xref: /openbsd-src/sys/netinet6/ip6_output.c (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /*	$OpenBSD: ip6_output.c,v 1.106 2008/10/22 14:36:08 markus Exp $	*/
2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
3 
4 /*
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
62  */
63 
64 #include "pf.h"
65 
66 #include <sys/param.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/errno.h>
70 #include <sys/protosw.h>
71 #include <sys/socket.h>
72 #include <sys/socketvar.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h>
75 
76 #include <net/if.h>
77 #include <net/if_enc.h>
78 #include <net/route.h>
79 
80 #include <netinet/in.h>
81 #include <netinet/in_var.h>
82 #include <netinet/in_systm.h>
83 #include <netinet/ip.h>
84 #include <netinet/in_pcb.h>
85 
86 #include <netinet/ip6.h>
87 #include <netinet/icmp6.h>
88 #include <netinet6/ip6_var.h>
89 #include <netinet6/nd6.h>
90 #include <netinet6/ip6protosw.h>
91 
92 #include <crypto/idgen.h>
93 
94 #if NPF > 0
95 #include <net/pfvar.h>
96 #endif
97 
98 #ifdef IPSEC
99 #include <netinet/ip_ipsp.h>
100 #include <netinet/ip_ah.h>
101 #include <netinet/ip_esp.h>
102 #include <netinet/udp.h>
103 #include <netinet/tcp.h>
104 #include <net/pfkeyv2.h>
105 
106 extern u_int8_t get_sa_require(struct inpcb *);
107 
108 extern int ipsec_auth_default_level;
109 extern int ipsec_esp_trans_default_level;
110 extern int ipsec_esp_network_default_level;
111 extern int ipsec_ipcomp_default_level;
112 #endif /* IPSEC */
113 
114 struct ip6_exthdrs {
115 	struct mbuf *ip6e_ip6;
116 	struct mbuf *ip6e_hbh;
117 	struct mbuf *ip6e_dest1;
118 	struct mbuf *ip6e_rthdr;
119 	struct mbuf *ip6e_dest2;
120 };
121 
122 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, int, int);
123 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, struct socket *);
124 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf **);
125 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int, int,
126 	int, int);
127 static int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *);
128 static int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf **);
129 static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
130 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
131 	struct ip6_frag **);
132 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
133 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
134 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *,
135 	struct ifnet *, struct in6_addr *, u_long *, int *);
136 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
137 
138 /* Context for non-repeating IDs */
139 struct idgen32_ctx ip6_id_ctx;
140 
141 /*
142  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
143  * header (with pri, len, nxt, hlim, src, dst).
144  * This function may modify ver and hlim only.
145  * The mbuf chain containing the packet will be freed.
146  * The mbuf opt, if present, will not be freed.
147  *
148  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
149  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
150  * which is rt_rmx.rmx_mtu.
151  *
152  * ifpp - XXX: just for statistics
153  */
154 int
155 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro,
156 	int flags, struct ip6_moptions *im6o, struct ifnet **ifpp,
157 	struct inpcb *inp)
158 {
159 	struct ip6_hdr *ip6, *mhip6;
160 	struct ifnet *ifp, *origifp = NULL;
161 	struct mbuf *m = m0;
162 	int hlen, tlen, len, off;
163 	struct route_in6 ip6route;
164 	struct rtentry *rt = NULL;
165 	struct sockaddr_in6 *dst, dstsock;
166 	int error = 0;
167 	struct in6_ifaddr *ia = NULL;
168 	u_long mtu;
169 	int alwaysfrag, dontfrag;
170 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
171 	struct ip6_exthdrs exthdrs;
172 	struct in6_addr finaldst;
173 	struct route_in6 *ro_pmtu = NULL;
174 	int hdrsplit = 0;
175 	u_int8_t sproto = 0;
176 #ifdef IPSEC
177 	struct m_tag *mtag;
178 	union sockaddr_union sdst;
179 	struct tdb_ident *tdbi;
180 	u_int32_t sspi;
181 	struct tdb *tdb;
182 	int s;
183 #endif /* IPSEC */
184 
185 #ifdef IPSEC
186 	if (inp && (inp->inp_flags & INP_IPV6) == 0)
187 		panic("ip6_output: IPv4 pcb is passed");
188 #endif /* IPSEC */
189 
190 	ip6 = mtod(m, struct ip6_hdr *);
191 	finaldst = ip6->ip6_dst;
192 
193 #define MAKE_EXTHDR(hp, mp)						\
194     do {								\
195 	if (hp) {							\
196 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
197 		error = ip6_copyexthdr((mp), (caddr_t)(hp), 		\
198 		    ((eh)->ip6e_len + 1) << 3);				\
199 		if (error)						\
200 			goto freehdrs;					\
201 	}								\
202     } while (0)
203 
204 	bzero(&exthdrs, sizeof(exthdrs));
205 
206 	if (opt) {
207 		/* Hop-by-Hop options header */
208 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
209 		/* Destination options header(1st part) */
210 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
211 		/* Routing header */
212 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
213 		/* Destination options header(2nd part) */
214 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
215 	}
216 
217 #ifdef IPSEC
218 	if (!ipsec_in_use && !inp)
219 		goto done_spd;
220 
221 	/*
222 	 * splnet is chosen over spltdb because we are not allowed to
223 	 * lower the level, and udp6_output calls us in splnet(). XXX check
224 	 */
225 	s = splnet();
226 
227 	/*
228 	 * Check if there was an outgoing SA bound to the flow
229 	 * from a transport protocol.
230 	 */
231 	ip6 = mtod(m, struct ip6_hdr *);
232 
233 	/* Do we have any pending SAs to apply ? */
234 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
235 	if (mtag != NULL) {
236 #ifdef DIAGNOSTIC
237 		if (mtag->m_tag_len != sizeof (struct tdb_ident))
238 			panic("ip6_output: tag of length %d (should be %d",
239 			    mtag->m_tag_len, sizeof (struct tdb_ident));
240 #endif
241 		tdbi = (struct tdb_ident *)(mtag + 1);
242 		tdb = gettdb(tdbi->spi, &tdbi->dst, tdbi->proto);
243 		if (tdb == NULL)
244 			error = -EINVAL;
245 		m_tag_delete(m, mtag);
246 	} else
247 		tdb = ipsp_spd_lookup(m, AF_INET6, sizeof(struct ip6_hdr),
248 		    &error, IPSP_DIRECTION_OUT, NULL, inp);
249 
250 	if (tdb == NULL) {
251 	        splx(s);
252 
253 		if (error == 0) {
254 		        /*
255 			 * No IPsec processing required, we'll just send the
256 			 * packet out.
257 			 */
258 		        sproto = 0;
259 
260 			/* Fall through to routing/multicast handling */
261 		} else {
262 		        /*
263 			 * -EINVAL is used to indicate that the packet should
264 			 * be silently dropped, typically because we've asked
265 			 * key management for an SA.
266 			 */
267 		        if (error == -EINVAL) /* Should silently drop packet */
268 				error = 0;
269 
270 			goto freehdrs;
271 		}
272 	} else {
273 		/* Loop detection */
274 		for (mtag = m_tag_first(m); mtag != NULL;
275 		    mtag = m_tag_next(m, mtag)) {
276 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
277 			    mtag->m_tag_id !=
278 			    PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
279 				continue;
280 			tdbi = (struct tdb_ident *)(mtag + 1);
281 			if (tdbi->spi == tdb->tdb_spi &&
282 			    tdbi->proto == tdb->tdb_sproto &&
283 			    !bcmp(&tdbi->dst, &tdb->tdb_dst,
284 			    sizeof(union sockaddr_union))) {
285 				splx(s);
286 				sproto = 0; /* mark as no-IPsec-needed */
287 				goto done_spd;
288 			}
289 		}
290 
291 	        /* We need to do IPsec */
292 	        bcopy(&tdb->tdb_dst, &sdst, sizeof(sdst));
293 		sspi = tdb->tdb_spi;
294 		sproto = tdb->tdb_sproto;
295 	        splx(s);
296 	}
297 
298 	/* Fall through to the routing/multicast handling code */
299  done_spd:
300 #endif /* IPSEC */
301 
302 	/*
303 	 * Calculate the total length of the extension header chain.
304 	 * Keep the length of the unfragmentable part for fragmentation.
305 	 */
306 	optlen = 0;
307 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
308 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
309 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
310 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
311 	/* NOTE: we don't add AH/ESP length here. do that later. */
312 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
313 
314 	/*
315 	 * If we need IPsec, or there is at least one extension header,
316 	 * separate IP6 header from the payload.
317 	 */
318 	if ((sproto || optlen) && !hdrsplit) {
319 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
320 			m = NULL;
321 			goto freehdrs;
322 		}
323 		m = exthdrs.ip6e_ip6;
324 		hdrsplit++;
325 	}
326 
327 	/* adjust pointer */
328 	ip6 = mtod(m, struct ip6_hdr *);
329 
330 	/* adjust mbuf packet header length */
331 	m->m_pkthdr.len += optlen;
332 	plen = m->m_pkthdr.len - sizeof(*ip6);
333 
334 	/* If this is a jumbo payload, insert a jumbo payload option. */
335 	if (plen > IPV6_MAXPACKET) {
336 		if (!hdrsplit) {
337 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
338 				m = NULL;
339 				goto freehdrs;
340 			}
341 			m = exthdrs.ip6e_ip6;
342 			hdrsplit++;
343 		}
344 		/* adjust pointer */
345 		ip6 = mtod(m, struct ip6_hdr *);
346 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
347 			goto freehdrs;
348 		ip6->ip6_plen = 0;
349 	} else
350 		ip6->ip6_plen = htons(plen);
351 
352 	/*
353 	 * Concatenate headers and fill in next header fields.
354 	 * Here we have, on "m"
355 	 *	IPv6 payload
356 	 * and we insert headers accordingly.  Finally, we should be getting:
357 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
358 	 *
359 	 * during the header composing process, "m" points to IPv6 header.
360 	 * "mprev" points to an extension header prior to esp.
361 	 */
362 	{
363 		u_char *nexthdrp = &ip6->ip6_nxt;
364 		struct mbuf *mprev = m;
365 
366 		/*
367 		 * we treat dest2 specially.  this makes IPsec processing
368 		 * much easier.  the goal here is to make mprev point the
369 		 * mbuf prior to dest2.
370 		 *
371 		 * result: IPv6 dest2 payload
372 		 * m and mprev will point to IPv6 header.
373 		 */
374 		if (exthdrs.ip6e_dest2) {
375 			if (!hdrsplit)
376 				panic("assumption failed: hdr not split");
377 			exthdrs.ip6e_dest2->m_next = m->m_next;
378 			m->m_next = exthdrs.ip6e_dest2;
379 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
380 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
381 		}
382 
383 #define MAKE_CHAIN(m, mp, p, i)\
384     do {\
385 	if (m) {\
386 		if (!hdrsplit) \
387 			panic("assumption failed: hdr not split"); \
388 		*mtod((m), u_char *) = *(p);\
389 		*(p) = (i);\
390 		p = mtod((m), u_char *);\
391 		(m)->m_next = (mp)->m_next;\
392 		(mp)->m_next = (m);\
393 		(mp) = (m);\
394 	}\
395     } while (0)
396 		/*
397 		 * result: IPv6 hbh dest1 rthdr dest2 payload
398 		 * m will point to IPv6 header.  mprev will point to the
399 		 * extension header prior to dest2 (rthdr in the above case).
400 		 */
401 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
402 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
403 		    IPPROTO_DSTOPTS);
404 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
405 		    IPPROTO_ROUTING);
406 	}
407 
408 	/*
409 	 * If there is a routing header, replace the destination address field
410 	 * with the first hop of the routing header.
411 	 */
412 	if (exthdrs.ip6e_rthdr) {
413 		struct ip6_rthdr *rh;
414 		struct ip6_rthdr0 *rh0;
415 		struct in6_addr *addr;
416 
417 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
418 		    struct ip6_rthdr *));
419 		switch (rh->ip6r_type) {
420 		case IPV6_RTHDR_TYPE_0:
421 			 rh0 = (struct ip6_rthdr0 *)rh;
422 			 addr = (struct in6_addr *)(rh0 + 1);
423 			 ip6->ip6_dst = addr[0];
424 			 bcopy(&addr[1], &addr[0],
425 			     sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
426 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
427 			 break;
428 		default:	/* is it possible? */
429 			 error = EINVAL;
430 			 goto bad;
431 		}
432 	}
433 
434 	/* Source address validation */
435 	if (!(flags & IPV6_UNSPECSRC) &&
436 	    IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
437 		/*
438 		 * XXX: we can probably assume validation in the caller, but
439 		 * we explicitly check the address here for safety.
440 		 */
441 		error = EOPNOTSUPP;
442 		ip6stat.ip6s_badscope++;
443 		goto bad;
444 	}
445 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
446 		error = EOPNOTSUPP;
447 		ip6stat.ip6s_badscope++;
448 		goto bad;
449 	}
450 
451 	ip6stat.ip6s_localout++;
452 
453 	/*
454 	 * Route packet.
455 	 */
456 	/* initialize cached route */
457 	if (ro == 0) {
458 		ro = &ip6route;
459 		bzero((caddr_t)ro, sizeof(*ro));
460 	}
461 	ro_pmtu = ro;
462 	if (opt && opt->ip6po_rthdr)
463 		ro = &opt->ip6po_route;
464 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
465 
466 	/*
467 	 * if specified, try to fill in the traffic class field.
468 	 * do not override if a non-zero value is already set.
469 	 * we check the diffserv field and the ecn field separately.
470 	 */
471 	if (opt && opt->ip6po_tclass >= 0) {
472 		int mask = 0;
473 
474 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
475 			mask |= 0xfc;
476 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
477 			mask |= 0x03;
478 		if (mask != 0)
479 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
480 	}
481 
482 	/* fill in or override the hop limit field, if necessary. */
483 	if (opt && opt->ip6po_hlim != -1)
484 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
485 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
486 		if (im6o != NULL)
487 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
488 		else
489 			ip6->ip6_hlim = ip6_defmcasthlim;
490 	}
491 
492 #ifdef IPSEC
493 	/*
494 	 * Check if the packet needs encapsulation.
495 	 * ipsp_process_packet will never come back to here.
496 	 */
497 	if (sproto != 0) {
498 	        s = splnet();
499 
500 #if NPF > 0
501 		if (pf_test6(PF_OUT, &encif[0].sc_if, &m, NULL) != PF_PASS) {
502 			splx(s);
503 			error = EHOSTUNREACH;
504 			m_freem(m);
505 			goto done;
506 		}
507 		if (m == NULL) {
508 			splx(s);
509 			goto done;
510 		}
511 		ip6 = mtod(m, struct ip6_hdr *);
512 #endif
513 		/*
514 		 * XXX what should we do if ip6_hlim == 0 and the
515 		 * packet gets tunneled?
516 		 */
517 
518 		tdb = gettdb(sspi, &sdst, sproto);
519 		if (tdb == NULL) {
520 			splx(s);
521 			error = EHOSTUNREACH;
522 			m_freem(m);
523 			goto done;
524 		}
525 
526 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
527 
528 		/* Callee frees mbuf */
529 		/*
530 		 * if we are source-routing, do not attempt to tunnel the
531 		 * packet just because ip6_dst is different from what tdb has.
532 		 * XXX
533 		 */
534 		error = ipsp_process_packet(m, tdb, AF_INET6,
535 		    exthdrs.ip6e_rthdr ? 1 : 0);
536 		splx(s);
537 
538 		return error;  /* Nothing more to be done */
539 	}
540 #endif /* IPSEC */
541 
542 	bzero(&dstsock, sizeof(dstsock));
543 	dstsock.sin6_family = AF_INET6;
544 	dstsock.sin6_addr = ip6->ip6_dst;
545 	dstsock.sin6_len = sizeof(dstsock);
546 	if ((error = in6_selectroute(&dstsock, opt, im6o, ro, &ifp,
547 	    &rt)) != 0) {
548 		switch (error) {
549 		case EHOSTUNREACH:
550 			ip6stat.ip6s_noroute++;
551 			break;
552 		case EADDRNOTAVAIL:
553 		default:
554 			break;	/* XXX statistics? */
555 		}
556 		if (ifp != NULL)
557 			in6_ifstat_inc(ifp, ifs6_out_discard);
558 		goto bad;
559 	}
560 	if (rt == NULL) {
561 		/*
562 		 * If in6_selectroute() does not return a route entry,
563 		 * dst may not have been updated.
564 		 */
565 		*dst = dstsock;	/* XXX */
566 	}
567 
568 	/*
569 	 * then rt (for unicast) and ifp must be non-NULL valid values.
570 	 */
571 	if (rt) {
572 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
573 		rt->rt_use++;
574 	}
575 
576 	if ((flags & IPV6_FORWARDING) == 0) {
577 		/* XXX: the FORWARDING flag can be set for mrouting. */
578 		in6_ifstat_inc(ifp, ifs6_out_request);
579 	}
580 
581 	/*
582 	 * The outgoing interface must be in the zone of source and
583 	 * destination addresses.  We should use ia_ifp to support the
584 	 * case of sending packets to an address of our own.
585 	 */
586 	if (ia != NULL && ia->ia_ifp)
587 		origifp = ia->ia_ifp;
588 	else
589 		origifp = ifp;
590 
591 	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
592 		if (opt && opt->ip6po_nextroute.ro_rt) {
593 			/*
594 			 * The nexthop is explicitly specified by the
595 			 * application.  We assume the next hop is an IPv6
596 			 * address.
597 			 */
598 			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
599 		} else if ((rt->rt_flags & RTF_GATEWAY))
600 			dst = (struct sockaddr_in6 *)rt->rt_gateway;
601 	}
602 
603 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
604 		/* Unicast */
605 
606 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
607 	} else {
608 		/* Multicast */
609 		struct	in6_multi *in6m;
610 
611 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
612 
613 		in6_ifstat_inc(ifp, ifs6_out_mcast);
614 
615 		/*
616 		 * Confirm that the outgoing interface supports multicast.
617 		 */
618 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
619 			ip6stat.ip6s_noroute++;
620 			in6_ifstat_inc(ifp, ifs6_out_discard);
621 			error = ENETUNREACH;
622 			goto bad;
623 		}
624 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
625 		if (in6m != NULL &&
626 		    (im6o == NULL || im6o->im6o_multicast_loop)) {
627 			/*
628 			 * If we belong to the destination multicast group
629 			 * on the outgoing interface, and the caller did not
630 			 * forbid loopback, loop back a copy.
631 			 */
632 			ip6_mloopback(ifp, m, dst);
633 		} else {
634 			/*
635 			 * If we are acting as a multicast router, perform
636 			 * multicast forwarding as if the packet had just
637 			 * arrived on the interface to which we are about
638 			 * to send.  The multicast forwarding function
639 			 * recursively calls this function, using the
640 			 * IPV6_FORWARDING flag to prevent infinite recursion.
641 			 *
642 			 * Multicasts that are looped back by ip6_mloopback(),
643 			 * above, will be forwarded by the ip6_input() routine,
644 			 * if necessary.
645 			 */
646 #ifdef MROUTING
647 			if (ip6_mforwarding && ip6_mrouter &&
648 			    (flags & IPV6_FORWARDING) == 0) {
649 				if (ip6_mforward(ip6, ifp, m) != 0) {
650 					m_freem(m);
651 					goto done;
652 				}
653 			}
654 #endif
655 		}
656 		/*
657 		 * Multicasts with a hoplimit of zero may be looped back,
658 		 * above, but must not be transmitted on a network.
659 		 * Also, multicasts addressed to the loopback interface
660 		 * are not sent -- the above call to ip6_mloopback() will
661 		 * loop back a copy if this host actually belongs to the
662 		 * destination group on the loopback interface.
663 		 */
664 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
665 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
666 			m_freem(m);
667 			goto done;
668 		}
669 	}
670 
671 	/*
672 	 * Fill the outgoing interface to tell the upper layer
673 	 * to increment per-interface statistics.
674 	 */
675 	if (ifpp)
676 		*ifpp = ifp;
677 
678 	/* Determine path MTU. */
679 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
680 	    &alwaysfrag)) != 0)
681 		goto bad;
682 
683 	/*
684 	 * The caller of this function may specify to use the minimum MTU
685 	 * in some cases.
686 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
687 	 * setting.  The logic is a bit complicated; by default, unicast
688 	 * packets will follow path MTU while multicast packets will be sent at
689 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
690 	 * including unicast ones will be sent at the minimum MTU.  Multicast
691 	 * packets will always be sent at the minimum MTU unless
692 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
693 	 * See RFC 3542 for more details.
694 	 */
695 	if (mtu > IPV6_MMTU) {
696 		if ((flags & IPV6_MINMTU))
697 			mtu = IPV6_MMTU;
698 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
699 			mtu = IPV6_MMTU;
700 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
701 			 (opt == NULL ||
702 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
703 			mtu = IPV6_MMTU;
704 		}
705 	}
706 
707 	/* Fake scoped addresses */
708 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
709 		/*
710 		 * If source or destination address is a scoped address, and
711 		 * the packet is going to be sent to a loopback interface,
712 		 * we should keep the original interface.
713 		 */
714 
715 		/*
716 		 * XXX: this is a very experimental and temporary solution.
717 		 * We eventually have sockaddr_in6 and use the sin6_scope_id
718 		 * field of the structure here.
719 		 * We rely on the consistency between two scope zone ids
720 		 * of source add destination, which should already be assured
721 		 * Larger scopes than link will be supported in the near
722 		 * future.
723 		 */
724 		origifp = NULL;
725 		if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src))
726 			origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
727 		else if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
728 			origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
729 		/*
730 		 * XXX: origifp can be NULL even in those two cases above.
731 		 * For example, if we remove the (only) link-local address
732 		 * from the loopback interface, and try to send a link-local
733 		 * address without link-id information.  Then the source
734 		 * address is ::1, and the destination address is the
735 		 * link-local address with its s6_addr16[1] being zero.
736 		 * What is worse, if the packet goes to the loopback interface
737 		 * by a default rejected route, the null pointer would be
738 		 * passed to looutput, and the kernel would hang.
739 		 * The following last resort would prevent such disaster.
740 		 */
741 		if (origifp == NULL)
742 			origifp = ifp;
743 	} else
744 		origifp = ifp;
745 	if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src))
746 		ip6->ip6_src.s6_addr16[1] = 0;
747 	if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
748 		ip6->ip6_dst.s6_addr16[1] = 0;
749 
750 	/*
751 	 * If the outgoing packet contains a hop-by-hop options header,
752 	 * it must be examined and processed even by the source node.
753 	 * (RFC 2460, section 4.)
754 	 */
755 	if (exthdrs.ip6e_hbh) {
756 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
757 		u_int32_t dummy1; /* XXX unused */
758 		u_int32_t dummy2; /* XXX unused */
759 
760 		/*
761 		 *  XXX: if we have to send an ICMPv6 error to the sender,
762 		 *       we need the M_LOOP flag since icmp6_error() expects
763 		 *       the IPv6 and the hop-by-hop options header are
764 		 *       continuous unless the flag is set.
765 		 */
766 		m->m_flags |= M_LOOP;
767 		m->m_pkthdr.rcvif = ifp;
768 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
769 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
770 		    &dummy1, &dummy2) < 0) {
771 			/* m was already freed at this point */
772 			error = EINVAL;/* better error? */
773 			goto done;
774 		}
775 		m->m_flags &= ~M_LOOP; /* XXX */
776 		m->m_pkthdr.rcvif = NULL;
777 	}
778 
779 #if NPF > 0
780 	if (pf_test6(PF_OUT, ifp, &m, NULL) != PF_PASS) {
781 		error = EHOSTUNREACH;
782 		m_freem(m);
783 		goto done;
784 	}
785 	if (m == NULL)
786 		goto done;
787 	ip6 = mtod(m, struct ip6_hdr *);
788 #endif
789 
790 	/*
791 	 * Send the packet to the outgoing interface.
792 	 * If necessary, do IPv6 fragmentation before sending.
793 	 *
794 	 * the logic here is rather complex:
795 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
796 	 * 1-a: send as is if tlen <= path mtu
797 	 * 1-b: fragment if tlen > path mtu
798 	 *
799 	 * 2: if user asks us not to fragment (dontfrag == 1)
800 	 * 2-a: send as is if tlen <= interface mtu
801 	 * 2-b: error if tlen > interface mtu
802 	 *
803 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
804 	 *      always fragment
805 	 *
806 	 * 4: if dontfrag == 1 && alwaysfrag == 1
807 	 *      error, as we cannot handle this conflicting request
808 	 */
809 	tlen = m->m_pkthdr.len;
810 
811 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
812 		dontfrag = 1;
813 	else
814 		dontfrag = 0;
815 	if (dontfrag && alwaysfrag) {	/* case 4 */
816 		/* conflicting request - can't transmit */
817 		error = EMSGSIZE;
818 		goto bad;
819 	}
820 	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
821 		/*
822 		 * Even if the DONTFRAG option is specified, we cannot send the
823 		 * packet when the data length is larger than the MTU of the
824 		 * outgoing interface.
825 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
826 		 * well as returning an error code (the latter is not described
827 		 * in the API spec.)
828 		 */
829 #if 0
830 		u_int32_t mtu32;
831 		struct ip6ctlparam ip6cp;
832 
833 		mtu32 = (u_int32_t)mtu;
834 		bzero(&ip6cp, sizeof(ip6cp));
835 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
836 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
837 		    (void *)&ip6cp);
838 #endif
839 
840 		error = EMSGSIZE;
841 		goto bad;
842 	}
843 
844 	/*
845 	 * transmit packet without fragmentation
846 	 */
847 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
848 		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
849 		goto done;
850 	}
851 
852 	/*
853 	 * try to fragment the packet.  case 1-b and 3
854 	 */
855 	if (mtu < IPV6_MMTU) {
856 		/* path MTU cannot be less than IPV6_MMTU */
857 		error = EMSGSIZE;
858 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
859 		goto bad;
860 	} else if (ip6->ip6_plen == 0) {
861 		/* jumbo payload cannot be fragmented */
862 		error = EMSGSIZE;
863 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
864 		goto bad;
865 	} else {
866 		struct mbuf **mnext, *m_frgpart;
867 		struct ip6_frag *ip6f;
868 		u_int32_t id = htonl(ip6_randomid());
869 		u_char nextproto;
870 #if 0
871 		struct ip6ctlparam ip6cp;
872 		u_int32_t mtu32;
873 #endif
874 
875 		/*
876 		 * Too large for the destination or interface;
877 		 * fragment if possible.
878 		 * Must be able to put at least 8 bytes per fragment.
879 		 */
880 		hlen = unfragpartlen;
881 		if (mtu > IPV6_MAXPACKET)
882 			mtu = IPV6_MAXPACKET;
883 
884 #if 0
885 		/* Notify a proper path MTU to applications. */
886 		mtu32 = (u_int32_t)mtu;
887 		bzero(&ip6cp, sizeof(ip6cp));
888 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
889 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
890 		    (void *)&ip6cp);
891 #endif
892 
893 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
894 		if (len < 8) {
895 			error = EMSGSIZE;
896 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
897 			goto bad;
898 		}
899 
900 		mnext = &m->m_nextpkt;
901 
902 		/*
903 		 * Change the next header field of the last header in the
904 		 * unfragmentable part.
905 		 */
906 		if (exthdrs.ip6e_rthdr) {
907 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
908 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
909 		} else if (exthdrs.ip6e_dest1) {
910 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
911 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
912 		} else if (exthdrs.ip6e_hbh) {
913 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
914 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
915 		} else {
916 			nextproto = ip6->ip6_nxt;
917 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
918 		}
919 
920 		/*
921 		 * Loop through length of segment after first fragment,
922 		 * make new header and copy data of each part and link onto
923 		 * chain.
924 		 */
925 		m0 = m;
926 		for (off = hlen; off < tlen; off += len) {
927 			struct mbuf *mlast;
928 
929 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
930 			if (!m) {
931 				error = ENOBUFS;
932 				ip6stat.ip6s_odropped++;
933 				goto sendorfree;
934 			}
935 			m->m_pkthdr.rcvif = NULL;
936 			m->m_flags = m0->m_flags & M_COPYFLAGS;
937 			*mnext = m;
938 			mnext = &m->m_nextpkt;
939 			m->m_data += max_linkhdr;
940 			mhip6 = mtod(m, struct ip6_hdr *);
941 			*mhip6 = *ip6;
942 			m->m_len = sizeof(*mhip6);
943 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
944 			if (error) {
945 				ip6stat.ip6s_odropped++;
946 				goto sendorfree;
947 			}
948 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
949 			if (off + len >= tlen)
950 				len = tlen - off;
951 			else
952 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
953 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
954 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
955 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
956 				error = ENOBUFS;
957 				ip6stat.ip6s_odropped++;
958 				goto sendorfree;
959 			}
960 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
961 				;
962 			mlast->m_next = m_frgpart;
963 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
964 			m->m_pkthdr.rcvif = (struct ifnet *)0;
965 			ip6f->ip6f_reserved = 0;
966 			ip6f->ip6f_ident = id;
967 			ip6f->ip6f_nxt = nextproto;
968 			ip6stat.ip6s_ofragments++;
969 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
970 		}
971 
972 		in6_ifstat_inc(ifp, ifs6_out_fragok);
973 	}
974 
975 	/*
976 	 * Remove leading garbages.
977 	 */
978 sendorfree:
979 	m = m0->m_nextpkt;
980 	m0->m_nextpkt = 0;
981 	m_freem(m0);
982 	for (m0 = m; m; m = m0) {
983 		m0 = m->m_nextpkt;
984 		m->m_nextpkt = 0;
985 		if (error == 0) {
986 			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
987 		} else
988 			m_freem(m);
989 	}
990 
991 	if (error == 0)
992 		ip6stat.ip6s_fragmented++;
993 
994 done:
995 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
996 		RTFREE(ro->ro_rt);
997 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
998 		RTFREE(ro_pmtu->ro_rt);
999 	}
1000 
1001 	return (error);
1002 
1003 freehdrs:
1004 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
1005 	m_freem(exthdrs.ip6e_dest1);
1006 	m_freem(exthdrs.ip6e_rthdr);
1007 	m_freem(exthdrs.ip6e_dest2);
1008 	/* FALLTHROUGH */
1009 bad:
1010 	m_freem(m);
1011 	goto done;
1012 }
1013 
1014 static int
1015 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
1016 {
1017 	struct mbuf *m;
1018 
1019 	if (hlen > MCLBYTES)
1020 		return (ENOBUFS); /* XXX */
1021 
1022 	MGET(m, M_DONTWAIT, MT_DATA);
1023 	if (!m)
1024 		return (ENOBUFS);
1025 
1026 	if (hlen > MLEN) {
1027 		MCLGET(m, M_DONTWAIT);
1028 		if ((m->m_flags & M_EXT) == 0) {
1029 			m_free(m);
1030 			return (ENOBUFS);
1031 		}
1032 	}
1033 	m->m_len = hlen;
1034 	if (hdr)
1035 		bcopy(hdr, mtod(m, caddr_t), hlen);
1036 
1037 	*mp = m;
1038 	return (0);
1039 }
1040 
1041 /*
1042  * Insert jumbo payload option.
1043  */
1044 static int
1045 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
1046 {
1047 	struct mbuf *mopt;
1048 	u_int8_t *optbuf;
1049 	u_int32_t v;
1050 
1051 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
1052 
1053 	/*
1054 	 * If there is no hop-by-hop options header, allocate new one.
1055 	 * If there is one but it doesn't have enough space to store the
1056 	 * jumbo payload option, allocate a cluster to store the whole options.
1057 	 * Otherwise, use it to store the options.
1058 	 */
1059 	if (exthdrs->ip6e_hbh == 0) {
1060 		MGET(mopt, M_DONTWAIT, MT_DATA);
1061 		if (mopt == 0)
1062 			return (ENOBUFS);
1063 		mopt->m_len = JUMBOOPTLEN;
1064 		optbuf = mtod(mopt, u_int8_t *);
1065 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
1066 		exthdrs->ip6e_hbh = mopt;
1067 	} else {
1068 		struct ip6_hbh *hbh;
1069 
1070 		mopt = exthdrs->ip6e_hbh;
1071 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1072 			/*
1073 			 * XXX assumption:
1074 			 * - exthdrs->ip6e_hbh is not referenced from places
1075 			 *   other than exthdrs.
1076 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
1077 			 */
1078 			int oldoptlen = mopt->m_len;
1079 			struct mbuf *n;
1080 
1081 			/*
1082 			 * XXX: give up if the whole (new) hbh header does
1083 			 * not fit even in an mbuf cluster.
1084 			 */
1085 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1086 				return (ENOBUFS);
1087 
1088 			/*
1089 			 * As a consequence, we must always prepare a cluster
1090 			 * at this point.
1091 			 */
1092 			MGET(n, M_DONTWAIT, MT_DATA);
1093 			if (n) {
1094 				MCLGET(n, M_DONTWAIT);
1095 				if ((n->m_flags & M_EXT) == 0) {
1096 					m_freem(n);
1097 					n = NULL;
1098 				}
1099 			}
1100 			if (!n)
1101 				return (ENOBUFS);
1102 			n->m_len = oldoptlen + JUMBOOPTLEN;
1103 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1104 			      oldoptlen);
1105 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
1106 			m_freem(mopt);
1107 			mopt = exthdrs->ip6e_hbh = n;
1108 		} else {
1109 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1110 			mopt->m_len += JUMBOOPTLEN;
1111 		}
1112 		optbuf[0] = IP6OPT_PADN;
1113 		optbuf[1] = 0;
1114 
1115 		/*
1116 		 * Adjust the header length according to the pad and
1117 		 * the jumbo payload option.
1118 		 */
1119 		hbh = mtod(mopt, struct ip6_hbh *);
1120 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1121 	}
1122 
1123 	/* fill in the option. */
1124 	optbuf[2] = IP6OPT_JUMBO;
1125 	optbuf[3] = 4;
1126 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1127 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1128 
1129 	/* finally, adjust the packet header length */
1130 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1131 
1132 	return (0);
1133 #undef JUMBOOPTLEN
1134 }
1135 
1136 /*
1137  * Insert fragment header and copy unfragmentable header portions.
1138  */
1139 static int
1140 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
1141 	struct ip6_frag **frghdrp)
1142 {
1143 	struct mbuf *n, *mlast;
1144 
1145 	if (hlen > sizeof(struct ip6_hdr)) {
1146 		n = m_copym(m0, sizeof(struct ip6_hdr),
1147 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1148 		if (n == 0)
1149 			return (ENOBUFS);
1150 		m->m_next = n;
1151 	} else
1152 		n = m;
1153 
1154 	/* Search for the last mbuf of unfragmentable part. */
1155 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1156 		;
1157 
1158 	if ((mlast->m_flags & M_EXT) == 0 &&
1159 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1160 		/* use the trailing space of the last mbuf for the fragment hdr */
1161 		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1162 		    mlast->m_len);
1163 		mlast->m_len += sizeof(struct ip6_frag);
1164 		m->m_pkthdr.len += sizeof(struct ip6_frag);
1165 	} else {
1166 		/* allocate a new mbuf for the fragment header */
1167 		struct mbuf *mfrg;
1168 
1169 		MGET(mfrg, M_DONTWAIT, MT_DATA);
1170 		if (mfrg == 0)
1171 			return (ENOBUFS);
1172 		mfrg->m_len = sizeof(struct ip6_frag);
1173 		*frghdrp = mtod(mfrg, struct ip6_frag *);
1174 		mlast->m_next = mfrg;
1175 	}
1176 
1177 	return (0);
1178 }
1179 
1180 static int
1181 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro,
1182 	struct ifnet *ifp, struct in6_addr *dst, u_long *mtup,
1183 	int *alwaysfragp)
1184 {
1185 	u_int32_t mtu = 0;
1186 	int alwaysfrag = 0;
1187 	int error = 0;
1188 
1189 	if (ro_pmtu != ro) {
1190 		/* The first hop and the final destination may differ. */
1191 		struct sockaddr_in6 *sa6_dst =
1192 		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1193 		if (ro_pmtu->ro_rt &&
1194 		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1195 		     !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1196 			RTFREE(ro_pmtu->ro_rt);
1197 			ro_pmtu->ro_rt = (struct rtentry *)NULL;
1198 		}
1199 		if (ro_pmtu->ro_rt == 0) {
1200 			bzero(sa6_dst, sizeof(*sa6_dst));
1201 			sa6_dst->sin6_family = AF_INET6;
1202 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1203 			sa6_dst->sin6_addr = *dst;
1204 
1205 			rtalloc((struct route *)ro_pmtu);
1206 		}
1207 	}
1208 	if (ro_pmtu->ro_rt) {
1209 		u_int32_t ifmtu;
1210 
1211 		if (ifp == NULL)
1212 			ifp = ro_pmtu->ro_rt->rt_ifp;
1213 		ifmtu = IN6_LINKMTU(ifp);
1214 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1215 		if (mtu == 0)
1216 			mtu = ifmtu;
1217 		else if (mtu < IPV6_MMTU) {
1218 			/*
1219 			 * RFC2460 section 5, last paragraph:
1220 			 * if we record ICMPv6 too big message with
1221 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1222 			 * or smaller, with fragment header attached.
1223 			 * (fragment header is needed regardless from the
1224 			 * packet size, for translators to identify packets)
1225 			 */
1226 			alwaysfrag = 1;
1227 			mtu = IPV6_MMTU;
1228 		} else if (mtu > ifmtu) {
1229 			/*
1230 			 * The MTU on the route is larger than the MTU on
1231 			 * the interface!  This shouldn't happen, unless the
1232 			 * MTU of the interface has been changed after the
1233 			 * interface was brought up.  Change the MTU in the
1234 			 * route to match the interface MTU (as long as the
1235 			 * field isn't locked).
1236 			 */
1237 			mtu = ifmtu;
1238 			if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
1239 				ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1240 		}
1241 	} else if (ifp) {
1242 		mtu = IN6_LINKMTU(ifp);
1243 	} else
1244 		error = EHOSTUNREACH; /* XXX */
1245 
1246 	*mtup = mtu;
1247 	if (alwaysfragp)
1248 		*alwaysfragp = alwaysfrag;
1249 	return (error);
1250 }
1251 
1252 /*
1253  * IP6 socket option processing.
1254  */
1255 int
1256 ip6_ctloutput(int op, struct socket *so, int level, int optname,
1257 	struct mbuf **mp)
1258 {
1259 	int privileged, optdatalen, uproto;
1260 	void *optdata;
1261 	struct inpcb *inp = sotoinpcb(so);
1262 	struct mbuf *m = *mp;
1263 	int error, optval;
1264 	int optlen;
1265 #ifdef IPSEC
1266 	struct proc *p = curproc; /* XXX */
1267 	struct tdb *tdb;
1268 	struct tdb_ident *tdbip, tdbi;
1269 	int s;
1270 #endif
1271 
1272 	optlen = m ? m->m_len : 0;
1273 	error = optval = 0;
1274 
1275 	privileged = (inp->inp_socket->so_state & SS_PRIV);
1276 	uproto = (int)so->so_proto->pr_protocol;
1277 
1278 	if (level == IPPROTO_IPV6) {
1279 		switch (op) {
1280 		case PRCO_SETOPT:
1281 			switch (optname) {
1282 			case IPV6_2292PKTOPTIONS:
1283 			{
1284 				error = ip6_pcbopts(&inp->inp_outputopts6,
1285 						    m, so);
1286 				break;
1287 			}
1288 
1289 			/*
1290 			 * Use of some Hop-by-Hop options or some
1291 			 * Destination options, might require special
1292 			 * privilege.  That is, normal applications
1293 			 * (without special privilege) might be forbidden
1294 			 * from setting certain options in outgoing packets,
1295 			 * and might never see certain options in received
1296 			 * packets. [RFC 2292 Section 6]
1297 			 * KAME specific note:
1298 			 *  KAME prevents non-privileged users from sending or
1299 			 *  receiving ANY hbh/dst options in order to avoid
1300 			 *  overhead of parsing options in the kernel.
1301 			 */
1302 			case IPV6_RECVHOPOPTS:
1303 			case IPV6_RECVDSTOPTS:
1304 			case IPV6_RECVRTHDRDSTOPTS:
1305 				if (!privileged) {
1306 					error = EPERM;
1307 					break;
1308 				}
1309 				/* FALLTHROUGH */
1310 			case IPV6_UNICAST_HOPS:
1311 			case IPV6_HOPLIMIT:
1312 			case IPV6_FAITH:
1313 
1314 			case IPV6_RECVPKTINFO:
1315 			case IPV6_RECVHOPLIMIT:
1316 			case IPV6_RECVRTHDR:
1317 			case IPV6_RECVPATHMTU:
1318 			case IPV6_RECVTCLASS:
1319 			case IPV6_V6ONLY:
1320 			case IPV6_AUTOFLOWLABEL:
1321 				if (optlen != sizeof(int)) {
1322 					error = EINVAL;
1323 					break;
1324 				}
1325 				optval = *mtod(m, int *);
1326 				switch (optname) {
1327 
1328 				case IPV6_UNICAST_HOPS:
1329 					if (optval < -1 || optval >= 256)
1330 						error = EINVAL;
1331 					else {
1332 						/* -1 = kernel default */
1333 						inp->inp_hops = optval;
1334 					}
1335 					break;
1336 #define OPTSET(bit) \
1337 do { \
1338 	if (optval) \
1339 		inp->inp_flags |= (bit); \
1340 	else \
1341 		inp->inp_flags &= ~(bit); \
1342 } while (/*CONSTCOND*/ 0)
1343 #define OPTSET2292(bit) \
1344 do { \
1345 	inp->inp_flags |= IN6P_RFC2292; \
1346 	if (optval) \
1347 		inp->inp_flags |= (bit); \
1348 	else \
1349 		inp->inp_flags &= ~(bit); \
1350 } while (/*CONSTCOND*/ 0)
1351 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0)
1352 
1353 				case IPV6_RECVPKTINFO:
1354 					/* cannot mix with RFC2292 */
1355 					if (OPTBIT(IN6P_RFC2292)) {
1356 						error = EINVAL;
1357 						break;
1358 					}
1359 					OPTSET(IN6P_PKTINFO);
1360 					break;
1361 
1362 				case IPV6_HOPLIMIT:
1363 				{
1364 					struct ip6_pktopts **optp;
1365 
1366 					/* cannot mix with RFC2292 */
1367 					if (OPTBIT(IN6P_RFC2292)) {
1368 						error = EINVAL;
1369 						break;
1370 					}
1371 					optp = &inp->inp_outputopts6;
1372 					error = ip6_pcbopt(IPV6_HOPLIMIT,
1373 							   (u_char *)&optval,
1374 							   sizeof(optval),
1375 							   optp,
1376 							   privileged, uproto);
1377 					break;
1378 				}
1379 
1380 				case IPV6_RECVHOPLIMIT:
1381 					/* cannot mix with RFC2292 */
1382 					if (OPTBIT(IN6P_RFC2292)) {
1383 						error = EINVAL;
1384 						break;
1385 					}
1386 					OPTSET(IN6P_HOPLIMIT);
1387 					break;
1388 
1389 				case IPV6_RECVHOPOPTS:
1390 					/* cannot mix with RFC2292 */
1391 					if (OPTBIT(IN6P_RFC2292)) {
1392 						error = EINVAL;
1393 						break;
1394 					}
1395 					OPTSET(IN6P_HOPOPTS);
1396 					break;
1397 
1398 				case IPV6_RECVDSTOPTS:
1399 					/* cannot mix with RFC2292 */
1400 					if (OPTBIT(IN6P_RFC2292)) {
1401 						error = EINVAL;
1402 						break;
1403 					}
1404 					OPTSET(IN6P_DSTOPTS);
1405 					break;
1406 
1407 				case IPV6_RECVRTHDRDSTOPTS:
1408 					/* cannot mix with RFC2292 */
1409 					if (OPTBIT(IN6P_RFC2292)) {
1410 						error = EINVAL;
1411 						break;
1412 					}
1413 					OPTSET(IN6P_RTHDRDSTOPTS);
1414 					break;
1415 
1416 				case IPV6_RECVRTHDR:
1417 					/* cannot mix with RFC2292 */
1418 					if (OPTBIT(IN6P_RFC2292)) {
1419 						error = EINVAL;
1420 						break;
1421 					}
1422 					OPTSET(IN6P_RTHDR);
1423 					break;
1424 
1425 				case IPV6_FAITH:
1426 					OPTSET(IN6P_FAITH);
1427 					break;
1428 
1429 				case IPV6_RECVPATHMTU:
1430 					/*
1431 					 * We ignore this option for TCP
1432 					 * sockets.
1433 					 * (RFC3542 leaves this case
1434 					 * unspecified.)
1435 					 */
1436 					if (uproto != IPPROTO_TCP)
1437 						OPTSET(IN6P_MTU);
1438 					break;
1439 
1440 				case IPV6_V6ONLY:
1441 					/*
1442 					 * make setsockopt(IPV6_V6ONLY)
1443 					 * available only prior to bind(2).
1444 					 * see ipng mailing list, Jun 22 2001.
1445 					 */
1446 					if (inp->inp_lport ||
1447 					    !IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6)) {
1448 						error = EINVAL;
1449 						break;
1450 					}
1451 					if ((ip6_v6only && optval) ||
1452 					    (!ip6_v6only && !optval))
1453 						error = 0;
1454 					else
1455 						error = EINVAL;
1456 					break;
1457 				case IPV6_RECVTCLASS:
1458 					/* cannot mix with RFC2292 XXX */
1459 					if (OPTBIT(IN6P_RFC2292)) {
1460 						error = EINVAL;
1461 						break;
1462 					}
1463 					OPTSET(IN6P_TCLASS);
1464 					break;
1465 				case IPV6_AUTOFLOWLABEL:
1466 					OPTSET(IN6P_AUTOFLOWLABEL);
1467 					break;
1468 
1469 				}
1470 				break;
1471 
1472 			case IPV6_TCLASS:
1473 			case IPV6_DONTFRAG:
1474 			case IPV6_USE_MIN_MTU:
1475 				if (optlen != sizeof(optval)) {
1476 					error = EINVAL;
1477 					break;
1478 				}
1479 				optval = *mtod(m, int *);
1480 				{
1481 					struct ip6_pktopts **optp;
1482 					optp = &inp->inp_outputopts6;
1483 					error = ip6_pcbopt(optname,
1484 							   (u_char *)&optval,
1485 							   sizeof(optval),
1486 							   optp,
1487 							   privileged, uproto);
1488 					break;
1489 				}
1490 
1491 			case IPV6_2292PKTINFO:
1492 			case IPV6_2292HOPLIMIT:
1493 			case IPV6_2292HOPOPTS:
1494 			case IPV6_2292DSTOPTS:
1495 			case IPV6_2292RTHDR:
1496 				/* RFC 2292 */
1497 				if (optlen != sizeof(int)) {
1498 					error = EINVAL;
1499 					break;
1500 				}
1501 				optval = *mtod(m, int *);
1502 				switch (optname) {
1503 				case IPV6_2292PKTINFO:
1504 					OPTSET2292(IN6P_PKTINFO);
1505 					break;
1506 				case IPV6_2292HOPLIMIT:
1507 					OPTSET2292(IN6P_HOPLIMIT);
1508 					break;
1509 				case IPV6_2292HOPOPTS:
1510 					/*
1511 					 * Check super-user privilege.
1512 					 * See comments for IPV6_RECVHOPOPTS.
1513 					 */
1514 					if (!privileged)
1515 						return (EPERM);
1516 					OPTSET2292(IN6P_HOPOPTS);
1517 					break;
1518 				case IPV6_2292DSTOPTS:
1519 					if (!privileged)
1520 						return (EPERM);
1521 					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1522 					break;
1523 				case IPV6_2292RTHDR:
1524 					OPTSET2292(IN6P_RTHDR);
1525 					break;
1526 				}
1527 				break;
1528 			case IPV6_PKTINFO:
1529 			case IPV6_HOPOPTS:
1530 			case IPV6_RTHDR:
1531 			case IPV6_DSTOPTS:
1532 			case IPV6_RTHDRDSTOPTS:
1533 			case IPV6_NEXTHOP:
1534 			{
1535 				/* new advanced API (RFC3542) */
1536 				u_char *optbuf;
1537 				int optbuflen;
1538 				struct ip6_pktopts **optp;
1539 
1540 				/* cannot mix with RFC2292 */
1541 				if (OPTBIT(IN6P_RFC2292)) {
1542 					error = EINVAL;
1543 					break;
1544 				}
1545 
1546 				if (m && m->m_next) {
1547 					error = EINVAL;	/* XXX */
1548 					break;
1549 				}
1550 				if (m) {
1551 					optbuf = mtod(m, u_char *);
1552 					optbuflen = m->m_len;
1553 				} else {
1554 					optbuf = NULL;
1555 					optbuflen = 0;
1556 				}
1557 				optp = &inp->inp_outputopts6;
1558 				error = ip6_pcbopt(optname,
1559 						   optbuf, optbuflen,
1560 						   optp, privileged, uproto);
1561 				break;
1562 			}
1563 #undef OPTSET
1564 
1565 			case IPV6_MULTICAST_IF:
1566 			case IPV6_MULTICAST_HOPS:
1567 			case IPV6_MULTICAST_LOOP:
1568 			case IPV6_JOIN_GROUP:
1569 			case IPV6_LEAVE_GROUP:
1570 				error =	ip6_setmoptions(optname,
1571 							&inp->inp_moptions6,
1572 							m);
1573 				break;
1574 
1575 			case IPV6_PORTRANGE:
1576 				optval = *mtod(m, int *);
1577 
1578 				switch (optval) {
1579 				case IPV6_PORTRANGE_DEFAULT:
1580 					inp->inp_flags &= ~(IN6P_LOWPORT);
1581 					inp->inp_flags &= ~(IN6P_HIGHPORT);
1582 					break;
1583 
1584 				case IPV6_PORTRANGE_HIGH:
1585 					inp->inp_flags &= ~(IN6P_LOWPORT);
1586 					inp->inp_flags |= IN6P_HIGHPORT;
1587 					break;
1588 
1589 				case IPV6_PORTRANGE_LOW:
1590 					inp->inp_flags &= ~(IN6P_HIGHPORT);
1591 					inp->inp_flags |= IN6P_LOWPORT;
1592 					break;
1593 
1594 				default:
1595 					error = EINVAL;
1596 					break;
1597 				}
1598 				break;
1599 
1600 			case IPSEC6_OUTSA:
1601 #ifndef IPSEC
1602 				error = EINVAL;
1603 #else
1604 				s = spltdb();
1605 				if (m == 0 || m->m_len != sizeof(struct tdb_ident)) {
1606 					error = EINVAL;
1607 				} else {
1608 					tdbip = mtod(m, struct tdb_ident *);
1609 					tdb = gettdb(tdbip->spi, &tdbip->dst,
1610 					    tdbip->proto);
1611 					if (tdb == NULL)
1612 						error = ESRCH;
1613 					else
1614 						tdb_add_inp(tdb, inp, 0);
1615 				}
1616 				splx(s);
1617 #endif
1618 				break;
1619 
1620 			case IPV6_AUTH_LEVEL:
1621 			case IPV6_ESP_TRANS_LEVEL:
1622 			case IPV6_ESP_NETWORK_LEVEL:
1623 			case IPV6_IPCOMP_LEVEL:
1624 #ifndef IPSEC
1625 				error = EINVAL;
1626 #else
1627 				if (m == 0 || m->m_len != sizeof(int)) {
1628 					error = EINVAL;
1629 					break;
1630 				}
1631 				optval = *mtod(m, int *);
1632 
1633 				if (optval < IPSEC_LEVEL_BYPASS ||
1634 				    optval > IPSEC_LEVEL_UNIQUE) {
1635 					error = EINVAL;
1636 					break;
1637 				}
1638 
1639 				switch (optname) {
1640 				case IPV6_AUTH_LEVEL:
1641 				        if (optval < ipsec_auth_default_level &&
1642 					    suser(p, 0)) {
1643 						error = EACCES;
1644 						break;
1645 					}
1646 					inp->inp_seclevel[SL_AUTH] = optval;
1647 					break;
1648 
1649 				case IPV6_ESP_TRANS_LEVEL:
1650 				        if (optval < ipsec_esp_trans_default_level &&
1651 					    suser(p, 0)) {
1652 						error = EACCES;
1653 						break;
1654 					}
1655 					inp->inp_seclevel[SL_ESP_TRANS] = optval;
1656 					break;
1657 
1658 				case IPV6_ESP_NETWORK_LEVEL:
1659 				        if (optval < ipsec_esp_network_default_level &&
1660 					    suser(p, 0)) {
1661 						error = EACCES;
1662 						break;
1663 					}
1664 					inp->inp_seclevel[SL_ESP_NETWORK] = optval;
1665 					break;
1666 
1667 				case IPV6_IPCOMP_LEVEL:
1668 				        if (optval < ipsec_ipcomp_default_level &&
1669 					    suser(p, 0)) {
1670 						error = EACCES;
1671 						break;
1672 					}
1673 					inp->inp_seclevel[SL_IPCOMP] = optval;
1674 					break;
1675 				}
1676 				if (!error)
1677 					inp->inp_secrequire = get_sa_require(inp);
1678 #endif
1679 				break;
1680 
1681 			default:
1682 				error = ENOPROTOOPT;
1683 				break;
1684 			}
1685 			if (m)
1686 				(void)m_free(m);
1687 			break;
1688 
1689 		case PRCO_GETOPT:
1690 			switch (optname) {
1691 
1692 			case IPV6_2292PKTOPTIONS:
1693 				/*
1694 				 * RFC3542 (effectively) deprecated the
1695 				 * semantics of the 2292-style pktoptions.
1696 				 * Since it was not reliable in nature (i.e.,
1697 				 * applications had to expect the lack of some
1698 				 * information after all), it would make sense
1699 				 * to simplify this part by always returning
1700 				 * empty data.
1701 				 */
1702 				*mp = m_get(M_WAIT, MT_SOOPTS);
1703 				(*mp)->m_len = 0;
1704 				break;
1705 
1706 			case IPV6_RECVHOPOPTS:
1707 			case IPV6_RECVDSTOPTS:
1708 			case IPV6_RECVRTHDRDSTOPTS:
1709 			case IPV6_UNICAST_HOPS:
1710 			case IPV6_RECVPKTINFO:
1711 			case IPV6_RECVHOPLIMIT:
1712 			case IPV6_RECVRTHDR:
1713 			case IPV6_RECVPATHMTU:
1714 
1715 			case IPV6_FAITH:
1716 			case IPV6_V6ONLY:
1717 			case IPV6_PORTRANGE:
1718 			case IPV6_RECVTCLASS:
1719 			case IPV6_AUTOFLOWLABEL:
1720 				switch (optname) {
1721 
1722 				case IPV6_RECVHOPOPTS:
1723 					optval = OPTBIT(IN6P_HOPOPTS);
1724 					break;
1725 
1726 				case IPV6_RECVDSTOPTS:
1727 					optval = OPTBIT(IN6P_DSTOPTS);
1728 					break;
1729 
1730 				case IPV6_RECVRTHDRDSTOPTS:
1731 					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1732 					break;
1733 
1734 				case IPV6_UNICAST_HOPS:
1735 					optval = inp->inp_hops;
1736 					break;
1737 
1738 				case IPV6_RECVPKTINFO:
1739 					optval = OPTBIT(IN6P_PKTINFO);
1740 					break;
1741 
1742 				case IPV6_RECVHOPLIMIT:
1743 					optval = OPTBIT(IN6P_HOPLIMIT);
1744 					break;
1745 
1746 				case IPV6_RECVRTHDR:
1747 					optval = OPTBIT(IN6P_RTHDR);
1748 					break;
1749 
1750 				case IPV6_RECVPATHMTU:
1751 					optval = OPTBIT(IN6P_MTU);
1752 					break;
1753 
1754 				case IPV6_FAITH:
1755 					optval = OPTBIT(IN6P_FAITH);
1756 					break;
1757 
1758 				case IPV6_V6ONLY:
1759 					optval = (ip6_v6only != 0); /* XXX */
1760 					break;
1761 
1762 				case IPV6_PORTRANGE:
1763 				    {
1764 					int flags;
1765 					flags = inp->inp_flags;
1766 					if (flags & IN6P_HIGHPORT)
1767 						optval = IPV6_PORTRANGE_HIGH;
1768 					else if (flags & IN6P_LOWPORT)
1769 						optval = IPV6_PORTRANGE_LOW;
1770 					else
1771 						optval = 0;
1772 					break;
1773 				    }
1774 				case IPV6_RECVTCLASS:
1775 					optval = OPTBIT(IN6P_TCLASS);
1776 					break;
1777 
1778 				case IPV6_AUTOFLOWLABEL:
1779 					optval = OPTBIT(IN6P_AUTOFLOWLABEL);
1780 					break;
1781 				}
1782 				if (error)
1783 					break;
1784 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
1785 				m->m_len = sizeof(int);
1786 				*mtod(m, int *) = optval;
1787 				break;
1788 
1789 			case IPV6_PATHMTU:
1790 			{
1791 				u_long pmtu = 0;
1792 				struct ip6_mtuinfo mtuinfo;
1793 				struct route_in6 *ro = (struct route_in6 *)&inp->inp_route6;
1794 
1795 				if (!(so->so_state & SS_ISCONNECTED))
1796 					return (ENOTCONN);
1797 				/*
1798 				 * XXX: we dot not consider the case of source
1799 				 * routing, or optional information to specify
1800 				 * the outgoing interface.
1801 				 */
1802 				error = ip6_getpmtu(ro, NULL, NULL,
1803 				    &inp->inp_faddr6, &pmtu, NULL);
1804 				if (error)
1805 					break;
1806 				if (pmtu > IPV6_MAXPACKET)
1807 					pmtu = IPV6_MAXPACKET;
1808 
1809 				bzero(&mtuinfo, sizeof(mtuinfo));
1810 				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1811 				optdata = (void *)&mtuinfo;
1812 				optdatalen = sizeof(mtuinfo);
1813 				if (optdatalen > MCLBYTES)
1814 					return (EMSGSIZE); /* XXX */
1815 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
1816 				if (optdatalen > MLEN)
1817 					MCLGET(m, M_WAIT);
1818 				m->m_len = optdatalen;
1819 				bcopy(optdata, mtod(m, void *), optdatalen);
1820 				break;
1821 			}
1822 
1823 			case IPV6_2292PKTINFO:
1824 			case IPV6_2292HOPLIMIT:
1825 			case IPV6_2292HOPOPTS:
1826 			case IPV6_2292RTHDR:
1827 			case IPV6_2292DSTOPTS:
1828 				switch (optname) {
1829 				case IPV6_2292PKTINFO:
1830 					optval = OPTBIT(IN6P_PKTINFO);
1831 					break;
1832 				case IPV6_2292HOPLIMIT:
1833 					optval = OPTBIT(IN6P_HOPLIMIT);
1834 					break;
1835 				case IPV6_2292HOPOPTS:
1836 					optval = OPTBIT(IN6P_HOPOPTS);
1837 					break;
1838 				case IPV6_2292RTHDR:
1839 					optval = OPTBIT(IN6P_RTHDR);
1840 					break;
1841 				case IPV6_2292DSTOPTS:
1842 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1843 					break;
1844 				}
1845 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
1846 				m->m_len = sizeof(int);
1847 				*mtod(m, int *) = optval;
1848 				break;
1849 			case IPV6_PKTINFO:
1850 			case IPV6_HOPOPTS:
1851 			case IPV6_RTHDR:
1852 			case IPV6_DSTOPTS:
1853 			case IPV6_RTHDRDSTOPTS:
1854 			case IPV6_NEXTHOP:
1855 			case IPV6_TCLASS:
1856 			case IPV6_DONTFRAG:
1857 			case IPV6_USE_MIN_MTU:
1858 				error = ip6_getpcbopt(inp->inp_outputopts6,
1859 				    optname, mp);
1860 				break;
1861 
1862 			case IPV6_MULTICAST_IF:
1863 			case IPV6_MULTICAST_HOPS:
1864 			case IPV6_MULTICAST_LOOP:
1865 			case IPV6_JOIN_GROUP:
1866 			case IPV6_LEAVE_GROUP:
1867 				error = ip6_getmoptions(optname,
1868 				    inp->inp_moptions6, mp);
1869 				break;
1870 
1871 			case IPSEC6_OUTSA:
1872 #ifndef IPSEC
1873 				error = EINVAL;
1874 #else
1875 				s = spltdb();
1876 				if (inp->inp_tdb_out == NULL) {
1877 					error = ENOENT;
1878 				} else {
1879 					tdbi.spi = inp->inp_tdb_out->tdb_spi;
1880 					tdbi.dst = inp->inp_tdb_out->tdb_dst;
1881 					tdbi.proto = inp->inp_tdb_out->tdb_sproto;
1882 					*mp = m = m_get(M_WAIT, MT_SOOPTS);
1883 					m->m_len = sizeof(tdbi);
1884 					bcopy((caddr_t)&tdbi, mtod(m, caddr_t),
1885 					    (unsigned)m->m_len);
1886 				}
1887 				splx(s);
1888 #endif
1889 				break;
1890 
1891 			case IPV6_AUTH_LEVEL:
1892 			case IPV6_ESP_TRANS_LEVEL:
1893 			case IPV6_ESP_NETWORK_LEVEL:
1894 			case IPV6_IPCOMP_LEVEL:
1895 #ifndef IPSEC
1896 				m->m_len = sizeof(int);
1897 				*mtod(m, int *) = IPSEC_LEVEL_NONE;
1898 #else
1899 				m->m_len = sizeof(int);
1900 				switch (optname) {
1901 				case IPV6_AUTH_LEVEL:
1902 					optval = inp->inp_seclevel[SL_AUTH];
1903 					break;
1904 
1905 				case IPV6_ESP_TRANS_LEVEL:
1906 					optval =
1907 					    inp->inp_seclevel[SL_ESP_TRANS];
1908 					break;
1909 
1910 				case IPV6_ESP_NETWORK_LEVEL:
1911 					optval =
1912 					    inp->inp_seclevel[SL_ESP_NETWORK];
1913 					break;
1914 
1915 				case IPV6_IPCOMP_LEVEL:
1916 					optval = inp->inp_seclevel[SL_IPCOMP];
1917 					break;
1918 				}
1919 				*mtod(m, int *) = optval;
1920 #endif
1921 				break;
1922 
1923 			default:
1924 				error = ENOPROTOOPT;
1925 				break;
1926 			}
1927 			break;
1928 		}
1929 	} else {
1930 		error = EINVAL;
1931 		if (op == PRCO_SETOPT && *mp)
1932 			(void)m_free(*mp);
1933 	}
1934 	return (error);
1935 }
1936 
1937 int
1938 ip6_raw_ctloutput(int op, struct socket *so, int level, int optname,
1939 	struct mbuf **mp)
1940 {
1941 	int error = 0, optval, optlen;
1942 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1943 	struct inpcb *inp = sotoinpcb(so);
1944 	struct mbuf *m = *mp;
1945 
1946 	optlen = m ? m->m_len : 0;
1947 
1948 	if (level != IPPROTO_IPV6) {
1949 		if (op == PRCO_SETOPT && *mp)
1950 			(void)m_free(*mp);
1951 		return (EINVAL);
1952 	}
1953 
1954 	switch (optname) {
1955 	case IPV6_CHECKSUM:
1956 		/*
1957 		 * For ICMPv6 sockets, no modification allowed for checksum
1958 		 * offset, permit "no change" values to help existing apps.
1959 		 *
1960 		 * RFC3542 says: "An attempt to set IPV6_CHECKSUM
1961 		 * for an ICMPv6 socket will fail."
1962 		 * The current behavior does not meet RFC3542.
1963 		 */
1964 		switch (op) {
1965 		case PRCO_SETOPT:
1966 			if (optlen != sizeof(int)) {
1967 				error = EINVAL;
1968 				break;
1969 			}
1970 			optval = *mtod(m, int *);
1971 			if ((optval % 2) != 0) {
1972 				/* the API assumes even offset values */
1973 				error = EINVAL;
1974 			} else if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) {
1975 				if (optval != icmp6off)
1976 					error = EINVAL;
1977 			} else
1978 				inp->in6p_cksum = optval;
1979 			break;
1980 
1981 		case PRCO_GETOPT:
1982 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1983 				optval = icmp6off;
1984 			else
1985 				optval = inp->in6p_cksum;
1986 
1987 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1988 			m->m_len = sizeof(int);
1989 			*mtod(m, int *) = optval;
1990 			break;
1991 
1992 		default:
1993 			error = EINVAL;
1994 			break;
1995 		}
1996 		break;
1997 
1998 	default:
1999 		error = ENOPROTOOPT;
2000 		break;
2001 	}
2002 
2003 	if (op == PRCO_SETOPT && m)
2004 		(void)m_free(m);
2005 
2006 	return (error);
2007 }
2008 
2009 /*
2010  * Set up IP6 options in pcb for insertion in output packets.
2011  * Store in mbuf with pointer in pcbopt, adding pseudo-option
2012  * with destination address if source routed.
2013  */
2014 static int
2015 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, struct socket *so)
2016 {
2017 	struct ip6_pktopts *opt = *pktopt;
2018 	int error = 0;
2019 	struct proc *p = curproc;	/* XXX */
2020 	int priv = 0;
2021 
2022 	/* turn off any old options. */
2023 	if (opt)
2024 		ip6_clearpktopts(opt, -1);
2025 	else
2026 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2027 	*pktopt = 0;
2028 
2029 	if (!m || m->m_len == 0) {
2030 		/*
2031 		 * Only turning off any previous options, regardless of
2032 		 * whether the opt is just created or given.
2033 		 */
2034 		free(opt, M_IP6OPT);
2035 		return (0);
2036 	}
2037 
2038 	/*  set options specified by user. */
2039 	if (p && !suser(p, 0))
2040 		priv = 1;
2041 	if ((error = ip6_setpktopts(m, opt, NULL, priv,
2042 	    so->so_proto->pr_protocol)) != 0) {
2043 		ip6_clearpktopts(opt, -1);	/* XXX discard all options */
2044 		free(opt, M_IP6OPT);
2045 		return (error);
2046 	}
2047 	*pktopt = opt;
2048 	return (0);
2049 }
2050 
2051 /*
2052  * initialize ip6_pktopts.  beware that there are non-zero default values in
2053  * the struct.
2054  */
2055 void
2056 ip6_initpktopts(struct ip6_pktopts *opt)
2057 {
2058 
2059 	bzero(opt, sizeof(*opt));
2060 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
2061 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
2062 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2063 }
2064 
2065 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
2066 static int
2067 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2068 	int priv, int uproto)
2069 {
2070 	struct ip6_pktopts *opt;
2071 
2072 	if (*pktopt == NULL) {
2073 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2074 		    M_WAITOK);
2075 		ip6_initpktopts(*pktopt);
2076 	}
2077 	opt = *pktopt;
2078 
2079 	return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto));
2080 }
2081 
2082 static int
2083 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf **mp)
2084 {
2085 	void *optdata = NULL;
2086 	int optdatalen = 0;
2087 	struct ip6_ext *ip6e;
2088 	int error = 0;
2089 	struct in6_pktinfo null_pktinfo;
2090 	int deftclass = 0, on;
2091 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
2092 	struct mbuf *m;
2093 
2094 	switch (optname) {
2095 	case IPV6_PKTINFO:
2096 		if (pktopt && pktopt->ip6po_pktinfo)
2097 			optdata = (void *)pktopt->ip6po_pktinfo;
2098 		else {
2099 			/* XXX: we don't have to do this every time... */
2100 			bzero(&null_pktinfo, sizeof(null_pktinfo));
2101 			optdata = (void *)&null_pktinfo;
2102 		}
2103 		optdatalen = sizeof(struct in6_pktinfo);
2104 		break;
2105 	case IPV6_TCLASS:
2106 		if (pktopt && pktopt->ip6po_tclass >= 0)
2107 			optdata = (void *)&pktopt->ip6po_tclass;
2108 		else
2109 			optdata = (void *)&deftclass;
2110 		optdatalen = sizeof(int);
2111 		break;
2112 	case IPV6_HOPOPTS:
2113 		if (pktopt && pktopt->ip6po_hbh) {
2114 			optdata = (void *)pktopt->ip6po_hbh;
2115 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2116 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2117 		}
2118 		break;
2119 	case IPV6_RTHDR:
2120 		if (pktopt && pktopt->ip6po_rthdr) {
2121 			optdata = (void *)pktopt->ip6po_rthdr;
2122 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2123 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2124 		}
2125 		break;
2126 	case IPV6_RTHDRDSTOPTS:
2127 		if (pktopt && pktopt->ip6po_dest1) {
2128 			optdata = (void *)pktopt->ip6po_dest1;
2129 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2130 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2131 		}
2132 		break;
2133 	case IPV6_DSTOPTS:
2134 		if (pktopt && pktopt->ip6po_dest2) {
2135 			optdata = (void *)pktopt->ip6po_dest2;
2136 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2137 			optdatalen = (ip6e->ip6e_len + 1) << 3;
2138 		}
2139 		break;
2140 	case IPV6_NEXTHOP:
2141 		if (pktopt && pktopt->ip6po_nexthop) {
2142 			optdata = (void *)pktopt->ip6po_nexthop;
2143 			optdatalen = pktopt->ip6po_nexthop->sa_len;
2144 		}
2145 		break;
2146 	case IPV6_USE_MIN_MTU:
2147 		if (pktopt)
2148 			optdata = (void *)&pktopt->ip6po_minmtu;
2149 		else
2150 			optdata = (void *)&defminmtu;
2151 		optdatalen = sizeof(int);
2152 		break;
2153 	case IPV6_DONTFRAG:
2154 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2155 			on = 1;
2156 		else
2157 			on = 0;
2158 		optdata = (void *)&on;
2159 		optdatalen = sizeof(on);
2160 		break;
2161 	default:		/* should not happen */
2162 #ifdef DIAGNOSTIC
2163 		panic("ip6_getpcbopt: unexpected option\n");
2164 #endif
2165 		return (ENOPROTOOPT);
2166 	}
2167 
2168 	if (optdatalen > MCLBYTES)
2169 		return (EMSGSIZE); /* XXX */
2170 	*mp = m = m_get(M_WAIT, MT_SOOPTS);
2171 	if (optdatalen > MLEN)
2172 		MCLGET(m, M_WAIT);
2173 	m->m_len = optdatalen;
2174 	if (optdatalen)
2175 		bcopy(optdata, mtod(m, void *), optdatalen);
2176 
2177 	return (error);
2178 }
2179 
2180 void
2181 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2182 {
2183 	if (optname == -1 || optname == IPV6_PKTINFO) {
2184 		if (pktopt->ip6po_pktinfo)
2185 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
2186 		pktopt->ip6po_pktinfo = NULL;
2187 	}
2188 	if (optname == -1 || optname == IPV6_HOPLIMIT)
2189 		pktopt->ip6po_hlim = -1;
2190 	if (optname == -1 || optname == IPV6_TCLASS)
2191 		pktopt->ip6po_tclass = -1;
2192 	if (optname == -1 || optname == IPV6_NEXTHOP) {
2193 		if (pktopt->ip6po_nextroute.ro_rt) {
2194 			RTFREE(pktopt->ip6po_nextroute.ro_rt);
2195 			pktopt->ip6po_nextroute.ro_rt = NULL;
2196 		}
2197 		if (pktopt->ip6po_nexthop)
2198 			free(pktopt->ip6po_nexthop, M_IP6OPT);
2199 		pktopt->ip6po_nexthop = NULL;
2200 	}
2201 	if (optname == -1 || optname == IPV6_HOPOPTS) {
2202 		if (pktopt->ip6po_hbh)
2203 			free(pktopt->ip6po_hbh, M_IP6OPT);
2204 		pktopt->ip6po_hbh = NULL;
2205 	}
2206 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2207 		if (pktopt->ip6po_dest1)
2208 			free(pktopt->ip6po_dest1, M_IP6OPT);
2209 		pktopt->ip6po_dest1 = NULL;
2210 	}
2211 	if (optname == -1 || optname == IPV6_RTHDR) {
2212 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2213 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2214 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2215 		if (pktopt->ip6po_route.ro_rt) {
2216 			RTFREE(pktopt->ip6po_route.ro_rt);
2217 			pktopt->ip6po_route.ro_rt = NULL;
2218 		}
2219 	}
2220 	if (optname == -1 || optname == IPV6_DSTOPTS) {
2221 		if (pktopt->ip6po_dest2)
2222 			free(pktopt->ip6po_dest2, M_IP6OPT);
2223 		pktopt->ip6po_dest2 = NULL;
2224 	}
2225 }
2226 
2227 #define PKTOPT_EXTHDRCPY(type) \
2228 do {\
2229 	if (src->type) {\
2230 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2231 		dst->type = malloc(hlen, M_IP6OPT, canwait);\
2232 		if (dst->type == NULL && canwait == M_NOWAIT)\
2233 			goto bad;\
2234 		bcopy(src->type, dst->type, hlen);\
2235 	}\
2236 } while (/*CONSTCOND*/ 0)
2237 
2238 static int
2239 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2240 {
2241 	dst->ip6po_hlim = src->ip6po_hlim;
2242 	dst->ip6po_tclass = src->ip6po_tclass;
2243 	dst->ip6po_flags = src->ip6po_flags;
2244 	if (src->ip6po_pktinfo) {
2245 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2246 		    M_IP6OPT, canwait);
2247 		if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT)
2248 			goto bad;
2249 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2250 	}
2251 	if (src->ip6po_nexthop) {
2252 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2253 		    M_IP6OPT, canwait);
2254 		if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT)
2255 			goto bad;
2256 		bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
2257 		    src->ip6po_nexthop->sa_len);
2258 	}
2259 	PKTOPT_EXTHDRCPY(ip6po_hbh);
2260 	PKTOPT_EXTHDRCPY(ip6po_dest1);
2261 	PKTOPT_EXTHDRCPY(ip6po_dest2);
2262 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2263 	return (0);
2264 
2265   bad:
2266 	ip6_clearpktopts(dst, -1);
2267 	return (ENOBUFS);
2268 }
2269 #undef PKTOPT_EXTHDRCPY
2270 
2271 void
2272 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2273 {
2274 	if (pktopt == NULL)
2275 		return;
2276 
2277 	ip6_clearpktopts(pktopt, -1);
2278 
2279 	free(pktopt, M_IP6OPT);
2280 }
2281 
2282 /*
2283  * Set the IP6 multicast options in response to user setsockopt().
2284  */
2285 static int
2286 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m)
2287 {
2288 	int error = 0;
2289 	u_int loop, ifindex;
2290 	struct ipv6_mreq *mreq;
2291 	struct ifnet *ifp;
2292 	struct ip6_moptions *im6o = *im6op;
2293 	struct route_in6 ro;
2294 	struct sockaddr_in6 *dst;
2295 	struct in6_multi_mship *imm;
2296 	struct proc *p = curproc;	/* XXX */
2297 
2298 	if (im6o == NULL) {
2299 		/*
2300 		 * No multicast option buffer attached to the pcb;
2301 		 * allocate one and initialize to default values.
2302 		 */
2303 		im6o = (struct ip6_moptions *)
2304 			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
2305 
2306 		if (im6o == NULL)
2307 			return (ENOBUFS);
2308 		*im6op = im6o;
2309 		im6o->im6o_multicast_ifp = NULL;
2310 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2311 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2312 		LIST_INIT(&im6o->im6o_memberships);
2313 	}
2314 
2315 	switch (optname) {
2316 
2317 	case IPV6_MULTICAST_IF:
2318 		/*
2319 		 * Select the interface for outgoing multicast packets.
2320 		 */
2321 		if (m == NULL || m->m_len != sizeof(u_int)) {
2322 			error = EINVAL;
2323 			break;
2324 		}
2325 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
2326 		if (ifindex == 0)
2327 			ifp = NULL;
2328 		else {
2329 			if (ifindex < 0 || if_indexlim <= ifindex ||
2330 			    !ifindex2ifnet[ifindex]) {
2331 				error = ENXIO;	/* XXX EINVAL? */
2332 				break;
2333 			}
2334 			ifp = ifindex2ifnet[ifindex];
2335 			if (ifp == NULL ||
2336 			    (ifp->if_flags & IFF_MULTICAST) == 0) {
2337 				error = EADDRNOTAVAIL;
2338 				break;
2339 			}
2340 		}
2341 		im6o->im6o_multicast_ifp = ifp;
2342 		break;
2343 
2344 	case IPV6_MULTICAST_HOPS:
2345 	    {
2346 		/*
2347 		 * Set the IP6 hoplimit for outgoing multicast packets.
2348 		 */
2349 		int optval;
2350 		if (m == NULL || m->m_len != sizeof(int)) {
2351 			error = EINVAL;
2352 			break;
2353 		}
2354 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
2355 		if (optval < -1 || optval >= 256)
2356 			error = EINVAL;
2357 		else if (optval == -1)
2358 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2359 		else
2360 			im6o->im6o_multicast_hlim = optval;
2361 		break;
2362 	    }
2363 
2364 	case IPV6_MULTICAST_LOOP:
2365 		/*
2366 		 * Set the loopback flag for outgoing multicast packets.
2367 		 * Must be zero or one.
2368 		 */
2369 		if (m == NULL || m->m_len != sizeof(u_int)) {
2370 			error = EINVAL;
2371 			break;
2372 		}
2373 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
2374 		if (loop > 1) {
2375 			error = EINVAL;
2376 			break;
2377 		}
2378 		im6o->im6o_multicast_loop = loop;
2379 		break;
2380 
2381 	case IPV6_JOIN_GROUP:
2382 		/*
2383 		 * Add a multicast group membership.
2384 		 * Group must be a valid IP6 multicast address.
2385 		 */
2386 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2387 			error = EINVAL;
2388 			break;
2389 		}
2390 		mreq = mtod(m, struct ipv6_mreq *);
2391 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2392 			/*
2393 			 * We use the unspecified address to specify to accept
2394 			 * all multicast addresses. Only super user is allowed
2395 			 * to do this.
2396 			 */
2397 			if (suser(p, 0))
2398 			{
2399 				error = EACCES;
2400 				break;
2401 			}
2402 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2403 			error = EINVAL;
2404 			break;
2405 		}
2406 
2407 		/*
2408 		 * If no interface was explicitly specified, choose an
2409 		 * appropriate one according to the given multicast address.
2410 		 */
2411 		if (mreq->ipv6mr_interface == 0) {
2412 			/*
2413 			 * Look up the routing table for the
2414 			 * address, and choose the outgoing interface.
2415 			 *   XXX: is it a good approach?
2416 			 */
2417 			ro.ro_rt = NULL;
2418 			dst = (struct sockaddr_in6 *)&ro.ro_dst;
2419 			bzero(dst, sizeof(*dst));
2420 			dst->sin6_len = sizeof(struct sockaddr_in6);
2421 			dst->sin6_family = AF_INET6;
2422 			dst->sin6_addr = mreq->ipv6mr_multiaddr;
2423 			rtalloc((struct route *)&ro);
2424 			if (ro.ro_rt == NULL) {
2425 				error = EADDRNOTAVAIL;
2426 				break;
2427 			}
2428 			ifp = ro.ro_rt->rt_ifp;
2429 			rtfree(ro.ro_rt);
2430 		} else {
2431 			/*
2432 			 * If the interface is specified, validate it.
2433 			 */
2434 			if (mreq->ipv6mr_interface < 0 ||
2435 			    if_indexlim <= mreq->ipv6mr_interface ||
2436 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
2437 				error = ENXIO;	/* XXX EINVAL? */
2438 				break;
2439 			}
2440 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2441 		}
2442 
2443 		/*
2444 		 * See if we found an interface, and confirm that it
2445 		 * supports multicast
2446 		 */
2447 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2448 			error = EADDRNOTAVAIL;
2449 			break;
2450 		}
2451 		/*
2452 		 * Put interface index into the multicast address,
2453 		 * if the address has link/interface-local scope.
2454 		 */
2455 		if (IN6_IS_SCOPE_EMBED(&mreq->ipv6mr_multiaddr)) {
2456 			mreq->ipv6mr_multiaddr.s6_addr16[1] =
2457 			    htons(ifp->if_index);
2458 		}
2459 		/*
2460 		 * See if the membership already exists.
2461 		 */
2462 		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain)
2463 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
2464 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2465 			    &mreq->ipv6mr_multiaddr))
2466 				break;
2467 		if (imm != NULL) {
2468 			error = EADDRINUSE;
2469 			break;
2470 		}
2471 		/*
2472 		 * Everything looks good; add a new record to the multicast
2473 		 * address list for the given interface.
2474 		 */
2475 		imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
2476 		if (!imm)
2477 			break;
2478 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2479 		break;
2480 
2481 	case IPV6_LEAVE_GROUP:
2482 		/*
2483 		 * Drop a multicast group membership.
2484 		 * Group must be a valid IP6 multicast address.
2485 		 */
2486 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2487 			error = EINVAL;
2488 			break;
2489 		}
2490 		mreq = mtod(m, struct ipv6_mreq *);
2491 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2492 			if (suser(p, 0))
2493 			{
2494 				error = EACCES;
2495 				break;
2496 			}
2497 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2498 			error = EINVAL;
2499 			break;
2500 		}
2501 		/*
2502 		 * If an interface address was specified, get a pointer
2503 		 * to its ifnet structure.
2504 		 */
2505 		if (mreq->ipv6mr_interface == 0)
2506 			ifp = NULL;
2507 		else {
2508 			if (mreq->ipv6mr_interface < 0 ||
2509 			    if_indexlim <= mreq->ipv6mr_interface ||
2510 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
2511 				error = ENXIO;	/* XXX EINVAL? */
2512 				break;
2513 			}
2514 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2515 		}
2516 
2517 		/*
2518 		 * Put interface index into the multicast address,
2519 		 * if the address has link-local scope.
2520 		 */
2521 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2522 			mreq->ipv6mr_multiaddr.s6_addr16[1] =
2523 			    htons(mreq->ipv6mr_interface);
2524 		}
2525 		/*
2526 		 * Find the membership in the membership list.
2527 		 */
2528 		LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) {
2529 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2530 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2531 			    &mreq->ipv6mr_multiaddr))
2532 				break;
2533 		}
2534 		if (imm == NULL) {
2535 			/* Unable to resolve interface */
2536 			error = EADDRNOTAVAIL;
2537 			break;
2538 		}
2539 		/*
2540 		 * Give up the multicast address record to which the
2541 		 * membership points.
2542 		 */
2543 		LIST_REMOVE(imm, i6mm_chain);
2544 		in6_leavegroup(imm);
2545 		break;
2546 
2547 	default:
2548 		error = EOPNOTSUPP;
2549 		break;
2550 	}
2551 
2552 	/*
2553 	 * If all options have default values, no need to keep the option
2554 	 * structure.
2555 	 */
2556 	if (im6o->im6o_multicast_ifp == NULL &&
2557 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2558 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2559 	    LIST_EMPTY(&im6o->im6o_memberships)) {
2560 		free(*im6op, M_IPMOPTS);
2561 		*im6op = NULL;
2562 	}
2563 
2564 	return (error);
2565 }
2566 
2567 /*
2568  * Return the IP6 multicast options in response to user getsockopt().
2569  */
2570 static int
2571 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp)
2572 {
2573 	u_int *hlim, *loop, *ifindex;
2574 
2575 	*mp = m_get(M_WAIT, MT_SOOPTS);
2576 
2577 	switch (optname) {
2578 
2579 	case IPV6_MULTICAST_IF:
2580 		ifindex = mtod(*mp, u_int *);
2581 		(*mp)->m_len = sizeof(u_int);
2582 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2583 			*ifindex = 0;
2584 		else
2585 			*ifindex = im6o->im6o_multicast_ifp->if_index;
2586 		return (0);
2587 
2588 	case IPV6_MULTICAST_HOPS:
2589 		hlim = mtod(*mp, u_int *);
2590 		(*mp)->m_len = sizeof(u_int);
2591 		if (im6o == NULL)
2592 			*hlim = ip6_defmcasthlim;
2593 		else
2594 			*hlim = im6o->im6o_multicast_hlim;
2595 		return (0);
2596 
2597 	case IPV6_MULTICAST_LOOP:
2598 		loop = mtod(*mp, u_int *);
2599 		(*mp)->m_len = sizeof(u_int);
2600 		if (im6o == NULL)
2601 			*loop = ip6_defmcasthlim;
2602 		else
2603 			*loop = im6o->im6o_multicast_loop;
2604 		return (0);
2605 
2606 	default:
2607 		return (EOPNOTSUPP);
2608 	}
2609 }
2610 
2611 /*
2612  * Discard the IP6 multicast options.
2613  */
2614 void
2615 ip6_freemoptions(struct ip6_moptions *im6o)
2616 {
2617 	struct in6_multi_mship *imm;
2618 
2619 	if (im6o == NULL)
2620 		return;
2621 
2622 	while (!LIST_EMPTY(&im6o->im6o_memberships)) {
2623 		imm = LIST_FIRST(&im6o->im6o_memberships);
2624 		LIST_REMOVE(imm, i6mm_chain);
2625 		in6_leavegroup(imm);
2626 	}
2627 	free(im6o, M_IPMOPTS);
2628 }
2629 
2630 /*
2631  * Set IPv6 outgoing packet options based on advanced API.
2632  */
2633 int
2634 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
2635 	struct ip6_pktopts *stickyopt, int priv, int uproto)
2636 {
2637 	u_int clen;
2638 	struct cmsghdr *cm = 0;
2639 	caddr_t cmsgs;
2640 	int error;
2641 
2642 	if (control == NULL || opt == NULL)
2643 		return (EINVAL);
2644 
2645 	ip6_initpktopts(opt);
2646 	if (stickyopt) {
2647 		int error;
2648 
2649 		/*
2650 		 * If stickyopt is provided, make a local copy of the options
2651 		 * for this particular packet, then override them by ancillary
2652 		 * objects.
2653 		 * XXX: copypktopts() does not copy the cached route to a next
2654 		 * hop (if any).  This is not very good in terms of efficiency,
2655 		 * but we can allow this since this option should be rarely
2656 		 * used.
2657 		 */
2658 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2659 			return (error);
2660 	}
2661 
2662 	/*
2663 	 * XXX: Currently, we assume all the optional information is stored
2664 	 * in a single mbuf.
2665 	 */
2666 	if (control->m_next)
2667 		return (EINVAL);
2668 
2669 	clen = control->m_len;
2670 	cmsgs = mtod(control, caddr_t);
2671 	do {
2672 		if (clen < CMSG_LEN(0))
2673 			return (EINVAL);
2674 		cm = (struct cmsghdr *)cmsgs;
2675 		if (cm->cmsg_len < CMSG_LEN(0) ||
2676 		    CMSG_ALIGN(cm->cmsg_len) > clen)
2677 			return (EINVAL);
2678 		if (cm->cmsg_level == IPPROTO_IPV6) {
2679 			error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2680 			    cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto);
2681 			if (error)
2682 				return (error);
2683 		}
2684 
2685 		clen -= CMSG_ALIGN(cm->cmsg_len);
2686 		cmsgs += CMSG_ALIGN(cm->cmsg_len);
2687 	} while (clen);
2688 
2689 	return (0);
2690 }
2691 
2692 /*
2693  * Set a particular packet option, as a sticky option or an ancillary data
2694  * item.  "len" can be 0 only when it's a sticky option.
2695  * We have 4 cases of combination of "sticky" and "cmsg":
2696  * "sticky=0, cmsg=0": impossible
2697  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2698  * "sticky=1, cmsg=0": RFC3542 socket option
2699  * "sticky=1, cmsg=1": RFC2292 socket option
2700  */
2701 static int
2702 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2703 	int priv, int sticky, int cmsg, int uproto)
2704 {
2705 	int minmtupolicy;
2706 
2707 	if (!sticky && !cmsg) {
2708 #ifdef DIAGNOSTIC
2709 		printf("ip6_setpktopt: impossible case\n");
2710 #endif
2711 		return (EINVAL);
2712 	}
2713 
2714 	/*
2715 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2716 	 * not be specified in the context of RFC3542.  Conversely,
2717 	 * RFC3542 types should not be specified in the context of RFC2292.
2718 	 */
2719 	if (!cmsg) {
2720 		switch (optname) {
2721 		case IPV6_2292PKTINFO:
2722 		case IPV6_2292HOPLIMIT:
2723 		case IPV6_2292NEXTHOP:
2724 		case IPV6_2292HOPOPTS:
2725 		case IPV6_2292DSTOPTS:
2726 		case IPV6_2292RTHDR:
2727 		case IPV6_2292PKTOPTIONS:
2728 			return (ENOPROTOOPT);
2729 		}
2730 	}
2731 	if (sticky && cmsg) {
2732 		switch (optname) {
2733 		case IPV6_PKTINFO:
2734 		case IPV6_HOPLIMIT:
2735 		case IPV6_NEXTHOP:
2736 		case IPV6_HOPOPTS:
2737 		case IPV6_DSTOPTS:
2738 		case IPV6_RTHDRDSTOPTS:
2739 		case IPV6_RTHDR:
2740 		case IPV6_USE_MIN_MTU:
2741 		case IPV6_DONTFRAG:
2742 		case IPV6_TCLASS:
2743 			return (ENOPROTOOPT);
2744 		}
2745 	}
2746 
2747 	switch (optname) {
2748 	case IPV6_2292PKTINFO:
2749 	case IPV6_PKTINFO:
2750 	{
2751 		struct ifnet *ifp = NULL;
2752 		struct in6_pktinfo *pktinfo;
2753 
2754 		if (len != sizeof(struct in6_pktinfo))
2755 			return (EINVAL);
2756 
2757 		pktinfo = (struct in6_pktinfo *)buf;
2758 
2759 		/*
2760 		 * An application can clear any sticky IPV6_PKTINFO option by
2761 		 * doing a "regular" setsockopt with ipi6_addr being
2762 		 * in6addr_any and ipi6_ifindex being zero.
2763 		 * [RFC 3542, Section 6]
2764 		 */
2765 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2766 		    pktinfo->ipi6_ifindex == 0 &&
2767 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2768 			ip6_clearpktopts(opt, optname);
2769 			break;
2770 		}
2771 
2772 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2773 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2774 			return (EINVAL);
2775 		}
2776 
2777 		/* validate the interface index if specified. */
2778 		if (pktinfo->ipi6_ifindex >= if_indexlim ||
2779 		    pktinfo->ipi6_ifindex < 0) {
2780 			 return (ENXIO);
2781 		}
2782 		if (pktinfo->ipi6_ifindex) {
2783 			ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
2784 			if (ifp == NULL)
2785 				return (ENXIO);
2786 		}
2787 
2788 		/*
2789 		 * We store the address anyway, and let in6_selectsrc()
2790 		 * validate the specified address.  This is because ipi6_addr
2791 		 * may not have enough information about its scope zone, and
2792 		 * we may need additional information (such as outgoing
2793 		 * interface or the scope zone of a destination address) to
2794 		 * disambiguate the scope.
2795 		 * XXX: the delay of the validation may confuse the
2796 		 * application when it is used as a sticky option.
2797 		 */
2798 		if (opt->ip6po_pktinfo == NULL) {
2799 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2800 			    M_IP6OPT, M_NOWAIT);
2801 			if (opt->ip6po_pktinfo == NULL)
2802 				return (ENOBUFS);
2803 		}
2804 		bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
2805 		break;
2806 	}
2807 
2808 	case IPV6_2292HOPLIMIT:
2809 	case IPV6_HOPLIMIT:
2810 	{
2811 		int *hlimp;
2812 
2813 		/*
2814 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2815 		 * to simplify the ordering among hoplimit options.
2816 		 */
2817 		if (optname == IPV6_HOPLIMIT && sticky)
2818 			return (ENOPROTOOPT);
2819 
2820 		if (len != sizeof(int))
2821 			return (EINVAL);
2822 		hlimp = (int *)buf;
2823 		if (*hlimp < -1 || *hlimp > 255)
2824 			return (EINVAL);
2825 
2826 		opt->ip6po_hlim = *hlimp;
2827 		break;
2828 	}
2829 
2830 	case IPV6_TCLASS:
2831 	{
2832 		int tclass;
2833 
2834 		if (len != sizeof(int))
2835 			return (EINVAL);
2836 		tclass = *(int *)buf;
2837 		if (tclass < -1 || tclass > 255)
2838 			return (EINVAL);
2839 
2840 		opt->ip6po_tclass = tclass;
2841 		break;
2842 	}
2843 
2844 	case IPV6_2292NEXTHOP:
2845 	case IPV6_NEXTHOP:
2846 		if (!priv)
2847 			return (EPERM);
2848 
2849 		if (len == 0) {	/* just remove the option */
2850 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
2851 			break;
2852 		}
2853 
2854 		/* check if cmsg_len is large enough for sa_len */
2855 		if (len < sizeof(struct sockaddr) || len < *buf)
2856 			return (EINVAL);
2857 
2858 		switch (((struct sockaddr *)buf)->sa_family) {
2859 		case AF_INET6:
2860 		{
2861 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
2862 
2863 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
2864 				return (EINVAL);
2865 
2866 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
2867 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
2868 				return (EINVAL);
2869 			}
2870 			if (IN6_IS_SCOPE_EMBED(&sa6->sin6_addr)) {
2871 				if (sa6->sin6_scope_id < 0 ||
2872 				    if_indexlim <= sa6->sin6_scope_id ||
2873 				    !ifindex2ifnet[sa6->sin6_scope_id])
2874 					return (EINVAL);
2875 				sa6->sin6_addr.s6_addr16[1] =
2876 				    htonl(sa6->sin6_scope_id);
2877 			} else if (sa6->sin6_scope_id)
2878 				return (EINVAL);
2879 			break;
2880 		}
2881 		case AF_LINK:	/* eventually be supported? */
2882 		default:
2883 			return (EAFNOSUPPORT);
2884 		}
2885 
2886 		/* turn off the previous option, then set the new option. */
2887 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
2888 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
2889 		if (opt->ip6po_nexthop == NULL)
2890 			return (ENOBUFS);
2891 		bcopy(buf, opt->ip6po_nexthop, *buf);
2892 		break;
2893 
2894 	case IPV6_2292HOPOPTS:
2895 	case IPV6_HOPOPTS:
2896 	{
2897 		struct ip6_hbh *hbh;
2898 		int hbhlen;
2899 
2900 		/*
2901 		 * XXX: We don't allow a non-privileged user to set ANY HbH
2902 		 * options, since per-option restriction has too much
2903 		 * overhead.
2904 		 */
2905 		if (!priv)
2906 			return (EPERM);
2907 
2908 		if (len == 0) {
2909 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
2910 			break;	/* just remove the option */
2911 		}
2912 
2913 		/* message length validation */
2914 		if (len < sizeof(struct ip6_hbh))
2915 			return (EINVAL);
2916 		hbh = (struct ip6_hbh *)buf;
2917 		hbhlen = (hbh->ip6h_len + 1) << 3;
2918 		if (len != hbhlen)
2919 			return (EINVAL);
2920 
2921 		/* turn off the previous option, then set the new option. */
2922 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
2923 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
2924 		if (opt->ip6po_hbh == NULL)
2925 			return (ENOBUFS);
2926 		bcopy(hbh, opt->ip6po_hbh, hbhlen);
2927 
2928 		break;
2929 	}
2930 
2931 	case IPV6_2292DSTOPTS:
2932 	case IPV6_DSTOPTS:
2933 	case IPV6_RTHDRDSTOPTS:
2934 	{
2935 		struct ip6_dest *dest, **newdest = NULL;
2936 		int destlen;
2937 
2938 		if (!priv)	/* XXX: see the comment for IPV6_HOPOPTS */
2939 			return (EPERM);
2940 
2941 		if (len == 0) {
2942 			ip6_clearpktopts(opt, optname);
2943 			break;	/* just remove the option */
2944 		}
2945 
2946 		/* message length validation */
2947 		if (len < sizeof(struct ip6_dest))
2948 			return (EINVAL);
2949 		dest = (struct ip6_dest *)buf;
2950 		destlen = (dest->ip6d_len + 1) << 3;
2951 		if (len != destlen)
2952 			return (EINVAL);
2953 		/*
2954 		 * Determine the position that the destination options header
2955 		 * should be inserted; before or after the routing header.
2956 		 */
2957 		switch (optname) {
2958 		case IPV6_2292DSTOPTS:
2959 			/*
2960 			 * The old advanced API is ambiguous on this point.
2961 			 * Our approach is to determine the position based
2962 			 * according to the existence of a routing header.
2963 			 * Note, however, that this depends on the order of the
2964 			 * extension headers in the ancillary data; the 1st
2965 			 * part of the destination options header must appear
2966 			 * before the routing header in the ancillary data,
2967 			 * too.
2968 			 * RFC3542 solved the ambiguity by introducing
2969 			 * separate ancillary data or option types.
2970 			 */
2971 			if (opt->ip6po_rthdr == NULL)
2972 				newdest = &opt->ip6po_dest1;
2973 			else
2974 				newdest = &opt->ip6po_dest2;
2975 			break;
2976 		case IPV6_RTHDRDSTOPTS:
2977 			newdest = &opt->ip6po_dest1;
2978 			break;
2979 		case IPV6_DSTOPTS:
2980 			newdest = &opt->ip6po_dest2;
2981 			break;
2982 		}
2983 
2984 		/* turn off the previous option, then set the new option. */
2985 		ip6_clearpktopts(opt, optname);
2986 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
2987 		if (*newdest == NULL)
2988 			return (ENOBUFS);
2989 		bcopy(dest, *newdest, destlen);
2990 
2991 		break;
2992 	}
2993 
2994 	case IPV6_2292RTHDR:
2995 	case IPV6_RTHDR:
2996 	{
2997 		struct ip6_rthdr *rth;
2998 		int rthlen;
2999 
3000 		if (len == 0) {
3001 			ip6_clearpktopts(opt, IPV6_RTHDR);
3002 			break;	/* just remove the option */
3003 		}
3004 
3005 		/* message length validation */
3006 		if (len < sizeof(struct ip6_rthdr))
3007 			return (EINVAL);
3008 		rth = (struct ip6_rthdr *)buf;
3009 		rthlen = (rth->ip6r_len + 1) << 3;
3010 		if (len != rthlen)
3011 			return (EINVAL);
3012 
3013 		switch (rth->ip6r_type) {
3014 		case IPV6_RTHDR_TYPE_0:
3015 			if (rth->ip6r_len == 0)	/* must contain one addr */
3016 				return (EINVAL);
3017 			if (rth->ip6r_len % 2) /* length must be even */
3018 				return (EINVAL);
3019 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3020 				return (EINVAL);
3021 			break;
3022 		default:
3023 			return (EINVAL);	/* not supported */
3024 		}
3025 		/* turn off the previous option */
3026 		ip6_clearpktopts(opt, IPV6_RTHDR);
3027 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3028 		if (opt->ip6po_rthdr == NULL)
3029 			return (ENOBUFS);
3030 		bcopy(rth, opt->ip6po_rthdr, rthlen);
3031 		break;
3032 	}
3033 
3034 	case IPV6_USE_MIN_MTU:
3035 		if (len != sizeof(int))
3036 			return (EINVAL);
3037 		minmtupolicy = *(int *)buf;
3038 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3039 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
3040 		    minmtupolicy != IP6PO_MINMTU_ALL) {
3041 			return (EINVAL);
3042 		}
3043 		opt->ip6po_minmtu = minmtupolicy;
3044 		break;
3045 
3046 	case IPV6_DONTFRAG:
3047 		if (len != sizeof(int))
3048 			return (EINVAL);
3049 
3050 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3051 			/*
3052 			 * we ignore this option for TCP sockets.
3053 			 * (RFC3542 leaves this case unspecified.)
3054 			 */
3055 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3056 		} else
3057 			opt->ip6po_flags |= IP6PO_DONTFRAG;
3058 		break;
3059 
3060 	default:
3061 		return (ENOPROTOOPT);
3062 	} /* end of switch */
3063 
3064 	return (0);
3065 }
3066 
3067 /*
3068  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3069  * packet to the input queue of a specified interface.  Note that this
3070  * calls the output routine of the loopback "driver", but with an interface
3071  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3072  */
3073 void
3074 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst)
3075 {
3076 	struct mbuf *copym;
3077 	struct ip6_hdr *ip6;
3078 
3079 	/*
3080 	 * Duplicate the packet.
3081 	 */
3082 	copym = m_copy(m, 0, M_COPYALL);
3083 	if (copym == NULL)
3084 		return;
3085 
3086 	/*
3087 	 * Make sure to deep-copy IPv6 header portion in case the data
3088 	 * is in an mbuf cluster, so that we can safely override the IPv6
3089 	 * header portion later.
3090 	 */
3091 	if ((copym->m_flags & M_EXT) != 0 ||
3092 	    copym->m_len < sizeof(struct ip6_hdr)) {
3093 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
3094 		if (copym == NULL)
3095 			return;
3096 	}
3097 
3098 #ifdef DIAGNOSTIC
3099 	if (copym->m_len < sizeof(*ip6)) {
3100 		m_freem(copym);
3101 		return;
3102 	}
3103 #endif
3104 
3105 	ip6 = mtod(copym, struct ip6_hdr *);
3106 	if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src))
3107 		ip6->ip6_src.s6_addr16[1] = 0;
3108 	if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
3109 		ip6->ip6_dst.s6_addr16[1] = 0;
3110 
3111 	(void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
3112 }
3113 
3114 /*
3115  * Chop IPv6 header off from the payload.
3116  */
3117 static int
3118 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
3119 {
3120 	struct mbuf *mh;
3121 	struct ip6_hdr *ip6;
3122 
3123 	ip6 = mtod(m, struct ip6_hdr *);
3124 	if (m->m_len > sizeof(*ip6)) {
3125 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3126 		if (mh == 0) {
3127 			m_freem(m);
3128 			return ENOBUFS;
3129 		}
3130 		M_MOVE_PKTHDR(mh, m);
3131 		MH_ALIGN(mh, sizeof(*ip6));
3132 		m->m_len -= sizeof(*ip6);
3133 		m->m_data += sizeof(*ip6);
3134 		mh->m_next = m;
3135 		m = mh;
3136 		m->m_len = sizeof(*ip6);
3137 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3138 	}
3139 	exthdrs->ip6e_ip6 = m;
3140 	return 0;
3141 }
3142 
3143 /*
3144  * Compute IPv6 extension header length.
3145  */
3146 int
3147 ip6_optlen(struct inpcb *inp)
3148 {
3149 	int len;
3150 
3151 	if (!inp->inp_outputopts6)
3152 		return 0;
3153 
3154 	len = 0;
3155 #define elen(x) \
3156     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3157 
3158 	len += elen(inp->inp_outputopts6->ip6po_hbh);
3159 	len += elen(inp->inp_outputopts6->ip6po_dest1);
3160 	len += elen(inp->inp_outputopts6->ip6po_rthdr);
3161 	len += elen(inp->inp_outputopts6->ip6po_dest2);
3162 	return len;
3163 #undef elen
3164 }
3165 
3166 u_int32_t
3167 ip6_randomid(void)
3168 {
3169 	return idgen32(&ip6_id_ctx);
3170 }
3171 
3172 void
3173 ip6_randomid_init(void)
3174 {
3175 	idgen32_init(&ip6_id_ctx);
3176 }
3177 
3178