1 /* $OpenBSD: ip6_output.c,v 1.279 2023/07/07 08:05:02 bluhm Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include "pf.h" 65 66 #include <sys/param.h> 67 #include <sys/malloc.h> 68 #include <sys/mbuf.h> 69 #include <sys/errno.h> 70 #include <sys/protosw.h> 71 #include <sys/socket.h> 72 #include <sys/socketvar.h> 73 #include <sys/proc.h> 74 #include <sys/systm.h> 75 76 #include <net/if.h> 77 #include <net/if_var.h> 78 #include <net/if_enc.h> 79 #include <net/route.h> 80 81 #include <netinet/in.h> 82 #include <netinet/ip.h> 83 #include <netinet/in_pcb.h> 84 #include <netinet/udp.h> 85 #include <netinet/tcp.h> 86 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp_timer.h> 89 #include <netinet/tcp_var.h> 90 #include <netinet/udp_var.h> 91 92 #include <netinet6/in6_var.h> 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/nd6.h> 97 98 #include <crypto/idgen.h> 99 100 #if NPF > 0 101 #include <net/pfvar.h> 102 #endif 103 104 #ifdef IPSEC 105 #include <netinet/ip_ipsp.h> 106 #include <netinet/ip_ah.h> 107 #include <netinet/ip_esp.h> 108 109 #ifdef ENCDEBUG 110 #define DPRINTF(fmt, args...) \ 111 do { \ 112 if (encdebug) \ 113 printf("%s: " fmt "\n", __func__, ## args); \ 114 } while (0) 115 #else 116 #define DPRINTF(fmt, args...) \ 117 do { } while (0) 118 #endif 119 #endif /* IPSEC */ 120 121 struct ip6_exthdrs { 122 struct mbuf *ip6e_ip6; 123 struct mbuf *ip6e_hbh; 124 struct mbuf *ip6e_dest1; 125 struct mbuf *ip6e_rthdr; 126 struct mbuf *ip6e_dest2; 127 }; 128 129 int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, int, int); 130 int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf *); 131 int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int, int, int); 132 int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *, unsigned int); 133 int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf *); 134 int ip6_copyexthdr(struct mbuf **, caddr_t, int); 135 int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 136 struct ip6_frag **); 137 int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 138 int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 139 int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *); 140 int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *); 141 static __inline u_int16_t __attribute__((__unused__)) 142 in6_cksum_phdr(const struct in6_addr *, const struct in6_addr *, 143 u_int32_t, u_int32_t); 144 void in6_delayed_cksum(struct mbuf *, u_int8_t); 145 146 int ip6_output_ipsec_pmtu_update(struct tdb *, struct route_in6 *, 147 struct in6_addr *, int, int, int); 148 149 /* Context for non-repeating IDs */ 150 struct idgen32_ctx ip6_id_ctx; 151 152 /* 153 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 154 * header (with pri, len, nxt, hlim, src, dst). 155 * This function may modify ver and hlim only. 156 * The mbuf chain containing the packet will be freed. 157 * The mbuf opt, if present, will not be freed. 158 * 159 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int. 160 * We use u_long to hold largest one, * which is rt_mtu. 161 */ 162 int 163 ip6_output(struct mbuf *m, struct ip6_pktopts *opt, struct route_in6 *ro, 164 int flags, struct ip6_moptions *im6o, struct inpcb *inp) 165 { 166 struct ip6_hdr *ip6; 167 struct ifnet *ifp = NULL; 168 struct mbuf_list ml; 169 int hlen, tlen; 170 struct route_in6 ip6route; 171 struct rtentry *rt = NULL; 172 struct sockaddr_in6 *dst, dstsock; 173 int error = 0; 174 u_long mtu; 175 int dontfrag; 176 u_int16_t src_scope, dst_scope; 177 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 178 struct ip6_exthdrs exthdrs; 179 struct in6_addr finaldst; 180 struct route_in6 *ro_pmtu = NULL; 181 int hdrsplit = 0; 182 u_int8_t sproto = 0; 183 u_char nextproto; 184 #ifdef IPSEC 185 struct tdb *tdb = NULL; 186 #endif /* IPSEC */ 187 188 #ifdef IPSEC 189 if (inp && (inp->inp_flags & INP_IPV6) == 0) 190 panic("%s: IPv4 pcb is passed", __func__); 191 #endif /* IPSEC */ 192 193 ip6 = mtod(m, struct ip6_hdr *); 194 finaldst = ip6->ip6_dst; 195 196 #define MAKE_EXTHDR(hp, mp) \ 197 do { \ 198 if (hp) { \ 199 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 200 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 201 ((eh)->ip6e_len + 1) << 3); \ 202 if (error) \ 203 goto freehdrs; \ 204 } \ 205 } while (0) 206 207 bzero(&exthdrs, sizeof(exthdrs)); 208 209 if (opt) { 210 /* Hop-by-Hop options header */ 211 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 212 /* Destination options header(1st part) */ 213 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 214 /* Routing header */ 215 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 216 /* Destination options header(2nd part) */ 217 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 218 } 219 220 #ifdef IPSEC 221 if (ipsec_in_use || inp != NULL) { 222 error = ip6_output_ipsec_lookup(m, inp, &tdb); 223 if (error) { 224 /* 225 * -EINVAL is used to indicate that the packet should 226 * be silently dropped, typically because we've asked 227 * key management for an SA. 228 */ 229 if (error == -EINVAL) /* Should silently drop packet */ 230 error = 0; 231 232 goto freehdrs; 233 } 234 } 235 #endif /* IPSEC */ 236 237 /* 238 * Calculate the total length of the extension header chain. 239 * Keep the length of the unfragmentable part for fragmentation. 240 */ 241 optlen = 0; 242 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 243 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 244 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 245 unfragpartlen = optlen + sizeof(struct ip6_hdr); 246 /* NOTE: we don't add AH/ESP length here. do that later. */ 247 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 248 249 /* 250 * If we need IPsec, or there is at least one extension header, 251 * separate IP6 header from the payload. 252 */ 253 if ((sproto || optlen) && !hdrsplit) { 254 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 255 m = NULL; 256 goto freehdrs; 257 } 258 m = exthdrs.ip6e_ip6; 259 hdrsplit++; 260 } 261 262 /* adjust pointer */ 263 ip6 = mtod(m, struct ip6_hdr *); 264 265 /* adjust mbuf packet header length */ 266 m->m_pkthdr.len += optlen; 267 plen = m->m_pkthdr.len - sizeof(*ip6); 268 269 /* If this is a jumbo payload, insert a jumbo payload option. */ 270 if (plen > IPV6_MAXPACKET) { 271 if (!hdrsplit) { 272 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 273 m = NULL; 274 goto freehdrs; 275 } 276 m = exthdrs.ip6e_ip6; 277 hdrsplit++; 278 } 279 /* adjust pointer */ 280 ip6 = mtod(m, struct ip6_hdr *); 281 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 282 goto freehdrs; 283 ip6->ip6_plen = 0; 284 } else 285 ip6->ip6_plen = htons(plen); 286 287 /* 288 * Concatenate headers and fill in next header fields. 289 * Here we have, on "m" 290 * IPv6 payload 291 * and we insert headers accordingly. Finally, we should be getting: 292 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 293 * 294 * during the header composing process, "m" points to IPv6 header. 295 * "mprev" points to an extension header prior to esp. 296 */ 297 { 298 u_char *nexthdrp = &ip6->ip6_nxt; 299 struct mbuf *mprev = m; 300 301 /* 302 * we treat dest2 specially. this makes IPsec processing 303 * much easier. the goal here is to make mprev point the 304 * mbuf prior to dest2. 305 * 306 * result: IPv6 dest2 payload 307 * m and mprev will point to IPv6 header. 308 */ 309 if (exthdrs.ip6e_dest2) { 310 if (!hdrsplit) 311 panic("%s: assumption failed: hdr not split", 312 __func__); 313 exthdrs.ip6e_dest2->m_next = m->m_next; 314 m->m_next = exthdrs.ip6e_dest2; 315 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 316 ip6->ip6_nxt = IPPROTO_DSTOPTS; 317 } 318 319 #define MAKE_CHAIN(m, mp, p, i)\ 320 do {\ 321 if (m) {\ 322 if (!hdrsplit) \ 323 panic("assumption failed: hdr not split"); \ 324 *mtod((m), u_char *) = *(p);\ 325 *(p) = (i);\ 326 p = mtod((m), u_char *);\ 327 (m)->m_next = (mp)->m_next;\ 328 (mp)->m_next = (m);\ 329 (mp) = (m);\ 330 }\ 331 } while (0) 332 /* 333 * result: IPv6 hbh dest1 rthdr dest2 payload 334 * m will point to IPv6 header. mprev will point to the 335 * extension header prior to dest2 (rthdr in the above case). 336 */ 337 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 338 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 339 IPPROTO_DSTOPTS); 340 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 341 IPPROTO_ROUTING); 342 } 343 344 /* 345 * If there is a routing header, replace the destination address field 346 * with the first hop of the routing header. 347 */ 348 if (exthdrs.ip6e_rthdr) { 349 struct ip6_rthdr *rh; 350 struct ip6_rthdr0 *rh0; 351 struct in6_addr *addr; 352 353 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 354 struct ip6_rthdr *)); 355 switch (rh->ip6r_type) { 356 case IPV6_RTHDR_TYPE_0: 357 rh0 = (struct ip6_rthdr0 *)rh; 358 addr = (struct in6_addr *)(rh0 + 1); 359 ip6->ip6_dst = addr[0]; 360 bcopy(&addr[1], &addr[0], 361 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)); 362 addr[rh0->ip6r0_segleft - 1] = finaldst; 363 break; 364 default: /* is it possible? */ 365 error = EINVAL; 366 goto bad; 367 } 368 } 369 370 /* Source address validation */ 371 if (!(flags & IPV6_UNSPECSRC) && 372 IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 373 /* 374 * XXX: we can probably assume validation in the caller, but 375 * we explicitly check the address here for safety. 376 */ 377 error = EOPNOTSUPP; 378 ip6stat_inc(ip6s_badscope); 379 goto bad; 380 } 381 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 382 error = EOPNOTSUPP; 383 ip6stat_inc(ip6s_badscope); 384 goto bad; 385 } 386 387 ip6stat_inc(ip6s_localout); 388 389 /* 390 * Route packet. 391 */ 392 #if NPF > 0 393 reroute: 394 #endif 395 396 /* initialize cached route */ 397 if (ro == NULL) { 398 ro = &ip6route; 399 bzero((caddr_t)ro, sizeof(*ro)); 400 } 401 ro_pmtu = ro; 402 if (opt && opt->ip6po_rthdr) 403 ro = &opt->ip6po_route; 404 dst = &ro->ro_dst; 405 406 /* 407 * if specified, try to fill in the traffic class field. 408 * do not override if a non-zero value is already set. 409 * we check the diffserv field and the ecn field separately. 410 */ 411 if (opt && opt->ip6po_tclass >= 0) { 412 int mask = 0; 413 414 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 415 mask |= 0xfc; 416 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 417 mask |= 0x03; 418 if (mask != 0) 419 ip6->ip6_flow |= 420 htonl((opt->ip6po_tclass & mask) << 20); 421 } 422 423 /* fill in or override the hop limit field, if necessary. */ 424 if (opt && opt->ip6po_hlim != -1) 425 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 426 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 427 if (im6o != NULL) 428 ip6->ip6_hlim = im6o->im6o_hlim; 429 else 430 ip6->ip6_hlim = ip6_defmcasthlim; 431 } 432 433 #ifdef IPSEC 434 if (tdb != NULL) { 435 /* 436 * XXX what should we do if ip6_hlim == 0 and the 437 * packet gets tunneled? 438 */ 439 /* 440 * if we are source-routing, do not attempt to tunnel the 441 * packet just because ip6_dst is different from what tdb has. 442 * XXX 443 */ 444 error = ip6_output_ipsec_send(tdb, m, ro, 445 exthdrs.ip6e_rthdr ? 1 : 0, 0); 446 goto done; 447 } 448 #endif /* IPSEC */ 449 450 bzero(&dstsock, sizeof(dstsock)); 451 dstsock.sin6_family = AF_INET6; 452 dstsock.sin6_addr = ip6->ip6_dst; 453 dstsock.sin6_len = sizeof(dstsock); 454 ro->ro_tableid = m->m_pkthdr.ph_rtableid; 455 456 if (IN6_IS_ADDR_MULTICAST(&dstsock.sin6_addr)) { 457 struct in6_pktinfo *pi = NULL; 458 459 /* 460 * If the caller specify the outgoing interface 461 * explicitly, use it. 462 */ 463 if (opt != NULL && (pi = opt->ip6po_pktinfo) != NULL) 464 ifp = if_get(pi->ipi6_ifindex); 465 466 if (ifp == NULL && im6o != NULL) 467 ifp = if_get(im6o->im6o_ifidx); 468 } 469 470 if (ifp == NULL) { 471 rt = in6_selectroute(&dstsock, opt, ro, ro->ro_tableid); 472 if (rt == NULL) { 473 ip6stat_inc(ip6s_noroute); 474 error = EHOSTUNREACH; 475 goto bad; 476 } 477 if (ISSET(rt->rt_flags, RTF_LOCAL)) 478 ifp = if_get(rtable_loindex(m->m_pkthdr.ph_rtableid)); 479 else 480 ifp = if_get(rt->rt_ifidx); 481 /* 482 * We aren't using rtisvalid() here because the UP/DOWN state 483 * machine is broken with some Ethernet drivers like em(4). 484 * As a result we might try to use an invalid cached route 485 * entry while an interface is being detached. 486 */ 487 if (ifp == NULL) { 488 ip6stat_inc(ip6s_noroute); 489 error = EHOSTUNREACH; 490 goto bad; 491 } 492 } else { 493 *dst = dstsock; 494 } 495 496 if (rt && (rt->rt_flags & RTF_GATEWAY) && 497 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 498 dst = satosin6(rt->rt_gateway); 499 500 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 501 /* Unicast */ 502 503 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 504 } else { 505 /* Multicast */ 506 507 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 508 509 /* 510 * Confirm that the outgoing interface supports multicast. 511 */ 512 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 513 ip6stat_inc(ip6s_noroute); 514 error = ENETUNREACH; 515 goto bad; 516 } 517 518 if ((im6o == NULL || im6o->im6o_loop) && 519 in6_hasmulti(&ip6->ip6_dst, ifp)) { 520 /* 521 * If we belong to the destination multicast group 522 * on the outgoing interface, and the caller did not 523 * forbid loopback, loop back a copy. 524 * Can't defer TCP/UDP checksumming, do the 525 * computation now. 526 */ 527 in6_proto_cksum_out(m, NULL); 528 ip6_mloopback(ifp, m, dst); 529 } 530 #ifdef MROUTING 531 else { 532 /* 533 * If we are acting as a multicast router, perform 534 * multicast forwarding as if the packet had just 535 * arrived on the interface to which we are about 536 * to send. The multicast forwarding function 537 * recursively calls this function, using the 538 * IPV6_FORWARDING flag to prevent infinite recursion. 539 * 540 * Multicasts that are looped back by ip6_mloopback(), 541 * above, will be forwarded by the ip6_input() routine, 542 * if necessary. 543 */ 544 if (ip6_mforwarding && ip6_mrouter[ifp->if_rdomain] && 545 (flags & IPV6_FORWARDING) == 0) { 546 if (ip6_mforward(ip6, ifp, m) != 0) { 547 m_freem(m); 548 goto done; 549 } 550 } 551 } 552 #endif 553 /* 554 * Multicasts with a hoplimit of zero may be looped back, 555 * above, but must not be transmitted on a network. 556 * Also, multicasts addressed to the loopback interface 557 * are not sent -- the above call to ip6_mloopback() will 558 * loop back a copy if this host actually belongs to the 559 * destination group on the loopback interface. 560 */ 561 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 562 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 563 m_freem(m); 564 goto done; 565 } 566 } 567 568 /* 569 * If this packet is going through a loopback interface we won't 570 * be able to restore its scope ID using the interface index. 571 */ 572 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { 573 if (ifp->if_flags & IFF_LOOPBACK) 574 src_scope = ip6->ip6_src.s6_addr16[1]; 575 ip6->ip6_src.s6_addr16[1] = 0; 576 } 577 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { 578 if (ifp->if_flags & IFF_LOOPBACK) 579 dst_scope = ip6->ip6_dst.s6_addr16[1]; 580 ip6->ip6_dst.s6_addr16[1] = 0; 581 } 582 583 /* Determine path MTU. */ 584 if ((error = ip6_getpmtu(ro_pmtu->ro_rt, ifp, &mtu)) != 0) 585 goto bad; 586 587 /* 588 * The caller of this function may specify to use the minimum MTU 589 * in some cases. 590 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 591 * setting. The logic is a bit complicated; by default, unicast 592 * packets will follow path MTU while multicast packets will be sent at 593 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 594 * including unicast ones will be sent at the minimum MTU. Multicast 595 * packets will always be sent at the minimum MTU unless 596 * IP6PO_MINMTU_DISABLE is explicitly specified. 597 * See RFC 3542 for more details. 598 */ 599 if (mtu > IPV6_MMTU) { 600 if ((flags & IPV6_MINMTU)) 601 mtu = IPV6_MMTU; 602 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 603 mtu = IPV6_MMTU; 604 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && (opt == NULL || 605 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 606 mtu = IPV6_MMTU; 607 } 608 } 609 610 /* 611 * If the outgoing packet contains a hop-by-hop options header, 612 * it must be examined and processed even by the source node. 613 * (RFC 2460, section 4.) 614 */ 615 if (exthdrs.ip6e_hbh) { 616 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 617 u_int32_t rtalert; /* returned value is ignored */ 618 u_int32_t plen = 0; /* no more than 1 jumbo payload option! */ 619 620 m->m_pkthdr.ph_ifidx = ifp->if_index; 621 if (ip6_process_hopopts(&m, (u_int8_t *)(hbh + 1), 622 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 623 &rtalert, &plen) < 0) { 624 /* m was already freed at this point */ 625 error = EINVAL;/* better error? */ 626 goto done; 627 } 628 m->m_pkthdr.ph_ifidx = 0; 629 } 630 631 #if NPF > 0 632 if (pf_test(AF_INET6, PF_OUT, ifp, &m) != PF_PASS) { 633 error = EACCES; 634 m_freem(m); 635 goto done; 636 } 637 if (m == NULL) 638 goto done; 639 ip6 = mtod(m, struct ip6_hdr *); 640 if ((m->m_pkthdr.pf.flags & (PF_TAG_REROUTE | PF_TAG_GENERATED)) == 641 (PF_TAG_REROUTE | PF_TAG_GENERATED)) { 642 /* already rerun the route lookup, go on */ 643 m->m_pkthdr.pf.flags &= ~(PF_TAG_GENERATED | PF_TAG_REROUTE); 644 } else if (m->m_pkthdr.pf.flags & PF_TAG_REROUTE) { 645 /* tag as generated to skip over pf_test on rerun */ 646 m->m_pkthdr.pf.flags |= PF_TAG_GENERATED; 647 finaldst = ip6->ip6_dst; 648 ro = NULL; 649 if_put(ifp); /* drop reference since destination changed */ 650 ifp = NULL; 651 goto reroute; 652 } 653 #endif 654 655 /* 656 * If the packet is not going on the wire it can be destined 657 * to any local address. In this case do not clear its scopes 658 * to let ip6_input() find a matching local route. 659 */ 660 if (ifp->if_flags & IFF_LOOPBACK) { 661 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 662 ip6->ip6_src.s6_addr16[1] = src_scope; 663 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 664 ip6->ip6_dst.s6_addr16[1] = dst_scope; 665 } 666 667 /* 668 * Send the packet to the outgoing interface. 669 * If necessary, do IPv6 fragmentation before sending. 670 * 671 * the logic here is rather complex: 672 * 1: normal case (dontfrag == 0) 673 * 1-a: send as is if tlen <= path mtu 674 * 1-b: fragment if tlen > path mtu 675 * 676 * 2: if user asks us not to fragment (dontfrag == 1) 677 * 2-a: send as is if tlen <= interface mtu 678 * 2-b: error if tlen > interface mtu 679 */ 680 tlen = ISSET(m->m_pkthdr.csum_flags, M_TCP_TSO) ? 681 m->m_pkthdr.ph_mss : m->m_pkthdr.len; 682 683 if (ISSET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT)) { 684 CLR(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT); 685 dontfrag = 1; 686 } else if (opt && ISSET(opt->ip6po_flags, IP6PO_DONTFRAG)) 687 dontfrag = 1; 688 else 689 dontfrag = 0; 690 691 if (dontfrag && tlen > ifp->if_mtu) { /* case 2-b */ 692 #ifdef IPSEC 693 if (ip_mtudisc) 694 ipsec_adjust_mtu(m, mtu); 695 #endif 696 error = EMSGSIZE; 697 goto bad; 698 } 699 700 /* 701 * transmit packet without fragmentation 702 */ 703 if (dontfrag || tlen <= mtu) { /* case 1-a and 2-a */ 704 error = if_output_tso(ifp, &m, sin6tosa(dst), ro->ro_rt, 705 ifp->if_mtu); 706 if (error || m == NULL) 707 goto done; 708 goto bad; /* should not happen */ 709 } 710 711 /* 712 * try to fragment the packet. case 1-b 713 */ 714 if (mtu < IPV6_MMTU) { 715 /* path MTU cannot be less than IPV6_MMTU */ 716 error = EMSGSIZE; 717 goto bad; 718 } else if (ip6->ip6_plen == 0) { 719 /* jumbo payload cannot be fragmented */ 720 error = EMSGSIZE; 721 goto bad; 722 } 723 724 /* 725 * Too large for the destination or interface; 726 * fragment if possible. 727 * Must be able to put at least 8 bytes per fragment. 728 */ 729 hlen = unfragpartlen; 730 if (mtu > IPV6_MAXPACKET) 731 mtu = IPV6_MAXPACKET; 732 733 /* 734 * If we are doing fragmentation, we can't defer TCP/UDP 735 * checksumming; compute the checksum and clear the flag. 736 */ 737 in6_proto_cksum_out(m, NULL); 738 739 /* 740 * Change the next header field of the last header in the 741 * unfragmentable part. 742 */ 743 if (exthdrs.ip6e_rthdr) { 744 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 745 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 746 } else if (exthdrs.ip6e_dest1) { 747 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 748 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 749 } else if (exthdrs.ip6e_hbh) { 750 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 751 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 752 } else { 753 nextproto = ip6->ip6_nxt; 754 ip6->ip6_nxt = IPPROTO_FRAGMENT; 755 } 756 757 if ((error = ip6_fragment(m, &ml, hlen, nextproto, mtu)) || 758 (error = if_output_ml(ifp, &ml, sin6tosa(dst), ro->ro_rt))) 759 goto done; 760 ip6stat_inc(ip6s_fragmented); 761 762 done: 763 if (ro == &ip6route && ro->ro_rt) { 764 rtfree(ro->ro_rt); 765 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 766 rtfree(ro_pmtu->ro_rt); 767 } 768 if_put(ifp); 769 #ifdef IPSEC 770 tdb_unref(tdb); 771 #endif /* IPSEC */ 772 return (error); 773 774 freehdrs: 775 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 776 m_freem(exthdrs.ip6e_dest1); 777 m_freem(exthdrs.ip6e_rthdr); 778 m_freem(exthdrs.ip6e_dest2); 779 /* FALLTHROUGH */ 780 bad: 781 m_freem(m); 782 goto done; 783 } 784 785 int 786 ip6_fragment(struct mbuf *m0, struct mbuf_list *ml, int hlen, u_char nextproto, 787 u_long mtu) 788 { 789 struct ip6_hdr *ip6; 790 u_int32_t id; 791 int tlen, len, off; 792 int error; 793 794 ml_init(ml); 795 796 ip6 = mtod(m0, struct ip6_hdr *); 797 tlen = m0->m_pkthdr.len; 798 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 799 if (len < 8) { 800 error = EMSGSIZE; 801 goto bad; 802 } 803 id = htonl(ip6_randomid()); 804 805 /* 806 * Loop through length of payload, 807 * make new header and copy data of each part and link onto chain. 808 */ 809 for (off = hlen; off < tlen; off += len) { 810 struct mbuf *m; 811 struct mbuf *mlast; 812 struct ip6_hdr *mhip6; 813 struct ip6_frag *ip6f; 814 815 MGETHDR(m, M_DONTWAIT, MT_HEADER); 816 if (m == NULL) { 817 error = ENOBUFS; 818 goto bad; 819 } 820 ml_enqueue(ml, m); 821 if ((error = m_dup_pkthdr(m, m0, M_DONTWAIT)) != 0) 822 goto bad; 823 m->m_data += max_linkhdr; 824 mhip6 = mtod(m, struct ip6_hdr *); 825 *mhip6 = *ip6; 826 m->m_len = sizeof(struct ip6_hdr); 827 828 if ((error = ip6_insertfraghdr(m0, m, hlen, &ip6f)) != 0) 829 goto bad; 830 ip6f->ip6f_offlg = htons((off - hlen) & ~7); 831 if (off + len >= tlen) 832 len = tlen - off; 833 else 834 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 835 836 m->m_pkthdr.len = hlen + sizeof(struct ip6_frag) + len; 837 mhip6->ip6_plen = htons(m->m_pkthdr.len - 838 sizeof(struct ip6_hdr)); 839 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 840 ; 841 mlast->m_next = m_copym(m0, off, len, M_DONTWAIT); 842 if (mlast->m_next == NULL) { 843 error = ENOBUFS; 844 goto bad; 845 } 846 847 ip6f->ip6f_reserved = 0; 848 ip6f->ip6f_ident = id; 849 ip6f->ip6f_nxt = nextproto; 850 } 851 852 ip6stat_add(ip6s_ofragments, ml_len(ml)); 853 m_freem(m0); 854 return (0); 855 856 bad: 857 ip6stat_inc(ip6s_odropped); 858 ml_purge(ml); 859 m_freem(m0); 860 return (error); 861 } 862 863 int 864 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 865 { 866 struct mbuf *m; 867 868 if (hlen > MCLBYTES) 869 return (ENOBUFS); /* XXX */ 870 871 MGET(m, M_DONTWAIT, MT_DATA); 872 if (!m) 873 return (ENOBUFS); 874 875 if (hlen > MLEN) { 876 MCLGET(m, M_DONTWAIT); 877 if ((m->m_flags & M_EXT) == 0) { 878 m_free(m); 879 return (ENOBUFS); 880 } 881 } 882 m->m_len = hlen; 883 if (hdr) 884 memcpy(mtod(m, caddr_t), hdr, hlen); 885 886 *mp = m; 887 return (0); 888 } 889 890 /* 891 * Insert jumbo payload option. 892 */ 893 int 894 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 895 { 896 struct mbuf *mopt; 897 u_int8_t *optbuf; 898 u_int32_t v; 899 900 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 901 902 /* 903 * If there is no hop-by-hop options header, allocate new one. 904 * If there is one but it doesn't have enough space to store the 905 * jumbo payload option, allocate a cluster to store the whole options. 906 * Otherwise, use it to store the options. 907 */ 908 if (exthdrs->ip6e_hbh == 0) { 909 MGET(mopt, M_DONTWAIT, MT_DATA); 910 if (mopt == NULL) 911 return (ENOBUFS); 912 mopt->m_len = JUMBOOPTLEN; 913 optbuf = mtod(mopt, u_int8_t *); 914 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 915 exthdrs->ip6e_hbh = mopt; 916 } else { 917 struct ip6_hbh *hbh; 918 919 mopt = exthdrs->ip6e_hbh; 920 if (m_trailingspace(mopt) < JUMBOOPTLEN) { 921 /* 922 * XXX assumption: 923 * - exthdrs->ip6e_hbh is not referenced from places 924 * other than exthdrs. 925 * - exthdrs->ip6e_hbh is not an mbuf chain. 926 */ 927 int oldoptlen = mopt->m_len; 928 struct mbuf *n; 929 930 /* 931 * XXX: give up if the whole (new) hbh header does 932 * not fit even in an mbuf cluster. 933 */ 934 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 935 return (ENOBUFS); 936 937 /* 938 * As a consequence, we must always prepare a cluster 939 * at this point. 940 */ 941 MGET(n, M_DONTWAIT, MT_DATA); 942 if (n) { 943 MCLGET(n, M_DONTWAIT); 944 if ((n->m_flags & M_EXT) == 0) { 945 m_freem(n); 946 n = NULL; 947 } 948 } 949 if (!n) 950 return (ENOBUFS); 951 n->m_len = oldoptlen + JUMBOOPTLEN; 952 memcpy(mtod(n, caddr_t), mtod(mopt, caddr_t), 953 oldoptlen); 954 optbuf = mtod(n, u_int8_t *) + oldoptlen; 955 m_freem(mopt); 956 mopt = exthdrs->ip6e_hbh = n; 957 } else { 958 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 959 mopt->m_len += JUMBOOPTLEN; 960 } 961 optbuf[0] = IP6OPT_PADN; 962 optbuf[1] = 0; 963 964 /* 965 * Adjust the header length according to the pad and 966 * the jumbo payload option. 967 */ 968 hbh = mtod(mopt, struct ip6_hbh *); 969 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 970 } 971 972 /* fill in the option. */ 973 optbuf[2] = IP6OPT_JUMBO; 974 optbuf[3] = 4; 975 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 976 memcpy(&optbuf[4], &v, sizeof(u_int32_t)); 977 978 /* finally, adjust the packet header length */ 979 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 980 981 return (0); 982 #undef JUMBOOPTLEN 983 } 984 985 /* 986 * Insert fragment header and copy unfragmentable header portions. 987 */ 988 int 989 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 990 struct ip6_frag **frghdrp) 991 { 992 struct mbuf *n, *mlast; 993 994 if (hlen > sizeof(struct ip6_hdr)) { 995 n = m_copym(m0, sizeof(struct ip6_hdr), 996 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 997 if (n == NULL) 998 return (ENOBUFS); 999 m->m_next = n; 1000 } else 1001 n = m; 1002 1003 /* Search for the last mbuf of unfragmentable part. */ 1004 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1005 ; 1006 1007 if ((mlast->m_flags & M_EXT) == 0 && 1008 m_trailingspace(mlast) >= sizeof(struct ip6_frag)) { 1009 /* use the trailing space of the last mbuf for fragment hdr */ 1010 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1011 mlast->m_len); 1012 mlast->m_len += sizeof(struct ip6_frag); 1013 m->m_pkthdr.len += sizeof(struct ip6_frag); 1014 } else { 1015 /* allocate a new mbuf for the fragment header */ 1016 struct mbuf *mfrg; 1017 1018 MGET(mfrg, M_DONTWAIT, MT_DATA); 1019 if (mfrg == NULL) 1020 return (ENOBUFS); 1021 mfrg->m_len = sizeof(struct ip6_frag); 1022 *frghdrp = mtod(mfrg, struct ip6_frag *); 1023 mlast->m_next = mfrg; 1024 } 1025 1026 return (0); 1027 } 1028 1029 int 1030 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup) 1031 { 1032 u_int32_t mtu = 0; 1033 int error = 0; 1034 1035 if (rt != NULL) { 1036 mtu = rt->rt_mtu; 1037 if (mtu == 0) 1038 mtu = ifp->if_mtu; 1039 else if (mtu < IPV6_MMTU) { 1040 /* RFC8021 IPv6 Atomic Fragments Considered Harmful */ 1041 mtu = IPV6_MMTU; 1042 } else if (mtu > ifp->if_mtu) { 1043 /* 1044 * The MTU on the route is larger than the MTU on 1045 * the interface! This shouldn't happen, unless the 1046 * MTU of the interface has been changed after the 1047 * interface was brought up. Change the MTU in the 1048 * route to match the interface MTU (as long as the 1049 * field isn't locked). 1050 */ 1051 mtu = ifp->if_mtu; 1052 if (!(rt->rt_locks & RTV_MTU)) 1053 rt->rt_mtu = mtu; 1054 } 1055 } else { 1056 mtu = ifp->if_mtu; 1057 } 1058 1059 *mtup = mtu; 1060 return (error); 1061 } 1062 1063 /* 1064 * IP6 socket option processing. 1065 */ 1066 int 1067 ip6_ctloutput(int op, struct socket *so, int level, int optname, 1068 struct mbuf *m) 1069 { 1070 int privileged, optdatalen, uproto; 1071 void *optdata; 1072 struct inpcb *inp = sotoinpcb(so); 1073 int error, optval; 1074 struct proc *p = curproc; /* For IPsec and rdomain */ 1075 u_int rtableid, rtid = 0; 1076 1077 error = optval = 0; 1078 1079 privileged = (inp->inp_socket->so_state & SS_PRIV); 1080 uproto = (int)so->so_proto->pr_protocol; 1081 1082 if (level != IPPROTO_IPV6) 1083 return (EINVAL); 1084 1085 rtableid = p->p_p->ps_rtableid; 1086 1087 switch (op) { 1088 case PRCO_SETOPT: 1089 switch (optname) { 1090 /* 1091 * Use of some Hop-by-Hop options or some 1092 * Destination options, might require special 1093 * privilege. That is, normal applications 1094 * (without special privilege) might be forbidden 1095 * from setting certain options in outgoing packets, 1096 * and might never see certain options in received 1097 * packets. [RFC 2292 Section 6] 1098 * KAME specific note: 1099 * KAME prevents non-privileged users from sending or 1100 * receiving ANY hbh/dst options in order to avoid 1101 * overhead of parsing options in the kernel. 1102 */ 1103 case IPV6_RECVHOPOPTS: 1104 case IPV6_RECVDSTOPTS: 1105 if (!privileged) { 1106 error = EPERM; 1107 break; 1108 } 1109 /* FALLTHROUGH */ 1110 case IPV6_UNICAST_HOPS: 1111 case IPV6_MINHOPCOUNT: 1112 case IPV6_HOPLIMIT: 1113 1114 case IPV6_RECVPKTINFO: 1115 case IPV6_RECVHOPLIMIT: 1116 case IPV6_RECVRTHDR: 1117 case IPV6_RECVPATHMTU: 1118 case IPV6_RECVTCLASS: 1119 case IPV6_V6ONLY: 1120 case IPV6_AUTOFLOWLABEL: 1121 case IPV6_RECVDSTPORT: 1122 if (m == NULL || m->m_len != sizeof(int)) { 1123 error = EINVAL; 1124 break; 1125 } 1126 optval = *mtod(m, int *); 1127 switch (optname) { 1128 1129 case IPV6_UNICAST_HOPS: 1130 if (optval < -1 || optval >= 256) 1131 error = EINVAL; 1132 else { 1133 /* -1 = kernel default */ 1134 inp->inp_hops = optval; 1135 } 1136 break; 1137 1138 case IPV6_MINHOPCOUNT: 1139 if (optval < 0 || optval > 255) 1140 error = EINVAL; 1141 else 1142 inp->inp_ip6_minhlim = optval; 1143 break; 1144 1145 #define OPTSET(bit) \ 1146 do { \ 1147 if (optval) \ 1148 inp->inp_flags |= (bit); \ 1149 else \ 1150 inp->inp_flags &= ~(bit); \ 1151 } while (/*CONSTCOND*/ 0) 1152 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1153 1154 case IPV6_RECVPKTINFO: 1155 OPTSET(IN6P_PKTINFO); 1156 break; 1157 1158 case IPV6_HOPLIMIT: 1159 { 1160 struct ip6_pktopts **optp; 1161 1162 optp = &inp->inp_outputopts6; 1163 error = ip6_pcbopt(IPV6_HOPLIMIT, 1164 (u_char *)&optval, sizeof(optval), optp, 1165 privileged, uproto); 1166 break; 1167 } 1168 1169 case IPV6_RECVHOPLIMIT: 1170 OPTSET(IN6P_HOPLIMIT); 1171 break; 1172 1173 case IPV6_RECVHOPOPTS: 1174 OPTSET(IN6P_HOPOPTS); 1175 break; 1176 1177 case IPV6_RECVDSTOPTS: 1178 OPTSET(IN6P_DSTOPTS); 1179 break; 1180 1181 case IPV6_RECVRTHDR: 1182 OPTSET(IN6P_RTHDR); 1183 break; 1184 1185 case IPV6_RECVPATHMTU: 1186 /* 1187 * We ignore this option for TCP 1188 * sockets. 1189 * (RFC3542 leaves this case 1190 * unspecified.) 1191 */ 1192 if (uproto != IPPROTO_TCP) 1193 OPTSET(IN6P_MTU); 1194 break; 1195 1196 case IPV6_V6ONLY: 1197 /* 1198 * make setsockopt(IPV6_V6ONLY) 1199 * available only prior to bind(2). 1200 * see ipng mailing list, Jun 22 2001. 1201 */ 1202 if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED( 1203 &inp->inp_laddr6)) { 1204 error = EINVAL; 1205 break; 1206 } 1207 /* No support for IPv4-mapped addresses. */ 1208 if (!optval) 1209 error = EINVAL; 1210 else 1211 error = 0; 1212 break; 1213 case IPV6_RECVTCLASS: 1214 OPTSET(IN6P_TCLASS); 1215 break; 1216 case IPV6_AUTOFLOWLABEL: 1217 OPTSET(IN6P_AUTOFLOWLABEL); 1218 break; 1219 1220 case IPV6_RECVDSTPORT: 1221 OPTSET(IN6P_RECVDSTPORT); 1222 break; 1223 } 1224 break; 1225 1226 case IPV6_TCLASS: 1227 case IPV6_DONTFRAG: 1228 case IPV6_USE_MIN_MTU: 1229 if (m == NULL || m->m_len != sizeof(optval)) { 1230 error = EINVAL; 1231 break; 1232 } 1233 optval = *mtod(m, int *); 1234 { 1235 struct ip6_pktopts **optp; 1236 optp = &inp->inp_outputopts6; 1237 error = ip6_pcbopt(optname, (u_char *)&optval, 1238 sizeof(optval), optp, privileged, uproto); 1239 break; 1240 } 1241 1242 case IPV6_PKTINFO: 1243 case IPV6_HOPOPTS: 1244 case IPV6_RTHDR: 1245 case IPV6_DSTOPTS: 1246 case IPV6_RTHDRDSTOPTS: 1247 { 1248 /* new advanced API (RFC3542) */ 1249 u_char *optbuf; 1250 int optbuflen; 1251 struct ip6_pktopts **optp; 1252 1253 if (m && m->m_next) { 1254 error = EINVAL; /* XXX */ 1255 break; 1256 } 1257 if (m) { 1258 optbuf = mtod(m, u_char *); 1259 optbuflen = m->m_len; 1260 } else { 1261 optbuf = NULL; 1262 optbuflen = 0; 1263 } 1264 optp = &inp->inp_outputopts6; 1265 error = ip6_pcbopt(optname, optbuf, optbuflen, optp, 1266 privileged, uproto); 1267 break; 1268 } 1269 #undef OPTSET 1270 1271 case IPV6_MULTICAST_IF: 1272 case IPV6_MULTICAST_HOPS: 1273 case IPV6_MULTICAST_LOOP: 1274 case IPV6_JOIN_GROUP: 1275 case IPV6_LEAVE_GROUP: 1276 error = ip6_setmoptions(optname, 1277 &inp->inp_moptions6, 1278 m, inp->inp_rtableid); 1279 break; 1280 1281 case IPV6_PORTRANGE: 1282 if (m == NULL || m->m_len != sizeof(int)) { 1283 error = EINVAL; 1284 break; 1285 } 1286 optval = *mtod(m, int *); 1287 1288 switch (optval) { 1289 case IPV6_PORTRANGE_DEFAULT: 1290 inp->inp_flags &= ~(IN6P_LOWPORT); 1291 inp->inp_flags &= ~(IN6P_HIGHPORT); 1292 break; 1293 1294 case IPV6_PORTRANGE_HIGH: 1295 inp->inp_flags &= ~(IN6P_LOWPORT); 1296 inp->inp_flags |= IN6P_HIGHPORT; 1297 break; 1298 1299 case IPV6_PORTRANGE_LOW: 1300 inp->inp_flags &= ~(IN6P_HIGHPORT); 1301 inp->inp_flags |= IN6P_LOWPORT; 1302 break; 1303 1304 default: 1305 error = EINVAL; 1306 break; 1307 } 1308 break; 1309 1310 case IPSEC6_OUTSA: 1311 error = EINVAL; 1312 break; 1313 1314 case IPV6_AUTH_LEVEL: 1315 case IPV6_ESP_TRANS_LEVEL: 1316 case IPV6_ESP_NETWORK_LEVEL: 1317 case IPV6_IPCOMP_LEVEL: 1318 #ifndef IPSEC 1319 error = EINVAL; 1320 #else 1321 if (m == NULL || m->m_len != sizeof(int)) { 1322 error = EINVAL; 1323 break; 1324 } 1325 optval = *mtod(m, int *); 1326 1327 if (optval < IPSEC_LEVEL_BYPASS || 1328 optval > IPSEC_LEVEL_UNIQUE) { 1329 error = EINVAL; 1330 break; 1331 } 1332 1333 switch (optname) { 1334 case IPV6_AUTH_LEVEL: 1335 if (optval < IPSEC_AUTH_LEVEL_DEFAULT && 1336 suser(p)) { 1337 error = EACCES; 1338 break; 1339 } 1340 inp->inp_seclevel[SL_AUTH] = optval; 1341 break; 1342 1343 case IPV6_ESP_TRANS_LEVEL: 1344 if (optval < IPSEC_ESP_TRANS_LEVEL_DEFAULT && 1345 suser(p)) { 1346 error = EACCES; 1347 break; 1348 } 1349 inp->inp_seclevel[SL_ESP_TRANS] = optval; 1350 break; 1351 1352 case IPV6_ESP_NETWORK_LEVEL: 1353 if (optval < IPSEC_ESP_NETWORK_LEVEL_DEFAULT && 1354 suser(p)) { 1355 error = EACCES; 1356 break; 1357 } 1358 inp->inp_seclevel[SL_ESP_NETWORK] = optval; 1359 break; 1360 1361 case IPV6_IPCOMP_LEVEL: 1362 if (optval < IPSEC_IPCOMP_LEVEL_DEFAULT && 1363 suser(p)) { 1364 error = EACCES; 1365 break; 1366 } 1367 inp->inp_seclevel[SL_IPCOMP] = optval; 1368 break; 1369 } 1370 #endif 1371 break; 1372 case SO_RTABLE: 1373 if (m == NULL || m->m_len < sizeof(u_int)) { 1374 error = EINVAL; 1375 break; 1376 } 1377 rtid = *mtod(m, u_int *); 1378 if (inp->inp_rtableid == rtid) 1379 break; 1380 /* needs privileges to switch when already set */ 1381 if (rtableid != rtid && rtableid != 0 && 1382 (error = suser(p)) != 0) 1383 break; 1384 /* table must exist */ 1385 if (!rtable_exists(rtid)) { 1386 error = EINVAL; 1387 break; 1388 } 1389 if (inp->inp_lport) { 1390 error = EBUSY; 1391 break; 1392 } 1393 inp->inp_rtableid = rtid; 1394 in_pcbrehash(inp); 1395 break; 1396 case IPV6_PIPEX: 1397 if (m != NULL && m->m_len == sizeof(int)) 1398 inp->inp_pipex = *mtod(m, int *); 1399 else 1400 error = EINVAL; 1401 break; 1402 1403 default: 1404 error = ENOPROTOOPT; 1405 break; 1406 } 1407 break; 1408 1409 case PRCO_GETOPT: 1410 switch (optname) { 1411 1412 case IPV6_RECVHOPOPTS: 1413 case IPV6_RECVDSTOPTS: 1414 case IPV6_UNICAST_HOPS: 1415 case IPV6_MINHOPCOUNT: 1416 case IPV6_RECVPKTINFO: 1417 case IPV6_RECVHOPLIMIT: 1418 case IPV6_RECVRTHDR: 1419 case IPV6_RECVPATHMTU: 1420 1421 case IPV6_V6ONLY: 1422 case IPV6_PORTRANGE: 1423 case IPV6_RECVTCLASS: 1424 case IPV6_AUTOFLOWLABEL: 1425 case IPV6_RECVDSTPORT: 1426 switch (optname) { 1427 1428 case IPV6_RECVHOPOPTS: 1429 optval = OPTBIT(IN6P_HOPOPTS); 1430 break; 1431 1432 case IPV6_RECVDSTOPTS: 1433 optval = OPTBIT(IN6P_DSTOPTS); 1434 break; 1435 1436 case IPV6_UNICAST_HOPS: 1437 optval = inp->inp_hops; 1438 break; 1439 1440 case IPV6_MINHOPCOUNT: 1441 optval = inp->inp_ip6_minhlim; 1442 break; 1443 1444 case IPV6_RECVPKTINFO: 1445 optval = OPTBIT(IN6P_PKTINFO); 1446 break; 1447 1448 case IPV6_RECVHOPLIMIT: 1449 optval = OPTBIT(IN6P_HOPLIMIT); 1450 break; 1451 1452 case IPV6_RECVRTHDR: 1453 optval = OPTBIT(IN6P_RTHDR); 1454 break; 1455 1456 case IPV6_RECVPATHMTU: 1457 optval = OPTBIT(IN6P_MTU); 1458 break; 1459 1460 case IPV6_V6ONLY: 1461 optval = 1; 1462 break; 1463 1464 case IPV6_PORTRANGE: 1465 { 1466 int flags; 1467 flags = inp->inp_flags; 1468 if (flags & IN6P_HIGHPORT) 1469 optval = IPV6_PORTRANGE_HIGH; 1470 else if (flags & IN6P_LOWPORT) 1471 optval = IPV6_PORTRANGE_LOW; 1472 else 1473 optval = 0; 1474 break; 1475 } 1476 case IPV6_RECVTCLASS: 1477 optval = OPTBIT(IN6P_TCLASS); 1478 break; 1479 1480 case IPV6_AUTOFLOWLABEL: 1481 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1482 break; 1483 1484 case IPV6_RECVDSTPORT: 1485 optval = OPTBIT(IN6P_RECVDSTPORT); 1486 break; 1487 } 1488 if (error) 1489 break; 1490 m->m_len = sizeof(int); 1491 *mtod(m, int *) = optval; 1492 break; 1493 1494 case IPV6_PATHMTU: 1495 { 1496 u_long pmtu = 0; 1497 struct ip6_mtuinfo mtuinfo; 1498 struct ifnet *ifp; 1499 struct rtentry *rt; 1500 1501 if (!(so->so_state & SS_ISCONNECTED)) 1502 return (ENOTCONN); 1503 1504 rt = in_pcbrtentry(inp); 1505 if (!rtisvalid(rt)) 1506 return (EHOSTUNREACH); 1507 1508 ifp = if_get(rt->rt_ifidx); 1509 if (ifp == NULL) 1510 return (EHOSTUNREACH); 1511 /* 1512 * XXX: we dot not consider the case of source 1513 * routing, or optional information to specify 1514 * the outgoing interface. 1515 */ 1516 error = ip6_getpmtu(rt, ifp, &pmtu); 1517 if_put(ifp); 1518 if (error) 1519 break; 1520 if (pmtu > IPV6_MAXPACKET) 1521 pmtu = IPV6_MAXPACKET; 1522 1523 bzero(&mtuinfo, sizeof(mtuinfo)); 1524 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1525 optdata = (void *)&mtuinfo; 1526 optdatalen = sizeof(mtuinfo); 1527 if (optdatalen > MCLBYTES) 1528 return (EMSGSIZE); /* XXX */ 1529 if (optdatalen > MLEN) 1530 MCLGET(m, M_WAIT); 1531 m->m_len = optdatalen; 1532 bcopy(optdata, mtod(m, void *), optdatalen); 1533 break; 1534 } 1535 1536 case IPV6_PKTINFO: 1537 case IPV6_HOPOPTS: 1538 case IPV6_RTHDR: 1539 case IPV6_DSTOPTS: 1540 case IPV6_RTHDRDSTOPTS: 1541 case IPV6_TCLASS: 1542 case IPV6_DONTFRAG: 1543 case IPV6_USE_MIN_MTU: 1544 error = ip6_getpcbopt(inp->inp_outputopts6, 1545 optname, m); 1546 break; 1547 1548 case IPV6_MULTICAST_IF: 1549 case IPV6_MULTICAST_HOPS: 1550 case IPV6_MULTICAST_LOOP: 1551 case IPV6_JOIN_GROUP: 1552 case IPV6_LEAVE_GROUP: 1553 error = ip6_getmoptions(optname, 1554 inp->inp_moptions6, m); 1555 break; 1556 1557 case IPSEC6_OUTSA: 1558 error = EINVAL; 1559 break; 1560 1561 case IPV6_AUTH_LEVEL: 1562 case IPV6_ESP_TRANS_LEVEL: 1563 case IPV6_ESP_NETWORK_LEVEL: 1564 case IPV6_IPCOMP_LEVEL: 1565 #ifndef IPSEC 1566 m->m_len = sizeof(int); 1567 *mtod(m, int *) = IPSEC_LEVEL_NONE; 1568 #else 1569 m->m_len = sizeof(int); 1570 switch (optname) { 1571 case IPV6_AUTH_LEVEL: 1572 optval = inp->inp_seclevel[SL_AUTH]; 1573 break; 1574 1575 case IPV6_ESP_TRANS_LEVEL: 1576 optval = 1577 inp->inp_seclevel[SL_ESP_TRANS]; 1578 break; 1579 1580 case IPV6_ESP_NETWORK_LEVEL: 1581 optval = 1582 inp->inp_seclevel[SL_ESP_NETWORK]; 1583 break; 1584 1585 case IPV6_IPCOMP_LEVEL: 1586 optval = inp->inp_seclevel[SL_IPCOMP]; 1587 break; 1588 } 1589 *mtod(m, int *) = optval; 1590 #endif 1591 break; 1592 case SO_RTABLE: 1593 m->m_len = sizeof(u_int); 1594 *mtod(m, u_int *) = inp->inp_rtableid; 1595 break; 1596 case IPV6_PIPEX: 1597 m->m_len = sizeof(int); 1598 *mtod(m, int *) = inp->inp_pipex; 1599 break; 1600 1601 default: 1602 error = ENOPROTOOPT; 1603 break; 1604 } 1605 break; 1606 } 1607 return (error); 1608 } 1609 1610 int 1611 ip6_raw_ctloutput(int op, struct socket *so, int level, int optname, 1612 struct mbuf *m) 1613 { 1614 int error = 0, optval; 1615 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1616 struct inpcb *inp = sotoinpcb(so); 1617 1618 if (level != IPPROTO_IPV6) 1619 return (EINVAL); 1620 1621 switch (optname) { 1622 case IPV6_CHECKSUM: 1623 /* 1624 * For ICMPv6 sockets, no modification allowed for checksum 1625 * offset, permit "no change" values to help existing apps. 1626 * 1627 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 1628 * for an ICMPv6 socket will fail." 1629 * The current behavior does not meet RFC3542. 1630 */ 1631 switch (op) { 1632 case PRCO_SETOPT: 1633 if (m == NULL || m->m_len != sizeof(int)) { 1634 error = EINVAL; 1635 break; 1636 } 1637 optval = *mtod(m, int *); 1638 if (optval < -1 || 1639 (optval > 0 && (optval % 2) != 0)) { 1640 /* 1641 * The API assumes non-negative even offset 1642 * values or -1 as a special value. 1643 */ 1644 error = EINVAL; 1645 } else if (so->so_proto->pr_protocol == 1646 IPPROTO_ICMPV6) { 1647 if (optval != icmp6off) 1648 error = EINVAL; 1649 } else 1650 inp->inp_cksum6 = optval; 1651 break; 1652 1653 case PRCO_GETOPT: 1654 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1655 optval = icmp6off; 1656 else 1657 optval = inp->inp_cksum6; 1658 1659 m->m_len = sizeof(int); 1660 *mtod(m, int *) = optval; 1661 break; 1662 1663 default: 1664 error = EINVAL; 1665 break; 1666 } 1667 break; 1668 1669 default: 1670 error = ENOPROTOOPT; 1671 break; 1672 } 1673 1674 return (error); 1675 } 1676 1677 /* 1678 * initialize ip6_pktopts. beware that there are non-zero default values in 1679 * the struct. 1680 */ 1681 void 1682 ip6_initpktopts(struct ip6_pktopts *opt) 1683 { 1684 bzero(opt, sizeof(*opt)); 1685 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 1686 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 1687 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 1688 } 1689 1690 int 1691 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 1692 int priv, int uproto) 1693 { 1694 struct ip6_pktopts *opt; 1695 1696 if (*pktopt == NULL) { 1697 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 1698 M_WAITOK); 1699 ip6_initpktopts(*pktopt); 1700 } 1701 opt = *pktopt; 1702 1703 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, uproto)); 1704 } 1705 1706 int 1707 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf *m) 1708 { 1709 void *optdata = NULL; 1710 int optdatalen = 0; 1711 struct ip6_ext *ip6e; 1712 int error = 0; 1713 struct in6_pktinfo null_pktinfo; 1714 int deftclass = 0, on; 1715 int defminmtu = IP6PO_MINMTU_MCASTONLY; 1716 1717 switch (optname) { 1718 case IPV6_PKTINFO: 1719 if (pktopt && pktopt->ip6po_pktinfo) 1720 optdata = (void *)pktopt->ip6po_pktinfo; 1721 else { 1722 /* XXX: we don't have to do this every time... */ 1723 bzero(&null_pktinfo, sizeof(null_pktinfo)); 1724 optdata = (void *)&null_pktinfo; 1725 } 1726 optdatalen = sizeof(struct in6_pktinfo); 1727 break; 1728 case IPV6_TCLASS: 1729 if (pktopt && pktopt->ip6po_tclass >= 0) 1730 optdata = (void *)&pktopt->ip6po_tclass; 1731 else 1732 optdata = (void *)&deftclass; 1733 optdatalen = sizeof(int); 1734 break; 1735 case IPV6_HOPOPTS: 1736 if (pktopt && pktopt->ip6po_hbh) { 1737 optdata = (void *)pktopt->ip6po_hbh; 1738 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 1739 optdatalen = (ip6e->ip6e_len + 1) << 3; 1740 } 1741 break; 1742 case IPV6_RTHDR: 1743 if (pktopt && pktopt->ip6po_rthdr) { 1744 optdata = (void *)pktopt->ip6po_rthdr; 1745 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 1746 optdatalen = (ip6e->ip6e_len + 1) << 3; 1747 } 1748 break; 1749 case IPV6_RTHDRDSTOPTS: 1750 if (pktopt && pktopt->ip6po_dest1) { 1751 optdata = (void *)pktopt->ip6po_dest1; 1752 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 1753 optdatalen = (ip6e->ip6e_len + 1) << 3; 1754 } 1755 break; 1756 case IPV6_DSTOPTS: 1757 if (pktopt && pktopt->ip6po_dest2) { 1758 optdata = (void *)pktopt->ip6po_dest2; 1759 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 1760 optdatalen = (ip6e->ip6e_len + 1) << 3; 1761 } 1762 break; 1763 case IPV6_USE_MIN_MTU: 1764 if (pktopt) 1765 optdata = (void *)&pktopt->ip6po_minmtu; 1766 else 1767 optdata = (void *)&defminmtu; 1768 optdatalen = sizeof(int); 1769 break; 1770 case IPV6_DONTFRAG: 1771 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 1772 on = 1; 1773 else 1774 on = 0; 1775 optdata = (void *)&on; 1776 optdatalen = sizeof(on); 1777 break; 1778 default: /* should not happen */ 1779 #ifdef DIAGNOSTIC 1780 panic("%s: unexpected option", __func__); 1781 #endif 1782 return (ENOPROTOOPT); 1783 } 1784 1785 if (optdatalen > MCLBYTES) 1786 return (EMSGSIZE); /* XXX */ 1787 if (optdatalen > MLEN) 1788 MCLGET(m, M_WAIT); 1789 m->m_len = optdatalen; 1790 if (optdatalen) 1791 bcopy(optdata, mtod(m, void *), optdatalen); 1792 1793 return (error); 1794 } 1795 1796 void 1797 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 1798 { 1799 if (optname == -1 || optname == IPV6_PKTINFO) { 1800 if (pktopt->ip6po_pktinfo) 1801 free(pktopt->ip6po_pktinfo, M_IP6OPT, 0); 1802 pktopt->ip6po_pktinfo = NULL; 1803 } 1804 if (optname == -1 || optname == IPV6_HOPLIMIT) 1805 pktopt->ip6po_hlim = -1; 1806 if (optname == -1 || optname == IPV6_TCLASS) 1807 pktopt->ip6po_tclass = -1; 1808 if (optname == -1 || optname == IPV6_HOPOPTS) { 1809 if (pktopt->ip6po_hbh) 1810 free(pktopt->ip6po_hbh, M_IP6OPT, 0); 1811 pktopt->ip6po_hbh = NULL; 1812 } 1813 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 1814 if (pktopt->ip6po_dest1) 1815 free(pktopt->ip6po_dest1, M_IP6OPT, 0); 1816 pktopt->ip6po_dest1 = NULL; 1817 } 1818 if (optname == -1 || optname == IPV6_RTHDR) { 1819 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 1820 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT, 0); 1821 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 1822 if (pktopt->ip6po_route.ro_rt) { 1823 rtfree(pktopt->ip6po_route.ro_rt); 1824 pktopt->ip6po_route.ro_rt = NULL; 1825 } 1826 } 1827 if (optname == -1 || optname == IPV6_DSTOPTS) { 1828 if (pktopt->ip6po_dest2) 1829 free(pktopt->ip6po_dest2, M_IP6OPT, 0); 1830 pktopt->ip6po_dest2 = NULL; 1831 } 1832 } 1833 1834 #define PKTOPT_EXTHDRCPY(type) \ 1835 do {\ 1836 if (src->type) {\ 1837 size_t hlen;\ 1838 hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 1839 dst->type = malloc(hlen, M_IP6OPT, M_NOWAIT);\ 1840 if (dst->type == NULL)\ 1841 goto bad;\ 1842 memcpy(dst->type, src->type, hlen);\ 1843 }\ 1844 } while (/*CONSTCOND*/ 0) 1845 1846 int 1847 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src) 1848 { 1849 dst->ip6po_hlim = src->ip6po_hlim; 1850 dst->ip6po_tclass = src->ip6po_tclass; 1851 dst->ip6po_flags = src->ip6po_flags; 1852 if (src->ip6po_pktinfo) { 1853 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 1854 M_IP6OPT, M_NOWAIT); 1855 if (dst->ip6po_pktinfo == NULL) 1856 goto bad; 1857 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 1858 } 1859 PKTOPT_EXTHDRCPY(ip6po_hbh); 1860 PKTOPT_EXTHDRCPY(ip6po_dest1); 1861 PKTOPT_EXTHDRCPY(ip6po_dest2); 1862 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 1863 return (0); 1864 1865 bad: 1866 ip6_clearpktopts(dst, -1); 1867 return (ENOBUFS); 1868 } 1869 #undef PKTOPT_EXTHDRCPY 1870 1871 void 1872 ip6_freepcbopts(struct ip6_pktopts *pktopt) 1873 { 1874 if (pktopt == NULL) 1875 return; 1876 1877 ip6_clearpktopts(pktopt, -1); 1878 1879 free(pktopt, M_IP6OPT, 0); 1880 } 1881 1882 /* 1883 * Set the IP6 multicast options in response to user setsockopt(). 1884 */ 1885 int 1886 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m, 1887 unsigned int rtableid) 1888 { 1889 int error = 0; 1890 u_int loop, ifindex; 1891 struct ipv6_mreq *mreq; 1892 struct ifnet *ifp; 1893 struct ip6_moptions *im6o = *im6op; 1894 struct in6_multi_mship *imm; 1895 struct proc *p = curproc; /* XXX */ 1896 1897 if (im6o == NULL) { 1898 /* 1899 * No multicast option buffer attached to the pcb; 1900 * allocate one and initialize to default values. 1901 */ 1902 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1903 if (im6o == NULL) 1904 return (ENOBUFS); 1905 *im6op = im6o; 1906 im6o->im6o_ifidx = 0; 1907 im6o->im6o_hlim = ip6_defmcasthlim; 1908 im6o->im6o_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1909 LIST_INIT(&im6o->im6o_memberships); 1910 } 1911 1912 switch (optname) { 1913 1914 case IPV6_MULTICAST_IF: 1915 /* 1916 * Select the interface for outgoing multicast packets. 1917 */ 1918 if (m == NULL || m->m_len != sizeof(u_int)) { 1919 error = EINVAL; 1920 break; 1921 } 1922 memcpy(&ifindex, mtod(m, u_int *), sizeof(ifindex)); 1923 if (ifindex != 0) { 1924 ifp = if_get(ifindex); 1925 if (ifp == NULL) { 1926 error = ENXIO; /* XXX EINVAL? */ 1927 break; 1928 } 1929 if (ifp->if_rdomain != rtable_l2(rtableid) || 1930 (ifp->if_flags & IFF_MULTICAST) == 0) { 1931 error = EADDRNOTAVAIL; 1932 if_put(ifp); 1933 break; 1934 } 1935 if_put(ifp); 1936 } 1937 im6o->im6o_ifidx = ifindex; 1938 break; 1939 1940 case IPV6_MULTICAST_HOPS: 1941 { 1942 /* 1943 * Set the IP6 hoplimit for outgoing multicast packets. 1944 */ 1945 int optval; 1946 if (m == NULL || m->m_len != sizeof(int)) { 1947 error = EINVAL; 1948 break; 1949 } 1950 memcpy(&optval, mtod(m, u_int *), sizeof(optval)); 1951 if (optval < -1 || optval >= 256) 1952 error = EINVAL; 1953 else if (optval == -1) 1954 im6o->im6o_hlim = ip6_defmcasthlim; 1955 else 1956 im6o->im6o_hlim = optval; 1957 break; 1958 } 1959 1960 case IPV6_MULTICAST_LOOP: 1961 /* 1962 * Set the loopback flag for outgoing multicast packets. 1963 * Must be zero or one. 1964 */ 1965 if (m == NULL || m->m_len != sizeof(u_int)) { 1966 error = EINVAL; 1967 break; 1968 } 1969 memcpy(&loop, mtod(m, u_int *), sizeof(loop)); 1970 if (loop > 1) { 1971 error = EINVAL; 1972 break; 1973 } 1974 im6o->im6o_loop = loop; 1975 break; 1976 1977 case IPV6_JOIN_GROUP: 1978 /* 1979 * Add a multicast group membership. 1980 * Group must be a valid IP6 multicast address. 1981 */ 1982 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1983 error = EINVAL; 1984 break; 1985 } 1986 mreq = mtod(m, struct ipv6_mreq *); 1987 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1988 /* 1989 * We use the unspecified address to specify to accept 1990 * all multicast addresses. Only super user is allowed 1991 * to do this. 1992 */ 1993 if (suser(p)) 1994 { 1995 error = EACCES; 1996 break; 1997 } 1998 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1999 error = EINVAL; 2000 break; 2001 } 2002 2003 /* 2004 * If no interface was explicitly specified, choose an 2005 * appropriate one according to the given multicast address. 2006 */ 2007 if (mreq->ipv6mr_interface == 0) { 2008 struct rtentry *rt; 2009 struct sockaddr_in6 dst; 2010 2011 memset(&dst, 0, sizeof(dst)); 2012 dst.sin6_len = sizeof(dst); 2013 dst.sin6_family = AF_INET6; 2014 dst.sin6_addr = mreq->ipv6mr_multiaddr; 2015 rt = rtalloc(sin6tosa(&dst), RT_RESOLVE, rtableid); 2016 if (rt == NULL) { 2017 error = EADDRNOTAVAIL; 2018 break; 2019 } 2020 ifp = if_get(rt->rt_ifidx); 2021 rtfree(rt); 2022 } else { 2023 /* 2024 * If the interface is specified, validate it. 2025 */ 2026 ifp = if_get(mreq->ipv6mr_interface); 2027 if (ifp == NULL) { 2028 error = ENXIO; /* XXX EINVAL? */ 2029 break; 2030 } 2031 } 2032 2033 /* 2034 * See if we found an interface, and confirm that it 2035 * supports multicast 2036 */ 2037 if (ifp == NULL || ifp->if_rdomain != rtable_l2(rtableid) || 2038 (ifp->if_flags & IFF_MULTICAST) == 0) { 2039 if_put(ifp); 2040 error = EADDRNOTAVAIL; 2041 break; 2042 } 2043 /* 2044 * Put interface index into the multicast address, 2045 * if the address has link/interface-local scope. 2046 */ 2047 if (IN6_IS_SCOPE_EMBED(&mreq->ipv6mr_multiaddr)) { 2048 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2049 htons(ifp->if_index); 2050 } 2051 /* 2052 * See if the membership already exists. 2053 */ 2054 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) 2055 if (imm->i6mm_maddr->in6m_ifidx == ifp->if_index && 2056 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2057 &mreq->ipv6mr_multiaddr)) 2058 break; 2059 if (imm != NULL) { 2060 if_put(ifp); 2061 error = EADDRINUSE; 2062 break; 2063 } 2064 /* 2065 * Everything looks good; add a new record to the multicast 2066 * address list for the given interface. 2067 */ 2068 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error); 2069 if_put(ifp); 2070 if (!imm) 2071 break; 2072 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2073 break; 2074 2075 case IPV6_LEAVE_GROUP: 2076 /* 2077 * Drop a multicast group membership. 2078 * Group must be a valid IP6 multicast address. 2079 */ 2080 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2081 error = EINVAL; 2082 break; 2083 } 2084 mreq = mtod(m, struct ipv6_mreq *); 2085 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2086 if (suser(p)) { 2087 error = EACCES; 2088 break; 2089 } 2090 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2091 error = EINVAL; 2092 break; 2093 } 2094 2095 /* 2096 * Put interface index into the multicast address, 2097 * if the address has link-local scope. 2098 */ 2099 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2100 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2101 htons(mreq->ipv6mr_interface); 2102 } 2103 2104 /* 2105 * If an interface address was specified, get a pointer 2106 * to its ifnet structure. 2107 */ 2108 if (mreq->ipv6mr_interface == 0) 2109 ifp = NULL; 2110 else { 2111 ifp = if_get(mreq->ipv6mr_interface); 2112 if (ifp == NULL) { 2113 error = ENXIO; /* XXX EINVAL? */ 2114 break; 2115 } 2116 } 2117 2118 /* 2119 * Find the membership in the membership list. 2120 */ 2121 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2122 if ((ifp == NULL || 2123 imm->i6mm_maddr->in6m_ifidx == ifp->if_index) && 2124 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2125 &mreq->ipv6mr_multiaddr)) 2126 break; 2127 } 2128 2129 if_put(ifp); 2130 2131 if (imm == NULL) { 2132 /* Unable to resolve interface */ 2133 error = EADDRNOTAVAIL; 2134 break; 2135 } 2136 /* 2137 * Give up the multicast address record to which the 2138 * membership points. 2139 */ 2140 LIST_REMOVE(imm, i6mm_chain); 2141 in6_leavegroup(imm); 2142 break; 2143 2144 default: 2145 error = EOPNOTSUPP; 2146 break; 2147 } 2148 2149 /* 2150 * If all options have default values, no need to keep the option 2151 * structure. 2152 */ 2153 if (im6o->im6o_ifidx == 0 && 2154 im6o->im6o_hlim == ip6_defmcasthlim && 2155 im6o->im6o_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2156 LIST_EMPTY(&im6o->im6o_memberships)) { 2157 free(*im6op, M_IPMOPTS, sizeof(**im6op)); 2158 *im6op = NULL; 2159 } 2160 2161 return (error); 2162 } 2163 2164 /* 2165 * Return the IP6 multicast options in response to user getsockopt(). 2166 */ 2167 int 2168 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf *m) 2169 { 2170 u_int *hlim, *loop, *ifindex; 2171 2172 switch (optname) { 2173 case IPV6_MULTICAST_IF: 2174 ifindex = mtod(m, u_int *); 2175 m->m_len = sizeof(u_int); 2176 if (im6o == NULL || im6o->im6o_ifidx == 0) 2177 *ifindex = 0; 2178 else 2179 *ifindex = im6o->im6o_ifidx; 2180 return (0); 2181 2182 case IPV6_MULTICAST_HOPS: 2183 hlim = mtod(m, u_int *); 2184 m->m_len = sizeof(u_int); 2185 if (im6o == NULL) 2186 *hlim = ip6_defmcasthlim; 2187 else 2188 *hlim = im6o->im6o_hlim; 2189 return (0); 2190 2191 case IPV6_MULTICAST_LOOP: 2192 loop = mtod(m, u_int *); 2193 m->m_len = sizeof(u_int); 2194 if (im6o == NULL) 2195 *loop = ip6_defmcasthlim; 2196 else 2197 *loop = im6o->im6o_loop; 2198 return (0); 2199 2200 default: 2201 return (EOPNOTSUPP); 2202 } 2203 } 2204 2205 /* 2206 * Discard the IP6 multicast options. 2207 */ 2208 void 2209 ip6_freemoptions(struct ip6_moptions *im6o) 2210 { 2211 struct in6_multi_mship *imm; 2212 2213 if (im6o == NULL) 2214 return; 2215 2216 while (!LIST_EMPTY(&im6o->im6o_memberships)) { 2217 imm = LIST_FIRST(&im6o->im6o_memberships); 2218 LIST_REMOVE(imm, i6mm_chain); 2219 in6_leavegroup(imm); 2220 } 2221 free(im6o, M_IPMOPTS, sizeof(*im6o)); 2222 } 2223 2224 /* 2225 * Set IPv6 outgoing packet options based on advanced API. 2226 */ 2227 int 2228 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2229 struct ip6_pktopts *stickyopt, int priv, int uproto) 2230 { 2231 u_int clen; 2232 struct cmsghdr *cm = 0; 2233 caddr_t cmsgs; 2234 int error; 2235 2236 if (control == NULL || opt == NULL) 2237 return (EINVAL); 2238 2239 ip6_initpktopts(opt); 2240 if (stickyopt) { 2241 int error; 2242 2243 /* 2244 * If stickyopt is provided, make a local copy of the options 2245 * for this particular packet, then override them by ancillary 2246 * objects. 2247 * XXX: copypktopts() does not copy the cached route to a next 2248 * hop (if any). This is not very good in terms of efficiency, 2249 * but we can allow this since this option should be rarely 2250 * used. 2251 */ 2252 if ((error = copypktopts(opt, stickyopt)) != 0) 2253 return (error); 2254 } 2255 2256 /* 2257 * XXX: Currently, we assume all the optional information is stored 2258 * in a single mbuf. 2259 */ 2260 if (control->m_next) 2261 return (EINVAL); 2262 2263 clen = control->m_len; 2264 cmsgs = mtod(control, caddr_t); 2265 do { 2266 if (clen < CMSG_LEN(0)) 2267 return (EINVAL); 2268 cm = (struct cmsghdr *)cmsgs; 2269 if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > clen || 2270 CMSG_ALIGN(cm->cmsg_len) > clen) 2271 return (EINVAL); 2272 if (cm->cmsg_level == IPPROTO_IPV6) { 2273 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2274 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, uproto); 2275 if (error) 2276 return (error); 2277 } 2278 2279 clen -= CMSG_ALIGN(cm->cmsg_len); 2280 cmsgs += CMSG_ALIGN(cm->cmsg_len); 2281 } while (clen); 2282 2283 return (0); 2284 } 2285 2286 /* 2287 * Set a particular packet option, as a sticky option or an ancillary data 2288 * item. "len" can be 0 only when it's a sticky option. 2289 */ 2290 int 2291 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2292 int priv, int sticky, int uproto) 2293 { 2294 int minmtupolicy; 2295 2296 switch (optname) { 2297 case IPV6_PKTINFO: 2298 { 2299 struct ifnet *ifp = NULL; 2300 struct in6_pktinfo *pktinfo; 2301 2302 if (len != sizeof(struct in6_pktinfo)) 2303 return (EINVAL); 2304 2305 pktinfo = (struct in6_pktinfo *)buf; 2306 2307 /* 2308 * An application can clear any sticky IPV6_PKTINFO option by 2309 * doing a "regular" setsockopt with ipi6_addr being 2310 * in6addr_any and ipi6_ifindex being zero. 2311 * [RFC 3542, Section 6] 2312 */ 2313 if (opt->ip6po_pktinfo && 2314 pktinfo->ipi6_ifindex == 0 && 2315 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2316 ip6_clearpktopts(opt, optname); 2317 break; 2318 } 2319 2320 if (uproto == IPPROTO_TCP && 2321 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2322 return (EINVAL); 2323 } 2324 2325 if (pktinfo->ipi6_ifindex) { 2326 ifp = if_get(pktinfo->ipi6_ifindex); 2327 if (ifp == NULL) 2328 return (ENXIO); 2329 if_put(ifp); 2330 } 2331 2332 /* 2333 * We store the address anyway, and let in6_selectsrc() 2334 * validate the specified address. This is because ipi6_addr 2335 * may not have enough information about its scope zone, and 2336 * we may need additional information (such as outgoing 2337 * interface or the scope zone of a destination address) to 2338 * disambiguate the scope. 2339 * XXX: the delay of the validation may confuse the 2340 * application when it is used as a sticky option. 2341 */ 2342 if (opt->ip6po_pktinfo == NULL) { 2343 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2344 M_IP6OPT, M_NOWAIT); 2345 if (opt->ip6po_pktinfo == NULL) 2346 return (ENOBUFS); 2347 } 2348 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2349 break; 2350 } 2351 2352 case IPV6_HOPLIMIT: 2353 { 2354 int *hlimp; 2355 2356 /* 2357 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2358 * to simplify the ordering among hoplimit options. 2359 */ 2360 if (sticky) 2361 return (ENOPROTOOPT); 2362 2363 if (len != sizeof(int)) 2364 return (EINVAL); 2365 hlimp = (int *)buf; 2366 if (*hlimp < -1 || *hlimp > 255) 2367 return (EINVAL); 2368 2369 opt->ip6po_hlim = *hlimp; 2370 break; 2371 } 2372 2373 case IPV6_TCLASS: 2374 { 2375 int tclass; 2376 2377 if (len != sizeof(int)) 2378 return (EINVAL); 2379 tclass = *(int *)buf; 2380 if (tclass < -1 || tclass > 255) 2381 return (EINVAL); 2382 2383 opt->ip6po_tclass = tclass; 2384 break; 2385 } 2386 case IPV6_HOPOPTS: 2387 { 2388 struct ip6_hbh *hbh; 2389 int hbhlen; 2390 2391 /* 2392 * XXX: We don't allow a non-privileged user to set ANY HbH 2393 * options, since per-option restriction has too much 2394 * overhead. 2395 */ 2396 if (!priv) 2397 return (EPERM); 2398 2399 if (len == 0) { 2400 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2401 break; /* just remove the option */ 2402 } 2403 2404 /* message length validation */ 2405 if (len < sizeof(struct ip6_hbh)) 2406 return (EINVAL); 2407 hbh = (struct ip6_hbh *)buf; 2408 hbhlen = (hbh->ip6h_len + 1) << 3; 2409 if (len != hbhlen) 2410 return (EINVAL); 2411 2412 /* turn off the previous option, then set the new option. */ 2413 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2414 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2415 if (opt->ip6po_hbh == NULL) 2416 return (ENOBUFS); 2417 memcpy(opt->ip6po_hbh, hbh, hbhlen); 2418 2419 break; 2420 } 2421 2422 case IPV6_DSTOPTS: 2423 case IPV6_RTHDRDSTOPTS: 2424 { 2425 struct ip6_dest *dest, **newdest = NULL; 2426 int destlen; 2427 2428 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */ 2429 return (EPERM); 2430 2431 if (len == 0) { 2432 ip6_clearpktopts(opt, optname); 2433 break; /* just remove the option */ 2434 } 2435 2436 /* message length validation */ 2437 if (len < sizeof(struct ip6_dest)) 2438 return (EINVAL); 2439 dest = (struct ip6_dest *)buf; 2440 destlen = (dest->ip6d_len + 1) << 3; 2441 if (len != destlen) 2442 return (EINVAL); 2443 /* 2444 * Determine the position that the destination options header 2445 * should be inserted; before or after the routing header. 2446 */ 2447 switch (optname) { 2448 case IPV6_RTHDRDSTOPTS: 2449 newdest = &opt->ip6po_dest1; 2450 break; 2451 case IPV6_DSTOPTS: 2452 newdest = &opt->ip6po_dest2; 2453 break; 2454 } 2455 2456 /* turn off the previous option, then set the new option. */ 2457 ip6_clearpktopts(opt, optname); 2458 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2459 if (*newdest == NULL) 2460 return (ENOBUFS); 2461 memcpy(*newdest, dest, destlen); 2462 2463 break; 2464 } 2465 2466 case IPV6_RTHDR: 2467 { 2468 struct ip6_rthdr *rth; 2469 int rthlen; 2470 2471 if (len == 0) { 2472 ip6_clearpktopts(opt, IPV6_RTHDR); 2473 break; /* just remove the option */ 2474 } 2475 2476 /* message length validation */ 2477 if (len < sizeof(struct ip6_rthdr)) 2478 return (EINVAL); 2479 rth = (struct ip6_rthdr *)buf; 2480 rthlen = (rth->ip6r_len + 1) << 3; 2481 if (len != rthlen) 2482 return (EINVAL); 2483 2484 switch (rth->ip6r_type) { 2485 case IPV6_RTHDR_TYPE_0: 2486 if (rth->ip6r_len == 0) /* must contain one addr */ 2487 return (EINVAL); 2488 if (rth->ip6r_len % 2) /* length must be even */ 2489 return (EINVAL); 2490 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2491 return (EINVAL); 2492 break; 2493 default: 2494 return (EINVAL); /* not supported */ 2495 } 2496 /* turn off the previous option */ 2497 ip6_clearpktopts(opt, IPV6_RTHDR); 2498 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2499 if (opt->ip6po_rthdr == NULL) 2500 return (ENOBUFS); 2501 memcpy(opt->ip6po_rthdr, rth, rthlen); 2502 break; 2503 } 2504 2505 case IPV6_USE_MIN_MTU: 2506 if (len != sizeof(int)) 2507 return (EINVAL); 2508 minmtupolicy = *(int *)buf; 2509 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2510 minmtupolicy != IP6PO_MINMTU_DISABLE && 2511 minmtupolicy != IP6PO_MINMTU_ALL) { 2512 return (EINVAL); 2513 } 2514 opt->ip6po_minmtu = minmtupolicy; 2515 break; 2516 2517 case IPV6_DONTFRAG: 2518 if (len != sizeof(int)) 2519 return (EINVAL); 2520 2521 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2522 /* 2523 * we ignore this option for TCP sockets. 2524 * (RFC3542 leaves this case unspecified.) 2525 */ 2526 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2527 } else 2528 opt->ip6po_flags |= IP6PO_DONTFRAG; 2529 break; 2530 2531 default: 2532 return (ENOPROTOOPT); 2533 } /* end of switch */ 2534 2535 return (0); 2536 } 2537 2538 /* 2539 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2540 * packet to the input queue of a specified interface. 2541 */ 2542 void 2543 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2544 { 2545 struct mbuf *copym; 2546 struct ip6_hdr *ip6; 2547 2548 /* 2549 * Duplicate the packet. 2550 */ 2551 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 2552 if (copym == NULL) 2553 return; 2554 2555 /* 2556 * Make sure to deep-copy IPv6 header portion in case the data 2557 * is in an mbuf cluster, so that we can safely override the IPv6 2558 * header portion later. 2559 */ 2560 if ((copym->m_flags & M_EXT) != 0 || 2561 copym->m_len < sizeof(struct ip6_hdr)) { 2562 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2563 if (copym == NULL) 2564 return; 2565 } 2566 2567 #ifdef DIAGNOSTIC 2568 if (copym->m_len < sizeof(*ip6)) { 2569 m_freem(copym); 2570 return; 2571 } 2572 #endif 2573 2574 ip6 = mtod(copym, struct ip6_hdr *); 2575 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 2576 ip6->ip6_src.s6_addr16[1] = 0; 2577 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 2578 ip6->ip6_dst.s6_addr16[1] = 0; 2579 2580 if_input_local(ifp, copym, dst->sin6_family); 2581 } 2582 2583 /* 2584 * Chop IPv6 header off from the payload. 2585 */ 2586 int 2587 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2588 { 2589 struct mbuf *mh; 2590 struct ip6_hdr *ip6; 2591 2592 ip6 = mtod(m, struct ip6_hdr *); 2593 if (m->m_len > sizeof(*ip6)) { 2594 MGET(mh, M_DONTWAIT, MT_HEADER); 2595 if (mh == NULL) { 2596 m_freem(m); 2597 return ENOBUFS; 2598 } 2599 M_MOVE_PKTHDR(mh, m); 2600 m_align(mh, sizeof(*ip6)); 2601 m->m_len -= sizeof(*ip6); 2602 m->m_data += sizeof(*ip6); 2603 mh->m_next = m; 2604 m = mh; 2605 m->m_len = sizeof(*ip6); 2606 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2607 } 2608 exthdrs->ip6e_ip6 = m; 2609 return 0; 2610 } 2611 2612 u_int32_t 2613 ip6_randomid(void) 2614 { 2615 return idgen32(&ip6_id_ctx); 2616 } 2617 2618 void 2619 ip6_randomid_init(void) 2620 { 2621 idgen32_init(&ip6_id_ctx); 2622 } 2623 2624 /* 2625 * Compute significant parts of the IPv6 checksum pseudo-header 2626 * for use in a delayed TCP/UDP checksum calculation. 2627 */ 2628 static __inline u_int16_t __attribute__((__unused__)) 2629 in6_cksum_phdr(const struct in6_addr *src, const struct in6_addr *dst, 2630 u_int32_t len, u_int32_t nxt) 2631 { 2632 u_int32_t sum = 0; 2633 const u_int16_t *w; 2634 2635 w = (const u_int16_t *) src; 2636 sum += w[0]; 2637 if (!IN6_IS_SCOPE_EMBED(src)) 2638 sum += w[1]; 2639 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 2640 sum += w[6]; sum += w[7]; 2641 2642 w = (const u_int16_t *) dst; 2643 sum += w[0]; 2644 if (!IN6_IS_SCOPE_EMBED(dst)) 2645 sum += w[1]; 2646 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 2647 sum += w[6]; sum += w[7]; 2648 2649 sum += (u_int16_t)(len >> 16) + (u_int16_t)(len /*& 0xffff*/); 2650 2651 sum += (u_int16_t)(nxt >> 16) + (u_int16_t)(nxt /*& 0xffff*/); 2652 2653 sum = (u_int16_t)(sum >> 16) + (u_int16_t)(sum /*& 0xffff*/); 2654 2655 if (sum > 0xffff) 2656 sum -= 0xffff; 2657 2658 return (sum); 2659 } 2660 2661 /* 2662 * Process a delayed payload checksum calculation. 2663 */ 2664 void 2665 in6_delayed_cksum(struct mbuf *m, u_int8_t nxt) 2666 { 2667 int nxtp, offset; 2668 u_int16_t csum; 2669 2670 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxtp); 2671 if (offset <= 0 || nxtp != nxt) 2672 /* If the desired next protocol isn't found, punt. */ 2673 return; 2674 csum = (u_int16_t)(in6_cksum(m, 0, offset, m->m_pkthdr.len - offset)); 2675 2676 switch (nxt) { 2677 case IPPROTO_TCP: 2678 offset += offsetof(struct tcphdr, th_sum); 2679 break; 2680 2681 case IPPROTO_UDP: 2682 offset += offsetof(struct udphdr, uh_sum); 2683 if (csum == 0) 2684 csum = 0xffff; 2685 break; 2686 2687 case IPPROTO_ICMPV6: 2688 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 2689 break; 2690 } 2691 2692 if ((offset + sizeof(u_int16_t)) > m->m_len) 2693 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 2694 else 2695 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 2696 } 2697 2698 void 2699 in6_proto_cksum_out(struct mbuf *m, struct ifnet *ifp) 2700 { 2701 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); 2702 2703 /* some hw and in6_delayed_cksum need the pseudo header cksum */ 2704 if (m->m_pkthdr.csum_flags & 2705 (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT|M_ICMP_CSUM_OUT)) { 2706 int nxt, offset; 2707 u_int16_t csum; 2708 2709 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt); 2710 if (ISSET(m->m_pkthdr.csum_flags, M_TCP_TSO) && 2711 in_ifcap_cksum(m, ifp, IFCAP_TSOv6)) { 2712 csum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 2713 htonl(0), htonl(nxt)); 2714 } else { 2715 csum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 2716 htonl(m->m_pkthdr.len - offset), htonl(nxt)); 2717 } 2718 if (nxt == IPPROTO_TCP) 2719 offset += offsetof(struct tcphdr, th_sum); 2720 else if (nxt == IPPROTO_UDP) 2721 offset += offsetof(struct udphdr, uh_sum); 2722 else if (nxt == IPPROTO_ICMPV6) 2723 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 2724 if ((offset + sizeof(u_int16_t)) > m->m_len) 2725 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 2726 else 2727 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 2728 } 2729 2730 if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) { 2731 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_TCPv6) || 2732 ip6->ip6_nxt != IPPROTO_TCP || 2733 ifp->if_bridgeidx != 0) { 2734 tcpstat_inc(tcps_outswcsum); 2735 in6_delayed_cksum(m, IPPROTO_TCP); 2736 m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_OUT; /* Clear */ 2737 } 2738 } else if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) { 2739 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_UDPv6) || 2740 ip6->ip6_nxt != IPPROTO_UDP || 2741 ifp->if_bridgeidx != 0) { 2742 udpstat_inc(udps_outswcsum); 2743 in6_delayed_cksum(m, IPPROTO_UDP); 2744 m->m_pkthdr.csum_flags &= ~M_UDP_CSUM_OUT; /* Clear */ 2745 } 2746 } else if (m->m_pkthdr.csum_flags & M_ICMP_CSUM_OUT) { 2747 in6_delayed_cksum(m, IPPROTO_ICMPV6); 2748 m->m_pkthdr.csum_flags &= ~M_ICMP_CSUM_OUT; /* Clear */ 2749 } 2750 } 2751 2752 #ifdef IPSEC 2753 int 2754 ip6_output_ipsec_lookup(struct mbuf *m, struct inpcb *inp, struct tdb **tdbout) 2755 { 2756 struct tdb *tdb; 2757 struct m_tag *mtag; 2758 struct tdb_ident *tdbi; 2759 int error; 2760 2761 /* 2762 * Check if there was an outgoing SA bound to the flow 2763 * from a transport protocol. 2764 */ 2765 2766 /* Do we have any pending SAs to apply ? */ 2767 error = ipsp_spd_lookup(m, AF_INET6, sizeof(struct ip6_hdr), 2768 IPSP_DIRECTION_OUT, NULL, inp, &tdb, NULL); 2769 if (error || tdb == NULL) { 2770 *tdbout = NULL; 2771 return error; 2772 } 2773 /* Loop detection */ 2774 for (mtag = m_tag_first(m); mtag != NULL; mtag = m_tag_next(m, mtag)) { 2775 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE) 2776 continue; 2777 tdbi = (struct tdb_ident *)(mtag + 1); 2778 if (tdbi->spi == tdb->tdb_spi && 2779 tdbi->proto == tdb->tdb_sproto && 2780 tdbi->rdomain == tdb->tdb_rdomain && 2781 !memcmp(&tdbi->dst, &tdb->tdb_dst, 2782 sizeof(union sockaddr_union))) { 2783 /* no IPsec needed */ 2784 tdb_unref(tdb); 2785 *tdbout = NULL; 2786 return 0; 2787 } 2788 } 2789 *tdbout = tdb; 2790 return 0; 2791 } 2792 2793 int 2794 ip6_output_ipsec_pmtu_update(struct tdb *tdb, struct route_in6 *ro, 2795 struct in6_addr *dst, int ifidx, int rtableid, int transportmode) 2796 { 2797 struct rtentry *rt = NULL; 2798 int rt_mtucloned = 0; 2799 2800 /* Find a host route to store the mtu in */ 2801 if (ro != NULL) 2802 rt = ro->ro_rt; 2803 /* but don't add a PMTU route for transport mode SAs */ 2804 if (transportmode) 2805 rt = NULL; 2806 else if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0) { 2807 struct sockaddr_in6 sin6; 2808 int error; 2809 2810 memset(&sin6, 0, sizeof(sin6)); 2811 sin6.sin6_family = AF_INET6; 2812 sin6.sin6_len = sizeof(sin6); 2813 sin6.sin6_addr = *dst; 2814 sin6.sin6_scope_id = in6_addr2scopeid(ifidx, dst); 2815 error = in6_embedscope(dst, &sin6, NULL); 2816 if (error) { 2817 /* should be impossible */ 2818 return error; 2819 } 2820 rt = icmp6_mtudisc_clone(&sin6, rtableid, 1); 2821 rt_mtucloned = 1; 2822 } 2823 DPRINTF("spi %08x mtu %d rt %p cloned %d", 2824 ntohl(tdb->tdb_spi), tdb->tdb_mtu, rt, rt_mtucloned); 2825 if (rt != NULL) { 2826 rt->rt_mtu = tdb->tdb_mtu; 2827 if (ro != NULL && ro->ro_rt != NULL) { 2828 rtfree(ro->ro_rt); 2829 ro->ro_rt = rtalloc(sin6tosa(&ro->ro_dst), RT_RESOLVE, 2830 rtableid); 2831 } 2832 if (rt_mtucloned) 2833 rtfree(rt); 2834 } 2835 return 0; 2836 } 2837 2838 int 2839 ip6_output_ipsec_send(struct tdb *tdb, struct mbuf *m, struct route_in6 *ro, 2840 int tunalready, int fwd) 2841 { 2842 struct mbuf_list ml; 2843 struct ifnet *encif = NULL; 2844 struct ip6_hdr *ip6; 2845 struct in6_addr dst; 2846 u_int len; 2847 int error, ifidx, rtableid, tso = 0; 2848 2849 #if NPF > 0 2850 /* 2851 * Packet filter 2852 */ 2853 if ((encif = enc_getif(tdb->tdb_rdomain, tdb->tdb_tap)) == NULL || 2854 pf_test(AF_INET6, fwd ? PF_FWD : PF_OUT, encif, &m) != PF_PASS) { 2855 m_freem(m); 2856 return EACCES; 2857 } 2858 if (m == NULL) 2859 return 0; 2860 /* 2861 * PF_TAG_REROUTE handling or not... 2862 * Packet is entering IPsec so the routing is 2863 * already overruled by the IPsec policy. 2864 * Until now the change was not reconsidered. 2865 * What's the behaviour? 2866 */ 2867 #endif 2868 2869 /* Check if we can chop the TCP packet */ 2870 ip6 = mtod(m, struct ip6_hdr *); 2871 if (ISSET(m->m_pkthdr.csum_flags, M_TCP_TSO) && 2872 m->m_pkthdr.ph_mss <= tdb->tdb_mtu) { 2873 tso = 1; 2874 len = m->m_pkthdr.ph_mss; 2875 } else 2876 len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2877 2878 /* Check if we are allowed to fragment */ 2879 dst = ip6->ip6_dst; 2880 ifidx = m->m_pkthdr.ph_ifidx; 2881 rtableid = m->m_pkthdr.ph_rtableid; 2882 if (ip_mtudisc && tdb->tdb_mtu && 2883 len > tdb->tdb_mtu && tdb->tdb_mtutimeout > gettime()) { 2884 int transportmode; 2885 2886 transportmode = (tdb->tdb_dst.sa.sa_family == AF_INET6) && 2887 (IN6_ARE_ADDR_EQUAL(&tdb->tdb_dst.sin6.sin6_addr, &dst)); 2888 error = ip6_output_ipsec_pmtu_update(tdb, ro, &dst, ifidx, 2889 rtableid, transportmode); 2890 if (error) { 2891 ipsecstat_inc(ipsec_odrops); 2892 tdbstat_inc(tdb, tdb_odrops); 2893 m_freem(m); 2894 return error; 2895 } 2896 ipsec_adjust_mtu(m, tdb->tdb_mtu); 2897 m_freem(m); 2898 return EMSGSIZE; 2899 } 2900 /* propagate don't fragment for v6-over-v6 */ 2901 if (ip_mtudisc) 2902 SET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT); 2903 2904 /* 2905 * Clear these -- they'll be set in the recursive invocation 2906 * as needed. 2907 */ 2908 m->m_flags &= ~(M_BCAST | M_MCAST); 2909 2910 if (tso) { 2911 error = tcp_chopper(m, &ml, encif, len); 2912 if (error) 2913 goto done; 2914 } else { 2915 CLR(m->m_pkthdr.csum_flags, M_TCP_TSO); 2916 in6_proto_cksum_out(m, encif); 2917 ml_init(&ml); 2918 ml_enqueue(&ml, m); 2919 } 2920 2921 KERNEL_LOCK(); 2922 while ((m = ml_dequeue(&ml)) != NULL) { 2923 /* Callee frees mbuf */ 2924 error = ipsp_process_packet(m, tdb, AF_INET6, tunalready); 2925 if (error) 2926 break; 2927 } 2928 KERNEL_UNLOCK(); 2929 done: 2930 if (error) { 2931 ml_purge(&ml); 2932 ipsecstat_inc(ipsec_odrops); 2933 tdbstat_inc(tdb, tdb_odrops); 2934 } 2935 if (!error && tso) 2936 tcpstat_inc(tcps_outswtso); 2937 if (ip_mtudisc && error == EMSGSIZE) 2938 ip6_output_ipsec_pmtu_update(tdb, ro, &dst, ifidx, rtableid, 0); 2939 return error; 2940 } 2941 #endif /* IPSEC */ 2942