if (optdatalen > MLEN) 1791 MCLGET(m, M_WAIT); 1792 m->m_len = optdatalen; 1793 if (optdatalen) 1794 bcopy(optdata, mtod(m, void *), optdatalen); 1795 1796 return (error); 1797 } 1798 1799 void 1800 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 1801 { 1802 if (optname == -1 || optname == IPV6_PKTINFO) { 1803 if (pktopt->ip6po_pktinfo) 1804 free(pktopt->ip6po_pktinfo, M_IP6OPT, 0); 1805 pktopt->ip6po_pktinfo = NULL; 1806 } 1807 if (optname == -1 || optname == IPV6_HOPLIMIT) 1808 pktopt->ip6po_hlim = -1; 1809 if (optname == -1 || optname == IPV6_TCLASS) 1810 pktopt->ip6po_tclass = -1; 1811 if (optname == -1 || optname == IPV6_HOPOPTS) { 1812 if (pktopt->ip6po_hbh) 1813 free(pktopt->ip6po_hbh, M_IP6OPT, 0); 1814 pktopt->ip6po_hbh = NULL; 1815 } 1816 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 1817 if (pktopt->ip6po_dest1) 1818 free(pktopt->ip6po_dest1, M_IP6OPT, 0); 1819 pktopt->ip6po_dest1 = NULL; 1820 } 1821 if (optname == -1 || optname == IPV6_RTHDR) { 1822 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 1823 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT, 0); 1824 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 1825 if (pktopt->ip6po_route.ro_rt) { 1826 rtfree(pktopt->ip6po_route.ro_rt); 1827 pktopt->ip6po_route.ro_rt = NULL; 1828 } 1829 } 1830 if (optname == -1 || optname == IPV6_DSTOPTS) { 1831 if (pktopt->ip6po_dest2) 1832 free(pktopt->ip6po_dest2, M_IP6OPT, 0); 1833 pktopt->ip6po_dest2 = NULL; 1834 } 1835 } 1836 1837 #define PKTOPT_EXTHDRCPY(type) \ 1838 do {\ 1839 if (src->type) {\ 1840 size_t hlen;\ 1841 hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 1842 dst->type = malloc(hlen, M_IP6OPT, M_NOWAIT);\ 1843 if (dst->type == NULL)\ 1844 goto bad;\ 1845 memcpy(dst->type, src->type, hlen);\ 1846 }\ 1847 } while (/*CONSTCOND*/ 0) 1848 1849 int 1850 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src) 1851 { 1852 dst->ip6po_hlim = src->ip6po_hlim; 1853 dst->ip6po_tclass = src->ip6po_tclass; 1854 dst->ip6po_flags = src->ip6po_flags; 1855 if (src->ip6po_pktinfo) { 1856 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 1857 M_IP6OPT, M_NOWAIT); 1858 if (dst->ip6po_pktinfo == NULL) 1859 goto bad; 1860 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 1861 } 1862 PKTOPT_EXTHDRCPY(ip6po_hbh); 1863 PKTOPT_EXTHDRCPY(ip6po_dest1); 1864 PKTOPT_EXTHDRCPY(ip6po_dest2); 1865 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 1866 return (0); 1867 1868 bad: 1869 ip6_clearpktopts(dst, -1); 1870 return (ENOBUFS); 1871 } 1872 #undef PKTOPT_EXTHDRCPY 1873 1874 void 1875 ip6_freepcbopts(struct ip6_pktopts *pktopt) 1876 { 1877 if (pktopt == NULL) 1878 return; 1879 1880 ip6_clearpktopts(pktopt, -1); 1881 1882 free(pktopt, M_IP6OPT, 0); 1883 } 1884 1885 /* 1886 * Set the IP6 multicast options in response to user setsockopt(). 1887 */ 1888 int 1889 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m, 1890 unsigned int rtableid) 1891 { 1892 int error = 0; 1893 u_int loop, ifindex; 1894 struct ipv6_mreq *mreq; 1895 struct ifnet *ifp; 1896 struct ip6_moptions *im6o = *im6op; 1897 struct in6_multi_mship *imm; 1898 struct proc *p = curproc; /* XXX */ 1899 1900 if (im6o == NULL) { 1901 /* 1902 * No multicast option buffer attached to the pcb; 1903 * allocate one and initialize to default values. 1904 */ 1905 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1906 if (im6o == NULL) 1907 return (ENOBUFS); 1908 *im6op = im6o; 1909 im6o->im6o_ifidx = 0; 1910 im6o->im6o_hlim = ip6_defmcasthlim; 1911 im6o->im6o_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1912 LIST_INIT(&im6o->im6o_memberships); 1913 } 1914 1915 switch (optname) { 1916 1917 case IPV6_MULTICAST_IF: 1918 /* 1919 * Select the interface for outgoing multicast packets. 1920 */ 1921 if (m == NULL || m->m_len != sizeof(u_int)) { 1922 error = EINVAL; 1923 break; 1924 } 1925 memcpy(&ifindex, mtod(m, u_int *), sizeof(ifindex)); 1926 if (ifindex != 0) { 1927 ifp = if_get(ifindex); 1928 if (ifp == NULL) { 1929 error = ENXIO; /* XXX EINVAL? */ 1930 break; 1931 } 1932 if (ifp->if_rdomain != rtable_l2(rtableid) || 1933 (ifp->if_flags & IFF_MULTICAST) == 0) { 1934 error = EADDRNOTAVAIL; 1935 if_put(ifp); 1936 break; 1937 } 1938 if_put(ifp); 1939 } 1940 im6o->im6o_ifidx = ifindex; 1941 break; 1942 1943 case IPV6_MULTICAST_HOPS: 1944 { 1945 /* 1946 * Set the IP6 hoplimit for outgoing multicast packets. 1947 */ 1948 int optval; 1949 if (m == NULL || m->m_len != sizeof(int)) { 1950 error = EINVAL; 1951 break; 1952 } 1953 memcpy(&optval, mtod(m, u_int *), sizeof(optval)); 1954 if (optval < -1 || optval >= 256) 1955 error = EINVAL; 1956 else if (optval == -1) 1957 im6o->im6o_hlim = ip6_defmcasthlim; 1958 else 1959 im6o->im6o_hlim = optval; 1960 break; 1961 } 1962 1963 case IPV6_MULTICAST_LOOP: 1964 /* 1965 * Set the loopback flag for outgoing multicast packets. 1966 * Must be zero or one. 1967 */ 1968 if (m == NULL || m->m_len != sizeof(u_int)) { 1969 error = EINVAL; 1970 break; 1971 } 1972 memcpy(&loop, mtod(m, u_int *), sizeof(loop)); 1973 if (loop > 1) { 1974 error = EINVAL; 1975 break; 1976 } 1977 im6o->im6o_loop = loop; 1978 break; 1979 1980 case IPV6_JOIN_GROUP: 1981 /* 1982 * Add a multicast group membership. 1983 * Group must be a valid IP6 multicast address. 1984 */ 1985 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1986 error = EINVAL; 1987 break; 1988 } 1989 mreq = mtod(m, struct ipv6_mreq *); 1990 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1991 /* 1992 * We use the unspecified address to specify to accept 1993 * all multicast addresses. Only super user is allowed 1994 * to do this. 1995 */ 1996 if (suser(p)) 1997 { 1998 error = EACCES; 1999 break; 2000 } 2001 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2002 error = EINVAL; 2003 break; 2004 } 2005 2006 /* 2007 * If no interface was explicitly specified, choose an 2008 * appropriate one according to the given multicast address. 2009 */ 2010 if (mreq->ipv6mr_interface == 0) { 2011 struct rtentry *rt; 2012 struct sockaddr_in6 dst; 2013 2014 memset(&dst, 0, sizeof(dst)); 2015 dst.sin6_len = sizeof(dst); 2016 dst.sin6_family = AF_INET6; 2017 dst.sin6_addr = mreq->ipv6mr_multiaddr; 2018 rt = rtalloc(sin6tosa(&dst), RT_RESOLVE, rtableid); 2019 if (rt == NULL) { 2020 error = EADDRNOTAVAIL; 2021 break; 2022 } 2023 ifp = if_get(rt->rt_ifidx); 2024 rtfree(rt); 2025 } else { 2026 /* 2027 * If the interface is specified, validate it. 2028 */ 2029 ifp = if_get(mreq->ipv6mr_interface); 2030 if (ifp == NULL) { 2031 error = ENXIO; /* XXX EINVAL? */ 2032 break; 2033 } 2034 } 2035 2036 /* 2037 * See if we found an interface, and confirm that it 2038 * supports multicast 2039 */ 2040 if (ifp == NULL || ifp->if_rdomain != rtable_l2(rtableid) || 2041 (ifp->if_flags & IFF_MULTICAST) == 0) { 2042 if_put(ifp); 2043 error = EADDRNOTAVAIL; 2044 break; 2045 } 2046 /* 2047 * Put interface index into the multicast address, 2048 * if the address has link/interface-local scope. 2049 */ 2050 if (IN6_IS_SCOPE_EMBED(&mreq->ipv6mr_multiaddr)) { 2051 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2052 htons(ifp->if_index); 2053 } 2054 /* 2055 * See if the membership already exists. 2056 */ 2057 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) 2058 if (imm->i6mm_maddr->in6m_ifidx == ifp->if_index && 2059 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2060 &mreq->ipv6mr_multiaddr)) 2061 break; 2062 if (imm != NULL) { 2063 if_put(ifp); 2064 error = EADDRINUSE; 2065 break; 2066 } 2067 /* 2068 * Everything looks good; add a new record to the multicast 2069 * address list for the given interface. 2070 */ 2071 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error); 2072 if_put(ifp); 2073 if (!imm) 2074 break; 2075 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2076 break; 2077 2078 case IPV6_LEAVE_GROUP: 2079 /* 2080 * Drop a multicast group membership. 2081 * Group must be a valid IP6 multicast address. 2082 */ 2083 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2084 error = EINVAL; 2085 break; 2086 } 2087 mreq = mtod(m, struct ipv6_mreq *); 2088 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2089 if (suser(p)) { 2090 error = EACCES; 2091 break; 2092 } 2093 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2094 error = EINVAL; 2095 break; 2096 } 2097 2098 /* 2099 * Put interface index into the multicast address, 2100 * if the address has link-local scope. 2101 */ 2102 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2103 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2104 htons(mreq->ipv6mr_interface); 2105 } 2106 2107 /* 2108 * If an interface address was specified, get a pointer 2109 * to its ifnet structure. 2110 */ 2111 if (mreq->ipv6mr_interface == 0) 2112 ifp = NULL; 2113 else { 2114 ifp = if_get(mreq->ipv6mr_interface); 2115 if (ifp == NULL) { 2116 error = ENXIO; /* XXX EINVAL? */ 2117 break; 2118 } 2119 } 2120 2121 /* 2122 * Find the membership in the membership list. 2123 */ 2124 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2125 if ((ifp == NULL || 2126 imm->i6mm_maddr->in6m_ifidx == ifp->if_index) && 2127 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2128 &mreq->ipv6mr_multiaddr)) 2129 break; 2130 } 2131 2132 if_put(ifp); 2133 2134 if (imm == NULL) { 2135 /* Unable to resolve interface */ 2136 error = EADDRNOTAVAIL; 2137 break; 2138 } 2139 /* 2140 * Give up the multicast address record to which the 2141 * membership points. 2142 */ 2143 LIST_REMOVE(imm, i6mm_chain); 2144 in6_leavegroup(imm); 2145 break; 2146 2147 default: 2148 error = EOPNOTSUPP; 2149 break; 2150 } 2151 2152 /* 2153 * If all options have default values, no need to keep the option 2154 * structure. 2155 */ 2156 if (im6o->im6o_ifidx == 0 && 2157 im6o->im6o_hlim == ip6_defmcasthlim && 2158 im6o->im6o_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2159 LIST_EMPTY(&im6o->im6o_memberships)) { 2160 free(*im6op, M_IPMOPTS, sizeof(**im6op)); 2161 *im6op = NULL; 2162 } 2163 2164 return (error); 2165 } 2166 2167 /* 2168 * Return the IP6 multicast options in response to user getsockopt(). 2169 */ 2170 int 2171 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf *m) 2172 { 2173 u_int *hlim, *loop, *ifindex; 2174 2175 switch (optname) { 2176 case IPV6_MULTICAST_IF: 2177 ifindex = mtod(m, u_int *); 2178 m->m_len = sizeof(u_int); 2179 if (im6o == NULL || im6o->im6o_ifidx == 0) 2180 *ifindex = 0; 2181 else 2182 *ifindex = im6o->im6o_ifidx; 2183 return (0); 2184 2185 case IPV6_MULTICAST_HOPS: 2186 hlim = mtod(m, u_int *); 2187 m->m_len = sizeof(u_int); 2188 if (im6o == NULL) 2189 *hlim = ip6_defmcasthlim; 2190 else 2191 *hlim = im6o->im6o_hlim; 2192 return (0); 2193 2194 case IPV6_MULTICAST_LOOP: 2195 loop = mtod(m, u_int *); 2196 m->m_len = sizeof(u_int); 2197 if (im6o == NULL) 2198 *loop = ip6_defmcasthlim; 2199 else 2200 *loop = im6o->im6o_loop; 2201 return (0); 2202 2203 default: 2204 return (EOPNOTSUPP); 2205 } 2206 } 2207 2208 /* 2209 * Discard the IP6 multicast options. 2210 */ 2211 void 2212 ip6_freemoptions(struct ip6_moptions *im6o) 2213 { 2214 struct in6_multi_mship *imm; 2215 2216 if (im6o == NULL) 2217 return; 2218 2219 while (!LIST_EMPTY(&im6o->im6o_memberships)) { 2220 imm = LIST_FIRST(&im6o->im6o_memberships); 2221 LIST_REMOVE(imm, i6mm_chain); 2222 in6_leavegroup(imm); 2223 } 2224 free(im6o, M_IPMOPTS, sizeof(*im6o)); 2225 } 2226 2227 /* 2228 * Set IPv6 outgoing packet options based on advanced API. 2229 */ 2230 int 2231 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2232 struct ip6_pktopts *stickyopt, int priv, int uproto) 2233 { 2234 u_int clen; 2235 struct cmsghdr *cm = 0; 2236 caddr_t cmsgs; 2237 int error; 2238 2239 if (control == NULL || opt == NULL) 2240 return (EINVAL); 2241 2242 ip6_initpktopts(opt); 2243 if (stickyopt) { 2244 int error; 2245 2246 /* 2247 * If stickyopt is provided, make a local copy of the options 2248 * for this particular packet, then override them by ancillary 2249 * objects. 2250 * XXX: copypktopts() does not copy the cached route to a next 2251 * hop (if any). This is not very good in terms of efficiency, 2252 * but we can allow this since this option should be rarely 2253 * used. 2254 */ 2255 if ((error = copypktopts(opt, stickyopt)) != 0) 2256 return (error); 2257 } 2258 2259 /* 2260 * XXX: Currently, we assume all the optional information is stored 2261 * in a single mbuf. 2262 */ 2263 if (control->m_next) 2264 return (EINVAL); 2265 2266 clen = control->m_len; 2267 cmsgs = mtod(control, caddr_t); 2268 do { 2269 if (clen < CMSG_LEN(0)) 2270 return (EINVAL); 2271 cm = (struct cmsghdr *)cmsgs; 2272 if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > clen || 2273 CMSG_ALIGN(cm->cmsg_len) > clen) 2274 return (EINVAL); 2275 if (cm->cmsg_level == IPPROTO_IPV6) { 2276 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2277 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, uproto); 2278 if (error) 2279 return (error); 2280 } 2281 2282 clen -= CMSG_ALIGN(cm->cmsg_len); 2283 cmsgs += CMSG_ALIGN(cm->cmsg_len); 2284 } while (clen); 2285 2286 return (0); 2287 } 2288 2289 /* 2290 * Set a particular packet option, as a sticky option or an ancillary data 2291 * item. "len" can be 0 only when it's a sticky option. 2292 */ 2293 int 2294 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2295 int priv, int sticky, int uproto) 2296 { 2297 int minmtupolicy; 2298 2299 switch (optname) { 2300 case IPV6_PKTINFO: 2301 { 2302 struct ifnet *ifp = NULL; 2303 struct in6_pktinfo *pktinfo; 2304 2305 if (len != sizeof(struct in6_pktinfo)) 2306 return (EINVAL); 2307 2308 pktinfo = (struct in6_pktinfo *)buf; 2309 2310 /* 2311 * An application can clear any sticky IPV6_PKTINFO option by 2312 * doing a "regular" setsockopt with ipi6_addr being 2313 * in6addr_any and ipi6_ifindex being zero. 2314 * [RFC 3542, Section 6] 2315 */ 2316 if (opt->ip6po_pktinfo && 2317 pktinfo->ipi6_ifindex == 0 && 2318 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2319 ip6_clearpktopts(opt, optname); 2320 break; 2321 } 2322 2323 if (uproto == IPPROTO_TCP && 2324 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2325 return (EINVAL); 2326 } 2327 2328 if (pktinfo->ipi6_ifindex) { 2329 ifp = if_get(pktinfo->ipi6_ifindex); 2330 if (ifp == NULL) 2331 return (ENXIO); 2332 if_put(ifp); 2333 } 2334 2335 /* 2336 * We store the address anyway, and let in6_selectsrc() 2337 * validate the specified address. This is because ipi6_addr 2338 * may not have enough information about its scope zone, and 2339 * we may need additional information (such as outgoing 2340 * interface or the scope zone of a destination address) to 2341 * disambiguate the scope. 2342 * XXX: the delay of the validation may confuse the 2343 * application when it is used as a sticky option. 2344 */ 2345 if (opt->ip6po_pktinfo == NULL) { 2346 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2347 M_IP6OPT, M_NOWAIT); 2348 if (opt->ip6po_pktinfo == NULL) 2349 return (ENOBUFS); 2350 } 2351 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2352 break; 2353 } 2354 2355 case IPV6_HOPLIMIT: 2356 { 2357 int *hlimp; 2358 2359 /* 2360 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2361 * to simplify the ordering among hoplimit options. 2362 */ 2363 if (sticky) 2364 return (ENOPROTOOPT); 2365 2366 if (len != sizeof(int)) 2367 return (EINVAL); 2368 hlimp = (int *)buf; 2369 if (*hlimp < -1 || *hlimp > 255) 2370 return (EINVAL); 2371 2372 opt->ip6po_hlim = *hlimp; 2373 break; 2374 } 2375 2376 case IPV6_TCLASS: 2377 { 2378 int tclass; 2379 2380 if (len != sizeof(int)) 2381 return (EINVAL); 2382 tclass = *(int *)buf; 2383 if (tclass < -1 || tclass > 255) 2384 return (EINVAL); 2385 2386 opt->ip6po_tclass = tclass; 2387 break; 2388 } 2389 case IPV6_HOPOPTS: 2390 { 2391 struct ip6_hbh *hbh; 2392 int hbhlen; 2393 2394 /* 2395 * XXX: We don't allow a non-privileged user to set ANY HbH 2396 * options, since per-option restriction has too much 2397 * overhead. 2398 */ 2399 if (!priv) 2400 return (EPERM); 2401 2402 if (len == 0) { 2403 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2404 break; /* just remove the option */ 2405 } 2406 2407 /* message length validation */ 2408 if (len < sizeof(struct ip6_hbh)) 2409 return (EINVAL); 2410 hbh = (struct ip6_hbh *)buf; 2411 hbhlen = (hbh->ip6h_len + 1) << 3; 2412 if (len != hbhlen) 2413 return (EINVAL); 2414 2415 /* turn off the previous option, then set the new option. */ 2416 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2417 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2418 if (opt->ip6po_hbh == NULL) 2419 return (ENOBUFS); 2420 memcpy(opt->ip6po_hbh, hbh, hbhlen); 2421 2422 break; 2423 } 2424 2425 case IPV6_DSTOPTS: 2426 case IPV6_RTHDRDSTOPTS: 2427 { 2428 struct ip6_dest *dest, **newdest = NULL; 2429 int destlen; 2430 2431 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */ 2432 return (EPERM); 2433 2434 if (len == 0) { 2435 ip6_clearpktopts(opt, optname); 2436 break; /* just remove the option */ 2437 } 2438 2439 /* message length validation */ 2440 if (len < sizeof(struct ip6_dest)) 2441 return (EINVAL); 2442 dest = (struct ip6_dest *)buf; 2443 destlen = (dest->ip6d_len + 1) << 3; 2444 if (len != destlen) 2445 return (EINVAL); 2446 /* 2447 * Determine the position that the destination options header 2448 * should be inserted; before or after the routing header. 2449 */ 2450 switch (optname) { 2451 case IPV6_RTHDRDSTOPTS: 2452 newdest = &opt->ip6po_dest1; 2453 break; 2454 case IPV6_DSTOPTS: 2455 newdest = &opt->ip6po_dest2; 2456 break; 2457 } 2458 2459 /* turn off the previous option, then set the new option. */ 2460 ip6_clearpktopts(opt, optname); 2461 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2462 if (*newdest == NULL) 2463 return (ENOBUFS); 2464 memcpy(*newdest, dest, destlen); 2465 2466 break; 2467 } 2468 2469 case IPV6_RTHDR: 2470 { 2471 struct ip6_rthdr *rth; 2472 int rthlen; 2473 2474 if (len == 0) { 2475 ip6_clearpktopts(opt, IPV6_RTHDR); 2476 break; /* just remove the option */ 2477 } 2478 2479 /* message length validation */ 2480 if (len < sizeof(struct ip6_rthdr)) 2481 return (EINVAL); 2482 rth = (struct ip6_rthdr *)buf; 2483 rthlen = (rth->ip6r_len + 1) << 3; 2484 if (len != rthlen) 2485 return (EINVAL); 2486 2487 switch (rth->ip6r_type) { 2488 case IPV6_RTHDR_TYPE_0: 2489 if (rth->ip6r_len == 0) /* must contain one addr */ 2490 return (EINVAL); 2491 if (rth->ip6r_len % 2) /* length must be even */ 2492 return (EINVAL); 2493 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2494 return (EINVAL); 2495 break; 2496 default: 2497 return (EINVAL); /* not supported */ 2498 } 2499 /* turn off the previous option */ 2500 ip6_clearpktopts(opt, IPV6_RTHDR); 2501 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2502 if (opt->ip6po_rthdr == NULL) 2503 return (ENOBUFS); 2504 memcpy(opt->ip6po_rthdr, rth, rthlen); 2505 break; 2506 } 2507 2508 case IPV6_USE_MIN_MTU: 2509 if (len != sizeof(int)) 2510 return (EINVAL); 2511 minmtupolicy = *(int *)buf; 2512 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2513 minmtupolicy != IP6PO_MINMTU_DISABLE && 2514 minmtupolicy != IP6PO_MINMTU_ALL) { 2515 return (EINVAL); 2516 } 2517 opt->ip6po_minmtu = minmtupolicy; 2518 break; 2519 2520 case IPV6_DONTFRAG: 2521 if (len != sizeof(int)) 2522 return (EINVAL); 2523 2524 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2525 /* 2526 * we ignore this option for TCP sockets. 2527 * (RFC3542 leaves this case unspecified.) 2528 */ 2529 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2530 } else 2531 opt->ip6po_flags |= IP6PO_DONTFRAG; 2532 break; 2533 2534 default: 2535 return (ENOPROTOOPT); 2536 } /* end of switch */ 2537 2538 return (0); 2539 } 2540 2541 /* 2542 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2543 * packet to the input queue of a specified interface. 2544 */ 2545 void 2546 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2547 { 2548 struct mbuf *copym; 2549 struct ip6_hdr *ip6; 2550 2551 /* 2552 * Duplicate the packet. 2553 */ 2554 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 2555 if (copym == NULL) 2556 return; 2557 2558 /* 2559 * Make sure to deep-copy IPv6 header portion in case the data 2560 * is in an mbuf cluster, so that we can safely override the IPv6 2561 * header portion later. 2562 */ 2563 if ((copym->m_flags & M_EXT) != 0 || 2564 copym->m_len < sizeof(struct ip6_hdr)) { 2565 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2566 if (copym == NULL) 2567 return; 2568 } 2569 2570 #ifdef DIAGNOSTIC 2571 if (copym->m_len < sizeof(*ip6)) { 2572 m_freem(copym); 2573 return; 2574 } 2575 #endif 2576 2577 ip6 = mtod(copym, struct ip6_hdr *); 2578 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 2579 ip6->ip6_src.s6_addr16[1] = 0; 2580 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 2581 ip6->ip6_dst.s6_addr16[1] = 0; 2582 2583 if_input_local(ifp, copym, dst->sin6_family); 2584 } 2585 2586 /* 2587 * Chop IPv6 header off from the payload. 2588 */ 2589 int 2590 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2591 { 2592 struct mbuf *mh; 2593 struct ip6_hdr *ip6; 2594 2595 ip6 = mtod(m, struct ip6_hdr *); 2596 if (m->m_len > sizeof(*ip6)) { 2597 MGET(mh, M_DONTWAIT, MT_HEADER); 2598 if (mh == NULL) { 2599 m_freem(m); 2600 return ENOBUFS; 2601 } 2602 M_MOVE_PKTHDR(mh, m); 2603 m_align(mh, sizeof(*ip6)); 2604 m->m_len -= sizeof(*ip6); 2605 m->m_data += sizeof(*ip6); 2606 mh->m_next = m; 2607 m = mh; 2608 m->m_len = sizeof(*ip6); 2609 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2610 } 2611 exthdrs->ip6e_ip6 = m; 2612 return 0; 2613 } 2614 2615 u_int32_t 2616 ip6_randomid(void) 2617 { 2618 return idgen32(&ip6_id_ctx); 2619 } 2620 2621 void 2622 ip6_randomid_init(void) 2623 { 2624 idgen32_init(&ip6_id_ctx); 2625 } 2626 2627 /* 2628 * Compute significant parts of the IPv6 checksum pseudo-header 2629 * for use in a delayed TCP/UDP checksum calculation. 2630 */ 2631 static __inline u_int16_t __attribute__((__unused__)) 2632 in6_cksum_phdr(const struct in6_addr *src, const struct in6_addr *dst, 2633 u_int32_t len, u_int32_t nxt) 2634 { 2635 u_int32_t sum = 0; 2636 const u_int16_t *w; 2637 2638 w = (const u_int16_t *) src; 2639 sum += w[0]; 2640 if (!IN6_IS_SCOPE_EMBED(src)) 2641 sum += w[1]; 2642 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 2643 sum += w[6]; sum += w[7]; 2644 2645 w = (const u_int16_t *) dst; 2646 sum += w[0]; 2647 if (!IN6_IS_SCOPE_EMBED(dst)) 2648 sum += w[1]; 2649 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 2650 sum += w[6]; sum += w[7]; 2651 2652 sum += (u_int16_t)(len >> 16) + (u_int16_t)(len /*& 0xffff*/); 2653 2654 sum += (u_int16_t)(nxt >> 16) + (u_int16_t)(nxt /*& 0xffff*/); 2655 2656 sum = (u_int16_t)(sum >> 16) + (u_int16_t)(sum /*& 0xffff*/); 2657 2658 if (sum > 0xffff) 2659 sum -= 0xffff; 2660 2661 return (sum); 2662 } 2663 2664 /* 2665 * Process a delayed payload checksum calculation. 2666 */ 2667 void 2668 in6_delayed_cksum(struct mbuf *m, u_int8_t nxt) 2669 { 2670 int nxtp, offset; 2671 u_int16_t csum; 2672 2673 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxtp); 2674 if (offset <= 0 || nxtp != nxt) 2675 /* If the desired next protocol isn't found, punt. */ 2676 return; 2677 csum = (u_int16_t)(in6_cksum(m, 0, offset, m->m_pkthdr.len - offset)); 2678 2679 switch (nxt) { 2680 case IPPROTO_TCP: 2681 offset += offsetof(struct tcphdr, th_sum); 2682 break; 2683 2684 case IPPROTO_UDP: 2685 offset += offsetof(struct udphdr, uh_sum); 2686 if (csum == 0) 2687 csum = 0xffff; 2688 break; 2689 2690 case IPPROTO_ICMPV6: 2691 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 2692 break; 2693 } 2694 2695 if ((offset + sizeof(u_int16_t)) > m->m_len) 2696 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 2697 else 2698 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 2699 } 2700 2701 void 2702 in6_proto_cksum_out(struct mbuf *m, struct ifnet *ifp) 2703 { 2704 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); 2705 2706 /* some hw and in6_delayed_cksum need the pseudo header cksum */ 2707 if (m->m_pkthdr.csum_flags & 2708 (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT|M_ICMP_CSUM_OUT)) { 2709 int nxt, offset; 2710 u_int16_t csum; 2711 2712 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt); 2713 if (ISSET(m->m_pkthdr.csum_flags, M_TCP_TSO) && 2714 in_ifcap_cksum(m, ifp, IFCAP_TSOv6)) { 2715 csum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 2716 htonl(0), htonl(nxt)); 2717 } else { 2718 csum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 2719 htonl(m->m_pkthdr.len - offset), htonl(nxt)); 2720 } 2721 if (nxt == IPPROTO_TCP) 2722 offset += offsetof(struct tcphdr, th_sum); 2723 else if (nxt == IPPROTO_UDP) 2724 offset += offsetof(struct udphdr, uh_sum); 2725 else if (nxt == IPPROTO_ICMPV6) 2726 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 2727 if ((offset + sizeof(u_int16_t)) > m->m_len) 2728 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 2729 else 2730 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 2731 } 2732 2733 if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) { 2734 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_TCPv6) || 2735 ip6->ip6_nxt != IPPROTO_TCP || 2736 ifp->if_bridgeidx != 0) { 2737 tcpstat_inc(tcps_outswcsum); 2738 in6_delayed_cksum(m, IPPROTO_TCP); 2739 m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_OUT; /* Clear */ 2740 } 2741 } else if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) { 2742 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_UDPv6) || 2743 ip6->ip6_nxt != IPPROTO_UDP || 2744 ifp->if_bridgeidx != 0) { 2745 udpstat_inc(udps_outswcsum); 2746 in6_delayed_cksum(m, IPPROTO_UDP); 2747 m->m_pkthdr.csum_flags &= ~M_UDP_CSUM_OUT; /* Clear */ 2748 } 2749 } else if (m->m_pkthdr.csum_flags & M_ICMP_CSUM_OUT) { 2750 in6_delayed_cksum(m, IPPROTO_ICMPV6); 2751 m->m_pkthdr.csum_flags &= ~M_ICMP_CSUM_OUT; /* Clear */ 2752 } 2753 } 2754 2755 #ifdef IPSEC 2756 int 2757 ip6_output_ipsec_lookup(struct mbuf *m, struct inpcb *inp, struct tdb **tdbout) 2758 { 2759 struct tdb *tdb; 2760 struct m_tag *mtag; 2761 struct tdb_ident *tdbi; 2762 int error; 2763 2764 /* 2765 * Check if there was an outgoing SA bound to the flow 2766 * from a transport protocol. 2767 */ 2768 2769 /* Do we have any pending SAs to apply ? */ 2770 error = ipsp_spd_lookup(m, AF_INET6, sizeof(struct ip6_hdr), 2771 IPSP_DIRECTION_OUT, NULL, inp, &tdb, NULL); 2772 if (error || tdb == NULL) { 2773 *tdbout = NULL; 2774 return error; 2775 } 2776 /* Loop detection */ 2777 for (mtag = m_tag_first(m); mtag != NULL; mtag = m_tag_next(m, mtag)) { 2778 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE) 2779 continue; 2780 tdbi = (struct tdb_ident *)(mtag + 1); 2781 if (tdbi->spi == tdb->tdb_spi && 2782 tdbi->proto == tdb->tdb_sproto && 2783 tdbi->rdomain == tdb->tdb_rdomain && 2784 !memcmp(&tdbi->dst, &tdb->tdb_dst, 2785 sizeof(union sockaddr_union))) { 2786 /* no IPsec needed */ 2787 tdb_unref(tdb); 2788 *tdbout = NULL; 2789 return 0; 2790 } 2791 } 2792 *tdbout = tdb; 2793 return 0; 2794 } 2795 2796 int 2797 ip6_output_ipsec_pmtu_update(struct tdb *tdb, struct route_in6 *ro, 2798 struct in6_addr *dst, int ifidx, int rtableid, int transportmode) 2799 { 2800 struct rtentry *rt = NULL; 2801 int rt_mtucloned = 0; 2802 2803 /* Find a host route to store the mtu in */ 2804 if (ro != NULL) 2805 rt = ro->ro_rt; 2806 /* but don't add a PMTU route for transport mode SAs */ 2807 if (transportmode) 2808 rt = NULL; 2809 else if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0) { 2810 struct sockaddr_in6 sin6; 2811 int error; 2812 2813 memset(&sin6, 0, sizeof(sin6)); 2814 sin6.sin6_family = AF_INET6; 2815 sin6.sin6_len = sizeof(sin6); 2816 sin6.sin6_addr = *dst; 2817 sin6.sin6_scope_id = in6_addr2scopeid(ifidx, dst); 2818 error = in6_embedscope(dst, &sin6, NULL); 2819 if (error) { 2820 /* should be impossible */ 2821 return error; 2822 } 2823 rt = icmp6_mtudisc_clone(&sin6, rtableid, 1); 2824 rt_mtucloned = 1; 2825 } 2826 DPRINTF("spi %08x mtu %d rt %p cloned %d", 2827 ntohl(tdb->tdb_spi), tdb->tdb_mtu, rt, rt_mtucloned); 2828 if (rt != NULL) { 2829 rt->rt_mtu = tdb->tdb_mtu; 2830 if (ro != NULL && ro->ro_rt != NULL) { 2831 rtfree(ro->ro_rt); 2832 ro->ro_rt = rtalloc(sin6tosa(&ro->ro_dst), RT_RESOLVE, 2833 rtableid); 2834 } 2835 if (rt_mtucloned) 2836 rtfree(rt); 2837 } 2838 return 0; 2839 } 2840 2841 int 2842 ip6_output_ipsec_send(struct tdb *tdb, struct mbuf *m, struct route_in6 *ro, 2843 int tunalready, int fwd) 2844 { 2845 struct mbuf_list ml; 2846 struct ifnet *encif = NULL; 2847 struct ip6_hdr *ip6; 2848 struct in6_addr dst; 2849 u_int len; 2850 int error, ifidx, rtableid, tso = 0; 2851 2852 #if NPF > 0 2853 /* 2854 * Packet filter 2855 */ 2856 if ((encif = enc_getif(tdb->tdb_rdomain, tdb->tdb_tap)) == NULL || 2857 pf_test(AF_INET6, fwd ? PF_FWD : PF_OUT, encif, &m) != PF_PASS) { 2858 m_freem(m); 2859 return EACCES; 2860 } 2861 if (m == NULL) 2862 return 0; 2863 /* 2864 * PF_TAG_REROUTE handling or not... 2865 * Packet is entering IPsec so the routing is 2866 * already overruled by the IPsec policy. 2867 * Until now the change was not reconsidered. 2868 * What's the behaviour? 2869 */ 2870 #endif 2871 2872 /* Check if we can chop the TCP packet */ 2873 ip6 = mtod(m, struct ip6_hdr *); 2874 if (ISSET(m->m_pkthdr.csum_flags, M_TCP_TSO) && 2875 m->m_pkthdr.ph_mss <= tdb->tdb_mtu) { 2876 tso = 1; 2877 len = m->m_pkthdr.ph_mss; 2878 } else 2879 len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2880 2881 /* Check if we are allowed to fragment */ 2882 dst = ip6->ip6_dst; 2883 ifidx = m->m_pkthdr.ph_ifidx; 2884 rtableid = m->m_pkthdr.ph_rtableid; 2885 if (ip_mtudisc && tdb->tdb_mtu && 2886 len > tdb->tdb_mtu && tdb->tdb_mtutimeout > gettime()) { 2887 int transportmode; 2888 2889 transportmode = (tdb->tdb_dst.sa.sa_family == AF_INET6) && 2890 (IN6_ARE_ADDR_EQUAL(&tdb->tdb_dst.sin6.sin6_addr, &dst)); 2891 error = ip6_output_ipsec_pmtu_update(tdb, ro, &dst, ifidx, 2892 rtableid, transportmode); 2893 if (error) { 2894 ipsecstat_inc(ipsec_odrops); 2895 tdbstat_inc(tdb, tdb_odrops); 2896 m_freem(m); 2897 return error; 2898 } 2899 ipsec_adjust_mtu(m, tdb->tdb_mtu); 2900 m_freem(m); 2901 return EMSGSIZE; 2902 } 2903 /* propagate don't fragment for v6-over-v6 */ 2904 if (ip_mtudisc) 2905 SET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT); 2906 2907 /* 2908 * Clear these -- they'll be set in the recursive invocation 2909 * as needed. 2910 */ 2911 m->m_flags &= ~(M_BCAST | M_MCAST); 2912 2913 if (tso) { 2914 error = tcp_chopper(m, &ml, encif, len); 2915 if (error) 2916 goto done; 2917 } else { 2918 CLR(m->m_pkthdr.csum_flags, M_TCP_TSO); 2919 in6_proto_cksum_out(m, encif); 2920 ml_init(&ml); 2921 ml_enqueue(&ml, m); 2922 } 2923 2924 KERNEL_LOCK(); 2925 while ((m = ml_dequeue(&ml)) != NULL) { 2926 /* Callee frees mbuf */ 2927 error = ipsp_process_packet(m, tdb, AF_INET6, tunalready); 2928 if (error) 2929 break; 2930 } 2931 KERNEL_UNLOCK(); 2932 done: 2933 if (error) { 2934 ml_purge(&ml); 2935 ipsecstat_inc(ipsec_odrops); 2936 tdbstat_inc(tdb, tdb_odrops); 2937 } 2938 if (!error && tso) 2939 tcpstat_inc(tcps_outswtso); 2940 if (ip_mtudisc && error == EMSGSIZE) 2941 ip6_output_ipsec_pmtu_update(tdb, ro, &dst, ifidx, rtableid, 0); 2942 return error; 2943 } 2944 #endif /* IPSEC */ 2945