1 /* $OpenBSD: ip6_output.c,v 1.253 2021/02/02 17:55:12 claudio Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include "pf.h" 65 66 #include <sys/param.h> 67 #include <sys/malloc.h> 68 #include <sys/mbuf.h> 69 #include <sys/errno.h> 70 #include <sys/protosw.h> 71 #include <sys/socket.h> 72 #include <sys/socketvar.h> 73 #include <sys/proc.h> 74 #include <sys/systm.h> 75 76 #include <net/if.h> 77 #include <net/if_var.h> 78 #include <net/if_enc.h> 79 #include <net/route.h> 80 81 #include <netinet/in.h> 82 #include <netinet/ip.h> 83 #include <netinet/in_pcb.h> 84 #include <netinet/udp.h> 85 #include <netinet/tcp.h> 86 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp_timer.h> 89 #include <netinet/tcp_var.h> 90 #include <netinet/udp_var.h> 91 92 #include <netinet6/in6_var.h> 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/ip6protosw.h> 98 99 #include <crypto/idgen.h> 100 101 #if NPF > 0 102 #include <net/pfvar.h> 103 #endif 104 105 #ifdef IPSEC 106 #include <netinet/ip_ipsp.h> 107 #include <netinet/ip_ah.h> 108 #include <netinet/ip_esp.h> 109 110 #ifdef ENCDEBUG 111 #define DPRINTF(x) do { if (encdebug) printf x ; } while (0) 112 #else 113 #define DPRINTF(x) 114 #endif 115 #endif /* IPSEC */ 116 117 struct ip6_exthdrs { 118 struct mbuf *ip6e_ip6; 119 struct mbuf *ip6e_hbh; 120 struct mbuf *ip6e_dest1; 121 struct mbuf *ip6e_rthdr; 122 struct mbuf *ip6e_dest2; 123 }; 124 125 int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, int, int); 126 int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf *); 127 int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int, int, int); 128 int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *, unsigned int); 129 int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf *); 130 int ip6_copyexthdr(struct mbuf **, caddr_t, int); 131 int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 132 struct ip6_frag **); 133 int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 134 int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 135 int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *); 136 int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *); 137 static __inline u_int16_t __attribute__((__unused__)) 138 in6_cksum_phdr(const struct in6_addr *, const struct in6_addr *, 139 u_int32_t, u_int32_t); 140 void in6_delayed_cksum(struct mbuf *, u_int8_t); 141 142 /* Context for non-repeating IDs */ 143 struct idgen32_ctx ip6_id_ctx; 144 145 /* 146 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 147 * header (with pri, len, nxt, hlim, src, dst). 148 * This function may modify ver and hlim only. 149 * The mbuf chain containing the packet will be freed. 150 * The mbuf opt, if present, will not be freed. 151 * 152 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 153 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 154 * which is rt_mtu. 155 */ 156 int 157 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro, 158 int flags, struct ip6_moptions *im6o, struct inpcb *inp) 159 { 160 struct ip6_hdr *ip6; 161 struct ifnet *ifp = NULL; 162 struct mbuf *m = m0; 163 int hlen, tlen; 164 struct route_in6 ip6route; 165 struct rtentry *rt = NULL; 166 struct sockaddr_in6 *dst, dstsock; 167 int error = 0; 168 u_long mtu; 169 int dontfrag; 170 u_int16_t src_scope, dst_scope; 171 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 172 struct ip6_exthdrs exthdrs; 173 struct in6_addr finaldst; 174 struct route_in6 *ro_pmtu = NULL; 175 int hdrsplit = 0; 176 u_int8_t sproto = 0; 177 #ifdef IPSEC 178 struct tdb *tdb = NULL; 179 #endif /* IPSEC */ 180 181 #ifdef IPSEC 182 if (inp && (inp->inp_flags & INP_IPV6) == 0) 183 panic("%s: IPv4 pcb is passed", __func__); 184 #endif /* IPSEC */ 185 186 ip6 = mtod(m, struct ip6_hdr *); 187 finaldst = ip6->ip6_dst; 188 189 #define MAKE_EXTHDR(hp, mp) \ 190 do { \ 191 if (hp) { \ 192 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 193 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 194 ((eh)->ip6e_len + 1) << 3); \ 195 if (error) \ 196 goto freehdrs; \ 197 } \ 198 } while (0) 199 200 bzero(&exthdrs, sizeof(exthdrs)); 201 202 if (opt) { 203 /* Hop-by-Hop options header */ 204 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 205 /* Destination options header(1st part) */ 206 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 207 /* Routing header */ 208 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 209 /* Destination options header(2nd part) */ 210 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 211 } 212 213 #ifdef IPSEC 214 if (ipsec_in_use || inp) { 215 tdb = ip6_output_ipsec_lookup(m, &error, inp); 216 if (error != 0) { 217 /* 218 * -EINVAL is used to indicate that the packet should 219 * be silently dropped, typically because we've asked 220 * key management for an SA. 221 */ 222 if (error == -EINVAL) /* Should silently drop packet */ 223 error = 0; 224 225 goto freehdrs; 226 } 227 } 228 #endif /* IPSEC */ 229 230 /* 231 * Calculate the total length of the extension header chain. 232 * Keep the length of the unfragmentable part for fragmentation. 233 */ 234 optlen = 0; 235 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 236 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 237 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 238 unfragpartlen = optlen + sizeof(struct ip6_hdr); 239 /* NOTE: we don't add AH/ESP length here. do that later. */ 240 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 241 242 /* 243 * If we need IPsec, or there is at least one extension header, 244 * separate IP6 header from the payload. 245 */ 246 if ((sproto || optlen) && !hdrsplit) { 247 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 248 m = NULL; 249 goto freehdrs; 250 } 251 m = exthdrs.ip6e_ip6; 252 hdrsplit++; 253 } 254 255 /* adjust pointer */ 256 ip6 = mtod(m, struct ip6_hdr *); 257 258 /* adjust mbuf packet header length */ 259 m->m_pkthdr.len += optlen; 260 plen = m->m_pkthdr.len - sizeof(*ip6); 261 262 /* If this is a jumbo payload, insert a jumbo payload option. */ 263 if (plen > IPV6_MAXPACKET) { 264 if (!hdrsplit) { 265 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 266 m = NULL; 267 goto freehdrs; 268 } 269 m = exthdrs.ip6e_ip6; 270 hdrsplit++; 271 } 272 /* adjust pointer */ 273 ip6 = mtod(m, struct ip6_hdr *); 274 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 275 goto freehdrs; 276 ip6->ip6_plen = 0; 277 } else 278 ip6->ip6_plen = htons(plen); 279 280 /* 281 * Concatenate headers and fill in next header fields. 282 * Here we have, on "m" 283 * IPv6 payload 284 * and we insert headers accordingly. Finally, we should be getting: 285 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 286 * 287 * during the header composing process, "m" points to IPv6 header. 288 * "mprev" points to an extension header prior to esp. 289 */ 290 { 291 u_char *nexthdrp = &ip6->ip6_nxt; 292 struct mbuf *mprev = m; 293 294 /* 295 * we treat dest2 specially. this makes IPsec processing 296 * much easier. the goal here is to make mprev point the 297 * mbuf prior to dest2. 298 * 299 * result: IPv6 dest2 payload 300 * m and mprev will point to IPv6 header. 301 */ 302 if (exthdrs.ip6e_dest2) { 303 if (!hdrsplit) 304 panic("%s: assumption failed: hdr not split", 305 __func__); 306 exthdrs.ip6e_dest2->m_next = m->m_next; 307 m->m_next = exthdrs.ip6e_dest2; 308 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 309 ip6->ip6_nxt = IPPROTO_DSTOPTS; 310 } 311 312 #define MAKE_CHAIN(m, mp, p, i)\ 313 do {\ 314 if (m) {\ 315 if (!hdrsplit) \ 316 panic("assumption failed: hdr not split"); \ 317 *mtod((m), u_char *) = *(p);\ 318 *(p) = (i);\ 319 p = mtod((m), u_char *);\ 320 (m)->m_next = (mp)->m_next;\ 321 (mp)->m_next = (m);\ 322 (mp) = (m);\ 323 }\ 324 } while (0) 325 /* 326 * result: IPv6 hbh dest1 rthdr dest2 payload 327 * m will point to IPv6 header. mprev will point to the 328 * extension header prior to dest2 (rthdr in the above case). 329 */ 330 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 331 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 332 IPPROTO_DSTOPTS); 333 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 334 IPPROTO_ROUTING); 335 } 336 337 /* 338 * If there is a routing header, replace the destination address field 339 * with the first hop of the routing header. 340 */ 341 if (exthdrs.ip6e_rthdr) { 342 struct ip6_rthdr *rh; 343 struct ip6_rthdr0 *rh0; 344 struct in6_addr *addr; 345 346 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 347 struct ip6_rthdr *)); 348 switch (rh->ip6r_type) { 349 case IPV6_RTHDR_TYPE_0: 350 rh0 = (struct ip6_rthdr0 *)rh; 351 addr = (struct in6_addr *)(rh0 + 1); 352 ip6->ip6_dst = addr[0]; 353 bcopy(&addr[1], &addr[0], 354 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)); 355 addr[rh0->ip6r0_segleft - 1] = finaldst; 356 break; 357 default: /* is it possible? */ 358 error = EINVAL; 359 goto bad; 360 } 361 } 362 363 /* Source address validation */ 364 if (!(flags & IPV6_UNSPECSRC) && 365 IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 366 /* 367 * XXX: we can probably assume validation in the caller, but 368 * we explicitly check the address here for safety. 369 */ 370 error = EOPNOTSUPP; 371 ip6stat_inc(ip6s_badscope); 372 goto bad; 373 } 374 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 375 error = EOPNOTSUPP; 376 ip6stat_inc(ip6s_badscope); 377 goto bad; 378 } 379 380 ip6stat_inc(ip6s_localout); 381 382 /* 383 * Route packet. 384 */ 385 #if NPF > 0 386 reroute: 387 #endif 388 389 /* initialize cached route */ 390 if (ro == NULL) { 391 ro = &ip6route; 392 bzero((caddr_t)ro, sizeof(*ro)); 393 } 394 ro_pmtu = ro; 395 if (opt && opt->ip6po_rthdr) 396 ro = &opt->ip6po_route; 397 dst = &ro->ro_dst; 398 399 /* 400 * if specified, try to fill in the traffic class field. 401 * do not override if a non-zero value is already set. 402 * we check the diffserv field and the ecn field separately. 403 */ 404 if (opt && opt->ip6po_tclass >= 0) { 405 int mask = 0; 406 407 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 408 mask |= 0xfc; 409 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 410 mask |= 0x03; 411 if (mask != 0) 412 ip6->ip6_flow |= 413 htonl((opt->ip6po_tclass & mask) << 20); 414 } 415 416 /* fill in or override the hop limit field, if necessary. */ 417 if (opt && opt->ip6po_hlim != -1) 418 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 419 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 420 if (im6o != NULL) 421 ip6->ip6_hlim = im6o->im6o_hlim; 422 else 423 ip6->ip6_hlim = ip6_defmcasthlim; 424 } 425 426 #ifdef IPSEC 427 if (tdb) { 428 /* 429 * XXX what should we do if ip6_hlim == 0 and the 430 * packet gets tunneled? 431 */ 432 /* 433 * if we are source-routing, do not attempt to tunnel the 434 * packet just because ip6_dst is different from what tdb has. 435 * XXX 436 */ 437 error = ip6_output_ipsec_send(tdb, m, ro, 438 exthdrs.ip6e_rthdr ? 1 : 0, 0); 439 goto done; 440 } 441 #endif /* IPSEC */ 442 443 bzero(&dstsock, sizeof(dstsock)); 444 dstsock.sin6_family = AF_INET6; 445 dstsock.sin6_addr = ip6->ip6_dst; 446 dstsock.sin6_len = sizeof(dstsock); 447 ro->ro_tableid = m->m_pkthdr.ph_rtableid; 448 449 if (IN6_IS_ADDR_MULTICAST(&dstsock.sin6_addr)) { 450 struct in6_pktinfo *pi = NULL; 451 452 /* 453 * If the caller specify the outgoing interface 454 * explicitly, use it. 455 */ 456 if (opt != NULL && (pi = opt->ip6po_pktinfo) != NULL) 457 ifp = if_get(pi->ipi6_ifindex); 458 459 if (ifp == NULL && im6o != NULL) 460 ifp = if_get(im6o->im6o_ifidx); 461 } 462 463 if (ifp == NULL) { 464 rt = in6_selectroute(&dstsock, opt, ro, ro->ro_tableid); 465 if (rt == NULL) { 466 ip6stat_inc(ip6s_noroute); 467 error = EHOSTUNREACH; 468 goto bad; 469 } 470 if (ISSET(rt->rt_flags, RTF_LOCAL)) 471 ifp = if_get(rtable_loindex(m->m_pkthdr.ph_rtableid)); 472 else 473 ifp = if_get(rt->rt_ifidx); 474 /* 475 * We aren't using rtisvalid() here because the UP/DOWN state 476 * machine is broken with some Ethernet drivers like em(4). 477 * As a result we might try to use an invalid cached route 478 * entry while an interface is being detached. 479 */ 480 if (ifp == NULL) { 481 ip6stat_inc(ip6s_noroute); 482 error = EHOSTUNREACH; 483 goto bad; 484 } 485 } else { 486 *dst = dstsock; 487 } 488 489 if (rt && (rt->rt_flags & RTF_GATEWAY) && 490 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 491 dst = satosin6(rt->rt_gateway); 492 493 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 494 /* Unicast */ 495 496 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 497 } else { 498 /* Multicast */ 499 500 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 501 502 /* 503 * Confirm that the outgoing interface supports multicast. 504 */ 505 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 506 ip6stat_inc(ip6s_noroute); 507 error = ENETUNREACH; 508 goto bad; 509 } 510 511 if ((im6o == NULL || im6o->im6o_loop) && 512 in6_hasmulti(&ip6->ip6_dst, ifp)) { 513 /* 514 * If we belong to the destination multicast group 515 * on the outgoing interface, and the caller did not 516 * forbid loopback, loop back a copy. 517 * Can't defer TCP/UDP checksumming, do the 518 * computation now. 519 */ 520 in6_proto_cksum_out(m, NULL); 521 ip6_mloopback(ifp, m, dst); 522 } 523 #ifdef MROUTING 524 else { 525 /* 526 * If we are acting as a multicast router, perform 527 * multicast forwarding as if the packet had just 528 * arrived on the interface to which we are about 529 * to send. The multicast forwarding function 530 * recursively calls this function, using the 531 * IPV6_FORWARDING flag to prevent infinite recursion. 532 * 533 * Multicasts that are looped back by ip6_mloopback(), 534 * above, will be forwarded by the ip6_input() routine, 535 * if necessary. 536 */ 537 if (ip6_mforwarding && ip6_mrouter[ifp->if_rdomain] && 538 (flags & IPV6_FORWARDING) == 0) { 539 if (ip6_mforward(ip6, ifp, m) != 0) { 540 m_freem(m); 541 goto done; 542 } 543 } 544 } 545 #endif 546 /* 547 * Multicasts with a hoplimit of zero may be looped back, 548 * above, but must not be transmitted on a network. 549 * Also, multicasts addressed to the loopback interface 550 * are not sent -- the above call to ip6_mloopback() will 551 * loop back a copy if this host actually belongs to the 552 * destination group on the loopback interface. 553 */ 554 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 555 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 556 m_freem(m); 557 goto done; 558 } 559 } 560 561 /* 562 * If this packet is going trough a loopback interface we wont 563 * be able to restore its scope ID using the interface index. 564 */ 565 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { 566 if (ifp->if_flags & IFF_LOOPBACK) 567 src_scope = ip6->ip6_src.s6_addr16[1]; 568 ip6->ip6_src.s6_addr16[1] = 0; 569 } 570 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { 571 if (ifp->if_flags & IFF_LOOPBACK) 572 dst_scope = ip6->ip6_dst.s6_addr16[1]; 573 ip6->ip6_dst.s6_addr16[1] = 0; 574 } 575 576 /* Determine path MTU. */ 577 if ((error = ip6_getpmtu(ro_pmtu->ro_rt, ifp, &mtu)) != 0) 578 goto bad; 579 580 /* 581 * The caller of this function may specify to use the minimum MTU 582 * in some cases. 583 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 584 * setting. The logic is a bit complicated; by default, unicast 585 * packets will follow path MTU while multicast packets will be sent at 586 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 587 * including unicast ones will be sent at the minimum MTU. Multicast 588 * packets will always be sent at the minimum MTU unless 589 * IP6PO_MINMTU_DISABLE is explicitly specified. 590 * See RFC 3542 for more details. 591 */ 592 if (mtu > IPV6_MMTU) { 593 if ((flags & IPV6_MINMTU)) 594 mtu = IPV6_MMTU; 595 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 596 mtu = IPV6_MMTU; 597 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && (opt == NULL || 598 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 599 mtu = IPV6_MMTU; 600 } 601 } 602 603 /* 604 * If the outgoing packet contains a hop-by-hop options header, 605 * it must be examined and processed even by the source node. 606 * (RFC 2460, section 4.) 607 */ 608 if (exthdrs.ip6e_hbh) { 609 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 610 u_int32_t rtalert; /* returned value is ignored */ 611 u_int32_t plen = 0; /* no more than 1 jumbo payload option! */ 612 613 m->m_pkthdr.ph_ifidx = ifp->if_index; 614 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 615 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 616 &rtalert, &plen) < 0) { 617 /* m was already freed at this point */ 618 error = EINVAL;/* better error? */ 619 goto done; 620 } 621 m->m_pkthdr.ph_ifidx = 0; 622 } 623 624 #if NPF > 0 625 if (pf_test(AF_INET6, PF_OUT, ifp, &m) != PF_PASS) { 626 error = EACCES; 627 m_freem(m); 628 goto done; 629 } 630 if (m == NULL) 631 goto done; 632 ip6 = mtod(m, struct ip6_hdr *); 633 if ((m->m_pkthdr.pf.flags & (PF_TAG_REROUTE | PF_TAG_GENERATED)) == 634 (PF_TAG_REROUTE | PF_TAG_GENERATED)) { 635 /* already rerun the route lookup, go on */ 636 m->m_pkthdr.pf.flags &= ~(PF_TAG_GENERATED | PF_TAG_REROUTE); 637 } else if (m->m_pkthdr.pf.flags & PF_TAG_REROUTE) { 638 /* tag as generated to skip over pf_test on rerun */ 639 m->m_pkthdr.pf.flags |= PF_TAG_GENERATED; 640 finaldst = ip6->ip6_dst; 641 ro = NULL; 642 if_put(ifp); /* drop reference since destination changed */ 643 ifp = NULL; 644 goto reroute; 645 } 646 #endif 647 648 /* 649 * If the packet is not going on the wire it can be destinated 650 * to any local address. In this case do not clear its scopes 651 * to let ip6_input() find a matching local route. 652 */ 653 if (ifp->if_flags & IFF_LOOPBACK) { 654 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 655 ip6->ip6_src.s6_addr16[1] = src_scope; 656 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 657 ip6->ip6_dst.s6_addr16[1] = dst_scope; 658 } 659 660 in6_proto_cksum_out(m, ifp); 661 662 /* 663 * Send the packet to the outgoing interface. 664 * If necessary, do IPv6 fragmentation before sending. 665 * 666 * the logic here is rather complex: 667 * 1: normal case (dontfrag == 0) 668 * 1-a: send as is if tlen <= path mtu 669 * 1-b: fragment if tlen > path mtu 670 * 671 * 2: if user asks us not to fragment (dontfrag == 1) 672 * 2-a: send as is if tlen <= interface mtu 673 * 2-b: error if tlen > interface mtu 674 */ 675 tlen = m->m_pkthdr.len; 676 677 if (ISSET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT)) { 678 CLR(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT); 679 dontfrag = 1; 680 } else if (opt && ISSET(opt->ip6po_flags, IP6PO_DONTFRAG)) 681 dontfrag = 1; 682 else 683 dontfrag = 0; 684 if (dontfrag && tlen > ifp->if_mtu) { /* case 2-b */ 685 #ifdef IPSEC 686 if (ip_mtudisc) 687 ipsec_adjust_mtu(m, mtu); 688 #endif 689 error = EMSGSIZE; 690 goto bad; 691 } 692 693 /* 694 * transmit packet without fragmentation 695 */ 696 if (dontfrag || (tlen <= mtu)) { /* case 1-a and 2-a */ 697 error = ifp->if_output(ifp, m, sin6tosa(dst), ro->ro_rt); 698 goto done; 699 } 700 701 /* 702 * try to fragment the packet. case 1-b 703 */ 704 if (mtu < IPV6_MMTU) { 705 /* path MTU cannot be less than IPV6_MMTU */ 706 error = EMSGSIZE; 707 goto bad; 708 } else if (ip6->ip6_plen == 0) { 709 /* jumbo payload cannot be fragmented */ 710 error = EMSGSIZE; 711 goto bad; 712 } else { 713 u_char nextproto; 714 #if 0 715 struct ip6ctlparam ip6cp; 716 u_int32_t mtu32; 717 #endif 718 719 /* 720 * Too large for the destination or interface; 721 * fragment if possible. 722 * Must be able to put at least 8 bytes per fragment. 723 */ 724 hlen = unfragpartlen; 725 if (mtu > IPV6_MAXPACKET) 726 mtu = IPV6_MAXPACKET; 727 728 /* 729 * Change the next header field of the last header in the 730 * unfragmentable part. 731 */ 732 if (exthdrs.ip6e_rthdr) { 733 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 734 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 735 } else if (exthdrs.ip6e_dest1) { 736 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 737 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 738 } else if (exthdrs.ip6e_hbh) { 739 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 740 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 741 } else { 742 nextproto = ip6->ip6_nxt; 743 ip6->ip6_nxt = IPPROTO_FRAGMENT; 744 } 745 746 m0 = m; 747 error = ip6_fragment(m0, hlen, nextproto, mtu); 748 if (error) 749 ip6stat_inc(ip6s_odropped); 750 } 751 752 /* 753 * Remove leading garbages. 754 */ 755 m = m0->m_nextpkt; 756 m0->m_nextpkt = 0; 757 m_freem(m0); 758 for (m0 = m; m; m = m0) { 759 m0 = m->m_nextpkt; 760 m->m_nextpkt = 0; 761 if (error == 0) { 762 ip6stat_inc(ip6s_ofragments); 763 error = ifp->if_output(ifp, m, sin6tosa(dst), 764 ro->ro_rt); 765 } else 766 m_freem(m); 767 } 768 769 if (error == 0) 770 ip6stat_inc(ip6s_fragmented); 771 772 done: 773 if_put(ifp); 774 if (ro == &ip6route && ro->ro_rt) { 775 rtfree(ro->ro_rt); 776 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 777 rtfree(ro_pmtu->ro_rt); 778 } 779 780 return (error); 781 782 freehdrs: 783 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 784 m_freem(exthdrs.ip6e_dest1); 785 m_freem(exthdrs.ip6e_rthdr); 786 m_freem(exthdrs.ip6e_dest2); 787 /* FALLTHROUGH */ 788 bad: 789 m_freem(m); 790 goto done; 791 } 792 793 int 794 ip6_fragment(struct mbuf *m0, int hlen, u_char nextproto, u_long mtu) 795 { 796 struct mbuf *m, **mnext, *m_frgpart; 797 struct ip6_hdr *mhip6; 798 struct ip6_frag *ip6f; 799 u_int32_t id; 800 int tlen, len, off; 801 int error; 802 803 id = htonl(ip6_randomid()); 804 805 mnext = &m0->m_nextpkt; 806 *mnext = NULL; 807 808 tlen = m0->m_pkthdr.len; 809 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 810 if (len < 8) 811 return (EMSGSIZE); 812 813 /* 814 * Loop through length of segment after first fragment, 815 * make new header and copy data of each part and link onto 816 * chain. 817 */ 818 for (off = hlen; off < tlen; off += len) { 819 struct mbuf *mlast; 820 821 if ((m = m_gethdr(M_DONTWAIT, MT_HEADER)) == NULL) 822 return (ENOBUFS); 823 *mnext = m; 824 mnext = &m->m_nextpkt; 825 if ((error = m_dup_pkthdr(m, m0, M_DONTWAIT)) != 0) 826 return (error); 827 m->m_data += max_linkhdr; 828 mhip6 = mtod(m, struct ip6_hdr *); 829 *mhip6 = *mtod(m0, struct ip6_hdr *); 830 m->m_len = sizeof(*mhip6); 831 if ((error = ip6_insertfraghdr(m0, m, hlen, &ip6f)) != 0) 832 return (error); 833 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 834 if (off + len >= tlen) 835 len = tlen - off; 836 else 837 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 838 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 839 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 840 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) 841 return (ENOBUFS); 842 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 843 ; 844 mlast->m_next = m_frgpart; 845 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 846 ip6f->ip6f_reserved = 0; 847 ip6f->ip6f_ident = id; 848 ip6f->ip6f_nxt = nextproto; 849 } 850 851 return (0); 852 } 853 854 int 855 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 856 { 857 struct mbuf *m; 858 859 if (hlen > MCLBYTES) 860 return (ENOBUFS); /* XXX */ 861 862 MGET(m, M_DONTWAIT, MT_DATA); 863 if (!m) 864 return (ENOBUFS); 865 866 if (hlen > MLEN) { 867 MCLGET(m, M_DONTWAIT); 868 if ((m->m_flags & M_EXT) == 0) { 869 m_free(m); 870 return (ENOBUFS); 871 } 872 } 873 m->m_len = hlen; 874 if (hdr) 875 memcpy(mtod(m, caddr_t), hdr, hlen); 876 877 *mp = m; 878 return (0); 879 } 880 881 /* 882 * Insert jumbo payload option. 883 */ 884 int 885 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 886 { 887 struct mbuf *mopt; 888 u_int8_t *optbuf; 889 u_int32_t v; 890 891 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 892 893 /* 894 * If there is no hop-by-hop options header, allocate new one. 895 * If there is one but it doesn't have enough space to store the 896 * jumbo payload option, allocate a cluster to store the whole options. 897 * Otherwise, use it to store the options. 898 */ 899 if (exthdrs->ip6e_hbh == 0) { 900 MGET(mopt, M_DONTWAIT, MT_DATA); 901 if (mopt == NULL) 902 return (ENOBUFS); 903 mopt->m_len = JUMBOOPTLEN; 904 optbuf = mtod(mopt, u_int8_t *); 905 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 906 exthdrs->ip6e_hbh = mopt; 907 } else { 908 struct ip6_hbh *hbh; 909 910 mopt = exthdrs->ip6e_hbh; 911 if (m_trailingspace(mopt) < JUMBOOPTLEN) { 912 /* 913 * XXX assumption: 914 * - exthdrs->ip6e_hbh is not referenced from places 915 * other than exthdrs. 916 * - exthdrs->ip6e_hbh is not an mbuf chain. 917 */ 918 int oldoptlen = mopt->m_len; 919 struct mbuf *n; 920 921 /* 922 * XXX: give up if the whole (new) hbh header does 923 * not fit even in an mbuf cluster. 924 */ 925 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 926 return (ENOBUFS); 927 928 /* 929 * As a consequence, we must always prepare a cluster 930 * at this point. 931 */ 932 MGET(n, M_DONTWAIT, MT_DATA); 933 if (n) { 934 MCLGET(n, M_DONTWAIT); 935 if ((n->m_flags & M_EXT) == 0) { 936 m_freem(n); 937 n = NULL; 938 } 939 } 940 if (!n) 941 return (ENOBUFS); 942 n->m_len = oldoptlen + JUMBOOPTLEN; 943 memcpy(mtod(n, caddr_t), mtod(mopt, caddr_t), 944 oldoptlen); 945 optbuf = mtod(n, u_int8_t *) + oldoptlen; 946 m_freem(mopt); 947 mopt = exthdrs->ip6e_hbh = n; 948 } else { 949 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 950 mopt->m_len += JUMBOOPTLEN; 951 } 952 optbuf[0] = IP6OPT_PADN; 953 optbuf[1] = 0; 954 955 /* 956 * Adjust the header length according to the pad and 957 * the jumbo payload option. 958 */ 959 hbh = mtod(mopt, struct ip6_hbh *); 960 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 961 } 962 963 /* fill in the option. */ 964 optbuf[2] = IP6OPT_JUMBO; 965 optbuf[3] = 4; 966 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 967 memcpy(&optbuf[4], &v, sizeof(u_int32_t)); 968 969 /* finally, adjust the packet header length */ 970 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 971 972 return (0); 973 #undef JUMBOOPTLEN 974 } 975 976 /* 977 * Insert fragment header and copy unfragmentable header portions. 978 */ 979 int 980 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 981 struct ip6_frag **frghdrp) 982 { 983 struct mbuf *n, *mlast; 984 985 if (hlen > sizeof(struct ip6_hdr)) { 986 n = m_copym(m0, sizeof(struct ip6_hdr), 987 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 988 if (n == NULL) 989 return (ENOBUFS); 990 m->m_next = n; 991 } else 992 n = m; 993 994 /* Search for the last mbuf of unfragmentable part. */ 995 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 996 ; 997 998 if ((mlast->m_flags & M_EXT) == 0 && 999 m_trailingspace(mlast) >= sizeof(struct ip6_frag)) { 1000 /* use the trailing space of the last mbuf for fragment hdr */ 1001 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1002 mlast->m_len); 1003 mlast->m_len += sizeof(struct ip6_frag); 1004 m->m_pkthdr.len += sizeof(struct ip6_frag); 1005 } else { 1006 /* allocate a new mbuf for the fragment header */ 1007 struct mbuf *mfrg; 1008 1009 MGET(mfrg, M_DONTWAIT, MT_DATA); 1010 if (mfrg == NULL) 1011 return (ENOBUFS); 1012 mfrg->m_len = sizeof(struct ip6_frag); 1013 *frghdrp = mtod(mfrg, struct ip6_frag *); 1014 mlast->m_next = mfrg; 1015 } 1016 1017 return (0); 1018 } 1019 1020 int 1021 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup) 1022 { 1023 u_int32_t mtu = 0; 1024 int error = 0; 1025 1026 if (rt != NULL) { 1027 mtu = rt->rt_mtu; 1028 if (mtu == 0) 1029 mtu = ifp->if_mtu; 1030 else if (mtu < IPV6_MMTU) { 1031 /* RFC8021 IPv6 Atomic Fragments Considered Harmful */ 1032 mtu = IPV6_MMTU; 1033 } else if (mtu > ifp->if_mtu) { 1034 /* 1035 * The MTU on the route is larger than the MTU on 1036 * the interface! This shouldn't happen, unless the 1037 * MTU of the interface has been changed after the 1038 * interface was brought up. Change the MTU in the 1039 * route to match the interface MTU (as long as the 1040 * field isn't locked). 1041 */ 1042 mtu = ifp->if_mtu; 1043 if (!(rt->rt_locks & RTV_MTU)) 1044 rt->rt_mtu = mtu; 1045 } 1046 } else { 1047 mtu = ifp->if_mtu; 1048 } 1049 1050 *mtup = mtu; 1051 return (error); 1052 } 1053 1054 /* 1055 * IP6 socket option processing. 1056 */ 1057 int 1058 ip6_ctloutput(int op, struct socket *so, int level, int optname, 1059 struct mbuf *m) 1060 { 1061 int privileged, optdatalen, uproto; 1062 void *optdata; 1063 struct inpcb *inp = sotoinpcb(so); 1064 int error, optval; 1065 struct proc *p = curproc; /* For IPsec and rdomain */ 1066 u_int rtid = 0; 1067 1068 error = optval = 0; 1069 1070 privileged = (inp->inp_socket->so_state & SS_PRIV); 1071 uproto = (int)so->so_proto->pr_protocol; 1072 1073 if (level != IPPROTO_IPV6) 1074 return (EINVAL); 1075 1076 switch (op) { 1077 case PRCO_SETOPT: 1078 switch (optname) { 1079 /* 1080 * Use of some Hop-by-Hop options or some 1081 * Destination options, might require special 1082 * privilege. That is, normal applications 1083 * (without special privilege) might be forbidden 1084 * from setting certain options in outgoing packets, 1085 * and might never see certain options in received 1086 * packets. [RFC 2292 Section 6] 1087 * KAME specific note: 1088 * KAME prevents non-privileged users from sending or 1089 * receiving ANY hbh/dst options in order to avoid 1090 * overhead of parsing options in the kernel. 1091 */ 1092 case IPV6_RECVHOPOPTS: 1093 case IPV6_RECVDSTOPTS: 1094 if (!privileged) { 1095 error = EPERM; 1096 break; 1097 } 1098 /* FALLTHROUGH */ 1099 case IPV6_UNICAST_HOPS: 1100 case IPV6_MINHOPCOUNT: 1101 case IPV6_HOPLIMIT: 1102 1103 case IPV6_RECVPKTINFO: 1104 case IPV6_RECVHOPLIMIT: 1105 case IPV6_RECVRTHDR: 1106 case IPV6_RECVPATHMTU: 1107 case IPV6_RECVTCLASS: 1108 case IPV6_V6ONLY: 1109 case IPV6_AUTOFLOWLABEL: 1110 case IPV6_RECVDSTPORT: 1111 if (m == NULL || m->m_len != sizeof(int)) { 1112 error = EINVAL; 1113 break; 1114 } 1115 optval = *mtod(m, int *); 1116 switch (optname) { 1117 1118 case IPV6_UNICAST_HOPS: 1119 if (optval < -1 || optval >= 256) 1120 error = EINVAL; 1121 else { 1122 /* -1 = kernel default */ 1123 inp->inp_hops = optval; 1124 } 1125 break; 1126 1127 case IPV6_MINHOPCOUNT: 1128 if (optval < 0 || optval > 255) 1129 error = EINVAL; 1130 else 1131 inp->inp_ip6_minhlim = optval; 1132 break; 1133 1134 #define OPTSET(bit) \ 1135 do { \ 1136 if (optval) \ 1137 inp->inp_flags |= (bit); \ 1138 else \ 1139 inp->inp_flags &= ~(bit); \ 1140 } while (/*CONSTCOND*/ 0) 1141 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1142 1143 case IPV6_RECVPKTINFO: 1144 OPTSET(IN6P_PKTINFO); 1145 break; 1146 1147 case IPV6_HOPLIMIT: 1148 { 1149 struct ip6_pktopts **optp; 1150 1151 optp = &inp->inp_outputopts6; 1152 error = ip6_pcbopt(IPV6_HOPLIMIT, 1153 (u_char *)&optval, sizeof(optval), optp, 1154 privileged, uproto); 1155 break; 1156 } 1157 1158 case IPV6_RECVHOPLIMIT: 1159 OPTSET(IN6P_HOPLIMIT); 1160 break; 1161 1162 case IPV6_RECVHOPOPTS: 1163 OPTSET(IN6P_HOPOPTS); 1164 break; 1165 1166 case IPV6_RECVDSTOPTS: 1167 OPTSET(IN6P_DSTOPTS); 1168 break; 1169 1170 case IPV6_RECVRTHDR: 1171 OPTSET(IN6P_RTHDR); 1172 break; 1173 1174 case IPV6_RECVPATHMTU: 1175 /* 1176 * We ignore this option for TCP 1177 * sockets. 1178 * (RFC3542 leaves this case 1179 * unspecified.) 1180 */ 1181 if (uproto != IPPROTO_TCP) 1182 OPTSET(IN6P_MTU); 1183 break; 1184 1185 case IPV6_V6ONLY: 1186 /* 1187 * make setsockopt(IPV6_V6ONLY) 1188 * available only prior to bind(2). 1189 * see ipng mailing list, Jun 22 2001. 1190 */ 1191 if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED( 1192 &inp->inp_laddr6)) { 1193 error = EINVAL; 1194 break; 1195 } 1196 /* No support for IPv4-mapped addresses. */ 1197 if (!optval) 1198 error = EINVAL; 1199 else 1200 error = 0; 1201 break; 1202 case IPV6_RECVTCLASS: 1203 OPTSET(IN6P_TCLASS); 1204 break; 1205 case IPV6_AUTOFLOWLABEL: 1206 OPTSET(IN6P_AUTOFLOWLABEL); 1207 break; 1208 1209 case IPV6_RECVDSTPORT: 1210 OPTSET(IN6P_RECVDSTPORT); 1211 break; 1212 } 1213 break; 1214 1215 case IPV6_TCLASS: 1216 case IPV6_DONTFRAG: 1217 case IPV6_USE_MIN_MTU: 1218 if (m == NULL || m->m_len != sizeof(optval)) { 1219 error = EINVAL; 1220 break; 1221 } 1222 optval = *mtod(m, int *); 1223 { 1224 struct ip6_pktopts **optp; 1225 optp = &inp->inp_outputopts6; 1226 error = ip6_pcbopt(optname, (u_char *)&optval, 1227 sizeof(optval), optp, privileged, uproto); 1228 break; 1229 } 1230 1231 case IPV6_PKTINFO: 1232 case IPV6_HOPOPTS: 1233 case IPV6_RTHDR: 1234 case IPV6_DSTOPTS: 1235 case IPV6_RTHDRDSTOPTS: 1236 { 1237 /* new advanced API (RFC3542) */ 1238 u_char *optbuf; 1239 int optbuflen; 1240 struct ip6_pktopts **optp; 1241 1242 if (m && m->m_next) { 1243 error = EINVAL; /* XXX */ 1244 break; 1245 } 1246 if (m) { 1247 optbuf = mtod(m, u_char *); 1248 optbuflen = m->m_len; 1249 } else { 1250 optbuf = NULL; 1251 optbuflen = 0; 1252 } 1253 optp = &inp->inp_outputopts6; 1254 error = ip6_pcbopt(optname, optbuf, optbuflen, optp, 1255 privileged, uproto); 1256 break; 1257 } 1258 #undef OPTSET 1259 1260 case IPV6_MULTICAST_IF: 1261 case IPV6_MULTICAST_HOPS: 1262 case IPV6_MULTICAST_LOOP: 1263 case IPV6_JOIN_GROUP: 1264 case IPV6_LEAVE_GROUP: 1265 error = ip6_setmoptions(optname, 1266 &inp->inp_moptions6, 1267 m, inp->inp_rtableid); 1268 break; 1269 1270 case IPV6_PORTRANGE: 1271 if (m == NULL || m->m_len != sizeof(int)) { 1272 error = EINVAL; 1273 break; 1274 } 1275 optval = *mtod(m, int *); 1276 1277 switch (optval) { 1278 case IPV6_PORTRANGE_DEFAULT: 1279 inp->inp_flags &= ~(IN6P_LOWPORT); 1280 inp->inp_flags &= ~(IN6P_HIGHPORT); 1281 break; 1282 1283 case IPV6_PORTRANGE_HIGH: 1284 inp->inp_flags &= ~(IN6P_LOWPORT); 1285 inp->inp_flags |= IN6P_HIGHPORT; 1286 break; 1287 1288 case IPV6_PORTRANGE_LOW: 1289 inp->inp_flags &= ~(IN6P_HIGHPORT); 1290 inp->inp_flags |= IN6P_LOWPORT; 1291 break; 1292 1293 default: 1294 error = EINVAL; 1295 break; 1296 } 1297 break; 1298 1299 case IPSEC6_OUTSA: 1300 error = EINVAL; 1301 break; 1302 1303 case IPV6_AUTH_LEVEL: 1304 case IPV6_ESP_TRANS_LEVEL: 1305 case IPV6_ESP_NETWORK_LEVEL: 1306 case IPV6_IPCOMP_LEVEL: 1307 #ifndef IPSEC 1308 error = EINVAL; 1309 #else 1310 if (m == NULL || m->m_len != sizeof(int)) { 1311 error = EINVAL; 1312 break; 1313 } 1314 optval = *mtod(m, int *); 1315 1316 if (optval < IPSEC_LEVEL_BYPASS || 1317 optval > IPSEC_LEVEL_UNIQUE) { 1318 error = EINVAL; 1319 break; 1320 } 1321 1322 switch (optname) { 1323 case IPV6_AUTH_LEVEL: 1324 if (optval < IPSEC_AUTH_LEVEL_DEFAULT && 1325 suser(p)) { 1326 error = EACCES; 1327 break; 1328 } 1329 inp->inp_seclevel[SL_AUTH] = optval; 1330 break; 1331 1332 case IPV6_ESP_TRANS_LEVEL: 1333 if (optval < IPSEC_ESP_TRANS_LEVEL_DEFAULT && 1334 suser(p)) { 1335 error = EACCES; 1336 break; 1337 } 1338 inp->inp_seclevel[SL_ESP_TRANS] = optval; 1339 break; 1340 1341 case IPV6_ESP_NETWORK_LEVEL: 1342 if (optval < IPSEC_ESP_NETWORK_LEVEL_DEFAULT && 1343 suser(p)) { 1344 error = EACCES; 1345 break; 1346 } 1347 inp->inp_seclevel[SL_ESP_NETWORK] = optval; 1348 break; 1349 1350 case IPV6_IPCOMP_LEVEL: 1351 if (optval < IPSEC_IPCOMP_LEVEL_DEFAULT && 1352 suser(p)) { 1353 error = EACCES; 1354 break; 1355 } 1356 inp->inp_seclevel[SL_IPCOMP] = optval; 1357 break; 1358 } 1359 #endif 1360 break; 1361 case SO_RTABLE: 1362 if (m == NULL || m->m_len < sizeof(u_int)) { 1363 error = EINVAL; 1364 break; 1365 } 1366 rtid = *mtod(m, u_int *); 1367 if (inp->inp_rtableid == rtid) 1368 break; 1369 /* needs privileges to switch when already set */ 1370 if (p->p_p->ps_rtableid != rtid && 1371 p->p_p->ps_rtableid != 0 && 1372 (error = suser(p)) != 0) 1373 break; 1374 /* table must exist */ 1375 if (!rtable_exists(rtid)) { 1376 error = EINVAL; 1377 break; 1378 } 1379 if (inp->inp_lport) { 1380 error = EBUSY; 1381 break; 1382 } 1383 inp->inp_rtableid = rtid; 1384 in_pcbrehash(inp); 1385 break; 1386 case IPV6_PIPEX: 1387 if (m != NULL && m->m_len == sizeof(int)) 1388 inp->inp_pipex = *mtod(m, int *); 1389 else 1390 error = EINVAL; 1391 break; 1392 1393 default: 1394 error = ENOPROTOOPT; 1395 break; 1396 } 1397 break; 1398 1399 case PRCO_GETOPT: 1400 switch (optname) { 1401 1402 case IPV6_RECVHOPOPTS: 1403 case IPV6_RECVDSTOPTS: 1404 case IPV6_UNICAST_HOPS: 1405 case IPV6_MINHOPCOUNT: 1406 case IPV6_RECVPKTINFO: 1407 case IPV6_RECVHOPLIMIT: 1408 case IPV6_RECVRTHDR: 1409 case IPV6_RECVPATHMTU: 1410 1411 case IPV6_V6ONLY: 1412 case IPV6_PORTRANGE: 1413 case IPV6_RECVTCLASS: 1414 case IPV6_AUTOFLOWLABEL: 1415 case IPV6_RECVDSTPORT: 1416 switch (optname) { 1417 1418 case IPV6_RECVHOPOPTS: 1419 optval = OPTBIT(IN6P_HOPOPTS); 1420 break; 1421 1422 case IPV6_RECVDSTOPTS: 1423 optval = OPTBIT(IN6P_DSTOPTS); 1424 break; 1425 1426 case IPV6_UNICAST_HOPS: 1427 optval = inp->inp_hops; 1428 break; 1429 1430 case IPV6_MINHOPCOUNT: 1431 optval = inp->inp_ip6_minhlim; 1432 break; 1433 1434 case IPV6_RECVPKTINFO: 1435 optval = OPTBIT(IN6P_PKTINFO); 1436 break; 1437 1438 case IPV6_RECVHOPLIMIT: 1439 optval = OPTBIT(IN6P_HOPLIMIT); 1440 break; 1441 1442 case IPV6_RECVRTHDR: 1443 optval = OPTBIT(IN6P_RTHDR); 1444 break; 1445 1446 case IPV6_RECVPATHMTU: 1447 optval = OPTBIT(IN6P_MTU); 1448 break; 1449 1450 case IPV6_V6ONLY: 1451 optval = 1; 1452 break; 1453 1454 case IPV6_PORTRANGE: 1455 { 1456 int flags; 1457 flags = inp->inp_flags; 1458 if (flags & IN6P_HIGHPORT) 1459 optval = IPV6_PORTRANGE_HIGH; 1460 else if (flags & IN6P_LOWPORT) 1461 optval = IPV6_PORTRANGE_LOW; 1462 else 1463 optval = 0; 1464 break; 1465 } 1466 case IPV6_RECVTCLASS: 1467 optval = OPTBIT(IN6P_TCLASS); 1468 break; 1469 1470 case IPV6_AUTOFLOWLABEL: 1471 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1472 break; 1473 1474 case IPV6_RECVDSTPORT: 1475 optval = OPTBIT(IN6P_RECVDSTPORT); 1476 break; 1477 } 1478 if (error) 1479 break; 1480 m->m_len = sizeof(int); 1481 *mtod(m, int *) = optval; 1482 break; 1483 1484 case IPV6_PATHMTU: 1485 { 1486 u_long pmtu = 0; 1487 struct ip6_mtuinfo mtuinfo; 1488 struct ifnet *ifp; 1489 struct rtentry *rt; 1490 1491 if (!(so->so_state & SS_ISCONNECTED)) 1492 return (ENOTCONN); 1493 1494 rt = in_pcbrtentry(inp); 1495 if (!rtisvalid(rt)) 1496 return (EHOSTUNREACH); 1497 1498 ifp = if_get(rt->rt_ifidx); 1499 if (ifp == NULL) 1500 return (EHOSTUNREACH); 1501 /* 1502 * XXX: we dot not consider the case of source 1503 * routing, or optional information to specify 1504 * the outgoing interface. 1505 */ 1506 error = ip6_getpmtu(rt, ifp, &pmtu); 1507 if_put(ifp); 1508 if (error) 1509 break; 1510 if (pmtu > IPV6_MAXPACKET) 1511 pmtu = IPV6_MAXPACKET; 1512 1513 bzero(&mtuinfo, sizeof(mtuinfo)); 1514 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1515 optdata = (void *)&mtuinfo; 1516 optdatalen = sizeof(mtuinfo); 1517 if (optdatalen > MCLBYTES) 1518 return (EMSGSIZE); /* XXX */ 1519 if (optdatalen > MLEN) 1520 MCLGET(m, M_WAIT); 1521 m->m_len = optdatalen; 1522 bcopy(optdata, mtod(m, void *), optdatalen); 1523 break; 1524 } 1525 1526 case IPV6_PKTINFO: 1527 case IPV6_HOPOPTS: 1528 case IPV6_RTHDR: 1529 case IPV6_DSTOPTS: 1530 case IPV6_RTHDRDSTOPTS: 1531 case IPV6_TCLASS: 1532 case IPV6_DONTFRAG: 1533 case IPV6_USE_MIN_MTU: 1534 error = ip6_getpcbopt(inp->inp_outputopts6, 1535 optname, m); 1536 break; 1537 1538 case IPV6_MULTICAST_IF: 1539 case IPV6_MULTICAST_HOPS: 1540 case IPV6_MULTICAST_LOOP: 1541 case IPV6_JOIN_GROUP: 1542 case IPV6_LEAVE_GROUP: 1543 error = ip6_getmoptions(optname, 1544 inp->inp_moptions6, m); 1545 break; 1546 1547 case IPSEC6_OUTSA: 1548 error = EINVAL; 1549 break; 1550 1551 case IPV6_AUTH_LEVEL: 1552 case IPV6_ESP_TRANS_LEVEL: 1553 case IPV6_ESP_NETWORK_LEVEL: 1554 case IPV6_IPCOMP_LEVEL: 1555 #ifndef IPSEC 1556 m->m_len = sizeof(int); 1557 *mtod(m, int *) = IPSEC_LEVEL_NONE; 1558 #else 1559 m->m_len = sizeof(int); 1560 switch (optname) { 1561 case IPV6_AUTH_LEVEL: 1562 optval = inp->inp_seclevel[SL_AUTH]; 1563 break; 1564 1565 case IPV6_ESP_TRANS_LEVEL: 1566 optval = 1567 inp->inp_seclevel[SL_ESP_TRANS]; 1568 break; 1569 1570 case IPV6_ESP_NETWORK_LEVEL: 1571 optval = 1572 inp->inp_seclevel[SL_ESP_NETWORK]; 1573 break; 1574 1575 case IPV6_IPCOMP_LEVEL: 1576 optval = inp->inp_seclevel[SL_IPCOMP]; 1577 break; 1578 } 1579 *mtod(m, int *) = optval; 1580 #endif 1581 break; 1582 case SO_RTABLE: 1583 m->m_len = sizeof(u_int); 1584 *mtod(m, u_int *) = inp->inp_rtableid; 1585 break; 1586 case IPV6_PIPEX: 1587 m->m_len = sizeof(int); 1588 *mtod(m, int *) = inp->inp_pipex; 1589 break; 1590 1591 default: 1592 error = ENOPROTOOPT; 1593 break; 1594 } 1595 break; 1596 } 1597 return (error); 1598 } 1599 1600 int 1601 ip6_raw_ctloutput(int op, struct socket *so, int level, int optname, 1602 struct mbuf *m) 1603 { 1604 int error = 0, optval; 1605 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1606 struct inpcb *inp = sotoinpcb(so); 1607 1608 if (level != IPPROTO_IPV6) 1609 return (EINVAL); 1610 1611 switch (optname) { 1612 case IPV6_CHECKSUM: 1613 /* 1614 * For ICMPv6 sockets, no modification allowed for checksum 1615 * offset, permit "no change" values to help existing apps. 1616 * 1617 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 1618 * for an ICMPv6 socket will fail." 1619 * The current behavior does not meet RFC3542. 1620 */ 1621 switch (op) { 1622 case PRCO_SETOPT: 1623 if (m == NULL || m->m_len != sizeof(int)) { 1624 error = EINVAL; 1625 break; 1626 } 1627 optval = *mtod(m, int *); 1628 if (optval < -1 || 1629 (optval > 0 && (optval % 2) != 0)) { 1630 /* 1631 * The API assumes non-negative even offset 1632 * values or -1 as a special value. 1633 */ 1634 error = EINVAL; 1635 } else if (so->so_proto->pr_protocol == 1636 IPPROTO_ICMPV6) { 1637 if (optval != icmp6off) 1638 error = EINVAL; 1639 } else 1640 inp->inp_cksum6 = optval; 1641 break; 1642 1643 case PRCO_GETOPT: 1644 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1645 optval = icmp6off; 1646 else 1647 optval = inp->inp_cksum6; 1648 1649 m->m_len = sizeof(int); 1650 *mtod(m, int *) = optval; 1651 break; 1652 1653 default: 1654 error = EINVAL; 1655 break; 1656 } 1657 break; 1658 1659 default: 1660 error = ENOPROTOOPT; 1661 break; 1662 } 1663 1664 return (error); 1665 } 1666 1667 /* 1668 * initialize ip6_pktopts. beware that there are non-zero default values in 1669 * the struct. 1670 */ 1671 void 1672 ip6_initpktopts(struct ip6_pktopts *opt) 1673 { 1674 bzero(opt, sizeof(*opt)); 1675 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 1676 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 1677 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 1678 } 1679 1680 int 1681 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 1682 int priv, int uproto) 1683 { 1684 struct ip6_pktopts *opt; 1685 1686 if (*pktopt == NULL) { 1687 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 1688 M_WAITOK); 1689 ip6_initpktopts(*pktopt); 1690 } 1691 opt = *pktopt; 1692 1693 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, uproto)); 1694 } 1695 1696 int 1697 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf *m) 1698 { 1699 void *optdata = NULL; 1700 int optdatalen = 0; 1701 struct ip6_ext *ip6e; 1702 int error = 0; 1703 struct in6_pktinfo null_pktinfo; 1704 int deftclass = 0, on; 1705 int defminmtu = IP6PO_MINMTU_MCASTONLY; 1706 1707 switch (optname) { 1708 case IPV6_PKTINFO: 1709 if (pktopt && pktopt->ip6po_pktinfo) 1710 optdata = (void *)pktopt->ip6po_pktinfo; 1711 else { 1712 /* XXX: we don't have to do this every time... */ 1713 bzero(&null_pktinfo, sizeof(null_pktinfo)); 1714 optdata = (void *)&null_pktinfo; 1715 } 1716 optdatalen = sizeof(struct in6_pktinfo); 1717 break; 1718 case IPV6_TCLASS: 1719 if (pktopt && pktopt->ip6po_tclass >= 0) 1720 optdata = (void *)&pktopt->ip6po_tclass; 1721 else 1722 optdata = (void *)&deftclass; 1723 optdatalen = sizeof(int); 1724 break; 1725 case IPV6_HOPOPTS: 1726 if (pktopt && pktopt->ip6po_hbh) { 1727 optdata = (void *)pktopt->ip6po_hbh; 1728 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 1729 optdatalen = (ip6e->ip6e_len + 1) << 3; 1730 } 1731 break; 1732 case IPV6_RTHDR: 1733 if (pktopt && pktopt->ip6po_rthdr) { 1734 optdata = (void *)pktopt->ip6po_rthdr; 1735 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 1736 optdatalen = (ip6e->ip6e_len + 1) << 3; 1737 } 1738 break; 1739 case IPV6_RTHDRDSTOPTS: 1740 if (pktopt && pktopt->ip6po_dest1) { 1741 optdata = (void *)pktopt->ip6po_dest1; 1742 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 1743 optdatalen = (ip6e->ip6e_len + 1) << 3; 1744 } 1745 break; 1746 case IPV6_DSTOPTS: 1747 if (pktopt && pktopt->ip6po_dest2) { 1748 optdata = (void *)pktopt->ip6po_dest2; 1749 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 1750 optdatalen = (ip6e->ip6e_len + 1) << 3; 1751 } 1752 break; 1753 case IPV6_USE_MIN_MTU: 1754 if (pktopt) 1755 optdata = (void *)&pktopt->ip6po_minmtu; 1756 else 1757 optdata = (void *)&defminmtu; 1758 optdatalen = sizeof(int); 1759 break; 1760 case IPV6_DONTFRAG: 1761 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 1762 on = 1; 1763 else 1764 on = 0; 1765 optdata = (void *)&on; 1766 optdatalen = sizeof(on); 1767 break; 1768 default: /* should not happen */ 1769 #ifdef DIAGNOSTIC 1770 panic("%s: unexpected option", __func__); 1771 #endif 1772 return (ENOPROTOOPT); 1773 } 1774 1775 if (optdatalen > MCLBYTES) 1776 return (EMSGSIZE); /* XXX */ 1777 if (optdatalen > MLEN) 1778 MCLGET(m, M_WAIT); 1779 m->m_len = optdatalen; 1780 if (optdatalen) 1781 bcopy(optdata, mtod(m, void *), optdatalen); 1782 1783 return (error); 1784 } 1785 1786 void 1787 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 1788 { 1789 if (optname == -1 || optname == IPV6_PKTINFO) { 1790 if (pktopt->ip6po_pktinfo) 1791 free(pktopt->ip6po_pktinfo, M_IP6OPT, 0); 1792 pktopt->ip6po_pktinfo = NULL; 1793 } 1794 if (optname == -1 || optname == IPV6_HOPLIMIT) 1795 pktopt->ip6po_hlim = -1; 1796 if (optname == -1 || optname == IPV6_TCLASS) 1797 pktopt->ip6po_tclass = -1; 1798 if (optname == -1 || optname == IPV6_HOPOPTS) { 1799 if (pktopt->ip6po_hbh) 1800 free(pktopt->ip6po_hbh, M_IP6OPT, 0); 1801 pktopt->ip6po_hbh = NULL; 1802 } 1803 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 1804 if (pktopt->ip6po_dest1) 1805 free(pktopt->ip6po_dest1, M_IP6OPT, 0); 1806 pktopt->ip6po_dest1 = NULL; 1807 } 1808 if (optname == -1 || optname == IPV6_RTHDR) { 1809 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 1810 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT, 0); 1811 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 1812 if (pktopt->ip6po_route.ro_rt) { 1813 rtfree(pktopt->ip6po_route.ro_rt); 1814 pktopt->ip6po_route.ro_rt = NULL; 1815 } 1816 } 1817 if (optname == -1 || optname == IPV6_DSTOPTS) { 1818 if (pktopt->ip6po_dest2) 1819 free(pktopt->ip6po_dest2, M_IP6OPT, 0); 1820 pktopt->ip6po_dest2 = NULL; 1821 } 1822 } 1823 1824 #define PKTOPT_EXTHDRCPY(type) \ 1825 do {\ 1826 if (src->type) {\ 1827 size_t hlen;\ 1828 hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 1829 dst->type = malloc(hlen, M_IP6OPT, M_NOWAIT);\ 1830 if (dst->type == NULL)\ 1831 goto bad;\ 1832 memcpy(dst->type, src->type, hlen);\ 1833 }\ 1834 } while (/*CONSTCOND*/ 0) 1835 1836 int 1837 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src) 1838 { 1839 dst->ip6po_hlim = src->ip6po_hlim; 1840 dst->ip6po_tclass = src->ip6po_tclass; 1841 dst->ip6po_flags = src->ip6po_flags; 1842 if (src->ip6po_pktinfo) { 1843 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 1844 M_IP6OPT, M_NOWAIT); 1845 if (dst->ip6po_pktinfo == NULL) 1846 goto bad; 1847 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 1848 } 1849 PKTOPT_EXTHDRCPY(ip6po_hbh); 1850 PKTOPT_EXTHDRCPY(ip6po_dest1); 1851 PKTOPT_EXTHDRCPY(ip6po_dest2); 1852 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 1853 return (0); 1854 1855 bad: 1856 ip6_clearpktopts(dst, -1); 1857 return (ENOBUFS); 1858 } 1859 #undef PKTOPT_EXTHDRCPY 1860 1861 void 1862 ip6_freepcbopts(struct ip6_pktopts *pktopt) 1863 { 1864 if (pktopt == NULL) 1865 return; 1866 1867 ip6_clearpktopts(pktopt, -1); 1868 1869 free(pktopt, M_IP6OPT, 0); 1870 } 1871 1872 /* 1873 * Set the IP6 multicast options in response to user setsockopt(). 1874 */ 1875 int 1876 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m, 1877 unsigned int rtableid) 1878 { 1879 int error = 0; 1880 u_int loop, ifindex; 1881 struct ipv6_mreq *mreq; 1882 struct ifnet *ifp; 1883 struct ip6_moptions *im6o = *im6op; 1884 struct in6_multi_mship *imm; 1885 struct proc *p = curproc; /* XXX */ 1886 1887 if (im6o == NULL) { 1888 /* 1889 * No multicast option buffer attached to the pcb; 1890 * allocate one and initialize to default values. 1891 */ 1892 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1893 if (im6o == NULL) 1894 return (ENOBUFS); 1895 *im6op = im6o; 1896 im6o->im6o_ifidx = 0; 1897 im6o->im6o_hlim = ip6_defmcasthlim; 1898 im6o->im6o_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1899 LIST_INIT(&im6o->im6o_memberships); 1900 } 1901 1902 switch (optname) { 1903 1904 case IPV6_MULTICAST_IF: 1905 /* 1906 * Select the interface for outgoing multicast packets. 1907 */ 1908 if (m == NULL || m->m_len != sizeof(u_int)) { 1909 error = EINVAL; 1910 break; 1911 } 1912 memcpy(&ifindex, mtod(m, u_int *), sizeof(ifindex)); 1913 if (ifindex != 0) { 1914 ifp = if_get(ifindex); 1915 if (ifp == NULL) { 1916 error = ENXIO; /* XXX EINVAL? */ 1917 break; 1918 } 1919 if (ifp->if_rdomain != rtable_l2(rtableid) || 1920 (ifp->if_flags & IFF_MULTICAST) == 0) { 1921 error = EADDRNOTAVAIL; 1922 if_put(ifp); 1923 break; 1924 } 1925 if_put(ifp); 1926 } 1927 im6o->im6o_ifidx = ifindex; 1928 break; 1929 1930 case IPV6_MULTICAST_HOPS: 1931 { 1932 /* 1933 * Set the IP6 hoplimit for outgoing multicast packets. 1934 */ 1935 int optval; 1936 if (m == NULL || m->m_len != sizeof(int)) { 1937 error = EINVAL; 1938 break; 1939 } 1940 memcpy(&optval, mtod(m, u_int *), sizeof(optval)); 1941 if (optval < -1 || optval >= 256) 1942 error = EINVAL; 1943 else if (optval == -1) 1944 im6o->im6o_hlim = ip6_defmcasthlim; 1945 else 1946 im6o->im6o_hlim = optval; 1947 break; 1948 } 1949 1950 case IPV6_MULTICAST_LOOP: 1951 /* 1952 * Set the loopback flag for outgoing multicast packets. 1953 * Must be zero or one. 1954 */ 1955 if (m == NULL || m->m_len != sizeof(u_int)) { 1956 error = EINVAL; 1957 break; 1958 } 1959 memcpy(&loop, mtod(m, u_int *), sizeof(loop)); 1960 if (loop > 1) { 1961 error = EINVAL; 1962 break; 1963 } 1964 im6o->im6o_loop = loop; 1965 break; 1966 1967 case IPV6_JOIN_GROUP: 1968 /* 1969 * Add a multicast group membership. 1970 * Group must be a valid IP6 multicast address. 1971 */ 1972 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1973 error = EINVAL; 1974 break; 1975 } 1976 mreq = mtod(m, struct ipv6_mreq *); 1977 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1978 /* 1979 * We use the unspecified address to specify to accept 1980 * all multicast addresses. Only super user is allowed 1981 * to do this. 1982 */ 1983 if (suser(p)) 1984 { 1985 error = EACCES; 1986 break; 1987 } 1988 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1989 error = EINVAL; 1990 break; 1991 } 1992 1993 /* 1994 * If no interface was explicitly specified, choose an 1995 * appropriate one according to the given multicast address. 1996 */ 1997 if (mreq->ipv6mr_interface == 0) { 1998 struct rtentry *rt; 1999 struct sockaddr_in6 dst; 2000 2001 memset(&dst, 0, sizeof(dst)); 2002 dst.sin6_len = sizeof(dst); 2003 dst.sin6_family = AF_INET6; 2004 dst.sin6_addr = mreq->ipv6mr_multiaddr; 2005 rt = rtalloc(sin6tosa(&dst), RT_RESOLVE, rtableid); 2006 if (rt == NULL) { 2007 error = EADDRNOTAVAIL; 2008 break; 2009 } 2010 ifp = if_get(rt->rt_ifidx); 2011 rtfree(rt); 2012 } else { 2013 /* 2014 * If the interface is specified, validate it. 2015 */ 2016 ifp = if_get(mreq->ipv6mr_interface); 2017 if (ifp == NULL) { 2018 error = ENXIO; /* XXX EINVAL? */ 2019 break; 2020 } 2021 } 2022 2023 /* 2024 * See if we found an interface, and confirm that it 2025 * supports multicast 2026 */ 2027 if (ifp == NULL || ifp->if_rdomain != rtable_l2(rtableid) || 2028 (ifp->if_flags & IFF_MULTICAST) == 0) { 2029 if_put(ifp); 2030 error = EADDRNOTAVAIL; 2031 break; 2032 } 2033 /* 2034 * Put interface index into the multicast address, 2035 * if the address has link/interface-local scope. 2036 */ 2037 if (IN6_IS_SCOPE_EMBED(&mreq->ipv6mr_multiaddr)) { 2038 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2039 htons(ifp->if_index); 2040 } 2041 /* 2042 * See if the membership already exists. 2043 */ 2044 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) 2045 if (imm->i6mm_maddr->in6m_ifidx == ifp->if_index && 2046 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2047 &mreq->ipv6mr_multiaddr)) 2048 break; 2049 if (imm != NULL) { 2050 if_put(ifp); 2051 error = EADDRINUSE; 2052 break; 2053 } 2054 /* 2055 * Everything looks good; add a new record to the multicast 2056 * address list for the given interface. 2057 */ 2058 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error); 2059 if_put(ifp); 2060 if (!imm) 2061 break; 2062 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2063 break; 2064 2065 case IPV6_LEAVE_GROUP: 2066 /* 2067 * Drop a multicast group membership. 2068 * Group must be a valid IP6 multicast address. 2069 */ 2070 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2071 error = EINVAL; 2072 break; 2073 } 2074 mreq = mtod(m, struct ipv6_mreq *); 2075 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2076 if (suser(p)) { 2077 error = EACCES; 2078 break; 2079 } 2080 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2081 error = EINVAL; 2082 break; 2083 } 2084 2085 /* 2086 * Put interface index into the multicast address, 2087 * if the address has link-local scope. 2088 */ 2089 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2090 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2091 htons(mreq->ipv6mr_interface); 2092 } 2093 2094 /* 2095 * If an interface address was specified, get a pointer 2096 * to its ifnet structure. 2097 */ 2098 if (mreq->ipv6mr_interface == 0) 2099 ifp = NULL; 2100 else { 2101 ifp = if_get(mreq->ipv6mr_interface); 2102 if (ifp == NULL) { 2103 error = ENXIO; /* XXX EINVAL? */ 2104 break; 2105 } 2106 } 2107 2108 /* 2109 * Find the membership in the membership list. 2110 */ 2111 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2112 if ((ifp == NULL || 2113 imm->i6mm_maddr->in6m_ifidx == ifp->if_index) && 2114 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2115 &mreq->ipv6mr_multiaddr)) 2116 break; 2117 } 2118 2119 if_put(ifp); 2120 2121 if (imm == NULL) { 2122 /* Unable to resolve interface */ 2123 error = EADDRNOTAVAIL; 2124 break; 2125 } 2126 /* 2127 * Give up the multicast address record to which the 2128 * membership points. 2129 */ 2130 LIST_REMOVE(imm, i6mm_chain); 2131 in6_leavegroup(imm); 2132 break; 2133 2134 default: 2135 error = EOPNOTSUPP; 2136 break; 2137 } 2138 2139 /* 2140 * If all options have default values, no need to keep the option 2141 * structure. 2142 */ 2143 if (im6o->im6o_ifidx == 0 && 2144 im6o->im6o_hlim == ip6_defmcasthlim && 2145 im6o->im6o_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2146 LIST_EMPTY(&im6o->im6o_memberships)) { 2147 free(*im6op, M_IPMOPTS, sizeof(**im6op)); 2148 *im6op = NULL; 2149 } 2150 2151 return (error); 2152 } 2153 2154 /* 2155 * Return the IP6 multicast options in response to user getsockopt(). 2156 */ 2157 int 2158 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf *m) 2159 { 2160 u_int *hlim, *loop, *ifindex; 2161 2162 switch (optname) { 2163 case IPV6_MULTICAST_IF: 2164 ifindex = mtod(m, u_int *); 2165 m->m_len = sizeof(u_int); 2166 if (im6o == NULL || im6o->im6o_ifidx == 0) 2167 *ifindex = 0; 2168 else 2169 *ifindex = im6o->im6o_ifidx; 2170 return (0); 2171 2172 case IPV6_MULTICAST_HOPS: 2173 hlim = mtod(m, u_int *); 2174 m->m_len = sizeof(u_int); 2175 if (im6o == NULL) 2176 *hlim = ip6_defmcasthlim; 2177 else 2178 *hlim = im6o->im6o_hlim; 2179 return (0); 2180 2181 case IPV6_MULTICAST_LOOP: 2182 loop = mtod(m, u_int *); 2183 m->m_len = sizeof(u_int); 2184 if (im6o == NULL) 2185 *loop = ip6_defmcasthlim; 2186 else 2187 *loop = im6o->im6o_loop; 2188 return (0); 2189 2190 default: 2191 return (EOPNOTSUPP); 2192 } 2193 } 2194 2195 /* 2196 * Discard the IP6 multicast options. 2197 */ 2198 void 2199 ip6_freemoptions(struct ip6_moptions *im6o) 2200 { 2201 struct in6_multi_mship *imm; 2202 2203 if (im6o == NULL) 2204 return; 2205 2206 while (!LIST_EMPTY(&im6o->im6o_memberships)) { 2207 imm = LIST_FIRST(&im6o->im6o_memberships); 2208 LIST_REMOVE(imm, i6mm_chain); 2209 in6_leavegroup(imm); 2210 } 2211 free(im6o, M_IPMOPTS, sizeof(*im6o)); 2212 } 2213 2214 /* 2215 * Set IPv6 outgoing packet options based on advanced API. 2216 */ 2217 int 2218 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2219 struct ip6_pktopts *stickyopt, int priv, int uproto) 2220 { 2221 u_int clen; 2222 struct cmsghdr *cm = 0; 2223 caddr_t cmsgs; 2224 int error; 2225 2226 if (control == NULL || opt == NULL) 2227 return (EINVAL); 2228 2229 ip6_initpktopts(opt); 2230 if (stickyopt) { 2231 int error; 2232 2233 /* 2234 * If stickyopt is provided, make a local copy of the options 2235 * for this particular packet, then override them by ancillary 2236 * objects. 2237 * XXX: copypktopts() does not copy the cached route to a next 2238 * hop (if any). This is not very good in terms of efficiency, 2239 * but we can allow this since this option should be rarely 2240 * used. 2241 */ 2242 if ((error = copypktopts(opt, stickyopt)) != 0) 2243 return (error); 2244 } 2245 2246 /* 2247 * XXX: Currently, we assume all the optional information is stored 2248 * in a single mbuf. 2249 */ 2250 if (control->m_next) 2251 return (EINVAL); 2252 2253 clen = control->m_len; 2254 cmsgs = mtod(control, caddr_t); 2255 do { 2256 if (clen < CMSG_LEN(0)) 2257 return (EINVAL); 2258 cm = (struct cmsghdr *)cmsgs; 2259 if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > clen || 2260 CMSG_ALIGN(cm->cmsg_len) > clen) 2261 return (EINVAL); 2262 if (cm->cmsg_level == IPPROTO_IPV6) { 2263 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2264 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, uproto); 2265 if (error) 2266 return (error); 2267 } 2268 2269 clen -= CMSG_ALIGN(cm->cmsg_len); 2270 cmsgs += CMSG_ALIGN(cm->cmsg_len); 2271 } while (clen); 2272 2273 return (0); 2274 } 2275 2276 /* 2277 * Set a particular packet option, as a sticky option or an ancillary data 2278 * item. "len" can be 0 only when it's a sticky option. 2279 */ 2280 int 2281 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2282 int priv, int sticky, int uproto) 2283 { 2284 int minmtupolicy; 2285 2286 switch (optname) { 2287 case IPV6_PKTINFO: 2288 { 2289 struct ifnet *ifp = NULL; 2290 struct in6_pktinfo *pktinfo; 2291 2292 if (len != sizeof(struct in6_pktinfo)) 2293 return (EINVAL); 2294 2295 pktinfo = (struct in6_pktinfo *)buf; 2296 2297 /* 2298 * An application can clear any sticky IPV6_PKTINFO option by 2299 * doing a "regular" setsockopt with ipi6_addr being 2300 * in6addr_any and ipi6_ifindex being zero. 2301 * [RFC 3542, Section 6] 2302 */ 2303 if (opt->ip6po_pktinfo && 2304 pktinfo->ipi6_ifindex == 0 && 2305 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2306 ip6_clearpktopts(opt, optname); 2307 break; 2308 } 2309 2310 if (uproto == IPPROTO_TCP && 2311 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2312 return (EINVAL); 2313 } 2314 2315 if (pktinfo->ipi6_ifindex) { 2316 ifp = if_get(pktinfo->ipi6_ifindex); 2317 if (ifp == NULL) 2318 return (ENXIO); 2319 if_put(ifp); 2320 } 2321 2322 /* 2323 * We store the address anyway, and let in6_selectsrc() 2324 * validate the specified address. This is because ipi6_addr 2325 * may not have enough information about its scope zone, and 2326 * we may need additional information (such as outgoing 2327 * interface or the scope zone of a destination address) to 2328 * disambiguate the scope. 2329 * XXX: the delay of the validation may confuse the 2330 * application when it is used as a sticky option. 2331 */ 2332 if (opt->ip6po_pktinfo == NULL) { 2333 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2334 M_IP6OPT, M_NOWAIT); 2335 if (opt->ip6po_pktinfo == NULL) 2336 return (ENOBUFS); 2337 } 2338 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2339 break; 2340 } 2341 2342 case IPV6_HOPLIMIT: 2343 { 2344 int *hlimp; 2345 2346 /* 2347 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2348 * to simplify the ordering among hoplimit options. 2349 */ 2350 if (sticky) 2351 return (ENOPROTOOPT); 2352 2353 if (len != sizeof(int)) 2354 return (EINVAL); 2355 hlimp = (int *)buf; 2356 if (*hlimp < -1 || *hlimp > 255) 2357 return (EINVAL); 2358 2359 opt->ip6po_hlim = *hlimp; 2360 break; 2361 } 2362 2363 case IPV6_TCLASS: 2364 { 2365 int tclass; 2366 2367 if (len != sizeof(int)) 2368 return (EINVAL); 2369 tclass = *(int *)buf; 2370 if (tclass < -1 || tclass > 255) 2371 return (EINVAL); 2372 2373 opt->ip6po_tclass = tclass; 2374 break; 2375 } 2376 case IPV6_HOPOPTS: 2377 { 2378 struct ip6_hbh *hbh; 2379 int hbhlen; 2380 2381 /* 2382 * XXX: We don't allow a non-privileged user to set ANY HbH 2383 * options, since per-option restriction has too much 2384 * overhead. 2385 */ 2386 if (!priv) 2387 return (EPERM); 2388 2389 if (len == 0) { 2390 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2391 break; /* just remove the option */ 2392 } 2393 2394 /* message length validation */ 2395 if (len < sizeof(struct ip6_hbh)) 2396 return (EINVAL); 2397 hbh = (struct ip6_hbh *)buf; 2398 hbhlen = (hbh->ip6h_len + 1) << 3; 2399 if (len != hbhlen) 2400 return (EINVAL); 2401 2402 /* turn off the previous option, then set the new option. */ 2403 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2404 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2405 if (opt->ip6po_hbh == NULL) 2406 return (ENOBUFS); 2407 memcpy(opt->ip6po_hbh, hbh, hbhlen); 2408 2409 break; 2410 } 2411 2412 case IPV6_DSTOPTS: 2413 case IPV6_RTHDRDSTOPTS: 2414 { 2415 struct ip6_dest *dest, **newdest = NULL; 2416 int destlen; 2417 2418 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */ 2419 return (EPERM); 2420 2421 if (len == 0) { 2422 ip6_clearpktopts(opt, optname); 2423 break; /* just remove the option */ 2424 } 2425 2426 /* message length validation */ 2427 if (len < sizeof(struct ip6_dest)) 2428 return (EINVAL); 2429 dest = (struct ip6_dest *)buf; 2430 destlen = (dest->ip6d_len + 1) << 3; 2431 if (len != destlen) 2432 return (EINVAL); 2433 /* 2434 * Determine the position that the destination options header 2435 * should be inserted; before or after the routing header. 2436 */ 2437 switch (optname) { 2438 case IPV6_RTHDRDSTOPTS: 2439 newdest = &opt->ip6po_dest1; 2440 break; 2441 case IPV6_DSTOPTS: 2442 newdest = &opt->ip6po_dest2; 2443 break; 2444 } 2445 2446 /* turn off the previous option, then set the new option. */ 2447 ip6_clearpktopts(opt, optname); 2448 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2449 if (*newdest == NULL) 2450 return (ENOBUFS); 2451 memcpy(*newdest, dest, destlen); 2452 2453 break; 2454 } 2455 2456 case IPV6_RTHDR: 2457 { 2458 struct ip6_rthdr *rth; 2459 int rthlen; 2460 2461 if (len == 0) { 2462 ip6_clearpktopts(opt, IPV6_RTHDR); 2463 break; /* just remove the option */ 2464 } 2465 2466 /* message length validation */ 2467 if (len < sizeof(struct ip6_rthdr)) 2468 return (EINVAL); 2469 rth = (struct ip6_rthdr *)buf; 2470 rthlen = (rth->ip6r_len + 1) << 3; 2471 if (len != rthlen) 2472 return (EINVAL); 2473 2474 switch (rth->ip6r_type) { 2475 case IPV6_RTHDR_TYPE_0: 2476 if (rth->ip6r_len == 0) /* must contain one addr */ 2477 return (EINVAL); 2478 if (rth->ip6r_len % 2) /* length must be even */ 2479 return (EINVAL); 2480 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2481 return (EINVAL); 2482 break; 2483 default: 2484 return (EINVAL); /* not supported */ 2485 } 2486 /* turn off the previous option */ 2487 ip6_clearpktopts(opt, IPV6_RTHDR); 2488 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2489 if (opt->ip6po_rthdr == NULL) 2490 return (ENOBUFS); 2491 memcpy(opt->ip6po_rthdr, rth, rthlen); 2492 break; 2493 } 2494 2495 case IPV6_USE_MIN_MTU: 2496 if (len != sizeof(int)) 2497 return (EINVAL); 2498 minmtupolicy = *(int *)buf; 2499 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2500 minmtupolicy != IP6PO_MINMTU_DISABLE && 2501 minmtupolicy != IP6PO_MINMTU_ALL) { 2502 return (EINVAL); 2503 } 2504 opt->ip6po_minmtu = minmtupolicy; 2505 break; 2506 2507 case IPV6_DONTFRAG: 2508 if (len != sizeof(int)) 2509 return (EINVAL); 2510 2511 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2512 /* 2513 * we ignore this option for TCP sockets. 2514 * (RFC3542 leaves this case unspecified.) 2515 */ 2516 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2517 } else 2518 opt->ip6po_flags |= IP6PO_DONTFRAG; 2519 break; 2520 2521 default: 2522 return (ENOPROTOOPT); 2523 } /* end of switch */ 2524 2525 return (0); 2526 } 2527 2528 /* 2529 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2530 * packet to the input queue of a specified interface. 2531 */ 2532 void 2533 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2534 { 2535 struct mbuf *copym; 2536 struct ip6_hdr *ip6; 2537 2538 /* 2539 * Duplicate the packet. 2540 */ 2541 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 2542 if (copym == NULL) 2543 return; 2544 2545 /* 2546 * Make sure to deep-copy IPv6 header portion in case the data 2547 * is in an mbuf cluster, so that we can safely override the IPv6 2548 * header portion later. 2549 */ 2550 if ((copym->m_flags & M_EXT) != 0 || 2551 copym->m_len < sizeof(struct ip6_hdr)) { 2552 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2553 if (copym == NULL) 2554 return; 2555 } 2556 2557 #ifdef DIAGNOSTIC 2558 if (copym->m_len < sizeof(*ip6)) { 2559 m_freem(copym); 2560 return; 2561 } 2562 #endif 2563 2564 ip6 = mtod(copym, struct ip6_hdr *); 2565 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 2566 ip6->ip6_src.s6_addr16[1] = 0; 2567 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 2568 ip6->ip6_dst.s6_addr16[1] = 0; 2569 2570 if_input_local(ifp, copym, dst->sin6_family); 2571 } 2572 2573 /* 2574 * Chop IPv6 header off from the payload. 2575 */ 2576 int 2577 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2578 { 2579 struct mbuf *mh; 2580 struct ip6_hdr *ip6; 2581 2582 ip6 = mtod(m, struct ip6_hdr *); 2583 if (m->m_len > sizeof(*ip6)) { 2584 MGET(mh, M_DONTWAIT, MT_HEADER); 2585 if (mh == NULL) { 2586 m_freem(m); 2587 return ENOBUFS; 2588 } 2589 M_MOVE_PKTHDR(mh, m); 2590 m_align(mh, sizeof(*ip6)); 2591 m->m_len -= sizeof(*ip6); 2592 m->m_data += sizeof(*ip6); 2593 mh->m_next = m; 2594 m = mh; 2595 m->m_len = sizeof(*ip6); 2596 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2597 } 2598 exthdrs->ip6e_ip6 = m; 2599 return 0; 2600 } 2601 2602 u_int32_t 2603 ip6_randomid(void) 2604 { 2605 return idgen32(&ip6_id_ctx); 2606 } 2607 2608 void 2609 ip6_randomid_init(void) 2610 { 2611 idgen32_init(&ip6_id_ctx); 2612 } 2613 2614 /* 2615 * Compute significant parts of the IPv6 checksum pseudo-header 2616 * for use in a delayed TCP/UDP checksum calculation. 2617 */ 2618 static __inline u_int16_t __attribute__((__unused__)) 2619 in6_cksum_phdr(const struct in6_addr *src, const struct in6_addr *dst, 2620 u_int32_t len, u_int32_t nxt) 2621 { 2622 u_int32_t sum = 0; 2623 const u_int16_t *w; 2624 2625 w = (const u_int16_t *) src; 2626 sum += w[0]; 2627 if (!IN6_IS_SCOPE_EMBED(src)) 2628 sum += w[1]; 2629 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 2630 sum += w[6]; sum += w[7]; 2631 2632 w = (const u_int16_t *) dst; 2633 sum += w[0]; 2634 if (!IN6_IS_SCOPE_EMBED(dst)) 2635 sum += w[1]; 2636 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 2637 sum += w[6]; sum += w[7]; 2638 2639 sum += (u_int16_t)(len >> 16) + (u_int16_t)(len /*& 0xffff*/); 2640 2641 sum += (u_int16_t)(nxt >> 16) + (u_int16_t)(nxt /*& 0xffff*/); 2642 2643 sum = (u_int16_t)(sum >> 16) + (u_int16_t)(sum /*& 0xffff*/); 2644 2645 if (sum > 0xffff) 2646 sum -= 0xffff; 2647 2648 return (sum); 2649 } 2650 2651 /* 2652 * Process a delayed payload checksum calculation. 2653 */ 2654 void 2655 in6_delayed_cksum(struct mbuf *m, u_int8_t nxt) 2656 { 2657 int nxtp, offset; 2658 u_int16_t csum; 2659 2660 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxtp); 2661 if (offset <= 0 || nxtp != nxt) 2662 /* If the desired next protocol isn't found, punt. */ 2663 return; 2664 csum = (u_int16_t)(in6_cksum(m, 0, offset, m->m_pkthdr.len - offset)); 2665 2666 switch (nxt) { 2667 case IPPROTO_TCP: 2668 offset += offsetof(struct tcphdr, th_sum); 2669 break; 2670 2671 case IPPROTO_UDP: 2672 offset += offsetof(struct udphdr, uh_sum); 2673 if (csum == 0) 2674 csum = 0xffff; 2675 break; 2676 2677 case IPPROTO_ICMPV6: 2678 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 2679 break; 2680 } 2681 2682 if ((offset + sizeof(u_int16_t)) > m->m_len) 2683 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 2684 else 2685 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 2686 } 2687 2688 void 2689 in6_proto_cksum_out(struct mbuf *m, struct ifnet *ifp) 2690 { 2691 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); 2692 2693 /* some hw and in6_delayed_cksum need the pseudo header cksum */ 2694 if (m->m_pkthdr.csum_flags & 2695 (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT|M_ICMP_CSUM_OUT)) { 2696 int nxt, offset; 2697 u_int16_t csum; 2698 2699 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt); 2700 csum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 2701 htonl(m->m_pkthdr.len - offset), htonl(nxt)); 2702 if (nxt == IPPROTO_TCP) 2703 offset += offsetof(struct tcphdr, th_sum); 2704 else if (nxt == IPPROTO_UDP) 2705 offset += offsetof(struct udphdr, uh_sum); 2706 else if (nxt == IPPROTO_ICMPV6) 2707 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 2708 if ((offset + sizeof(u_int16_t)) > m->m_len) 2709 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 2710 else 2711 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 2712 } 2713 2714 if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) { 2715 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_TCPv6) || 2716 ip6->ip6_nxt != IPPROTO_TCP || 2717 ifp->if_bridgeidx != 0) { 2718 tcpstat_inc(tcps_outswcsum); 2719 in6_delayed_cksum(m, IPPROTO_TCP); 2720 m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_OUT; /* Clear */ 2721 } 2722 } else if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) { 2723 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_UDPv6) || 2724 ip6->ip6_nxt != IPPROTO_UDP || 2725 ifp->if_bridgeidx != 0) { 2726 udpstat_inc(udps_outswcsum); 2727 in6_delayed_cksum(m, IPPROTO_UDP); 2728 m->m_pkthdr.csum_flags &= ~M_UDP_CSUM_OUT; /* Clear */ 2729 } 2730 } else if (m->m_pkthdr.csum_flags & M_ICMP_CSUM_OUT) { 2731 in6_delayed_cksum(m, IPPROTO_ICMPV6); 2732 m->m_pkthdr.csum_flags &= ~M_ICMP_CSUM_OUT; /* Clear */ 2733 } 2734 } 2735 2736 #ifdef IPSEC 2737 struct tdb * 2738 ip6_output_ipsec_lookup(struct mbuf *m, int *error, struct inpcb *inp) 2739 { 2740 struct tdb *tdb; 2741 struct m_tag *mtag; 2742 struct tdb_ident *tdbi; 2743 2744 /* 2745 * Check if there was an outgoing SA bound to the flow 2746 * from a transport protocol. 2747 */ 2748 2749 /* Do we have any pending SAs to apply ? */ 2750 tdb = ipsp_spd_lookup(m, AF_INET6, sizeof(struct ip6_hdr), 2751 error, IPSP_DIRECTION_OUT, NULL, inp, 0); 2752 2753 if (tdb == NULL) 2754 return NULL; 2755 /* Loop detection */ 2756 for (mtag = m_tag_first(m); mtag != NULL; mtag = m_tag_next(m, mtag)) { 2757 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE) 2758 continue; 2759 tdbi = (struct tdb_ident *)(mtag + 1); 2760 if (tdbi->spi == tdb->tdb_spi && 2761 tdbi->proto == tdb->tdb_sproto && 2762 tdbi->rdomain == tdb->tdb_rdomain && 2763 !memcmp(&tdbi->dst, &tdb->tdb_dst, 2764 sizeof(union sockaddr_union))) { 2765 /* no IPsec needed */ 2766 return NULL; 2767 } 2768 } 2769 return tdb; 2770 } 2771 2772 int 2773 ip6_output_ipsec_send(struct tdb *tdb, struct mbuf *m, struct route_in6 *ro, 2774 int tunalready, int fwd) 2775 { 2776 #if NPF > 0 2777 struct ifnet *encif; 2778 #endif 2779 struct ip6_hdr *ip6; 2780 int error; 2781 2782 #if NPF > 0 2783 /* 2784 * Packet filter 2785 */ 2786 if ((encif = enc_getif(tdb->tdb_rdomain, tdb->tdb_tap)) == NULL || 2787 pf_test(AF_INET6, fwd ? PF_FWD : PF_OUT, encif, &m) != PF_PASS) { 2788 m_freem(m); 2789 return EACCES; 2790 } 2791 if (m == NULL) 2792 return 0; 2793 /* 2794 * PF_TAG_REROUTE handling or not... 2795 * Packet is entering IPsec so the routing is 2796 * already overruled by the IPsec policy. 2797 * Until now the change was not reconsidered. 2798 * What's the behaviour? 2799 */ 2800 in6_proto_cksum_out(m, encif); 2801 #endif 2802 2803 /* Check if we are allowed to fragment */ 2804 ip6 = mtod(m, struct ip6_hdr *); 2805 if (ip_mtudisc && tdb->tdb_mtu && 2806 sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) > tdb->tdb_mtu && 2807 tdb->tdb_mtutimeout > gettime()) { 2808 struct rtentry *rt = NULL; 2809 int rt_mtucloned = 0; 2810 int transportmode = 0; 2811 2812 transportmode = (tdb->tdb_dst.sa.sa_family == AF_INET6) && 2813 (IN6_ARE_ADDR_EQUAL(&tdb->tdb_dst.sin6.sin6_addr, 2814 &ip6->ip6_dst)); 2815 2816 /* Find a host route to store the mtu in */ 2817 if (ro != NULL) 2818 rt = ro->ro_rt; 2819 /* but don't add a PMTU route for transport mode SAs */ 2820 if (transportmode) 2821 rt = NULL; 2822 else if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0) { 2823 struct sockaddr_in6 sin6; 2824 2825 memset(&sin6, 0, sizeof(sin6)); 2826 sin6.sin6_family = AF_INET6; 2827 sin6.sin6_len = sizeof(sin6); 2828 sin6.sin6_addr = ip6->ip6_dst; 2829 sin6.sin6_scope_id = 2830 in6_addr2scopeid(m->m_pkthdr.ph_ifidx, 2831 &ip6->ip6_dst); 2832 error = in6_embedscope(&ip6->ip6_dst, &sin6, NULL); 2833 if (error) { 2834 /* should be impossible */ 2835 ipsecstat_inc(ipsec_odrops); 2836 m_freem(m); 2837 return error; 2838 } 2839 rt = icmp6_mtudisc_clone(&sin6, 2840 m->m_pkthdr.ph_rtableid, 1); 2841 rt_mtucloned = 1; 2842 } 2843 DPRINTF(("%s: spi %08x mtu %d rt %p cloned %d\n", __func__, 2844 ntohl(tdb->tdb_spi), tdb->tdb_mtu, rt, rt_mtucloned)); 2845 if (rt != NULL) { 2846 rt->rt_mtu = tdb->tdb_mtu; 2847 if (ro != NULL && ro->ro_rt != NULL) { 2848 rtfree(ro->ro_rt); 2849 ro->ro_rt = rtalloc(sin6tosa(&ro->ro_dst), 2850 RT_RESOLVE, m->m_pkthdr.ph_rtableid); 2851 } 2852 if (rt_mtucloned) 2853 rtfree(rt); 2854 } 2855 ipsec_adjust_mtu(m, tdb->tdb_mtu); 2856 m_freem(m); 2857 return EMSGSIZE; 2858 } 2859 /* propagate don't fragment for v6-over-v6 */ 2860 if (ip_mtudisc) 2861 SET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT); 2862 2863 /* 2864 * Clear these -- they'll be set in the recursive invocation 2865 * as needed. 2866 */ 2867 m->m_flags &= ~(M_BCAST | M_MCAST); 2868 2869 /* Callee frees mbuf */ 2870 error = ipsp_process_packet(m, tdb, AF_INET6, tunalready); 2871 if (error) { 2872 ipsecstat_inc(ipsec_odrops); 2873 tdb->tdb_odrops++; 2874 } 2875 return error; 2876 } 2877 #endif /* IPSEC */ 2878