1 /* $OpenBSD: ip6_output.c,v 1.232 2017/09/01 15:05:31 mpi Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include "pf.h" 65 66 #include <sys/param.h> 67 #include <sys/malloc.h> 68 #include <sys/mbuf.h> 69 #include <sys/errno.h> 70 #include <sys/protosw.h> 71 #include <sys/socket.h> 72 #include <sys/socketvar.h> 73 #include <sys/proc.h> 74 #include <sys/systm.h> 75 76 #include <net/if.h> 77 #include <net/if_var.h> 78 #include <net/if_enc.h> 79 #include <net/route.h> 80 81 #include <netinet/in.h> 82 #include <netinet/ip.h> 83 #include <netinet/in_pcb.h> 84 #include <netinet/udp.h> 85 #include <netinet/tcp.h> 86 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp_timer.h> 89 #include <netinet/tcp_var.h> 90 #include <netinet/udp_var.h> 91 92 #include <netinet6/in6_var.h> 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/ip6protosw.h> 98 99 #include <crypto/idgen.h> 100 101 #if NPF > 0 102 #include <net/pfvar.h> 103 #endif 104 105 #ifdef IPSEC 106 #include <netinet/ip_ipsp.h> 107 #include <netinet/ip_ah.h> 108 #include <netinet/ip_esp.h> 109 #endif /* IPSEC */ 110 111 struct ip6_exthdrs { 112 struct mbuf *ip6e_ip6; 113 struct mbuf *ip6e_hbh; 114 struct mbuf *ip6e_dest1; 115 struct mbuf *ip6e_rthdr; 116 struct mbuf *ip6e_dest2; 117 }; 118 119 int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, int, int); 120 int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf *); 121 int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int, int, int); 122 int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *, unsigned int); 123 int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf *); 124 int ip6_copyexthdr(struct mbuf **, caddr_t, int); 125 int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 126 struct ip6_frag **); 127 int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 128 int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 129 int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *); 130 int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *); 131 static __inline u_int16_t __attribute__((__unused__)) 132 in6_cksum_phdr(const struct in6_addr *, const struct in6_addr *, 133 u_int32_t, u_int32_t); 134 void in6_delayed_cksum(struct mbuf *, u_int8_t); 135 136 /* Context for non-repeating IDs */ 137 struct idgen32_ctx ip6_id_ctx; 138 139 /* 140 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 141 * header (with pri, len, nxt, hlim, src, dst). 142 * This function may modify ver and hlim only. 143 * The mbuf chain containing the packet will be freed. 144 * The mbuf opt, if present, will not be freed. 145 * 146 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 147 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 148 * which is rt_mtu. 149 */ 150 int 151 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro, 152 int flags, struct ip6_moptions *im6o, struct inpcb *inp) 153 { 154 struct ip6_hdr *ip6; 155 struct ifnet *ifp = NULL; 156 struct mbuf *m = m0; 157 int hlen, tlen; 158 struct route_in6 ip6route; 159 struct rtentry *rt = NULL; 160 struct sockaddr_in6 *dst, dstsock; 161 int error = 0; 162 u_long mtu; 163 int dontfrag; 164 u_int16_t src_scope, dst_scope; 165 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 166 struct ip6_exthdrs exthdrs; 167 struct in6_addr finaldst; 168 struct route_in6 *ro_pmtu = NULL; 169 int hdrsplit = 0; 170 u_int8_t sproto = 0; 171 #ifdef IPSEC 172 struct tdb *tdb = NULL; 173 #endif /* IPSEC */ 174 175 #ifdef IPSEC 176 if (inp && (inp->inp_flags & INP_IPV6) == 0) 177 panic("ip6_output: IPv4 pcb is passed"); 178 #endif /* IPSEC */ 179 180 ip6 = mtod(m, struct ip6_hdr *); 181 finaldst = ip6->ip6_dst; 182 183 #define MAKE_EXTHDR(hp, mp) \ 184 do { \ 185 if (hp) { \ 186 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 187 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 188 ((eh)->ip6e_len + 1) << 3); \ 189 if (error) \ 190 goto freehdrs; \ 191 } \ 192 } while (0) 193 194 bzero(&exthdrs, sizeof(exthdrs)); 195 196 if (opt) { 197 /* Hop-by-Hop options header */ 198 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 199 /* Destination options header(1st part) */ 200 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 201 /* Routing header */ 202 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 203 /* Destination options header(2nd part) */ 204 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 205 } 206 207 #ifdef IPSEC 208 if (ipsec_in_use || inp) { 209 tdb = ip6_output_ipsec_lookup(m, &error, inp); 210 if (error != 0) { 211 /* 212 * -EINVAL is used to indicate that the packet should 213 * be silently dropped, typically because we've asked 214 * key management for an SA. 215 */ 216 if (error == -EINVAL) /* Should silently drop packet */ 217 error = 0; 218 219 goto freehdrs; 220 } 221 } 222 #endif /* IPSEC */ 223 224 /* 225 * Calculate the total length of the extension header chain. 226 * Keep the length of the unfragmentable part for fragmentation. 227 */ 228 optlen = 0; 229 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 230 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 231 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 232 unfragpartlen = optlen + sizeof(struct ip6_hdr); 233 /* NOTE: we don't add AH/ESP length here. do that later. */ 234 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 235 236 /* 237 * If we need IPsec, or there is at least one extension header, 238 * separate IP6 header from the payload. 239 */ 240 if ((sproto || optlen) && !hdrsplit) { 241 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 242 m = NULL; 243 goto freehdrs; 244 } 245 m = exthdrs.ip6e_ip6; 246 hdrsplit++; 247 } 248 249 /* adjust pointer */ 250 ip6 = mtod(m, struct ip6_hdr *); 251 252 /* adjust mbuf packet header length */ 253 m->m_pkthdr.len += optlen; 254 plen = m->m_pkthdr.len - sizeof(*ip6); 255 256 /* If this is a jumbo payload, insert a jumbo payload option. */ 257 if (plen > IPV6_MAXPACKET) { 258 if (!hdrsplit) { 259 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 260 m = NULL; 261 goto freehdrs; 262 } 263 m = exthdrs.ip6e_ip6; 264 hdrsplit++; 265 } 266 /* adjust pointer */ 267 ip6 = mtod(m, struct ip6_hdr *); 268 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 269 goto freehdrs; 270 ip6->ip6_plen = 0; 271 } else 272 ip6->ip6_plen = htons(plen); 273 274 /* 275 * Concatenate headers and fill in next header fields. 276 * Here we have, on "m" 277 * IPv6 payload 278 * and we insert headers accordingly. Finally, we should be getting: 279 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 280 * 281 * during the header composing process, "m" points to IPv6 header. 282 * "mprev" points to an extension header prior to esp. 283 */ 284 { 285 u_char *nexthdrp = &ip6->ip6_nxt; 286 struct mbuf *mprev = m; 287 288 /* 289 * we treat dest2 specially. this makes IPsec processing 290 * much easier. the goal here is to make mprev point the 291 * mbuf prior to dest2. 292 * 293 * result: IPv6 dest2 payload 294 * m and mprev will point to IPv6 header. 295 */ 296 if (exthdrs.ip6e_dest2) { 297 if (!hdrsplit) 298 panic("assumption failed: hdr not split"); 299 exthdrs.ip6e_dest2->m_next = m->m_next; 300 m->m_next = exthdrs.ip6e_dest2; 301 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 302 ip6->ip6_nxt = IPPROTO_DSTOPTS; 303 } 304 305 #define MAKE_CHAIN(m, mp, p, i)\ 306 do {\ 307 if (m) {\ 308 if (!hdrsplit) \ 309 panic("assumption failed: hdr not split"); \ 310 *mtod((m), u_char *) = *(p);\ 311 *(p) = (i);\ 312 p = mtod((m), u_char *);\ 313 (m)->m_next = (mp)->m_next;\ 314 (mp)->m_next = (m);\ 315 (mp) = (m);\ 316 }\ 317 } while (0) 318 /* 319 * result: IPv6 hbh dest1 rthdr dest2 payload 320 * m will point to IPv6 header. mprev will point to the 321 * extension header prior to dest2 (rthdr in the above case). 322 */ 323 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 324 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 325 IPPROTO_DSTOPTS); 326 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 327 IPPROTO_ROUTING); 328 } 329 330 /* 331 * If there is a routing header, replace the destination address field 332 * with the first hop of the routing header. 333 */ 334 if (exthdrs.ip6e_rthdr) { 335 struct ip6_rthdr *rh; 336 struct ip6_rthdr0 *rh0; 337 struct in6_addr *addr; 338 339 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 340 struct ip6_rthdr *)); 341 switch (rh->ip6r_type) { 342 case IPV6_RTHDR_TYPE_0: 343 rh0 = (struct ip6_rthdr0 *)rh; 344 addr = (struct in6_addr *)(rh0 + 1); 345 ip6->ip6_dst = addr[0]; 346 bcopy(&addr[1], &addr[0], 347 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)); 348 addr[rh0->ip6r0_segleft - 1] = finaldst; 349 break; 350 default: /* is it possible? */ 351 error = EINVAL; 352 goto bad; 353 } 354 } 355 356 /* Source address validation */ 357 if (!(flags & IPV6_UNSPECSRC) && 358 IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 359 /* 360 * XXX: we can probably assume validation in the caller, but 361 * we explicitly check the address here for safety. 362 */ 363 error = EOPNOTSUPP; 364 ip6stat_inc(ip6s_badscope); 365 goto bad; 366 } 367 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 368 error = EOPNOTSUPP; 369 ip6stat_inc(ip6s_badscope); 370 goto bad; 371 } 372 373 ip6stat_inc(ip6s_localout); 374 375 /* 376 * Route packet. 377 */ 378 #if NPF > 0 379 reroute: 380 #endif 381 382 /* initialize cached route */ 383 if (ro == NULL) { 384 ro = &ip6route; 385 bzero((caddr_t)ro, sizeof(*ro)); 386 } 387 ro_pmtu = ro; 388 if (opt && opt->ip6po_rthdr) 389 ro = &opt->ip6po_route; 390 dst = &ro->ro_dst; 391 392 /* 393 * if specified, try to fill in the traffic class field. 394 * do not override if a non-zero value is already set. 395 * we check the diffserv field and the ecn field separately. 396 */ 397 if (opt && opt->ip6po_tclass >= 0) { 398 int mask = 0; 399 400 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 401 mask |= 0xfc; 402 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 403 mask |= 0x03; 404 if (mask != 0) 405 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 406 } 407 408 /* fill in or override the hop limit field, if necessary. */ 409 if (opt && opt->ip6po_hlim != -1) 410 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 411 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 412 if (im6o != NULL) 413 ip6->ip6_hlim = im6o->im6o_hlim; 414 else 415 ip6->ip6_hlim = ip6_defmcasthlim; 416 } 417 418 #ifdef IPSEC 419 if (tdb) { 420 /* 421 * XXX what should we do if ip6_hlim == 0 and the 422 * packet gets tunneled? 423 */ 424 /* 425 * if we are source-routing, do not attempt to tunnel the 426 * packet just because ip6_dst is different from what tdb has. 427 * XXX 428 */ 429 error = ip6_output_ipsec_send(tdb, m, 430 exthdrs.ip6e_rthdr ? 1 : 0, 0); 431 goto done; 432 } 433 #endif /* IPSEC */ 434 435 bzero(&dstsock, sizeof(dstsock)); 436 dstsock.sin6_family = AF_INET6; 437 dstsock.sin6_addr = ip6->ip6_dst; 438 dstsock.sin6_len = sizeof(dstsock); 439 ro->ro_tableid = m->m_pkthdr.ph_rtableid; 440 441 if (IN6_IS_ADDR_MULTICAST(&dstsock.sin6_addr)) { 442 struct in6_pktinfo *pi = NULL; 443 444 /* 445 * If the caller specify the outgoing interface 446 * explicitly, use it. 447 */ 448 if (opt != NULL && (pi = opt->ip6po_pktinfo) != NULL) 449 ifp = if_get(pi->ipi6_ifindex); 450 451 if (ifp == NULL && im6o != NULL) 452 ifp = if_get(im6o->im6o_ifidx); 453 } 454 455 if (ifp == NULL) { 456 rt = in6_selectroute(&dstsock, opt, ro, ro->ro_tableid); 457 if (rt == NULL) { 458 ip6stat_inc(ip6s_noroute); 459 error = EHOSTUNREACH; 460 goto bad; 461 } 462 if (ISSET(rt->rt_flags, RTF_LOCAL)) 463 ifp = if_get(rtable_loindex(m->m_pkthdr.ph_rtableid)); 464 else 465 ifp = if_get(rt->rt_ifidx); 466 } else { 467 *dst = dstsock; 468 } 469 470 if (rt && (rt->rt_flags & RTF_GATEWAY) && 471 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 472 dst = satosin6(rt->rt_gateway); 473 474 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 475 /* Unicast */ 476 477 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 478 } else { 479 /* Multicast */ 480 481 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 482 483 /* 484 * Confirm that the outgoing interface supports multicast. 485 */ 486 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 487 ip6stat_inc(ip6s_noroute); 488 error = ENETUNREACH; 489 goto bad; 490 } 491 492 if ((im6o == NULL || im6o->im6o_loop) && 493 in6_hasmulti(&ip6->ip6_dst, ifp)) { 494 /* 495 * If we belong to the destination multicast group 496 * on the outgoing interface, and the caller did not 497 * forbid loopback, loop back a copy. 498 * Can't defer TCP/UDP checksumming, do the 499 * computation now. 500 */ 501 in6_proto_cksum_out(m, NULL); 502 ip6_mloopback(ifp, m, dst); 503 } 504 #ifdef MROUTING 505 else { 506 /* 507 * If we are acting as a multicast router, perform 508 * multicast forwarding as if the packet had just 509 * arrived on the interface to which we are about 510 * to send. The multicast forwarding function 511 * recursively calls this function, using the 512 * IPV6_FORWARDING flag to prevent infinite recursion. 513 * 514 * Multicasts that are looped back by ip6_mloopback(), 515 * above, will be forwarded by the ip6_input() routine, 516 * if necessary. 517 */ 518 if (ip6_mforwarding && ip6_mrouter[ifp->if_rdomain] && 519 (flags & IPV6_FORWARDING) == 0) { 520 if (ip6_mforward(ip6, ifp, m) != 0) { 521 m_freem(m); 522 goto done; 523 } 524 } 525 } 526 #endif 527 /* 528 * Multicasts with a hoplimit of zero may be looped back, 529 * above, but must not be transmitted on a network. 530 * Also, multicasts addressed to the loopback interface 531 * are not sent -- the above call to ip6_mloopback() will 532 * loop back a copy if this host actually belongs to the 533 * destination group on the loopback interface. 534 */ 535 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 536 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 537 m_freem(m); 538 goto done; 539 } 540 } 541 542 /* 543 * If this packet is going trough a loopback interface we wont 544 * be able to restore its scope ID using the interface index. 545 */ 546 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { 547 if (ifp->if_flags & IFF_LOOPBACK) 548 src_scope = ip6->ip6_src.s6_addr16[1]; 549 ip6->ip6_src.s6_addr16[1] = 0; 550 } 551 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { 552 if (ifp->if_flags & IFF_LOOPBACK) 553 dst_scope = ip6->ip6_dst.s6_addr16[1]; 554 ip6->ip6_dst.s6_addr16[1] = 0; 555 } 556 557 /* Determine path MTU. */ 558 if ((error = ip6_getpmtu(ro_pmtu->ro_rt, ifp, &mtu)) != 0) 559 goto bad; 560 561 /* 562 * The caller of this function may specify to use the minimum MTU 563 * in some cases. 564 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 565 * setting. The logic is a bit complicated; by default, unicast 566 * packets will follow path MTU while multicast packets will be sent at 567 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 568 * including unicast ones will be sent at the minimum MTU. Multicast 569 * packets will always be sent at the minimum MTU unless 570 * IP6PO_MINMTU_DISABLE is explicitly specified. 571 * See RFC 3542 for more details. 572 */ 573 if (mtu > IPV6_MMTU) { 574 if ((flags & IPV6_MINMTU)) 575 mtu = IPV6_MMTU; 576 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 577 mtu = IPV6_MMTU; 578 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 579 (opt == NULL || 580 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 581 mtu = IPV6_MMTU; 582 } 583 } 584 585 /* 586 * If the outgoing packet contains a hop-by-hop options header, 587 * it must be examined and processed even by the source node. 588 * (RFC 2460, section 4.) 589 */ 590 if (exthdrs.ip6e_hbh) { 591 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 592 u_int32_t dummy1; /* XXX unused */ 593 u_int32_t dummy2; /* XXX unused */ 594 595 m->m_pkthdr.ph_ifidx = ifp->if_index; 596 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 597 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 598 &dummy1, &dummy2) < 0) { 599 /* m was already freed at this point */ 600 error = EINVAL;/* better error? */ 601 goto done; 602 } 603 m->m_pkthdr.ph_ifidx = 0; 604 } 605 606 #if NPF > 0 607 if (pf_test(AF_INET6, PF_OUT, ifp, &m) != PF_PASS) { 608 error = EHOSTUNREACH; 609 m_freem(m); 610 goto done; 611 } 612 if (m == NULL) 613 goto done; 614 ip6 = mtod(m, struct ip6_hdr *); 615 if ((m->m_pkthdr.pf.flags & (PF_TAG_REROUTE | PF_TAG_GENERATED)) == 616 (PF_TAG_REROUTE | PF_TAG_GENERATED)) { 617 /* already rerun the route lookup, go on */ 618 m->m_pkthdr.pf.flags &= ~(PF_TAG_GENERATED | PF_TAG_REROUTE); 619 } else if (m->m_pkthdr.pf.flags & PF_TAG_REROUTE) { 620 /* tag as generated to skip over pf_test on rerun */ 621 m->m_pkthdr.pf.flags |= PF_TAG_GENERATED; 622 finaldst = ip6->ip6_dst; 623 ro = NULL; 624 if_put(ifp); /* drop reference since destination changed */ 625 ifp = NULL; 626 goto reroute; 627 } 628 #endif 629 630 /* 631 * If the packet is not going on the wire it can be destinated 632 * to any local address. In this case do not clear its scopes 633 * to let ip6_input() find a matching local route. 634 */ 635 if (ifp->if_flags & IFF_LOOPBACK) { 636 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 637 ip6->ip6_src.s6_addr16[1] = src_scope; 638 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 639 ip6->ip6_dst.s6_addr16[1] = dst_scope; 640 } 641 642 in6_proto_cksum_out(m, ifp); 643 644 /* 645 * Send the packet to the outgoing interface. 646 * If necessary, do IPv6 fragmentation before sending. 647 * 648 * the logic here is rather complex: 649 * 1: normal case (dontfrag == 0) 650 * 1-a: send as is if tlen <= path mtu 651 * 1-b: fragment if tlen > path mtu 652 * 653 * 2: if user asks us not to fragment (dontfrag == 1) 654 * 2-a: send as is if tlen <= interface mtu 655 * 2-b: error if tlen > interface mtu 656 */ 657 tlen = m->m_pkthdr.len; 658 659 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 660 dontfrag = 1; 661 else 662 dontfrag = 0; 663 if (dontfrag && tlen > ifp->if_mtu) { /* case 2-b */ 664 error = EMSGSIZE; 665 goto bad; 666 } 667 668 /* 669 * transmit packet without fragmentation 670 */ 671 if (dontfrag || (tlen <= mtu)) { /* case 1-a and 2-a */ 672 error = ifp->if_output(ifp, m, sin6tosa(dst), ro->ro_rt); 673 goto done; 674 } 675 676 /* 677 * try to fragment the packet. case 1-b 678 */ 679 if (mtu < IPV6_MMTU) { 680 /* path MTU cannot be less than IPV6_MMTU */ 681 error = EMSGSIZE; 682 goto bad; 683 } else if (ip6->ip6_plen == 0) { 684 /* jumbo payload cannot be fragmented */ 685 error = EMSGSIZE; 686 goto bad; 687 } else { 688 u_char nextproto; 689 #if 0 690 struct ip6ctlparam ip6cp; 691 u_int32_t mtu32; 692 #endif 693 694 /* 695 * Too large for the destination or interface; 696 * fragment if possible. 697 * Must be able to put at least 8 bytes per fragment. 698 */ 699 hlen = unfragpartlen; 700 if (mtu > IPV6_MAXPACKET) 701 mtu = IPV6_MAXPACKET; 702 703 /* 704 * Change the next header field of the last header in the 705 * unfragmentable part. 706 */ 707 if (exthdrs.ip6e_rthdr) { 708 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 709 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 710 } else if (exthdrs.ip6e_dest1) { 711 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 712 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 713 } else if (exthdrs.ip6e_hbh) { 714 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 715 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 716 } else { 717 nextproto = ip6->ip6_nxt; 718 ip6->ip6_nxt = IPPROTO_FRAGMENT; 719 } 720 721 m0 = m; 722 error = ip6_fragment(m0, hlen, nextproto, mtu); 723 if (error) 724 ip6stat_inc(ip6s_odropped); 725 } 726 727 /* 728 * Remove leading garbages. 729 */ 730 m = m0->m_nextpkt; 731 m0->m_nextpkt = 0; 732 m_freem(m0); 733 for (m0 = m; m; m = m0) { 734 m0 = m->m_nextpkt; 735 m->m_nextpkt = 0; 736 if (error == 0) { 737 ip6stat_inc(ip6s_ofragments); 738 error = ifp->if_output(ifp, m, sin6tosa(dst), 739 ro->ro_rt); 740 } else 741 m_freem(m); 742 } 743 744 if (error == 0) 745 ip6stat_inc(ip6s_fragmented); 746 747 done: 748 if_put(ifp); 749 if (ro == &ip6route && ro->ro_rt) { 750 rtfree(ro->ro_rt); 751 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 752 rtfree(ro_pmtu->ro_rt); 753 } 754 755 return (error); 756 757 freehdrs: 758 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 759 m_freem(exthdrs.ip6e_dest1); 760 m_freem(exthdrs.ip6e_rthdr); 761 m_freem(exthdrs.ip6e_dest2); 762 /* FALLTHROUGH */ 763 bad: 764 m_freem(m); 765 goto done; 766 } 767 768 int 769 ip6_fragment(struct mbuf *m0, int hlen, u_char nextproto, u_long mtu) 770 { 771 struct mbuf *m, **mnext, *m_frgpart; 772 struct ip6_hdr *mhip6; 773 struct ip6_frag *ip6f; 774 u_int32_t id; 775 int tlen, len, off; 776 int error; 777 778 id = htonl(ip6_randomid()); 779 780 mnext = &m0->m_nextpkt; 781 *mnext = NULL; 782 783 tlen = m0->m_pkthdr.len; 784 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 785 if (len < 8) 786 return (EMSGSIZE); 787 788 /* 789 * Loop through length of segment after first fragment, 790 * make new header and copy data of each part and link onto 791 * chain. 792 */ 793 for (off = hlen; off < tlen; off += len) { 794 struct mbuf *mlast; 795 796 if ((m = m_gethdr(M_DONTWAIT, MT_HEADER)) == NULL) 797 return (ENOBUFS); 798 *mnext = m; 799 mnext = &m->m_nextpkt; 800 if ((error = m_dup_pkthdr(m, m0, M_DONTWAIT)) != 0) 801 return (error); 802 m->m_data += max_linkhdr; 803 mhip6 = mtod(m, struct ip6_hdr *); 804 *mhip6 = *mtod(m0, struct ip6_hdr *); 805 m->m_len = sizeof(*mhip6); 806 if ((error = ip6_insertfraghdr(m0, m, hlen, &ip6f)) != 0) 807 return (error); 808 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 809 if (off + len >= tlen) 810 len = tlen - off; 811 else 812 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 813 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 814 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 815 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) 816 return (ENOBUFS); 817 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 818 ; 819 mlast->m_next = m_frgpart; 820 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 821 ip6f->ip6f_reserved = 0; 822 ip6f->ip6f_ident = id; 823 ip6f->ip6f_nxt = nextproto; 824 } 825 826 return (0); 827 } 828 829 int 830 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 831 { 832 struct mbuf *m; 833 834 if (hlen > MCLBYTES) 835 return (ENOBUFS); /* XXX */ 836 837 MGET(m, M_DONTWAIT, MT_DATA); 838 if (!m) 839 return (ENOBUFS); 840 841 if (hlen > MLEN) { 842 MCLGET(m, M_DONTWAIT); 843 if ((m->m_flags & M_EXT) == 0) { 844 m_free(m); 845 return (ENOBUFS); 846 } 847 } 848 m->m_len = hlen; 849 if (hdr) 850 bcopy(hdr, mtod(m, caddr_t), hlen); 851 852 *mp = m; 853 return (0); 854 } 855 856 /* 857 * Insert jumbo payload option. 858 */ 859 int 860 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 861 { 862 struct mbuf *mopt; 863 u_int8_t *optbuf; 864 u_int32_t v; 865 866 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 867 868 /* 869 * If there is no hop-by-hop options header, allocate new one. 870 * If there is one but it doesn't have enough space to store the 871 * jumbo payload option, allocate a cluster to store the whole options. 872 * Otherwise, use it to store the options. 873 */ 874 if (exthdrs->ip6e_hbh == 0) { 875 MGET(mopt, M_DONTWAIT, MT_DATA); 876 if (mopt == NULL) 877 return (ENOBUFS); 878 mopt->m_len = JUMBOOPTLEN; 879 optbuf = mtod(mopt, u_int8_t *); 880 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 881 exthdrs->ip6e_hbh = mopt; 882 } else { 883 struct ip6_hbh *hbh; 884 885 mopt = exthdrs->ip6e_hbh; 886 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 887 /* 888 * XXX assumption: 889 * - exthdrs->ip6e_hbh is not referenced from places 890 * other than exthdrs. 891 * - exthdrs->ip6e_hbh is not an mbuf chain. 892 */ 893 int oldoptlen = mopt->m_len; 894 struct mbuf *n; 895 896 /* 897 * XXX: give up if the whole (new) hbh header does 898 * not fit even in an mbuf cluster. 899 */ 900 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 901 return (ENOBUFS); 902 903 /* 904 * As a consequence, we must always prepare a cluster 905 * at this point. 906 */ 907 MGET(n, M_DONTWAIT, MT_DATA); 908 if (n) { 909 MCLGET(n, M_DONTWAIT); 910 if ((n->m_flags & M_EXT) == 0) { 911 m_freem(n); 912 n = NULL; 913 } 914 } 915 if (!n) 916 return (ENOBUFS); 917 n->m_len = oldoptlen + JUMBOOPTLEN; 918 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 919 oldoptlen); 920 optbuf = mtod(n, u_int8_t *) + oldoptlen; 921 m_freem(mopt); 922 mopt = exthdrs->ip6e_hbh = n; 923 } else { 924 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 925 mopt->m_len += JUMBOOPTLEN; 926 } 927 optbuf[0] = IP6OPT_PADN; 928 optbuf[1] = 0; 929 930 /* 931 * Adjust the header length according to the pad and 932 * the jumbo payload option. 933 */ 934 hbh = mtod(mopt, struct ip6_hbh *); 935 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 936 } 937 938 /* fill in the option. */ 939 optbuf[2] = IP6OPT_JUMBO; 940 optbuf[3] = 4; 941 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 942 memcpy(&optbuf[4], &v, sizeof(u_int32_t)); 943 944 /* finally, adjust the packet header length */ 945 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 946 947 return (0); 948 #undef JUMBOOPTLEN 949 } 950 951 /* 952 * Insert fragment header and copy unfragmentable header portions. 953 */ 954 int 955 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 956 struct ip6_frag **frghdrp) 957 { 958 struct mbuf *n, *mlast; 959 960 if (hlen > sizeof(struct ip6_hdr)) { 961 n = m_copym(m0, sizeof(struct ip6_hdr), 962 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 963 if (n == NULL) 964 return (ENOBUFS); 965 m->m_next = n; 966 } else 967 n = m; 968 969 /* Search for the last mbuf of unfragmentable part. */ 970 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 971 ; 972 973 if ((mlast->m_flags & M_EXT) == 0 && 974 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 975 /* use the trailing space of the last mbuf for the fragment hdr */ 976 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 977 mlast->m_len); 978 mlast->m_len += sizeof(struct ip6_frag); 979 m->m_pkthdr.len += sizeof(struct ip6_frag); 980 } else { 981 /* allocate a new mbuf for the fragment header */ 982 struct mbuf *mfrg; 983 984 MGET(mfrg, M_DONTWAIT, MT_DATA); 985 if (mfrg == NULL) 986 return (ENOBUFS); 987 mfrg->m_len = sizeof(struct ip6_frag); 988 *frghdrp = mtod(mfrg, struct ip6_frag *); 989 mlast->m_next = mfrg; 990 } 991 992 return (0); 993 } 994 995 int 996 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup) 997 { 998 u_int32_t mtu = 0; 999 int error = 0; 1000 1001 if (rt != NULL) { 1002 mtu = rt->rt_mtu; 1003 if (mtu == 0) 1004 mtu = ifp->if_mtu; 1005 else if (mtu < IPV6_MMTU) { 1006 /* RFC8021 IPv6 Atomic Fragments Considered Harmful */ 1007 mtu = IPV6_MMTU; 1008 } else if (mtu > ifp->if_mtu) { 1009 /* 1010 * The MTU on the route is larger than the MTU on 1011 * the interface! This shouldn't happen, unless the 1012 * MTU of the interface has been changed after the 1013 * interface was brought up. Change the MTU in the 1014 * route to match the interface MTU (as long as the 1015 * field isn't locked). 1016 */ 1017 mtu = ifp->if_mtu; 1018 if (!(rt->rt_locks & RTV_MTU)) 1019 rt->rt_mtu = mtu; 1020 } 1021 } else { 1022 mtu = ifp->if_mtu; 1023 } 1024 1025 *mtup = mtu; 1026 return (error); 1027 } 1028 1029 /* 1030 * IP6 socket option processing. 1031 */ 1032 int 1033 ip6_ctloutput(int op, struct socket *so, int level, int optname, 1034 struct mbuf *m) 1035 { 1036 int privileged, optdatalen, uproto; 1037 void *optdata; 1038 struct inpcb *inp = sotoinpcb(so); 1039 int error, optval; 1040 struct proc *p = curproc; /* For IPSec and rdomain */ 1041 u_int rtid = 0; 1042 1043 error = optval = 0; 1044 1045 privileged = (inp->inp_socket->so_state & SS_PRIV); 1046 uproto = (int)so->so_proto->pr_protocol; 1047 1048 if (level != IPPROTO_IPV6) 1049 return (EINVAL); 1050 1051 switch (op) { 1052 case PRCO_SETOPT: 1053 switch (optname) { 1054 /* 1055 * Use of some Hop-by-Hop options or some 1056 * Destination options, might require special 1057 * privilege. That is, normal applications 1058 * (without special privilege) might be forbidden 1059 * from setting certain options in outgoing packets, 1060 * and might never see certain options in received 1061 * packets. [RFC 2292 Section 6] 1062 * KAME specific note: 1063 * KAME prevents non-privileged users from sending or 1064 * receiving ANY hbh/dst options in order to avoid 1065 * overhead of parsing options in the kernel. 1066 */ 1067 case IPV6_RECVHOPOPTS: 1068 case IPV6_RECVDSTOPTS: 1069 if (!privileged) { 1070 error = EPERM; 1071 break; 1072 } 1073 /* FALLTHROUGH */ 1074 case IPV6_UNICAST_HOPS: 1075 case IPV6_MINHOPCOUNT: 1076 case IPV6_HOPLIMIT: 1077 1078 case IPV6_RECVPKTINFO: 1079 case IPV6_RECVHOPLIMIT: 1080 case IPV6_RECVRTHDR: 1081 case IPV6_RECVPATHMTU: 1082 case IPV6_RECVTCLASS: 1083 case IPV6_V6ONLY: 1084 case IPV6_AUTOFLOWLABEL: 1085 case IPV6_RECVDSTPORT: 1086 if (m == NULL || m->m_len != sizeof(int)) { 1087 error = EINVAL; 1088 break; 1089 } 1090 optval = *mtod(m, int *); 1091 switch (optname) { 1092 1093 case IPV6_UNICAST_HOPS: 1094 if (optval < -1 || optval >= 256) 1095 error = EINVAL; 1096 else { 1097 /* -1 = kernel default */ 1098 inp->inp_hops = optval; 1099 } 1100 break; 1101 1102 case IPV6_MINHOPCOUNT: 1103 if (optval < 0 || optval > 255) 1104 error = EINVAL; 1105 else 1106 inp->inp_ip6_minhlim = optval; 1107 break; 1108 1109 #define OPTSET(bit) \ 1110 do { \ 1111 if (optval) \ 1112 inp->inp_flags |= (bit); \ 1113 else \ 1114 inp->inp_flags &= ~(bit); \ 1115 } while (/*CONSTCOND*/ 0) 1116 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1117 1118 case IPV6_RECVPKTINFO: 1119 OPTSET(IN6P_PKTINFO); 1120 break; 1121 1122 case IPV6_HOPLIMIT: 1123 { 1124 struct ip6_pktopts **optp; 1125 1126 optp = &inp->inp_outputopts6; 1127 error = ip6_pcbopt(IPV6_HOPLIMIT, 1128 (u_char *)&optval, 1129 sizeof(optval), 1130 optp, 1131 privileged, uproto); 1132 break; 1133 } 1134 1135 case IPV6_RECVHOPLIMIT: 1136 OPTSET(IN6P_HOPLIMIT); 1137 break; 1138 1139 case IPV6_RECVHOPOPTS: 1140 OPTSET(IN6P_HOPOPTS); 1141 break; 1142 1143 case IPV6_RECVDSTOPTS: 1144 OPTSET(IN6P_DSTOPTS); 1145 break; 1146 1147 case IPV6_RECVRTHDR: 1148 OPTSET(IN6P_RTHDR); 1149 break; 1150 1151 case IPV6_RECVPATHMTU: 1152 /* 1153 * We ignore this option for TCP 1154 * sockets. 1155 * (RFC3542 leaves this case 1156 * unspecified.) 1157 */ 1158 if (uproto != IPPROTO_TCP) 1159 OPTSET(IN6P_MTU); 1160 break; 1161 1162 case IPV6_V6ONLY: 1163 /* 1164 * make setsockopt(IPV6_V6ONLY) 1165 * available only prior to bind(2). 1166 * see ipng mailing list, Jun 22 2001. 1167 */ 1168 if (inp->inp_lport || 1169 !IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6)) { 1170 error = EINVAL; 1171 break; 1172 } 1173 /* No support for IPv4-mapped addresses. */ 1174 if (!optval) 1175 error = EINVAL; 1176 else 1177 error = 0; 1178 break; 1179 case IPV6_RECVTCLASS: 1180 OPTSET(IN6P_TCLASS); 1181 break; 1182 case IPV6_AUTOFLOWLABEL: 1183 OPTSET(IN6P_AUTOFLOWLABEL); 1184 break; 1185 1186 case IPV6_RECVDSTPORT: 1187 OPTSET(IN6P_RECVDSTPORT); 1188 break; 1189 } 1190 break; 1191 1192 case IPV6_TCLASS: 1193 case IPV6_DONTFRAG: 1194 case IPV6_USE_MIN_MTU: 1195 if (m == NULL || m->m_len != sizeof(optval)) { 1196 error = EINVAL; 1197 break; 1198 } 1199 optval = *mtod(m, int *); 1200 { 1201 struct ip6_pktopts **optp; 1202 optp = &inp->inp_outputopts6; 1203 error = ip6_pcbopt(optname, 1204 (u_char *)&optval, 1205 sizeof(optval), 1206 optp, 1207 privileged, uproto); 1208 break; 1209 } 1210 1211 case IPV6_PKTINFO: 1212 case IPV6_HOPOPTS: 1213 case IPV6_RTHDR: 1214 case IPV6_DSTOPTS: 1215 case IPV6_RTHDRDSTOPTS: 1216 { 1217 /* new advanced API (RFC3542) */ 1218 u_char *optbuf; 1219 int optbuflen; 1220 struct ip6_pktopts **optp; 1221 1222 if (m && m->m_next) { 1223 error = EINVAL; /* XXX */ 1224 break; 1225 } 1226 if (m) { 1227 optbuf = mtod(m, u_char *); 1228 optbuflen = m->m_len; 1229 } else { 1230 optbuf = NULL; 1231 optbuflen = 0; 1232 } 1233 optp = &inp->inp_outputopts6; 1234 error = ip6_pcbopt(optname, 1235 optbuf, optbuflen, 1236 optp, privileged, uproto); 1237 break; 1238 } 1239 #undef OPTSET 1240 1241 case IPV6_MULTICAST_IF: 1242 case IPV6_MULTICAST_HOPS: 1243 case IPV6_MULTICAST_LOOP: 1244 case IPV6_JOIN_GROUP: 1245 case IPV6_LEAVE_GROUP: 1246 error = ip6_setmoptions(optname, 1247 &inp->inp_moptions6, 1248 m, inp->inp_rtableid); 1249 break; 1250 1251 case IPV6_PORTRANGE: 1252 if (m == NULL || m->m_len != sizeof(int)) { 1253 error = EINVAL; 1254 break; 1255 } 1256 optval = *mtod(m, int *); 1257 1258 switch (optval) { 1259 case IPV6_PORTRANGE_DEFAULT: 1260 inp->inp_flags &= ~(IN6P_LOWPORT); 1261 inp->inp_flags &= ~(IN6P_HIGHPORT); 1262 break; 1263 1264 case IPV6_PORTRANGE_HIGH: 1265 inp->inp_flags &= ~(IN6P_LOWPORT); 1266 inp->inp_flags |= IN6P_HIGHPORT; 1267 break; 1268 1269 case IPV6_PORTRANGE_LOW: 1270 inp->inp_flags &= ~(IN6P_HIGHPORT); 1271 inp->inp_flags |= IN6P_LOWPORT; 1272 break; 1273 1274 default: 1275 error = EINVAL; 1276 break; 1277 } 1278 break; 1279 1280 case IPSEC6_OUTSA: 1281 error = EINVAL; 1282 break; 1283 1284 case IPV6_AUTH_LEVEL: 1285 case IPV6_ESP_TRANS_LEVEL: 1286 case IPV6_ESP_NETWORK_LEVEL: 1287 case IPV6_IPCOMP_LEVEL: 1288 #ifndef IPSEC 1289 error = EINVAL; 1290 #else 1291 if (m == NULL || m->m_len != sizeof(int)) { 1292 error = EINVAL; 1293 break; 1294 } 1295 optval = *mtod(m, int *); 1296 1297 if (optval < IPSEC_LEVEL_BYPASS || 1298 optval > IPSEC_LEVEL_UNIQUE) { 1299 error = EINVAL; 1300 break; 1301 } 1302 1303 switch (optname) { 1304 case IPV6_AUTH_LEVEL: 1305 if (optval < IPSEC_AUTH_LEVEL_DEFAULT && 1306 suser(p, 0)) { 1307 error = EACCES; 1308 break; 1309 } 1310 inp->inp_seclevel[SL_AUTH] = optval; 1311 break; 1312 1313 case IPV6_ESP_TRANS_LEVEL: 1314 if (optval < IPSEC_ESP_TRANS_LEVEL_DEFAULT && 1315 suser(p, 0)) { 1316 error = EACCES; 1317 break; 1318 } 1319 inp->inp_seclevel[SL_ESP_TRANS] = optval; 1320 break; 1321 1322 case IPV6_ESP_NETWORK_LEVEL: 1323 if (optval < IPSEC_ESP_NETWORK_LEVEL_DEFAULT && 1324 suser(p, 0)) { 1325 error = EACCES; 1326 break; 1327 } 1328 inp->inp_seclevel[SL_ESP_NETWORK] = optval; 1329 break; 1330 1331 case IPV6_IPCOMP_LEVEL: 1332 if (optval < IPSEC_IPCOMP_LEVEL_DEFAULT && 1333 suser(p, 0)) { 1334 error = EACCES; 1335 break; 1336 } 1337 inp->inp_seclevel[SL_IPCOMP] = optval; 1338 break; 1339 } 1340 #endif 1341 break; 1342 case SO_RTABLE: 1343 if (m == NULL || m->m_len < sizeof(u_int)) { 1344 error = EINVAL; 1345 break; 1346 } 1347 rtid = *mtod(m, u_int *); 1348 if (inp->inp_rtableid == rtid) 1349 break; 1350 /* needs privileges to switch when already set */ 1351 if (p->p_p->ps_rtableid != rtid && 1352 p->p_p->ps_rtableid != 0 && 1353 (error = suser(p, 0)) != 0) 1354 break; 1355 /* table must exist */ 1356 if (!rtable_exists(rtid)) { 1357 error = EINVAL; 1358 break; 1359 } 1360 if (inp->inp_lport) { 1361 error = EBUSY; 1362 break; 1363 } 1364 inp->inp_rtableid = rtid; 1365 in_pcbrehash(inp); 1366 break; 1367 case IPV6_PIPEX: 1368 if (m != NULL && m->m_len == sizeof(int)) 1369 inp->inp_pipex = *mtod(m, int *); 1370 else 1371 error = EINVAL; 1372 break; 1373 1374 default: 1375 error = ENOPROTOOPT; 1376 break; 1377 } 1378 break; 1379 1380 case PRCO_GETOPT: 1381 switch (optname) { 1382 1383 case IPV6_RECVHOPOPTS: 1384 case IPV6_RECVDSTOPTS: 1385 case IPV6_UNICAST_HOPS: 1386 case IPV6_MINHOPCOUNT: 1387 case IPV6_RECVPKTINFO: 1388 case IPV6_RECVHOPLIMIT: 1389 case IPV6_RECVRTHDR: 1390 case IPV6_RECVPATHMTU: 1391 1392 case IPV6_V6ONLY: 1393 case IPV6_PORTRANGE: 1394 case IPV6_RECVTCLASS: 1395 case IPV6_AUTOFLOWLABEL: 1396 case IPV6_RECVDSTPORT: 1397 switch (optname) { 1398 1399 case IPV6_RECVHOPOPTS: 1400 optval = OPTBIT(IN6P_HOPOPTS); 1401 break; 1402 1403 case IPV6_RECVDSTOPTS: 1404 optval = OPTBIT(IN6P_DSTOPTS); 1405 break; 1406 1407 case IPV6_UNICAST_HOPS: 1408 optval = inp->inp_hops; 1409 break; 1410 1411 case IPV6_MINHOPCOUNT: 1412 optval = inp->inp_ip6_minhlim; 1413 break; 1414 1415 case IPV6_RECVPKTINFO: 1416 optval = OPTBIT(IN6P_PKTINFO); 1417 break; 1418 1419 case IPV6_RECVHOPLIMIT: 1420 optval = OPTBIT(IN6P_HOPLIMIT); 1421 break; 1422 1423 case IPV6_RECVRTHDR: 1424 optval = OPTBIT(IN6P_RTHDR); 1425 break; 1426 1427 case IPV6_RECVPATHMTU: 1428 optval = OPTBIT(IN6P_MTU); 1429 break; 1430 1431 case IPV6_V6ONLY: 1432 optval = 1; 1433 break; 1434 1435 case IPV6_PORTRANGE: 1436 { 1437 int flags; 1438 flags = inp->inp_flags; 1439 if (flags & IN6P_HIGHPORT) 1440 optval = IPV6_PORTRANGE_HIGH; 1441 else if (flags & IN6P_LOWPORT) 1442 optval = IPV6_PORTRANGE_LOW; 1443 else 1444 optval = 0; 1445 break; 1446 } 1447 case IPV6_RECVTCLASS: 1448 optval = OPTBIT(IN6P_TCLASS); 1449 break; 1450 1451 case IPV6_AUTOFLOWLABEL: 1452 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1453 break; 1454 1455 case IPV6_RECVDSTPORT: 1456 optval = OPTBIT(IN6P_RECVDSTPORT); 1457 break; 1458 } 1459 if (error) 1460 break; 1461 m->m_len = sizeof(int); 1462 *mtod(m, int *) = optval; 1463 break; 1464 1465 case IPV6_PATHMTU: 1466 { 1467 u_long pmtu = 0; 1468 struct ip6_mtuinfo mtuinfo; 1469 struct ifnet *ifp; 1470 struct rtentry *rt; 1471 1472 if (!(so->so_state & SS_ISCONNECTED)) 1473 return (ENOTCONN); 1474 1475 rt = in_pcbrtentry(inp); 1476 if (!rtisvalid(rt)) 1477 return (EHOSTUNREACH); 1478 1479 ifp = if_get(rt->rt_ifidx); 1480 if (ifp == NULL) 1481 return (EHOSTUNREACH); 1482 /* 1483 * XXX: we dot not consider the case of source 1484 * routing, or optional information to specify 1485 * the outgoing interface. 1486 */ 1487 error = ip6_getpmtu(rt, ifp, &pmtu); 1488 if_put(ifp); 1489 if (error) 1490 break; 1491 if (pmtu > IPV6_MAXPACKET) 1492 pmtu = IPV6_MAXPACKET; 1493 1494 bzero(&mtuinfo, sizeof(mtuinfo)); 1495 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1496 optdata = (void *)&mtuinfo; 1497 optdatalen = sizeof(mtuinfo); 1498 if (optdatalen > MCLBYTES) 1499 return (EMSGSIZE); /* XXX */ 1500 if (optdatalen > MLEN) 1501 MCLGET(m, M_WAIT); 1502 m->m_len = optdatalen; 1503 bcopy(optdata, mtod(m, void *), optdatalen); 1504 break; 1505 } 1506 1507 case IPV6_PKTINFO: 1508 case IPV6_HOPOPTS: 1509 case IPV6_RTHDR: 1510 case IPV6_DSTOPTS: 1511 case IPV6_RTHDRDSTOPTS: 1512 case IPV6_TCLASS: 1513 case IPV6_DONTFRAG: 1514 case IPV6_USE_MIN_MTU: 1515 error = ip6_getpcbopt(inp->inp_outputopts6, 1516 optname, m); 1517 break; 1518 1519 case IPV6_MULTICAST_IF: 1520 case IPV6_MULTICAST_HOPS: 1521 case IPV6_MULTICAST_LOOP: 1522 case IPV6_JOIN_GROUP: 1523 case IPV6_LEAVE_GROUP: 1524 error = ip6_getmoptions(optname, 1525 inp->inp_moptions6, m); 1526 break; 1527 1528 case IPSEC6_OUTSA: 1529 error = EINVAL; 1530 break; 1531 1532 case IPV6_AUTH_LEVEL: 1533 case IPV6_ESP_TRANS_LEVEL: 1534 case IPV6_ESP_NETWORK_LEVEL: 1535 case IPV6_IPCOMP_LEVEL: 1536 #ifndef IPSEC 1537 m->m_len = sizeof(int); 1538 *mtod(m, int *) = IPSEC_LEVEL_NONE; 1539 #else 1540 m->m_len = sizeof(int); 1541 switch (optname) { 1542 case IPV6_AUTH_LEVEL: 1543 optval = inp->inp_seclevel[SL_AUTH]; 1544 break; 1545 1546 case IPV6_ESP_TRANS_LEVEL: 1547 optval = 1548 inp->inp_seclevel[SL_ESP_TRANS]; 1549 break; 1550 1551 case IPV6_ESP_NETWORK_LEVEL: 1552 optval = 1553 inp->inp_seclevel[SL_ESP_NETWORK]; 1554 break; 1555 1556 case IPV6_IPCOMP_LEVEL: 1557 optval = inp->inp_seclevel[SL_IPCOMP]; 1558 break; 1559 } 1560 *mtod(m, int *) = optval; 1561 #endif 1562 break; 1563 case SO_RTABLE: 1564 m->m_len = sizeof(u_int); 1565 *mtod(m, u_int *) = optval; 1566 break; 1567 case IPV6_PIPEX: 1568 m->m_len = sizeof(int); 1569 *mtod(m, int *) = optval; 1570 break; 1571 1572 default: 1573 error = ENOPROTOOPT; 1574 break; 1575 } 1576 break; 1577 } 1578 return (error); 1579 } 1580 1581 int 1582 ip6_raw_ctloutput(int op, struct socket *so, int level, int optname, 1583 struct mbuf *m) 1584 { 1585 int error = 0, optval; 1586 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1587 struct inpcb *inp = sotoinpcb(so); 1588 1589 if (level != IPPROTO_IPV6) 1590 return (EINVAL); 1591 1592 switch (optname) { 1593 case IPV6_CHECKSUM: 1594 /* 1595 * For ICMPv6 sockets, no modification allowed for checksum 1596 * offset, permit "no change" values to help existing apps. 1597 * 1598 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 1599 * for an ICMPv6 socket will fail." 1600 * The current behavior does not meet RFC3542. 1601 */ 1602 switch (op) { 1603 case PRCO_SETOPT: 1604 if (m == NULL || m->m_len != sizeof(int)) { 1605 error = EINVAL; 1606 break; 1607 } 1608 optval = *mtod(m, int *); 1609 if ((optval % 2) != 0) { 1610 /* the API assumes even offset values */ 1611 error = EINVAL; 1612 } else if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) { 1613 if (optval != icmp6off) 1614 error = EINVAL; 1615 } else 1616 inp->inp_cksum6 = optval; 1617 break; 1618 1619 case PRCO_GETOPT: 1620 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1621 optval = icmp6off; 1622 else 1623 optval = inp->inp_cksum6; 1624 1625 m->m_len = sizeof(int); 1626 *mtod(m, int *) = optval; 1627 break; 1628 1629 default: 1630 error = EINVAL; 1631 break; 1632 } 1633 break; 1634 1635 default: 1636 error = ENOPROTOOPT; 1637 break; 1638 } 1639 1640 return (error); 1641 } 1642 1643 /* 1644 * initialize ip6_pktopts. beware that there are non-zero default values in 1645 * the struct. 1646 */ 1647 void 1648 ip6_initpktopts(struct ip6_pktopts *opt) 1649 { 1650 bzero(opt, sizeof(*opt)); 1651 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 1652 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 1653 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 1654 } 1655 1656 int 1657 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 1658 int priv, int uproto) 1659 { 1660 struct ip6_pktopts *opt; 1661 1662 if (*pktopt == NULL) { 1663 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 1664 M_WAITOK); 1665 ip6_initpktopts(*pktopt); 1666 } 1667 opt = *pktopt; 1668 1669 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, uproto)); 1670 } 1671 1672 int 1673 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf *m) 1674 { 1675 void *optdata = NULL; 1676 int optdatalen = 0; 1677 struct ip6_ext *ip6e; 1678 int error = 0; 1679 struct in6_pktinfo null_pktinfo; 1680 int deftclass = 0, on; 1681 int defminmtu = IP6PO_MINMTU_MCASTONLY; 1682 1683 switch (optname) { 1684 case IPV6_PKTINFO: 1685 if (pktopt && pktopt->ip6po_pktinfo) 1686 optdata = (void *)pktopt->ip6po_pktinfo; 1687 else { 1688 /* XXX: we don't have to do this every time... */ 1689 bzero(&null_pktinfo, sizeof(null_pktinfo)); 1690 optdata = (void *)&null_pktinfo; 1691 } 1692 optdatalen = sizeof(struct in6_pktinfo); 1693 break; 1694 case IPV6_TCLASS: 1695 if (pktopt && pktopt->ip6po_tclass >= 0) 1696 optdata = (void *)&pktopt->ip6po_tclass; 1697 else 1698 optdata = (void *)&deftclass; 1699 optdatalen = sizeof(int); 1700 break; 1701 case IPV6_HOPOPTS: 1702 if (pktopt && pktopt->ip6po_hbh) { 1703 optdata = (void *)pktopt->ip6po_hbh; 1704 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 1705 optdatalen = (ip6e->ip6e_len + 1) << 3; 1706 } 1707 break; 1708 case IPV6_RTHDR: 1709 if (pktopt && pktopt->ip6po_rthdr) { 1710 optdata = (void *)pktopt->ip6po_rthdr; 1711 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 1712 optdatalen = (ip6e->ip6e_len + 1) << 3; 1713 } 1714 break; 1715 case IPV6_RTHDRDSTOPTS: 1716 if (pktopt && pktopt->ip6po_dest1) { 1717 optdata = (void *)pktopt->ip6po_dest1; 1718 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 1719 optdatalen = (ip6e->ip6e_len + 1) << 3; 1720 } 1721 break; 1722 case IPV6_DSTOPTS: 1723 if (pktopt && pktopt->ip6po_dest2) { 1724 optdata = (void *)pktopt->ip6po_dest2; 1725 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 1726 optdatalen = (ip6e->ip6e_len + 1) << 3; 1727 } 1728 break; 1729 case IPV6_USE_MIN_MTU: 1730 if (pktopt) 1731 optdata = (void *)&pktopt->ip6po_minmtu; 1732 else 1733 optdata = (void *)&defminmtu; 1734 optdatalen = sizeof(int); 1735 break; 1736 case IPV6_DONTFRAG: 1737 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 1738 on = 1; 1739 else 1740 on = 0; 1741 optdata = (void *)&on; 1742 optdatalen = sizeof(on); 1743 break; 1744 default: /* should not happen */ 1745 #ifdef DIAGNOSTIC 1746 panic("ip6_getpcbopt: unexpected option"); 1747 #endif 1748 return (ENOPROTOOPT); 1749 } 1750 1751 if (optdatalen > MCLBYTES) 1752 return (EMSGSIZE); /* XXX */ 1753 if (optdatalen > MLEN) 1754 MCLGET(m, M_WAIT); 1755 m->m_len = optdatalen; 1756 if (optdatalen) 1757 bcopy(optdata, mtod(m, void *), optdatalen); 1758 1759 return (error); 1760 } 1761 1762 void 1763 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 1764 { 1765 if (optname == -1 || optname == IPV6_PKTINFO) { 1766 if (pktopt->ip6po_pktinfo) 1767 free(pktopt->ip6po_pktinfo, M_IP6OPT, 0); 1768 pktopt->ip6po_pktinfo = NULL; 1769 } 1770 if (optname == -1 || optname == IPV6_HOPLIMIT) 1771 pktopt->ip6po_hlim = -1; 1772 if (optname == -1 || optname == IPV6_TCLASS) 1773 pktopt->ip6po_tclass = -1; 1774 if (optname == -1 || optname == IPV6_HOPOPTS) { 1775 if (pktopt->ip6po_hbh) 1776 free(pktopt->ip6po_hbh, M_IP6OPT, 0); 1777 pktopt->ip6po_hbh = NULL; 1778 } 1779 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 1780 if (pktopt->ip6po_dest1) 1781 free(pktopt->ip6po_dest1, M_IP6OPT, 0); 1782 pktopt->ip6po_dest1 = NULL; 1783 } 1784 if (optname == -1 || optname == IPV6_RTHDR) { 1785 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 1786 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT, 0); 1787 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 1788 if (pktopt->ip6po_route.ro_rt) { 1789 rtfree(pktopt->ip6po_route.ro_rt); 1790 pktopt->ip6po_route.ro_rt = NULL; 1791 } 1792 } 1793 if (optname == -1 || optname == IPV6_DSTOPTS) { 1794 if (pktopt->ip6po_dest2) 1795 free(pktopt->ip6po_dest2, M_IP6OPT, 0); 1796 pktopt->ip6po_dest2 = NULL; 1797 } 1798 } 1799 1800 #define PKTOPT_EXTHDRCPY(type) \ 1801 do {\ 1802 if (src->type) {\ 1803 size_t hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 1804 dst->type = malloc(hlen, M_IP6OPT, M_NOWAIT);\ 1805 if (dst->type == NULL)\ 1806 goto bad;\ 1807 memcpy(dst->type, src->type, hlen);\ 1808 }\ 1809 } while (/*CONSTCOND*/ 0) 1810 1811 int 1812 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src) 1813 { 1814 dst->ip6po_hlim = src->ip6po_hlim; 1815 dst->ip6po_tclass = src->ip6po_tclass; 1816 dst->ip6po_flags = src->ip6po_flags; 1817 if (src->ip6po_pktinfo) { 1818 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 1819 M_IP6OPT, M_NOWAIT); 1820 if (dst->ip6po_pktinfo == NULL) 1821 goto bad; 1822 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 1823 } 1824 PKTOPT_EXTHDRCPY(ip6po_hbh); 1825 PKTOPT_EXTHDRCPY(ip6po_dest1); 1826 PKTOPT_EXTHDRCPY(ip6po_dest2); 1827 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 1828 return (0); 1829 1830 bad: 1831 ip6_clearpktopts(dst, -1); 1832 return (ENOBUFS); 1833 } 1834 #undef PKTOPT_EXTHDRCPY 1835 1836 void 1837 ip6_freepcbopts(struct ip6_pktopts *pktopt) 1838 { 1839 if (pktopt == NULL) 1840 return; 1841 1842 ip6_clearpktopts(pktopt, -1); 1843 1844 free(pktopt, M_IP6OPT, 0); 1845 } 1846 1847 /* 1848 * Set the IP6 multicast options in response to user setsockopt(). 1849 */ 1850 int 1851 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m, 1852 unsigned int rtableid) 1853 { 1854 int error = 0; 1855 u_int loop, ifindex; 1856 struct ipv6_mreq *mreq; 1857 struct ifnet *ifp; 1858 struct ip6_moptions *im6o = *im6op; 1859 struct in6_multi_mship *imm; 1860 struct proc *p = curproc; /* XXX */ 1861 1862 if (im6o == NULL) { 1863 /* 1864 * No multicast option buffer attached to the pcb; 1865 * allocate one and initialize to default values. 1866 */ 1867 im6o = (struct ip6_moptions *) 1868 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1869 1870 if (im6o == NULL) 1871 return (ENOBUFS); 1872 *im6op = im6o; 1873 im6o->im6o_ifidx = 0; 1874 im6o->im6o_hlim = ip6_defmcasthlim; 1875 im6o->im6o_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1876 LIST_INIT(&im6o->im6o_memberships); 1877 } 1878 1879 switch (optname) { 1880 1881 case IPV6_MULTICAST_IF: 1882 /* 1883 * Select the interface for outgoing multicast packets. 1884 */ 1885 if (m == NULL || m->m_len != sizeof(u_int)) { 1886 error = EINVAL; 1887 break; 1888 } 1889 memcpy(&ifindex, mtod(m, u_int *), sizeof(ifindex)); 1890 if (ifindex != 0) { 1891 ifp = if_get(ifindex); 1892 if (ifp == NULL) { 1893 error = ENXIO; /* XXX EINVAL? */ 1894 break; 1895 } 1896 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 1897 error = EADDRNOTAVAIL; 1898 if_put(ifp); 1899 break; 1900 } 1901 if_put(ifp); 1902 } 1903 im6o->im6o_ifidx = ifindex; 1904 break; 1905 1906 case IPV6_MULTICAST_HOPS: 1907 { 1908 /* 1909 * Set the IP6 hoplimit for outgoing multicast packets. 1910 */ 1911 int optval; 1912 if (m == NULL || m->m_len != sizeof(int)) { 1913 error = EINVAL; 1914 break; 1915 } 1916 memcpy(&optval, mtod(m, u_int *), sizeof(optval)); 1917 if (optval < -1 || optval >= 256) 1918 error = EINVAL; 1919 else if (optval == -1) 1920 im6o->im6o_hlim = ip6_defmcasthlim; 1921 else 1922 im6o->im6o_hlim = optval; 1923 break; 1924 } 1925 1926 case IPV6_MULTICAST_LOOP: 1927 /* 1928 * Set the loopback flag for outgoing multicast packets. 1929 * Must be zero or one. 1930 */ 1931 if (m == NULL || m->m_len != sizeof(u_int)) { 1932 error = EINVAL; 1933 break; 1934 } 1935 memcpy(&loop, mtod(m, u_int *), sizeof(loop)); 1936 if (loop > 1) { 1937 error = EINVAL; 1938 break; 1939 } 1940 im6o->im6o_loop = loop; 1941 break; 1942 1943 case IPV6_JOIN_GROUP: 1944 /* 1945 * Add a multicast group membership. 1946 * Group must be a valid IP6 multicast address. 1947 */ 1948 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1949 error = EINVAL; 1950 break; 1951 } 1952 mreq = mtod(m, struct ipv6_mreq *); 1953 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1954 /* 1955 * We use the unspecified address to specify to accept 1956 * all multicast addresses. Only super user is allowed 1957 * to do this. 1958 */ 1959 if (suser(p, 0)) 1960 { 1961 error = EACCES; 1962 break; 1963 } 1964 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1965 error = EINVAL; 1966 break; 1967 } 1968 1969 /* 1970 * If no interface was explicitly specified, choose an 1971 * appropriate one according to the given multicast address. 1972 */ 1973 if (mreq->ipv6mr_interface == 0) { 1974 struct rtentry *rt; 1975 struct sockaddr_in6 dst; 1976 1977 memset(&dst, 0, sizeof(dst)); 1978 dst.sin6_len = sizeof(dst); 1979 dst.sin6_family = AF_INET6; 1980 dst.sin6_addr = mreq->ipv6mr_multiaddr; 1981 rt = rtalloc(sin6tosa(&dst), RT_RESOLVE, rtableid); 1982 if (rt == NULL) { 1983 error = EADDRNOTAVAIL; 1984 break; 1985 } 1986 ifp = if_get(rt->rt_ifidx); 1987 rtfree(rt); 1988 } else { 1989 /* 1990 * If the interface is specified, validate it. 1991 */ 1992 ifp = if_get(mreq->ipv6mr_interface); 1993 if (ifp == NULL) { 1994 error = ENXIO; /* XXX EINVAL? */ 1995 break; 1996 } 1997 } 1998 1999 /* 2000 * See if we found an interface, and confirm that it 2001 * supports multicast 2002 */ 2003 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2004 if_put(ifp); 2005 error = EADDRNOTAVAIL; 2006 break; 2007 } 2008 /* 2009 * Put interface index into the multicast address, 2010 * if the address has link/interface-local scope. 2011 */ 2012 if (IN6_IS_SCOPE_EMBED(&mreq->ipv6mr_multiaddr)) { 2013 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2014 htons(ifp->if_index); 2015 } 2016 /* 2017 * See if the membership already exists. 2018 */ 2019 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) 2020 if (imm->i6mm_maddr->in6m_ifidx == ifp->if_index && 2021 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2022 &mreq->ipv6mr_multiaddr)) 2023 break; 2024 if (imm != NULL) { 2025 if_put(ifp); 2026 error = EADDRINUSE; 2027 break; 2028 } 2029 /* 2030 * Everything looks good; add a new record to the multicast 2031 * address list for the given interface. 2032 */ 2033 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error); 2034 if_put(ifp); 2035 if (!imm) 2036 break; 2037 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2038 break; 2039 2040 case IPV6_LEAVE_GROUP: 2041 /* 2042 * Drop a multicast group membership. 2043 * Group must be a valid IP6 multicast address. 2044 */ 2045 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2046 error = EINVAL; 2047 break; 2048 } 2049 mreq = mtod(m, struct ipv6_mreq *); 2050 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2051 if (suser(p, 0)) 2052 { 2053 error = EACCES; 2054 break; 2055 } 2056 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2057 error = EINVAL; 2058 break; 2059 } 2060 2061 /* 2062 * Put interface index into the multicast address, 2063 * if the address has link-local scope. 2064 */ 2065 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2066 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2067 htons(mreq->ipv6mr_interface); 2068 } 2069 2070 /* 2071 * If an interface address was specified, get a pointer 2072 * to its ifnet structure. 2073 */ 2074 if (mreq->ipv6mr_interface == 0) 2075 ifp = NULL; 2076 else { 2077 ifp = if_get(mreq->ipv6mr_interface); 2078 if (ifp == NULL) { 2079 error = ENXIO; /* XXX EINVAL? */ 2080 break; 2081 } 2082 } 2083 2084 /* 2085 * Find the membership in the membership list. 2086 */ 2087 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2088 if ((ifp == NULL || 2089 imm->i6mm_maddr->in6m_ifidx == ifp->if_index) && 2090 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2091 &mreq->ipv6mr_multiaddr)) 2092 break; 2093 } 2094 2095 if_put(ifp); 2096 2097 if (imm == NULL) { 2098 /* Unable to resolve interface */ 2099 error = EADDRNOTAVAIL; 2100 break; 2101 } 2102 /* 2103 * Give up the multicast address record to which the 2104 * membership points. 2105 */ 2106 LIST_REMOVE(imm, i6mm_chain); 2107 in6_leavegroup(imm); 2108 break; 2109 2110 default: 2111 error = EOPNOTSUPP; 2112 break; 2113 } 2114 2115 /* 2116 * If all options have default values, no need to keep the option 2117 * structure. 2118 */ 2119 if (im6o->im6o_ifidx == 0 && 2120 im6o->im6o_hlim == ip6_defmcasthlim && 2121 im6o->im6o_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2122 LIST_EMPTY(&im6o->im6o_memberships)) { 2123 free(*im6op, M_IPMOPTS, 0); 2124 *im6op = NULL; 2125 } 2126 2127 return (error); 2128 } 2129 2130 /* 2131 * Return the IP6 multicast options in response to user getsockopt(). 2132 */ 2133 int 2134 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf *m) 2135 { 2136 u_int *hlim, *loop, *ifindex; 2137 2138 switch (optname) { 2139 case IPV6_MULTICAST_IF: 2140 ifindex = mtod(m, u_int *); 2141 m->m_len = sizeof(u_int); 2142 if (im6o == NULL || im6o->im6o_ifidx == 0) 2143 *ifindex = 0; 2144 else 2145 *ifindex = im6o->im6o_ifidx; 2146 return (0); 2147 2148 case IPV6_MULTICAST_HOPS: 2149 hlim = mtod(m, u_int *); 2150 m->m_len = sizeof(u_int); 2151 if (im6o == NULL) 2152 *hlim = ip6_defmcasthlim; 2153 else 2154 *hlim = im6o->im6o_hlim; 2155 return (0); 2156 2157 case IPV6_MULTICAST_LOOP: 2158 loop = mtod(m, u_int *); 2159 m->m_len = sizeof(u_int); 2160 if (im6o == NULL) 2161 *loop = ip6_defmcasthlim; 2162 else 2163 *loop = im6o->im6o_loop; 2164 return (0); 2165 2166 default: 2167 return (EOPNOTSUPP); 2168 } 2169 } 2170 2171 /* 2172 * Discard the IP6 multicast options. 2173 */ 2174 void 2175 ip6_freemoptions(struct ip6_moptions *im6o) 2176 { 2177 struct in6_multi_mship *imm; 2178 2179 if (im6o == NULL) 2180 return; 2181 2182 while (!LIST_EMPTY(&im6o->im6o_memberships)) { 2183 imm = LIST_FIRST(&im6o->im6o_memberships); 2184 LIST_REMOVE(imm, i6mm_chain); 2185 in6_leavegroup(imm); 2186 } 2187 free(im6o, M_IPMOPTS, 0); 2188 } 2189 2190 /* 2191 * Set IPv6 outgoing packet options based on advanced API. 2192 */ 2193 int 2194 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2195 struct ip6_pktopts *stickyopt, int priv, int uproto) 2196 { 2197 u_int clen; 2198 struct cmsghdr *cm = 0; 2199 caddr_t cmsgs; 2200 int error; 2201 2202 if (control == NULL || opt == NULL) 2203 return (EINVAL); 2204 2205 ip6_initpktopts(opt); 2206 if (stickyopt) { 2207 int error; 2208 2209 /* 2210 * If stickyopt is provided, make a local copy of the options 2211 * for this particular packet, then override them by ancillary 2212 * objects. 2213 * XXX: copypktopts() does not copy the cached route to a next 2214 * hop (if any). This is not very good in terms of efficiency, 2215 * but we can allow this since this option should be rarely 2216 * used. 2217 */ 2218 if ((error = copypktopts(opt, stickyopt)) != 0) 2219 return (error); 2220 } 2221 2222 /* 2223 * XXX: Currently, we assume all the optional information is stored 2224 * in a single mbuf. 2225 */ 2226 if (control->m_next) 2227 return (EINVAL); 2228 2229 clen = control->m_len; 2230 cmsgs = mtod(control, caddr_t); 2231 do { 2232 if (clen < CMSG_LEN(0)) 2233 return (EINVAL); 2234 cm = (struct cmsghdr *)cmsgs; 2235 if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > clen || 2236 CMSG_ALIGN(cm->cmsg_len) > clen) 2237 return (EINVAL); 2238 if (cm->cmsg_level == IPPROTO_IPV6) { 2239 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2240 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, uproto); 2241 if (error) 2242 return (error); 2243 } 2244 2245 clen -= CMSG_ALIGN(cm->cmsg_len); 2246 cmsgs += CMSG_ALIGN(cm->cmsg_len); 2247 } while (clen); 2248 2249 return (0); 2250 } 2251 2252 /* 2253 * Set a particular packet option, as a sticky option or an ancillary data 2254 * item. "len" can be 0 only when it's a sticky option. 2255 */ 2256 int 2257 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2258 int priv, int sticky, int uproto) 2259 { 2260 int minmtupolicy; 2261 2262 switch (optname) { 2263 case IPV6_PKTINFO: 2264 { 2265 struct ifnet *ifp = NULL; 2266 struct in6_pktinfo *pktinfo; 2267 2268 if (len != sizeof(struct in6_pktinfo)) 2269 return (EINVAL); 2270 2271 pktinfo = (struct in6_pktinfo *)buf; 2272 2273 /* 2274 * An application can clear any sticky IPV6_PKTINFO option by 2275 * doing a "regular" setsockopt with ipi6_addr being 2276 * in6addr_any and ipi6_ifindex being zero. 2277 * [RFC 3542, Section 6] 2278 */ 2279 if (opt->ip6po_pktinfo && 2280 pktinfo->ipi6_ifindex == 0 && 2281 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2282 ip6_clearpktopts(opt, optname); 2283 break; 2284 } 2285 2286 if (uproto == IPPROTO_TCP && 2287 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2288 return (EINVAL); 2289 } 2290 2291 if (pktinfo->ipi6_ifindex) { 2292 ifp = if_get(pktinfo->ipi6_ifindex); 2293 if (ifp == NULL) 2294 return (ENXIO); 2295 if_put(ifp); 2296 } 2297 2298 /* 2299 * We store the address anyway, and let in6_selectsrc() 2300 * validate the specified address. This is because ipi6_addr 2301 * may not have enough information about its scope zone, and 2302 * we may need additional information (such as outgoing 2303 * interface or the scope zone of a destination address) to 2304 * disambiguate the scope. 2305 * XXX: the delay of the validation may confuse the 2306 * application when it is used as a sticky option. 2307 */ 2308 if (opt->ip6po_pktinfo == NULL) { 2309 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2310 M_IP6OPT, M_NOWAIT); 2311 if (opt->ip6po_pktinfo == NULL) 2312 return (ENOBUFS); 2313 } 2314 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2315 break; 2316 } 2317 2318 case IPV6_HOPLIMIT: 2319 { 2320 int *hlimp; 2321 2322 /* 2323 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2324 * to simplify the ordering among hoplimit options. 2325 */ 2326 if (sticky) 2327 return (ENOPROTOOPT); 2328 2329 if (len != sizeof(int)) 2330 return (EINVAL); 2331 hlimp = (int *)buf; 2332 if (*hlimp < -1 || *hlimp > 255) 2333 return (EINVAL); 2334 2335 opt->ip6po_hlim = *hlimp; 2336 break; 2337 } 2338 2339 case IPV6_TCLASS: 2340 { 2341 int tclass; 2342 2343 if (len != sizeof(int)) 2344 return (EINVAL); 2345 tclass = *(int *)buf; 2346 if (tclass < -1 || tclass > 255) 2347 return (EINVAL); 2348 2349 opt->ip6po_tclass = tclass; 2350 break; 2351 } 2352 case IPV6_HOPOPTS: 2353 { 2354 struct ip6_hbh *hbh; 2355 int hbhlen; 2356 2357 /* 2358 * XXX: We don't allow a non-privileged user to set ANY HbH 2359 * options, since per-option restriction has too much 2360 * overhead. 2361 */ 2362 if (!priv) 2363 return (EPERM); 2364 2365 if (len == 0) { 2366 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2367 break; /* just remove the option */ 2368 } 2369 2370 /* message length validation */ 2371 if (len < sizeof(struct ip6_hbh)) 2372 return (EINVAL); 2373 hbh = (struct ip6_hbh *)buf; 2374 hbhlen = (hbh->ip6h_len + 1) << 3; 2375 if (len != hbhlen) 2376 return (EINVAL); 2377 2378 /* turn off the previous option, then set the new option. */ 2379 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2380 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2381 if (opt->ip6po_hbh == NULL) 2382 return (ENOBUFS); 2383 memcpy(opt->ip6po_hbh, hbh, hbhlen); 2384 2385 break; 2386 } 2387 2388 case IPV6_DSTOPTS: 2389 case IPV6_RTHDRDSTOPTS: 2390 { 2391 struct ip6_dest *dest, **newdest = NULL; 2392 int destlen; 2393 2394 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */ 2395 return (EPERM); 2396 2397 if (len == 0) { 2398 ip6_clearpktopts(opt, optname); 2399 break; /* just remove the option */ 2400 } 2401 2402 /* message length validation */ 2403 if (len < sizeof(struct ip6_dest)) 2404 return (EINVAL); 2405 dest = (struct ip6_dest *)buf; 2406 destlen = (dest->ip6d_len + 1) << 3; 2407 if (len != destlen) 2408 return (EINVAL); 2409 /* 2410 * Determine the position that the destination options header 2411 * should be inserted; before or after the routing header. 2412 */ 2413 switch (optname) { 2414 case IPV6_RTHDRDSTOPTS: 2415 newdest = &opt->ip6po_dest1; 2416 break; 2417 case IPV6_DSTOPTS: 2418 newdest = &opt->ip6po_dest2; 2419 break; 2420 } 2421 2422 /* turn off the previous option, then set the new option. */ 2423 ip6_clearpktopts(opt, optname); 2424 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2425 if (*newdest == NULL) 2426 return (ENOBUFS); 2427 memcpy(*newdest, dest, destlen); 2428 2429 break; 2430 } 2431 2432 case IPV6_RTHDR: 2433 { 2434 struct ip6_rthdr *rth; 2435 int rthlen; 2436 2437 if (len == 0) { 2438 ip6_clearpktopts(opt, IPV6_RTHDR); 2439 break; /* just remove the option */ 2440 } 2441 2442 /* message length validation */ 2443 if (len < sizeof(struct ip6_rthdr)) 2444 return (EINVAL); 2445 rth = (struct ip6_rthdr *)buf; 2446 rthlen = (rth->ip6r_len + 1) << 3; 2447 if (len != rthlen) 2448 return (EINVAL); 2449 2450 switch (rth->ip6r_type) { 2451 case IPV6_RTHDR_TYPE_0: 2452 if (rth->ip6r_len == 0) /* must contain one addr */ 2453 return (EINVAL); 2454 if (rth->ip6r_len % 2) /* length must be even */ 2455 return (EINVAL); 2456 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2457 return (EINVAL); 2458 break; 2459 default: 2460 return (EINVAL); /* not supported */ 2461 } 2462 /* turn off the previous option */ 2463 ip6_clearpktopts(opt, IPV6_RTHDR); 2464 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2465 if (opt->ip6po_rthdr == NULL) 2466 return (ENOBUFS); 2467 memcpy(opt->ip6po_rthdr, rth, rthlen); 2468 break; 2469 } 2470 2471 case IPV6_USE_MIN_MTU: 2472 if (len != sizeof(int)) 2473 return (EINVAL); 2474 minmtupolicy = *(int *)buf; 2475 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2476 minmtupolicy != IP6PO_MINMTU_DISABLE && 2477 minmtupolicy != IP6PO_MINMTU_ALL) { 2478 return (EINVAL); 2479 } 2480 opt->ip6po_minmtu = minmtupolicy; 2481 break; 2482 2483 case IPV6_DONTFRAG: 2484 if (len != sizeof(int)) 2485 return (EINVAL); 2486 2487 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2488 /* 2489 * we ignore this option for TCP sockets. 2490 * (RFC3542 leaves this case unspecified.) 2491 */ 2492 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2493 } else 2494 opt->ip6po_flags |= IP6PO_DONTFRAG; 2495 break; 2496 2497 default: 2498 return (ENOPROTOOPT); 2499 } /* end of switch */ 2500 2501 return (0); 2502 } 2503 2504 /* 2505 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2506 * packet to the input queue of a specified interface. 2507 */ 2508 void 2509 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2510 { 2511 struct mbuf *copym; 2512 struct ip6_hdr *ip6; 2513 2514 /* 2515 * Duplicate the packet. 2516 */ 2517 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 2518 if (copym == NULL) 2519 return; 2520 2521 /* 2522 * Make sure to deep-copy IPv6 header portion in case the data 2523 * is in an mbuf cluster, so that we can safely override the IPv6 2524 * header portion later. 2525 */ 2526 if ((copym->m_flags & M_EXT) != 0 || 2527 copym->m_len < sizeof(struct ip6_hdr)) { 2528 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2529 if (copym == NULL) 2530 return; 2531 } 2532 2533 #ifdef DIAGNOSTIC 2534 if (copym->m_len < sizeof(*ip6)) { 2535 m_freem(copym); 2536 return; 2537 } 2538 #endif 2539 2540 ip6 = mtod(copym, struct ip6_hdr *); 2541 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 2542 ip6->ip6_src.s6_addr16[1] = 0; 2543 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 2544 ip6->ip6_dst.s6_addr16[1] = 0; 2545 2546 if_input_local(ifp, copym, dst->sin6_family); 2547 } 2548 2549 /* 2550 * Chop IPv6 header off from the payload. 2551 */ 2552 int 2553 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2554 { 2555 struct mbuf *mh; 2556 struct ip6_hdr *ip6; 2557 2558 ip6 = mtod(m, struct ip6_hdr *); 2559 if (m->m_len > sizeof(*ip6)) { 2560 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2561 if (mh == NULL) { 2562 m_freem(m); 2563 return ENOBUFS; 2564 } 2565 M_MOVE_PKTHDR(mh, m); 2566 MH_ALIGN(mh, sizeof(*ip6)); 2567 m->m_len -= sizeof(*ip6); 2568 m->m_data += sizeof(*ip6); 2569 mh->m_next = m; 2570 m = mh; 2571 m->m_len = sizeof(*ip6); 2572 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2573 } 2574 exthdrs->ip6e_ip6 = m; 2575 return 0; 2576 } 2577 2578 u_int32_t 2579 ip6_randomid(void) 2580 { 2581 return idgen32(&ip6_id_ctx); 2582 } 2583 2584 void 2585 ip6_randomid_init(void) 2586 { 2587 idgen32_init(&ip6_id_ctx); 2588 } 2589 2590 /* 2591 * Compute significant parts of the IPv6 checksum pseudo-header 2592 * for use in a delayed TCP/UDP checksum calculation. 2593 */ 2594 static __inline u_int16_t __attribute__((__unused__)) 2595 in6_cksum_phdr(const struct in6_addr *src, const struct in6_addr *dst, 2596 u_int32_t len, u_int32_t nxt) 2597 { 2598 u_int32_t sum = 0; 2599 const u_int16_t *w; 2600 2601 w = (const u_int16_t *) src; 2602 sum += w[0]; 2603 if (!IN6_IS_SCOPE_EMBED(src)) 2604 sum += w[1]; 2605 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 2606 sum += w[6]; sum += w[7]; 2607 2608 w = (const u_int16_t *) dst; 2609 sum += w[0]; 2610 if (!IN6_IS_SCOPE_EMBED(dst)) 2611 sum += w[1]; 2612 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 2613 sum += w[6]; sum += w[7]; 2614 2615 sum += (u_int16_t)(len >> 16) + (u_int16_t)(len /*& 0xffff*/); 2616 2617 sum += (u_int16_t)(nxt >> 16) + (u_int16_t)(nxt /*& 0xffff*/); 2618 2619 sum = (u_int16_t)(sum >> 16) + (u_int16_t)(sum /*& 0xffff*/); 2620 2621 if (sum > 0xffff) 2622 sum -= 0xffff; 2623 2624 return (sum); 2625 } 2626 2627 /* 2628 * Process a delayed payload checksum calculation. 2629 */ 2630 void 2631 in6_delayed_cksum(struct mbuf *m, u_int8_t nxt) 2632 { 2633 int nxtp, offset; 2634 u_int16_t csum; 2635 2636 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxtp); 2637 if (offset <= 0 || nxtp != nxt) 2638 /* If the desired next protocol isn't found, punt. */ 2639 return; 2640 csum = (u_int16_t)(in6_cksum(m, 0, offset, m->m_pkthdr.len - offset)); 2641 2642 switch (nxt) { 2643 case IPPROTO_TCP: 2644 offset += offsetof(struct tcphdr, th_sum); 2645 break; 2646 2647 case IPPROTO_UDP: 2648 offset += offsetof(struct udphdr, uh_sum); 2649 if (csum == 0) 2650 csum = 0xffff; 2651 break; 2652 2653 case IPPROTO_ICMPV6: 2654 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 2655 break; 2656 } 2657 2658 if ((offset + sizeof(u_int16_t)) > m->m_len) 2659 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 2660 else 2661 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 2662 } 2663 2664 void 2665 in6_proto_cksum_out(struct mbuf *m, struct ifnet *ifp) 2666 { 2667 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); 2668 2669 /* some hw and in6_delayed_cksum need the pseudo header cksum */ 2670 if (m->m_pkthdr.csum_flags & 2671 (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT|M_ICMP_CSUM_OUT)) { 2672 int nxt, offset; 2673 u_int16_t csum; 2674 2675 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt); 2676 csum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 2677 htonl(m->m_pkthdr.len - offset), htonl(nxt)); 2678 if (nxt == IPPROTO_TCP) 2679 offset += offsetof(struct tcphdr, th_sum); 2680 else if (nxt == IPPROTO_UDP) 2681 offset += offsetof(struct udphdr, uh_sum); 2682 else if (nxt == IPPROTO_ICMPV6) 2683 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 2684 if ((offset + sizeof(u_int16_t)) > m->m_len) 2685 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 2686 else 2687 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 2688 } 2689 2690 if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) { 2691 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_TCPv6) || 2692 ip6->ip6_nxt != IPPROTO_TCP || 2693 ifp->if_bridgeport != NULL) { 2694 tcpstat_inc(tcps_outswcsum); 2695 in6_delayed_cksum(m, IPPROTO_TCP); 2696 m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_OUT; /* Clear */ 2697 } 2698 } else if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) { 2699 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_UDPv6) || 2700 ip6->ip6_nxt != IPPROTO_UDP || 2701 ifp->if_bridgeport != NULL) { 2702 udpstat_inc(udps_outswcsum); 2703 in6_delayed_cksum(m, IPPROTO_UDP); 2704 m->m_pkthdr.csum_flags &= ~M_UDP_CSUM_OUT; /* Clear */ 2705 } 2706 } else if (m->m_pkthdr.csum_flags & M_ICMP_CSUM_OUT) { 2707 in6_delayed_cksum(m, IPPROTO_ICMPV6); 2708 m->m_pkthdr.csum_flags &= ~M_ICMP_CSUM_OUT; /* Clear */ 2709 } 2710 } 2711 2712 #ifdef IPSEC 2713 struct tdb * 2714 ip6_output_ipsec_lookup(struct mbuf *m, int *error, struct inpcb *inp) 2715 { 2716 struct tdb *tdb; 2717 struct m_tag *mtag; 2718 struct tdb_ident *tdbi; 2719 2720 /* 2721 * Check if there was an outgoing SA bound to the flow 2722 * from a transport protocol. 2723 */ 2724 2725 /* Do we have any pending SAs to apply ? */ 2726 tdb = ipsp_spd_lookup(m, AF_INET6, sizeof(struct ip6_hdr), 2727 error, IPSP_DIRECTION_OUT, NULL, inp, 0); 2728 2729 if (tdb == NULL) 2730 return NULL; 2731 /* Loop detection */ 2732 for (mtag = m_tag_first(m); mtag != NULL; mtag = m_tag_next(m, mtag)) { 2733 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE) 2734 continue; 2735 tdbi = (struct tdb_ident *)(mtag + 1); 2736 if (tdbi->spi == tdb->tdb_spi && 2737 tdbi->proto == tdb->tdb_sproto && 2738 tdbi->rdomain == tdb->tdb_rdomain && 2739 !memcmp(&tdbi->dst, &tdb->tdb_dst, 2740 sizeof(union sockaddr_union))) { 2741 /* no IPsec needed */ 2742 return NULL; 2743 } 2744 } 2745 return tdb; 2746 } 2747 2748 int 2749 ip6_output_ipsec_send(struct tdb *tdb, struct mbuf *m, int tunalready, int fwd) 2750 { 2751 #if NPF > 0 2752 struct ifnet *encif; 2753 #endif 2754 2755 #if NPF > 0 2756 if ((encif = enc_getif(tdb->tdb_rdomain, tdb->tdb_tap)) == NULL || 2757 pf_test(AF_INET6, fwd ? PF_FWD : PF_OUT, encif, &m) != PF_PASS) { 2758 m_freem(m); 2759 return EHOSTUNREACH; 2760 } 2761 if (m == NULL) 2762 return 0; 2763 /* 2764 * PF_TAG_REROUTE handling or not... 2765 * Packet is entering IPsec so the routing is 2766 * already overruled by the IPsec policy. 2767 * Until now the change was not reconsidered. 2768 * What's the behaviour? 2769 */ 2770 in6_proto_cksum_out(m, encif); 2771 #endif 2772 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 2773 2774 /* Callee frees mbuf */ 2775 return ipsp_process_packet(m, tdb, AF_INET6, tunalready); 2776 } 2777 #endif /* IPSEC */ 2778