1 /* $OpenBSD: ip6_output.c,v 1.157 2014/07/12 18:44:23 tedu Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include "pf.h" 65 66 #include <sys/param.h> 67 #include <sys/malloc.h> 68 #include <sys/mbuf.h> 69 #include <sys/errno.h> 70 #include <sys/protosw.h> 71 #include <sys/socket.h> 72 #include <sys/socketvar.h> 73 #include <sys/proc.h> 74 #include <sys/systm.h> 75 76 #include <net/if.h> 77 #include <net/if_enc.h> 78 #include <net/route.h> 79 80 #include <netinet/in.h> 81 #include <netinet/in_systm.h> 82 #include <netinet/ip.h> 83 #include <netinet/in_pcb.h> 84 #include <netinet/udp.h> 85 #include <netinet/tcp.h> 86 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp_timer.h> 89 #include <netinet/tcp_var.h> 90 #include <netinet/udp_var.h> 91 92 #include <netinet6/in6_var.h> 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/ip6protosw.h> 98 99 #include <crypto/idgen.h> 100 101 #if NPF > 0 102 #include <net/pfvar.h> 103 #endif 104 105 #ifdef IPSEC 106 #include <netinet/ip_ipsp.h> 107 #include <netinet/ip_ah.h> 108 #include <netinet/ip_esp.h> 109 #include <net/pfkeyv2.h> 110 #endif /* IPSEC */ 111 112 struct ip6_exthdrs { 113 struct mbuf *ip6e_ip6; 114 struct mbuf *ip6e_hbh; 115 struct mbuf *ip6e_dest1; 116 struct mbuf *ip6e_rthdr; 117 struct mbuf *ip6e_dest2; 118 }; 119 120 int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, int, int); 121 int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, struct socket *); 122 int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf **); 123 int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int, int, 124 int, int); 125 int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *); 126 int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf **); 127 int ip6_copyexthdr(struct mbuf **, caddr_t, int); 128 int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 129 struct ip6_frag **); 130 int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 131 int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 132 int ip6_getpmtu(struct route_in6 *, struct route_in6 *, 133 struct ifnet *, struct in6_addr *, u_long *, int *); 134 int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 135 static __inline u_int16_t __attribute__((__unused__)) 136 in6_cksum_phdr(const struct in6_addr *, const struct in6_addr *, 137 u_int32_t, u_int32_t); 138 void in6_delayed_cksum(struct mbuf *, u_int8_t); 139 140 /* Context for non-repeating IDs */ 141 struct idgen32_ctx ip6_id_ctx; 142 143 /* 144 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 145 * header (with pri, len, nxt, hlim, src, dst). 146 * This function may modify ver and hlim only. 147 * The mbuf chain containing the packet will be freed. 148 * The mbuf opt, if present, will not be freed. 149 * 150 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 151 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 152 * which is rt_rmx.rmx_mtu. 153 * 154 * ifpp - XXX: just for statistics 155 */ 156 int 157 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro, 158 int flags, struct ip6_moptions *im6o, struct ifnet **ifpp, 159 struct inpcb *inp) 160 { 161 struct ip6_hdr *ip6; 162 struct ifnet *ifp, *origifp = NULL; 163 struct mbuf *m = m0; 164 int hlen, tlen; 165 struct route_in6 ip6route; 166 struct rtentry *rt = NULL; 167 struct sockaddr_in6 *dst, dstsock; 168 int error = 0; 169 struct in6_ifaddr *ia6 = NULL; 170 u_long mtu; 171 int alwaysfrag, dontfrag; 172 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 173 struct ip6_exthdrs exthdrs; 174 struct in6_addr finaldst; 175 struct route_in6 *ro_pmtu = NULL; 176 int hdrsplit = 0; 177 u_int8_t sproto = 0; 178 #ifdef IPSEC 179 struct m_tag *mtag; 180 union sockaddr_union sdst; 181 struct tdb_ident *tdbi; 182 u_int32_t sspi; 183 struct tdb *tdb; 184 #if NPF > 0 185 struct ifnet *encif; 186 #endif 187 #endif /* IPSEC */ 188 189 #ifdef IPSEC 190 if (inp && (inp->inp_flags & INP_IPV6) == 0) 191 panic("ip6_output: IPv4 pcb is passed"); 192 #endif /* IPSEC */ 193 194 ip6 = mtod(m, struct ip6_hdr *); 195 finaldst = ip6->ip6_dst; 196 197 #define MAKE_EXTHDR(hp, mp) \ 198 do { \ 199 if (hp) { \ 200 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 201 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 202 ((eh)->ip6e_len + 1) << 3); \ 203 if (error) \ 204 goto freehdrs; \ 205 } \ 206 } while (0) 207 208 bzero(&exthdrs, sizeof(exthdrs)); 209 210 if (opt) { 211 /* Hop-by-Hop options header */ 212 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 213 /* Destination options header(1st part) */ 214 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 215 /* Routing header */ 216 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 217 /* Destination options header(2nd part) */ 218 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 219 } 220 221 #ifdef IPSEC 222 if (!ipsec_in_use && !inp) 223 goto done_spd; 224 225 /* 226 * Check if there was an outgoing SA bound to the flow 227 * from a transport protocol. 228 */ 229 ip6 = mtod(m, struct ip6_hdr *); 230 231 /* Do we have any pending SAs to apply ? */ 232 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL); 233 if (mtag != NULL) { 234 #ifdef DIAGNOSTIC 235 if (mtag->m_tag_len != sizeof (struct tdb_ident)) 236 panic("ip6_output: tag of length %hu (should be %zu", 237 mtag->m_tag_len, sizeof (struct tdb_ident)); 238 #endif 239 tdbi = (struct tdb_ident *)(mtag + 1); 240 tdb = gettdb(tdbi->rdomain, tdbi->spi, &tdbi->dst, tdbi->proto); 241 if (tdb == NULL) 242 error = -EINVAL; 243 m_tag_delete(m, mtag); 244 } else 245 tdb = ipsp_spd_lookup(m, AF_INET6, sizeof(struct ip6_hdr), 246 &error, IPSP_DIRECTION_OUT, NULL, inp, 0); 247 248 if (tdb == NULL) { 249 if (error == 0) { 250 /* 251 * No IPsec processing required, we'll just send the 252 * packet out. 253 */ 254 sproto = 0; 255 256 /* Fall through to routing/multicast handling */ 257 } else { 258 /* 259 * -EINVAL is used to indicate that the packet should 260 * be silently dropped, typically because we've asked 261 * key management for an SA. 262 */ 263 if (error == -EINVAL) /* Should silently drop packet */ 264 error = 0; 265 266 goto freehdrs; 267 } 268 } else { 269 /* Loop detection */ 270 for (mtag = m_tag_first(m); mtag != NULL; 271 mtag = m_tag_next(m, mtag)) { 272 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE && 273 mtag->m_tag_id != 274 PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED) 275 continue; 276 tdbi = (struct tdb_ident *)(mtag + 1); 277 if (tdbi->spi == tdb->tdb_spi && 278 tdbi->proto == tdb->tdb_sproto && 279 tdbi->rdomain == tdb->tdb_rdomain && 280 !bcmp(&tdbi->dst, &tdb->tdb_dst, 281 sizeof(union sockaddr_union))) { 282 sproto = 0; /* mark as no-IPsec-needed */ 283 goto done_spd; 284 } 285 } 286 287 /* We need to do IPsec */ 288 bcopy(&tdb->tdb_dst, &sdst, sizeof(sdst)); 289 sspi = tdb->tdb_spi; 290 sproto = tdb->tdb_sproto; 291 } 292 293 /* Fall through to the routing/multicast handling code */ 294 done_spd: 295 #endif /* IPSEC */ 296 297 /* 298 * Calculate the total length of the extension header chain. 299 * Keep the length of the unfragmentable part for fragmentation. 300 */ 301 optlen = 0; 302 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 303 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 304 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 305 unfragpartlen = optlen + sizeof(struct ip6_hdr); 306 /* NOTE: we don't add AH/ESP length here. do that later. */ 307 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 308 309 /* 310 * If we need IPsec, or there is at least one extension header, 311 * separate IP6 header from the payload. 312 */ 313 if ((sproto || optlen) && !hdrsplit) { 314 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 315 m = NULL; 316 goto freehdrs; 317 } 318 m = exthdrs.ip6e_ip6; 319 hdrsplit++; 320 } 321 322 /* adjust pointer */ 323 ip6 = mtod(m, struct ip6_hdr *); 324 325 /* adjust mbuf packet header length */ 326 m->m_pkthdr.len += optlen; 327 plen = m->m_pkthdr.len - sizeof(*ip6); 328 329 /* If this is a jumbo payload, insert a jumbo payload option. */ 330 if (plen > IPV6_MAXPACKET) { 331 if (!hdrsplit) { 332 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 333 m = NULL; 334 goto freehdrs; 335 } 336 m = exthdrs.ip6e_ip6; 337 hdrsplit++; 338 } 339 /* adjust pointer */ 340 ip6 = mtod(m, struct ip6_hdr *); 341 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 342 goto freehdrs; 343 ip6->ip6_plen = 0; 344 } else 345 ip6->ip6_plen = htons(plen); 346 347 /* 348 * Concatenate headers and fill in next header fields. 349 * Here we have, on "m" 350 * IPv6 payload 351 * and we insert headers accordingly. Finally, we should be getting: 352 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 353 * 354 * during the header composing process, "m" points to IPv6 header. 355 * "mprev" points to an extension header prior to esp. 356 */ 357 { 358 u_char *nexthdrp = &ip6->ip6_nxt; 359 struct mbuf *mprev = m; 360 361 /* 362 * we treat dest2 specially. this makes IPsec processing 363 * much easier. the goal here is to make mprev point the 364 * mbuf prior to dest2. 365 * 366 * result: IPv6 dest2 payload 367 * m and mprev will point to IPv6 header. 368 */ 369 if (exthdrs.ip6e_dest2) { 370 if (!hdrsplit) 371 panic("assumption failed: hdr not split"); 372 exthdrs.ip6e_dest2->m_next = m->m_next; 373 m->m_next = exthdrs.ip6e_dest2; 374 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 375 ip6->ip6_nxt = IPPROTO_DSTOPTS; 376 } 377 378 #define MAKE_CHAIN(m, mp, p, i)\ 379 do {\ 380 if (m) {\ 381 if (!hdrsplit) \ 382 panic("assumption failed: hdr not split"); \ 383 *mtod((m), u_char *) = *(p);\ 384 *(p) = (i);\ 385 p = mtod((m), u_char *);\ 386 (m)->m_next = (mp)->m_next;\ 387 (mp)->m_next = (m);\ 388 (mp) = (m);\ 389 }\ 390 } while (0) 391 /* 392 * result: IPv6 hbh dest1 rthdr dest2 payload 393 * m will point to IPv6 header. mprev will point to the 394 * extension header prior to dest2 (rthdr in the above case). 395 */ 396 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 397 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 398 IPPROTO_DSTOPTS); 399 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 400 IPPROTO_ROUTING); 401 } 402 403 /* 404 * If there is a routing header, replace the destination address field 405 * with the first hop of the routing header. 406 */ 407 if (exthdrs.ip6e_rthdr) { 408 struct ip6_rthdr *rh; 409 struct ip6_rthdr0 *rh0; 410 struct in6_addr *addr; 411 412 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 413 struct ip6_rthdr *)); 414 switch (rh->ip6r_type) { 415 case IPV6_RTHDR_TYPE_0: 416 rh0 = (struct ip6_rthdr0 *)rh; 417 addr = (struct in6_addr *)(rh0 + 1); 418 ip6->ip6_dst = addr[0]; 419 bcopy(&addr[1], &addr[0], 420 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)); 421 addr[rh0->ip6r0_segleft - 1] = finaldst; 422 break; 423 default: /* is it possible? */ 424 error = EINVAL; 425 goto bad; 426 } 427 } 428 429 /* Source address validation */ 430 if (!(flags & IPV6_UNSPECSRC) && 431 IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 432 /* 433 * XXX: we can probably assume validation in the caller, but 434 * we explicitly check the address here for safety. 435 */ 436 error = EOPNOTSUPP; 437 ip6stat.ip6s_badscope++; 438 goto bad; 439 } 440 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 441 error = EOPNOTSUPP; 442 ip6stat.ip6s_badscope++; 443 goto bad; 444 } 445 446 ip6stat.ip6s_localout++; 447 448 /* 449 * Route packet. 450 */ 451 #if NPF > 0 452 reroute: 453 #endif 454 455 /* initialize cached route */ 456 if (ro == 0) { 457 ro = &ip6route; 458 bzero((caddr_t)ro, sizeof(*ro)); 459 } 460 ro_pmtu = ro; 461 if (opt && opt->ip6po_rthdr) 462 ro = &opt->ip6po_route; 463 dst = &ro->ro_dst; 464 465 /* 466 * if specified, try to fill in the traffic class field. 467 * do not override if a non-zero value is already set. 468 * we check the diffserv field and the ecn field separately. 469 */ 470 if (opt && opt->ip6po_tclass >= 0) { 471 int mask = 0; 472 473 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 474 mask |= 0xfc; 475 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 476 mask |= 0x03; 477 if (mask != 0) 478 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 479 } 480 481 /* fill in or override the hop limit field, if necessary. */ 482 if (opt && opt->ip6po_hlim != -1) 483 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 484 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 485 if (im6o != NULL) 486 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 487 else 488 ip6->ip6_hlim = ip6_defmcasthlim; 489 } 490 491 #ifdef IPSEC 492 /* 493 * Check if the packet needs encapsulation. 494 * ipsp_process_packet will never come back to here. 495 */ 496 if (sproto != 0) { 497 /* 498 * XXX what should we do if ip6_hlim == 0 and the 499 * packet gets tunneled? 500 */ 501 502 tdb = gettdb(rtable_l2(m->m_pkthdr.ph_rtableid), 503 sspi, &sdst, sproto); 504 if (tdb == NULL) { 505 error = EHOSTUNREACH; 506 m_freem(m); 507 goto done; 508 } 509 510 #if NPF > 0 511 if ((encif = enc_getif(tdb->tdb_rdomain, 512 tdb->tdb_tap)) == NULL || 513 pf_test(AF_INET6, PF_OUT, encif, &m, NULL) != PF_PASS) { 514 error = EHOSTUNREACH; 515 m_freem(m); 516 goto done; 517 } 518 if (m == NULL) 519 goto done; 520 ip6 = mtod(m, struct ip6_hdr *); 521 /* 522 * PF_TAG_REROUTE handling or not... 523 * Packet is entering IPsec so the routing is 524 * already overruled by the IPsec policy. 525 * Until now the change was not reconsidered. 526 * What's the behaviour? 527 */ 528 #endif 529 in6_proto_cksum_out(m, encif); 530 531 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 532 533 /* Callee frees mbuf */ 534 /* 535 * if we are source-routing, do not attempt to tunnel the 536 * packet just because ip6_dst is different from what tdb has. 537 * XXX 538 */ 539 error = ipsp_process_packet(m, tdb, AF_INET6, 540 exthdrs.ip6e_rthdr ? 1 : 0); 541 542 return error; /* Nothing more to be done */ 543 } 544 #endif /* IPSEC */ 545 546 bzero(&dstsock, sizeof(dstsock)); 547 dstsock.sin6_family = AF_INET6; 548 dstsock.sin6_addr = ip6->ip6_dst; 549 dstsock.sin6_len = sizeof(dstsock); 550 ro->ro_tableid = m->m_pkthdr.ph_rtableid; 551 if ((error = in6_selectroute(&dstsock, opt, im6o, ro, &ifp, 552 &rt, m->m_pkthdr.ph_rtableid)) != 0) { 553 switch (error) { 554 case EHOSTUNREACH: 555 ip6stat.ip6s_noroute++; 556 break; 557 case EADDRNOTAVAIL: 558 default: 559 break; /* XXX statistics? */ 560 } 561 if (ifp != NULL) 562 in6_ifstat_inc(ifp, ifs6_out_discard); 563 goto bad; 564 } 565 if (rt == NULL) { 566 /* 567 * If in6_selectroute() does not return a route entry, 568 * dst may not have been updated. 569 */ 570 *dst = dstsock; /* XXX */ 571 } 572 573 /* 574 * then rt (for unicast) and ifp must be non-NULL valid values. 575 */ 576 if (rt) { 577 ia6 = ifatoia6(rt->rt_ifa); 578 rt->rt_use++; 579 } 580 581 if ((flags & IPV6_FORWARDING) == 0) { 582 /* XXX: the FORWARDING flag can be set for mrouting. */ 583 in6_ifstat_inc(ifp, ifs6_out_request); 584 } 585 586 /* 587 * The outgoing interface must be in the zone of source and 588 * destination addresses. We should use ia_ifp to support the 589 * case of sending packets to an address of our own. 590 */ 591 if (ia6 != NULL && ia6->ia_ifp) 592 origifp = ia6->ia_ifp; 593 else 594 origifp = ifp; 595 596 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 597 if (opt && opt->ip6po_nextroute.ro_rt) { 598 /* 599 * The nexthop is explicitly specified by the 600 * application. We assume the next hop is an IPv6 601 * address. 602 */ 603 dst = satosin6(opt->ip6po_nexthop); 604 } else if ((rt->rt_flags & RTF_GATEWAY)) 605 dst = satosin6(rt->rt_gateway); 606 } 607 608 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 609 /* Unicast */ 610 611 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 612 } else { 613 /* Multicast */ 614 struct in6_multi *in6m; 615 616 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 617 618 in6_ifstat_inc(ifp, ifs6_out_mcast); 619 620 /* 621 * Confirm that the outgoing interface supports multicast. 622 */ 623 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 624 ip6stat.ip6s_noroute++; 625 in6_ifstat_inc(ifp, ifs6_out_discard); 626 error = ENETUNREACH; 627 goto bad; 628 } 629 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 630 if (in6m != NULL && 631 (im6o == NULL || im6o->im6o_multicast_loop)) { 632 /* 633 * If we belong to the destination multicast group 634 * on the outgoing interface, and the caller did not 635 * forbid loopback, loop back a copy. 636 */ 637 ip6_mloopback(ifp, m, dst); 638 } else { 639 /* 640 * If we are acting as a multicast router, perform 641 * multicast forwarding as if the packet had just 642 * arrived on the interface to which we are about 643 * to send. The multicast forwarding function 644 * recursively calls this function, using the 645 * IPV6_FORWARDING flag to prevent infinite recursion. 646 * 647 * Multicasts that are looped back by ip6_mloopback(), 648 * above, will be forwarded by the ip6_input() routine, 649 * if necessary. 650 */ 651 #ifdef MROUTING 652 if (ip6_mforwarding && ip6_mrouter && 653 (flags & IPV6_FORWARDING) == 0) { 654 if (ip6_mforward(ip6, ifp, m) != 0) { 655 m_freem(m); 656 goto done; 657 } 658 } 659 #endif 660 } 661 /* 662 * Multicasts with a hoplimit of zero may be looped back, 663 * above, but must not be transmitted on a network. 664 * Also, multicasts addressed to the loopback interface 665 * are not sent -- the above call to ip6_mloopback() will 666 * loop back a copy if this host actually belongs to the 667 * destination group on the loopback interface. 668 */ 669 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 670 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 671 m_freem(m); 672 goto done; 673 } 674 } 675 676 /* 677 * Fill the outgoing interface to tell the upper layer 678 * to increment per-interface statistics. 679 */ 680 if (ifpp) 681 *ifpp = ifp; 682 683 /* Determine path MTU. */ 684 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 685 &alwaysfrag)) != 0) 686 goto bad; 687 688 /* 689 * The caller of this function may specify to use the minimum MTU 690 * in some cases. 691 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 692 * setting. The logic is a bit complicated; by default, unicast 693 * packets will follow path MTU while multicast packets will be sent at 694 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 695 * including unicast ones will be sent at the minimum MTU. Multicast 696 * packets will always be sent at the minimum MTU unless 697 * IP6PO_MINMTU_DISABLE is explicitly specified. 698 * See RFC 3542 for more details. 699 */ 700 if (mtu > IPV6_MMTU) { 701 if ((flags & IPV6_MINMTU)) 702 mtu = IPV6_MMTU; 703 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 704 mtu = IPV6_MMTU; 705 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 706 (opt == NULL || 707 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 708 mtu = IPV6_MMTU; 709 } 710 } 711 712 /* Fake scoped addresses */ 713 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 714 /* 715 * If source or destination address is a scoped address, and 716 * the packet is going to be sent to a loopback interface, 717 * we should keep the original interface. 718 */ 719 720 /* 721 * XXX: this is a very experimental and temporary solution. 722 * We eventually have sockaddr_in6 and use the sin6_scope_id 723 * field of the structure here. 724 * We rely on the consistency between two scope zone ids 725 * of source add destination, which should already be assured 726 * Larger scopes than link will be supported in the near 727 * future. 728 */ 729 origifp = NULL; 730 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 731 origifp = if_get(ntohs(ip6->ip6_src.s6_addr16[1])); 732 else if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 733 origifp = if_get(ntohs(ip6->ip6_dst.s6_addr16[1])); 734 /* 735 * XXX: origifp can be NULL even in those two cases above. 736 * For example, if we remove the (only) link-local address 737 * from the loopback interface, and try to send a link-local 738 * address without link-id information. Then the source 739 * address is ::1, and the destination address is the 740 * link-local address with its s6_addr16[1] being zero. 741 * What is worse, if the packet goes to the loopback interface 742 * by a default rejected route, the null pointer would be 743 * passed to looutput, and the kernel would hang. 744 * The following last resort would prevent such disaster. 745 */ 746 if (origifp == NULL) 747 origifp = ifp; 748 } else 749 origifp = ifp; 750 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 751 ip6->ip6_src.s6_addr16[1] = 0; 752 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 753 ip6->ip6_dst.s6_addr16[1] = 0; 754 755 /* 756 * If the outgoing packet contains a hop-by-hop options header, 757 * it must be examined and processed even by the source node. 758 * (RFC 2460, section 4.) 759 */ 760 if (exthdrs.ip6e_hbh) { 761 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 762 u_int32_t dummy1; /* XXX unused */ 763 u_int32_t dummy2; /* XXX unused */ 764 765 /* 766 * XXX: if we have to send an ICMPv6 error to the sender, 767 * we need the M_LOOP flag since icmp6_error() expects 768 * the IPv6 and the hop-by-hop options header are 769 * continuous unless the flag is set. 770 */ 771 m->m_flags |= M_LOOP; 772 m->m_pkthdr.rcvif = ifp; 773 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 774 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 775 &dummy1, &dummy2) < 0) { 776 /* m was already freed at this point */ 777 error = EINVAL;/* better error? */ 778 goto done; 779 } 780 m->m_flags &= ~M_LOOP; /* XXX */ 781 m->m_pkthdr.rcvif = NULL; 782 } 783 784 #if NPF > 0 785 if (pf_test(AF_INET6, PF_OUT, ifp, &m, NULL) != PF_PASS) { 786 error = EHOSTUNREACH; 787 m_freem(m); 788 goto done; 789 } 790 if (m == NULL) 791 goto done; 792 ip6 = mtod(m, struct ip6_hdr *); 793 if ((m->m_pkthdr.pf.flags & (PF_TAG_REROUTE | PF_TAG_GENERATED)) == 794 (PF_TAG_REROUTE | PF_TAG_GENERATED)) { 795 /* already rerun the route lookup, go on */ 796 m->m_pkthdr.pf.flags &= ~(PF_TAG_GENERATED | PF_TAG_REROUTE); 797 } else if (m->m_pkthdr.pf.flags & PF_TAG_REROUTE) { 798 /* tag as generated to skip over pf_test on rerun */ 799 m->m_pkthdr.pf.flags |= PF_TAG_GENERATED; 800 finaldst = ip6->ip6_dst; 801 ro = NULL; 802 goto reroute; 803 } 804 #endif 805 in6_proto_cksum_out(m, ifp); 806 807 /* 808 * Send the packet to the outgoing interface. 809 * If necessary, do IPv6 fragmentation before sending. 810 * 811 * the logic here is rather complex: 812 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 813 * 1-a: send as is if tlen <= path mtu 814 * 1-b: fragment if tlen > path mtu 815 * 816 * 2: if user asks us not to fragment (dontfrag == 1) 817 * 2-a: send as is if tlen <= interface mtu 818 * 2-b: error if tlen > interface mtu 819 * 820 * 3: if we always need to attach fragment header (alwaysfrag == 1) 821 * always fragment 822 * 823 * 4: if dontfrag == 1 && alwaysfrag == 1 824 * error, as we cannot handle this conflicting request 825 */ 826 tlen = m->m_pkthdr.len; 827 828 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 829 dontfrag = 1; 830 else 831 dontfrag = 0; 832 if (dontfrag && alwaysfrag) { /* case 4 */ 833 /* conflicting request - can't transmit */ 834 error = EMSGSIZE; 835 goto bad; 836 } 837 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 838 /* 839 * Even if the DONTFRAG option is specified, we cannot send the 840 * packet when the data length is larger than the MTU of the 841 * outgoing interface. 842 * Notify the error by sending IPV6_PATHMTU ancillary data as 843 * well as returning an error code (the latter is not described 844 * in the API spec.) 845 */ 846 #if 0 847 u_int32_t mtu32; 848 struct ip6ctlparam ip6cp; 849 850 mtu32 = (u_int32_t)mtu; 851 bzero(&ip6cp, sizeof(ip6cp)); 852 ip6cp.ip6c_cmdarg = (void *)&mtu32; 853 pfctlinput2(PRC_MSGSIZE, sin6tosa(&ro_pmtu->ro_dst), 854 (void *)&ip6cp); 855 #endif 856 857 error = EMSGSIZE; 858 goto bad; 859 } 860 861 /* 862 * transmit packet without fragmentation 863 */ 864 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 865 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 866 goto done; 867 } 868 869 /* 870 * try to fragment the packet. case 1-b and 3 871 */ 872 if (mtu < IPV6_MMTU) { 873 /* path MTU cannot be less than IPV6_MMTU */ 874 error = EMSGSIZE; 875 in6_ifstat_inc(ifp, ifs6_out_fragfail); 876 goto bad; 877 } else if (ip6->ip6_plen == 0) { 878 /* jumbo payload cannot be fragmented */ 879 error = EMSGSIZE; 880 in6_ifstat_inc(ifp, ifs6_out_fragfail); 881 goto bad; 882 } else { 883 u_char nextproto; 884 #if 0 885 struct ip6ctlparam ip6cp; 886 u_int32_t mtu32; 887 #endif 888 889 /* 890 * Too large for the destination or interface; 891 * fragment if possible. 892 * Must be able to put at least 8 bytes per fragment. 893 */ 894 hlen = unfragpartlen; 895 if (mtu > IPV6_MAXPACKET) 896 mtu = IPV6_MAXPACKET; 897 898 #if 0 899 /* Notify a proper path MTU to applications. */ 900 mtu32 = (u_int32_t)mtu; 901 bzero(&ip6cp, sizeof(ip6cp)); 902 ip6cp.ip6c_cmdarg = (void *)&mtu32; 903 pfctlinput2(PRC_MSGSIZE, sin6tosa(&ro_pmtu->ro_dst), 904 (void *)&ip6cp); 905 #endif 906 907 /* 908 * Change the next header field of the last header in the 909 * unfragmentable part. 910 */ 911 if (exthdrs.ip6e_rthdr) { 912 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 913 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 914 } else if (exthdrs.ip6e_dest1) { 915 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 916 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 917 } else if (exthdrs.ip6e_hbh) { 918 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 919 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 920 } else { 921 nextproto = ip6->ip6_nxt; 922 ip6->ip6_nxt = IPPROTO_FRAGMENT; 923 } 924 925 m0 = m; 926 error = ip6_fragment(m0, hlen, nextproto, mtu); 927 928 switch (error) { 929 case 0: 930 in6_ifstat_inc(ifp, ifs6_out_fragok); 931 break; 932 case EMSGSIZE: 933 in6_ifstat_inc(ifp, ifs6_out_fragfail); 934 break; 935 default: 936 ip6stat.ip6s_odropped++; 937 break; 938 } 939 } 940 941 /* 942 * Remove leading garbages. 943 */ 944 m = m0->m_nextpkt; 945 m0->m_nextpkt = 0; 946 m_freem(m0); 947 for (m0 = m; m; m = m0) { 948 m0 = m->m_nextpkt; 949 m->m_nextpkt = 0; 950 if (error == 0) { 951 ip6stat.ip6s_ofragments++; 952 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 953 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 954 } else 955 m_freem(m); 956 } 957 958 if (error == 0) 959 ip6stat.ip6s_fragmented++; 960 961 done: 962 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 963 RTFREE(ro->ro_rt); 964 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 965 RTFREE(ro_pmtu->ro_rt); 966 } 967 968 return (error); 969 970 freehdrs: 971 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 972 m_freem(exthdrs.ip6e_dest1); 973 m_freem(exthdrs.ip6e_rthdr); 974 m_freem(exthdrs.ip6e_dest2); 975 /* FALLTHROUGH */ 976 bad: 977 m_freem(m); 978 goto done; 979 } 980 981 int 982 ip6_fragment(struct mbuf *m0, int hlen, u_char nextproto, u_long mtu) 983 { 984 struct mbuf *m, **mnext, *m_frgpart; 985 struct ip6_hdr *mhip6; 986 struct ip6_frag *ip6f; 987 u_int32_t id; 988 int tlen, len, off; 989 int error; 990 991 id = htonl(ip6_randomid()); 992 993 mnext = &m0->m_nextpkt; 994 *mnext = NULL; 995 996 tlen = m0->m_pkthdr.len; 997 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 998 if (len < 8) 999 return (EMSGSIZE); 1000 1001 /* 1002 * Loop through length of segment after first fragment, 1003 * make new header and copy data of each part and link onto 1004 * chain. 1005 */ 1006 for (off = hlen; off < tlen; off += len) { 1007 struct mbuf *mlast; 1008 1009 if ((m = m_gethdr(M_DONTWAIT, MT_HEADER)) == NULL) 1010 return (ENOBUFS); 1011 *mnext = m; 1012 mnext = &m->m_nextpkt; 1013 if ((error = m_dup_pkthdr(m, m0, M_DONTWAIT)) != 0) 1014 return (error); 1015 m->m_data += max_linkhdr; 1016 mhip6 = mtod(m, struct ip6_hdr *); 1017 *mhip6 = *mtod(m0, struct ip6_hdr *); 1018 m->m_len = sizeof(*mhip6); 1019 if ((error = ip6_insertfraghdr(m0, m, hlen, &ip6f)) != 0) 1020 return (error); 1021 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 1022 if (off + len >= tlen) 1023 len = tlen - off; 1024 else 1025 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 1026 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 1027 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 1028 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) 1029 return (ENOBUFS); 1030 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 1031 ; 1032 mlast->m_next = m_frgpart; 1033 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 1034 ip6f->ip6f_reserved = 0; 1035 ip6f->ip6f_ident = id; 1036 ip6f->ip6f_nxt = nextproto; 1037 } 1038 1039 return (0); 1040 } 1041 1042 int 1043 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1044 { 1045 struct mbuf *m; 1046 1047 if (hlen > MCLBYTES) 1048 return (ENOBUFS); /* XXX */ 1049 1050 MGET(m, M_DONTWAIT, MT_DATA); 1051 if (!m) 1052 return (ENOBUFS); 1053 1054 if (hlen > MLEN) { 1055 MCLGET(m, M_DONTWAIT); 1056 if ((m->m_flags & M_EXT) == 0) { 1057 m_free(m); 1058 return (ENOBUFS); 1059 } 1060 } 1061 m->m_len = hlen; 1062 if (hdr) 1063 bcopy(hdr, mtod(m, caddr_t), hlen); 1064 1065 *mp = m; 1066 return (0); 1067 } 1068 1069 /* 1070 * Insert jumbo payload option. 1071 */ 1072 int 1073 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1074 { 1075 struct mbuf *mopt; 1076 u_int8_t *optbuf; 1077 u_int32_t v; 1078 1079 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1080 1081 /* 1082 * If there is no hop-by-hop options header, allocate new one. 1083 * If there is one but it doesn't have enough space to store the 1084 * jumbo payload option, allocate a cluster to store the whole options. 1085 * Otherwise, use it to store the options. 1086 */ 1087 if (exthdrs->ip6e_hbh == 0) { 1088 MGET(mopt, M_DONTWAIT, MT_DATA); 1089 if (mopt == 0) 1090 return (ENOBUFS); 1091 mopt->m_len = JUMBOOPTLEN; 1092 optbuf = mtod(mopt, u_int8_t *); 1093 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1094 exthdrs->ip6e_hbh = mopt; 1095 } else { 1096 struct ip6_hbh *hbh; 1097 1098 mopt = exthdrs->ip6e_hbh; 1099 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1100 /* 1101 * XXX assumption: 1102 * - exthdrs->ip6e_hbh is not referenced from places 1103 * other than exthdrs. 1104 * - exthdrs->ip6e_hbh is not an mbuf chain. 1105 */ 1106 int oldoptlen = mopt->m_len; 1107 struct mbuf *n; 1108 1109 /* 1110 * XXX: give up if the whole (new) hbh header does 1111 * not fit even in an mbuf cluster. 1112 */ 1113 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1114 return (ENOBUFS); 1115 1116 /* 1117 * As a consequence, we must always prepare a cluster 1118 * at this point. 1119 */ 1120 MGET(n, M_DONTWAIT, MT_DATA); 1121 if (n) { 1122 MCLGET(n, M_DONTWAIT); 1123 if ((n->m_flags & M_EXT) == 0) { 1124 m_freem(n); 1125 n = NULL; 1126 } 1127 } 1128 if (!n) 1129 return (ENOBUFS); 1130 n->m_len = oldoptlen + JUMBOOPTLEN; 1131 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1132 oldoptlen); 1133 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1134 m_freem(mopt); 1135 mopt = exthdrs->ip6e_hbh = n; 1136 } else { 1137 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1138 mopt->m_len += JUMBOOPTLEN; 1139 } 1140 optbuf[0] = IP6OPT_PADN; 1141 optbuf[1] = 0; 1142 1143 /* 1144 * Adjust the header length according to the pad and 1145 * the jumbo payload option. 1146 */ 1147 hbh = mtod(mopt, struct ip6_hbh *); 1148 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1149 } 1150 1151 /* fill in the option. */ 1152 optbuf[2] = IP6OPT_JUMBO; 1153 optbuf[3] = 4; 1154 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1155 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1156 1157 /* finally, adjust the packet header length */ 1158 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1159 1160 return (0); 1161 #undef JUMBOOPTLEN 1162 } 1163 1164 /* 1165 * Insert fragment header and copy unfragmentable header portions. 1166 */ 1167 int 1168 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1169 struct ip6_frag **frghdrp) 1170 { 1171 struct mbuf *n, *mlast; 1172 1173 if (hlen > sizeof(struct ip6_hdr)) { 1174 n = m_copym(m0, sizeof(struct ip6_hdr), 1175 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1176 if (n == 0) 1177 return (ENOBUFS); 1178 m->m_next = n; 1179 } else 1180 n = m; 1181 1182 /* Search for the last mbuf of unfragmentable part. */ 1183 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1184 ; 1185 1186 if ((mlast->m_flags & M_EXT) == 0 && 1187 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1188 /* use the trailing space of the last mbuf for the fragment hdr */ 1189 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1190 mlast->m_len); 1191 mlast->m_len += sizeof(struct ip6_frag); 1192 m->m_pkthdr.len += sizeof(struct ip6_frag); 1193 } else { 1194 /* allocate a new mbuf for the fragment header */ 1195 struct mbuf *mfrg; 1196 1197 MGET(mfrg, M_DONTWAIT, MT_DATA); 1198 if (mfrg == 0) 1199 return (ENOBUFS); 1200 mfrg->m_len = sizeof(struct ip6_frag); 1201 *frghdrp = mtod(mfrg, struct ip6_frag *); 1202 mlast->m_next = mfrg; 1203 } 1204 1205 return (0); 1206 } 1207 1208 int 1209 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1210 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, int *alwaysfragp) 1211 { 1212 u_int32_t mtu = 0; 1213 int alwaysfrag = 0; 1214 int error = 0; 1215 1216 if (ro_pmtu != ro) { 1217 /* The first hop and the final destination may differ. */ 1218 struct sockaddr_in6 *sa6_dst = &ro_pmtu->ro_dst; 1219 1220 if (ro_pmtu->ro_rt && 1221 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1222 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1223 RTFREE(ro_pmtu->ro_rt); 1224 ro_pmtu->ro_rt = NULL; 1225 } 1226 if (ro_pmtu->ro_rt == 0) { 1227 bzero(ro_pmtu, sizeof(*ro_pmtu)); 1228 ro_pmtu->ro_tableid = ifp->if_rdomain; 1229 sa6_dst->sin6_family = AF_INET6; 1230 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1231 sa6_dst->sin6_addr = *dst; 1232 1233 rtalloc((struct route *)ro_pmtu); 1234 } 1235 } 1236 if (ro_pmtu->ro_rt) { 1237 u_int32_t ifmtu; 1238 1239 if (ifp == NULL) 1240 ifp = ro_pmtu->ro_rt->rt_ifp; 1241 ifmtu = IN6_LINKMTU(ifp); 1242 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1243 if (mtu == 0) 1244 mtu = ifmtu; 1245 else if (mtu < IPV6_MMTU) { 1246 /* 1247 * RFC2460 section 5, last paragraph: 1248 * if we record ICMPv6 too big message with 1249 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1250 * or smaller, with fragment header attached. 1251 * (fragment header is needed regardless from the 1252 * packet size, for translators to identify packets) 1253 */ 1254 alwaysfrag = 1; 1255 mtu = IPV6_MMTU; 1256 } else if (mtu > ifmtu) { 1257 /* 1258 * The MTU on the route is larger than the MTU on 1259 * the interface! This shouldn't happen, unless the 1260 * MTU of the interface has been changed after the 1261 * interface was brought up. Change the MTU in the 1262 * route to match the interface MTU (as long as the 1263 * field isn't locked). 1264 */ 1265 mtu = ifmtu; 1266 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU)) 1267 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1268 } 1269 } else if (ifp) { 1270 mtu = IN6_LINKMTU(ifp); 1271 } else 1272 error = EHOSTUNREACH; /* XXX */ 1273 1274 *mtup = mtu; 1275 if (alwaysfragp) 1276 *alwaysfragp = alwaysfrag; 1277 return (error); 1278 } 1279 1280 /* 1281 * IP6 socket option processing. 1282 */ 1283 int 1284 ip6_ctloutput(int op, struct socket *so, int level, int optname, 1285 struct mbuf **mp) 1286 { 1287 int privileged, optdatalen, uproto; 1288 void *optdata; 1289 struct inpcb *inp = sotoinpcb(so); 1290 struct mbuf *m = *mp; 1291 int error, optval; 1292 struct proc *p = curproc; /* For IPSec and rdomain */ 1293 #ifdef IPSEC 1294 struct tdb *tdb; 1295 struct tdb_ident *tdbip, tdbi; 1296 int s; 1297 #endif 1298 u_int rtid = 0; 1299 1300 error = optval = 0; 1301 1302 privileged = (inp->inp_socket->so_state & SS_PRIV); 1303 uproto = (int)so->so_proto->pr_protocol; 1304 1305 if (level == IPPROTO_IPV6) { 1306 switch (op) { 1307 case PRCO_SETOPT: 1308 switch (optname) { 1309 case IPV6_2292PKTOPTIONS: 1310 error = ip6_pcbopts(&inp->inp_outputopts6, 1311 m, so); 1312 break; 1313 1314 /* 1315 * Use of some Hop-by-Hop options or some 1316 * Destination options, might require special 1317 * privilege. That is, normal applications 1318 * (without special privilege) might be forbidden 1319 * from setting certain options in outgoing packets, 1320 * and might never see certain options in received 1321 * packets. [RFC 2292 Section 6] 1322 * KAME specific note: 1323 * KAME prevents non-privileged users from sending or 1324 * receiving ANY hbh/dst options in order to avoid 1325 * overhead of parsing options in the kernel. 1326 */ 1327 case IPV6_RECVHOPOPTS: 1328 case IPV6_RECVDSTOPTS: 1329 case IPV6_RECVRTHDRDSTOPTS: 1330 if (!privileged) { 1331 error = EPERM; 1332 break; 1333 } 1334 /* FALLTHROUGH */ 1335 case IPV6_UNICAST_HOPS: 1336 case IPV6_HOPLIMIT: 1337 1338 case IPV6_RECVPKTINFO: 1339 case IPV6_RECVHOPLIMIT: 1340 case IPV6_RECVRTHDR: 1341 case IPV6_RECVPATHMTU: 1342 case IPV6_RECVTCLASS: 1343 case IPV6_V6ONLY: 1344 case IPV6_AUTOFLOWLABEL: 1345 case IPV6_RECVDSTPORT: 1346 if (m == NULL || m->m_len != sizeof(int)) { 1347 error = EINVAL; 1348 break; 1349 } 1350 optval = *mtod(m, int *); 1351 switch (optname) { 1352 1353 case IPV6_UNICAST_HOPS: 1354 if (optval < -1 || optval >= 256) 1355 error = EINVAL; 1356 else { 1357 /* -1 = kernel default */ 1358 inp->inp_hops = optval; 1359 } 1360 break; 1361 #define OPTSET(bit) \ 1362 do { \ 1363 if (optval) \ 1364 inp->inp_flags |= (bit); \ 1365 else \ 1366 inp->inp_flags &= ~(bit); \ 1367 } while (/*CONSTCOND*/ 0) 1368 #define OPTSET2292(bit) \ 1369 do { \ 1370 inp->inp_flags |= IN6P_RFC2292; \ 1371 if (optval) \ 1372 inp->inp_flags |= (bit); \ 1373 else \ 1374 inp->inp_flags &= ~(bit); \ 1375 } while (/*CONSTCOND*/ 0) 1376 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1377 1378 case IPV6_RECVPKTINFO: 1379 /* cannot mix with RFC2292 */ 1380 if (OPTBIT(IN6P_RFC2292)) { 1381 error = EINVAL; 1382 break; 1383 } 1384 OPTSET(IN6P_PKTINFO); 1385 break; 1386 1387 case IPV6_HOPLIMIT: 1388 { 1389 struct ip6_pktopts **optp; 1390 1391 /* cannot mix with RFC2292 */ 1392 if (OPTBIT(IN6P_RFC2292)) { 1393 error = EINVAL; 1394 break; 1395 } 1396 optp = &inp->inp_outputopts6; 1397 error = ip6_pcbopt(IPV6_HOPLIMIT, 1398 (u_char *)&optval, 1399 sizeof(optval), 1400 optp, 1401 privileged, uproto); 1402 break; 1403 } 1404 1405 case IPV6_RECVHOPLIMIT: 1406 /* cannot mix with RFC2292 */ 1407 if (OPTBIT(IN6P_RFC2292)) { 1408 error = EINVAL; 1409 break; 1410 } 1411 OPTSET(IN6P_HOPLIMIT); 1412 break; 1413 1414 case IPV6_RECVHOPOPTS: 1415 /* cannot mix with RFC2292 */ 1416 if (OPTBIT(IN6P_RFC2292)) { 1417 error = EINVAL; 1418 break; 1419 } 1420 OPTSET(IN6P_HOPOPTS); 1421 break; 1422 1423 case IPV6_RECVDSTOPTS: 1424 /* cannot mix with RFC2292 */ 1425 if (OPTBIT(IN6P_RFC2292)) { 1426 error = EINVAL; 1427 break; 1428 } 1429 OPTSET(IN6P_DSTOPTS); 1430 break; 1431 1432 case IPV6_RECVRTHDRDSTOPTS: 1433 /* cannot mix with RFC2292 */ 1434 if (OPTBIT(IN6P_RFC2292)) { 1435 error = EINVAL; 1436 break; 1437 } 1438 OPTSET(IN6P_RTHDRDSTOPTS); 1439 break; 1440 1441 case IPV6_RECVRTHDR: 1442 /* cannot mix with RFC2292 */ 1443 if (OPTBIT(IN6P_RFC2292)) { 1444 error = EINVAL; 1445 break; 1446 } 1447 OPTSET(IN6P_RTHDR); 1448 break; 1449 1450 case IPV6_RECVPATHMTU: 1451 /* 1452 * We ignore this option for TCP 1453 * sockets. 1454 * (RFC3542 leaves this case 1455 * unspecified.) 1456 */ 1457 if (uproto != IPPROTO_TCP) 1458 OPTSET(IN6P_MTU); 1459 break; 1460 1461 case IPV6_V6ONLY: 1462 /* 1463 * make setsockopt(IPV6_V6ONLY) 1464 * available only prior to bind(2). 1465 * see ipng mailing list, Jun 22 2001. 1466 */ 1467 if (inp->inp_lport || 1468 !IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6)) { 1469 error = EINVAL; 1470 break; 1471 } 1472 if ((ip6_v6only && optval) || 1473 (!ip6_v6only && !optval)) 1474 error = 0; 1475 else 1476 error = EINVAL; 1477 break; 1478 case IPV6_RECVTCLASS: 1479 /* cannot mix with RFC2292 XXX */ 1480 if (OPTBIT(IN6P_RFC2292)) { 1481 error = EINVAL; 1482 break; 1483 } 1484 OPTSET(IN6P_TCLASS); 1485 break; 1486 case IPV6_AUTOFLOWLABEL: 1487 OPTSET(IN6P_AUTOFLOWLABEL); 1488 break; 1489 1490 case IPV6_RECVDSTPORT: 1491 OPTSET(IN6P_RECVDSTPORT); 1492 break; 1493 } 1494 break; 1495 1496 case IPV6_TCLASS: 1497 case IPV6_DONTFRAG: 1498 case IPV6_USE_MIN_MTU: 1499 if (m == NULL || m->m_len != sizeof(optval)) { 1500 error = EINVAL; 1501 break; 1502 } 1503 optval = *mtod(m, int *); 1504 { 1505 struct ip6_pktopts **optp; 1506 optp = &inp->inp_outputopts6; 1507 error = ip6_pcbopt(optname, 1508 (u_char *)&optval, 1509 sizeof(optval), 1510 optp, 1511 privileged, uproto); 1512 break; 1513 } 1514 1515 case IPV6_2292PKTINFO: 1516 case IPV6_2292HOPLIMIT: 1517 case IPV6_2292HOPOPTS: 1518 case IPV6_2292DSTOPTS: 1519 case IPV6_2292RTHDR: 1520 /* RFC 2292 */ 1521 if (m == NULL || m->m_len != sizeof(int)) { 1522 error = EINVAL; 1523 break; 1524 } 1525 optval = *mtod(m, int *); 1526 switch (optname) { 1527 case IPV6_2292PKTINFO: 1528 OPTSET2292(IN6P_PKTINFO); 1529 break; 1530 case IPV6_2292HOPLIMIT: 1531 OPTSET2292(IN6P_HOPLIMIT); 1532 break; 1533 case IPV6_2292HOPOPTS: 1534 /* 1535 * Check super-user privilege. 1536 * See comments for IPV6_RECVHOPOPTS. 1537 */ 1538 if (!privileged) 1539 return (EPERM); 1540 OPTSET2292(IN6P_HOPOPTS); 1541 break; 1542 case IPV6_2292DSTOPTS: 1543 if (!privileged) 1544 return (EPERM); 1545 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1546 break; 1547 case IPV6_2292RTHDR: 1548 OPTSET2292(IN6P_RTHDR); 1549 break; 1550 } 1551 break; 1552 case IPV6_PKTINFO: 1553 case IPV6_HOPOPTS: 1554 case IPV6_RTHDR: 1555 case IPV6_DSTOPTS: 1556 case IPV6_RTHDRDSTOPTS: 1557 case IPV6_NEXTHOP: 1558 { 1559 /* new advanced API (RFC3542) */ 1560 u_char *optbuf; 1561 int optbuflen; 1562 struct ip6_pktopts **optp; 1563 1564 /* cannot mix with RFC2292 */ 1565 if (OPTBIT(IN6P_RFC2292)) { 1566 error = EINVAL; 1567 break; 1568 } 1569 1570 if (m && m->m_next) { 1571 error = EINVAL; /* XXX */ 1572 break; 1573 } 1574 if (m) { 1575 optbuf = mtod(m, u_char *); 1576 optbuflen = m->m_len; 1577 } else { 1578 optbuf = NULL; 1579 optbuflen = 0; 1580 } 1581 optp = &inp->inp_outputopts6; 1582 error = ip6_pcbopt(optname, 1583 optbuf, optbuflen, 1584 optp, privileged, uproto); 1585 break; 1586 } 1587 #undef OPTSET 1588 1589 case IPV6_MULTICAST_IF: 1590 case IPV6_MULTICAST_HOPS: 1591 case IPV6_MULTICAST_LOOP: 1592 case IPV6_JOIN_GROUP: 1593 case IPV6_LEAVE_GROUP: 1594 error = ip6_setmoptions(optname, 1595 &inp->inp_moptions6, 1596 m); 1597 break; 1598 1599 case IPV6_PORTRANGE: 1600 if (m == NULL || m->m_len != sizeof(int)) { 1601 error = EINVAL; 1602 break; 1603 } 1604 optval = *mtod(m, int *); 1605 1606 switch (optval) { 1607 case IPV6_PORTRANGE_DEFAULT: 1608 inp->inp_flags &= ~(IN6P_LOWPORT); 1609 inp->inp_flags &= ~(IN6P_HIGHPORT); 1610 break; 1611 1612 case IPV6_PORTRANGE_HIGH: 1613 inp->inp_flags &= ~(IN6P_LOWPORT); 1614 inp->inp_flags |= IN6P_HIGHPORT; 1615 break; 1616 1617 case IPV6_PORTRANGE_LOW: 1618 inp->inp_flags &= ~(IN6P_HIGHPORT); 1619 inp->inp_flags |= IN6P_LOWPORT; 1620 break; 1621 1622 default: 1623 error = EINVAL; 1624 break; 1625 } 1626 break; 1627 1628 case IPSEC6_OUTSA: 1629 #ifndef IPSEC 1630 error = EINVAL; 1631 #else 1632 if (m == NULL || 1633 m->m_len != sizeof(struct tdb_ident)) { 1634 error = EINVAL; 1635 break; 1636 } 1637 tdbip = mtod(m, struct tdb_ident *); 1638 s = splsoftnet(); 1639 tdb = gettdb(tdbip->rdomain, tdbip->spi, 1640 &tdbip->dst, tdbip->proto); 1641 if (tdb == NULL) 1642 error = ESRCH; 1643 else 1644 tdb_add_inp(tdb, inp, 0); 1645 splx(s); 1646 #endif 1647 break; 1648 1649 case IPV6_AUTH_LEVEL: 1650 case IPV6_ESP_TRANS_LEVEL: 1651 case IPV6_ESP_NETWORK_LEVEL: 1652 case IPV6_IPCOMP_LEVEL: 1653 #ifndef IPSEC 1654 error = EINVAL; 1655 #else 1656 if (m == 0 || m->m_len != sizeof(int)) { 1657 error = EINVAL; 1658 break; 1659 } 1660 optval = *mtod(m, int *); 1661 1662 if (optval < IPSEC_LEVEL_BYPASS || 1663 optval > IPSEC_LEVEL_UNIQUE) { 1664 error = EINVAL; 1665 break; 1666 } 1667 1668 switch (optname) { 1669 case IPV6_AUTH_LEVEL: 1670 if (optval < IPSEC_AUTH_LEVEL_DEFAULT && 1671 suser(p, 0)) { 1672 error = EACCES; 1673 break; 1674 } 1675 inp->inp_seclevel[SL_AUTH] = optval; 1676 break; 1677 1678 case IPV6_ESP_TRANS_LEVEL: 1679 if (optval < IPSEC_ESP_TRANS_LEVEL_DEFAULT && 1680 suser(p, 0)) { 1681 error = EACCES; 1682 break; 1683 } 1684 inp->inp_seclevel[SL_ESP_TRANS] = optval; 1685 break; 1686 1687 case IPV6_ESP_NETWORK_LEVEL: 1688 if (optval < IPSEC_ESP_NETWORK_LEVEL_DEFAULT && 1689 suser(p, 0)) { 1690 error = EACCES; 1691 break; 1692 } 1693 inp->inp_seclevel[SL_ESP_NETWORK] = optval; 1694 break; 1695 1696 case IPV6_IPCOMP_LEVEL: 1697 if (optval < IPSEC_IPCOMP_LEVEL_DEFAULT && 1698 suser(p, 0)) { 1699 error = EACCES; 1700 break; 1701 } 1702 inp->inp_seclevel[SL_IPCOMP] = optval; 1703 break; 1704 } 1705 if (!error) 1706 inp->inp_secrequire = get_sa_require(inp); 1707 #endif 1708 break; 1709 case SO_RTABLE: 1710 if (m == NULL || m->m_len < sizeof(u_int)) { 1711 error = EINVAL; 1712 break; 1713 } 1714 rtid = *mtod(m, u_int *); 1715 if (inp->inp_rtableid == rtid) 1716 break; 1717 /* needs privileges to switch when already set */ 1718 if (p->p_p->ps_rtableid != rtid && 1719 p->p_p->ps_rtableid != 0 && 1720 (error = suser(p, 0)) != 0) 1721 break; 1722 /* table must exist */ 1723 if (!rtable_exists(rtid)) { 1724 error = EINVAL; 1725 break; 1726 } 1727 inp->inp_rtableid = rtid; 1728 break; 1729 case IPV6_PIPEX: 1730 if (m != NULL && m->m_len == sizeof(int)) 1731 inp->inp_pipex = *mtod(m, int *); 1732 else 1733 error = EINVAL; 1734 break; 1735 1736 default: 1737 error = ENOPROTOOPT; 1738 break; 1739 } 1740 if (m) 1741 (void)m_free(m); 1742 break; 1743 1744 case PRCO_GETOPT: 1745 switch (optname) { 1746 1747 case IPV6_2292PKTOPTIONS: 1748 /* 1749 * RFC3542 (effectively) deprecated the 1750 * semantics of the 2292-style pktoptions. 1751 * Since it was not reliable in nature (i.e., 1752 * applications had to expect the lack of some 1753 * information after all), it would make sense 1754 * to simplify this part by always returning 1755 * empty data. 1756 */ 1757 *mp = m_get(M_WAIT, MT_SOOPTS); 1758 (*mp)->m_len = 0; 1759 break; 1760 1761 case IPV6_RECVHOPOPTS: 1762 case IPV6_RECVDSTOPTS: 1763 case IPV6_RECVRTHDRDSTOPTS: 1764 case IPV6_UNICAST_HOPS: 1765 case IPV6_RECVPKTINFO: 1766 case IPV6_RECVHOPLIMIT: 1767 case IPV6_RECVRTHDR: 1768 case IPV6_RECVPATHMTU: 1769 1770 case IPV6_V6ONLY: 1771 case IPV6_PORTRANGE: 1772 case IPV6_RECVTCLASS: 1773 case IPV6_AUTOFLOWLABEL: 1774 case IPV6_RECVDSTPORT: 1775 switch (optname) { 1776 1777 case IPV6_RECVHOPOPTS: 1778 optval = OPTBIT(IN6P_HOPOPTS); 1779 break; 1780 1781 case IPV6_RECVDSTOPTS: 1782 optval = OPTBIT(IN6P_DSTOPTS); 1783 break; 1784 1785 case IPV6_RECVRTHDRDSTOPTS: 1786 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1787 break; 1788 1789 case IPV6_UNICAST_HOPS: 1790 optval = inp->inp_hops; 1791 break; 1792 1793 case IPV6_RECVPKTINFO: 1794 optval = OPTBIT(IN6P_PKTINFO); 1795 break; 1796 1797 case IPV6_RECVHOPLIMIT: 1798 optval = OPTBIT(IN6P_HOPLIMIT); 1799 break; 1800 1801 case IPV6_RECVRTHDR: 1802 optval = OPTBIT(IN6P_RTHDR); 1803 break; 1804 1805 case IPV6_RECVPATHMTU: 1806 optval = OPTBIT(IN6P_MTU); 1807 break; 1808 1809 case IPV6_V6ONLY: 1810 optval = (ip6_v6only != 0); /* XXX */ 1811 break; 1812 1813 case IPV6_PORTRANGE: 1814 { 1815 int flags; 1816 flags = inp->inp_flags; 1817 if (flags & IN6P_HIGHPORT) 1818 optval = IPV6_PORTRANGE_HIGH; 1819 else if (flags & IN6P_LOWPORT) 1820 optval = IPV6_PORTRANGE_LOW; 1821 else 1822 optval = 0; 1823 break; 1824 } 1825 case IPV6_RECVTCLASS: 1826 optval = OPTBIT(IN6P_TCLASS); 1827 break; 1828 1829 case IPV6_AUTOFLOWLABEL: 1830 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1831 break; 1832 1833 case IPV6_RECVDSTPORT: 1834 optval = OPTBIT(IN6P_RECVDSTPORT); 1835 break; 1836 } 1837 if (error) 1838 break; 1839 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1840 m->m_len = sizeof(int); 1841 *mtod(m, int *) = optval; 1842 break; 1843 1844 case IPV6_PATHMTU: 1845 { 1846 u_long pmtu = 0; 1847 struct ip6_mtuinfo mtuinfo; 1848 struct route_in6 *ro = (struct route_in6 *)&inp->inp_route6; 1849 1850 if (!(so->so_state & SS_ISCONNECTED)) 1851 return (ENOTCONN); 1852 /* 1853 * XXX: we dot not consider the case of source 1854 * routing, or optional information to specify 1855 * the outgoing interface. 1856 */ 1857 error = ip6_getpmtu(ro, NULL, NULL, 1858 &inp->inp_faddr6, &pmtu, NULL); 1859 if (error) 1860 break; 1861 if (pmtu > IPV6_MAXPACKET) 1862 pmtu = IPV6_MAXPACKET; 1863 1864 bzero(&mtuinfo, sizeof(mtuinfo)); 1865 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1866 optdata = (void *)&mtuinfo; 1867 optdatalen = sizeof(mtuinfo); 1868 if (optdatalen > MCLBYTES) 1869 return (EMSGSIZE); /* XXX */ 1870 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1871 if (optdatalen > MLEN) 1872 MCLGET(m, M_WAIT); 1873 m->m_len = optdatalen; 1874 bcopy(optdata, mtod(m, void *), optdatalen); 1875 break; 1876 } 1877 1878 case IPV6_2292PKTINFO: 1879 case IPV6_2292HOPLIMIT: 1880 case IPV6_2292HOPOPTS: 1881 case IPV6_2292RTHDR: 1882 case IPV6_2292DSTOPTS: 1883 switch (optname) { 1884 case IPV6_2292PKTINFO: 1885 optval = OPTBIT(IN6P_PKTINFO); 1886 break; 1887 case IPV6_2292HOPLIMIT: 1888 optval = OPTBIT(IN6P_HOPLIMIT); 1889 break; 1890 case IPV6_2292HOPOPTS: 1891 optval = OPTBIT(IN6P_HOPOPTS); 1892 break; 1893 case IPV6_2292RTHDR: 1894 optval = OPTBIT(IN6P_RTHDR); 1895 break; 1896 case IPV6_2292DSTOPTS: 1897 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1898 break; 1899 } 1900 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1901 m->m_len = sizeof(int); 1902 *mtod(m, int *) = optval; 1903 break; 1904 case IPV6_PKTINFO: 1905 case IPV6_HOPOPTS: 1906 case IPV6_RTHDR: 1907 case IPV6_DSTOPTS: 1908 case IPV6_RTHDRDSTOPTS: 1909 case IPV6_NEXTHOP: 1910 case IPV6_TCLASS: 1911 case IPV6_DONTFRAG: 1912 case IPV6_USE_MIN_MTU: 1913 error = ip6_getpcbopt(inp->inp_outputopts6, 1914 optname, mp); 1915 break; 1916 1917 case IPV6_MULTICAST_IF: 1918 case IPV6_MULTICAST_HOPS: 1919 case IPV6_MULTICAST_LOOP: 1920 case IPV6_JOIN_GROUP: 1921 case IPV6_LEAVE_GROUP: 1922 error = ip6_getmoptions(optname, 1923 inp->inp_moptions6, mp); 1924 break; 1925 1926 case IPSEC6_OUTSA: 1927 #ifndef IPSEC 1928 error = EINVAL; 1929 #else 1930 s = splsoftnet(); 1931 if (inp->inp_tdb_out == NULL) { 1932 error = ENOENT; 1933 } else { 1934 tdbi.spi = inp->inp_tdb_out->tdb_spi; 1935 tdbi.dst = inp->inp_tdb_out->tdb_dst; 1936 tdbi.proto = inp->inp_tdb_out->tdb_sproto; 1937 tdbi.rdomain = 1938 inp->inp_tdb_out->tdb_rdomain; 1939 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1940 m->m_len = sizeof(tdbi); 1941 bcopy((caddr_t)&tdbi, mtod(m, caddr_t), 1942 m->m_len); 1943 } 1944 splx(s); 1945 #endif 1946 break; 1947 1948 case IPV6_AUTH_LEVEL: 1949 case IPV6_ESP_TRANS_LEVEL: 1950 case IPV6_ESP_NETWORK_LEVEL: 1951 case IPV6_IPCOMP_LEVEL: 1952 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1953 #ifndef IPSEC 1954 m->m_len = sizeof(int); 1955 *mtod(m, int *) = IPSEC_LEVEL_NONE; 1956 #else 1957 m->m_len = sizeof(int); 1958 switch (optname) { 1959 case IPV6_AUTH_LEVEL: 1960 optval = inp->inp_seclevel[SL_AUTH]; 1961 break; 1962 1963 case IPV6_ESP_TRANS_LEVEL: 1964 optval = 1965 inp->inp_seclevel[SL_ESP_TRANS]; 1966 break; 1967 1968 case IPV6_ESP_NETWORK_LEVEL: 1969 optval = 1970 inp->inp_seclevel[SL_ESP_NETWORK]; 1971 break; 1972 1973 case IPV6_IPCOMP_LEVEL: 1974 optval = inp->inp_seclevel[SL_IPCOMP]; 1975 break; 1976 } 1977 *mtod(m, int *) = optval; 1978 #endif 1979 break; 1980 case SO_RTABLE: 1981 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1982 m->m_len = sizeof(u_int); 1983 *mtod(m, u_int *) = optval; 1984 break; 1985 case IPV6_PIPEX: 1986 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1987 m->m_len = sizeof(int); 1988 *mtod(m, int *) = optval; 1989 break; 1990 1991 default: 1992 error = ENOPROTOOPT; 1993 break; 1994 } 1995 break; 1996 } 1997 } else { 1998 error = EINVAL; 1999 if (op == PRCO_SETOPT && *mp) 2000 (void)m_free(*mp); 2001 } 2002 return (error); 2003 } 2004 2005 int 2006 ip6_raw_ctloutput(int op, struct socket *so, int level, int optname, 2007 struct mbuf **mp) 2008 { 2009 int error = 0, optval; 2010 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2011 struct inpcb *inp = sotoinpcb(so); 2012 struct mbuf *m = *mp; 2013 2014 if (level != IPPROTO_IPV6) { 2015 if (op == PRCO_SETOPT && *mp) 2016 (void)m_free(*mp); 2017 return (EINVAL); 2018 } 2019 2020 switch (optname) { 2021 case IPV6_CHECKSUM: 2022 /* 2023 * For ICMPv6 sockets, no modification allowed for checksum 2024 * offset, permit "no change" values to help existing apps. 2025 * 2026 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2027 * for an ICMPv6 socket will fail." 2028 * The current behavior does not meet RFC3542. 2029 */ 2030 switch (op) { 2031 case PRCO_SETOPT: 2032 if (m == NULL || m->m_len != sizeof(int)) { 2033 error = EINVAL; 2034 break; 2035 } 2036 optval = *mtod(m, int *); 2037 if ((optval % 2) != 0) { 2038 /* the API assumes even offset values */ 2039 error = EINVAL; 2040 } else if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) { 2041 if (optval != icmp6off) 2042 error = EINVAL; 2043 } else 2044 inp->inp_cksum6 = optval; 2045 break; 2046 2047 case PRCO_GETOPT: 2048 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2049 optval = icmp6off; 2050 else 2051 optval = inp->inp_cksum6; 2052 2053 *mp = m = m_get(M_WAIT, MT_SOOPTS); 2054 m->m_len = sizeof(int); 2055 *mtod(m, int *) = optval; 2056 break; 2057 2058 default: 2059 error = EINVAL; 2060 break; 2061 } 2062 break; 2063 2064 default: 2065 error = ENOPROTOOPT; 2066 break; 2067 } 2068 2069 if (op == PRCO_SETOPT && m) 2070 (void)m_free(m); 2071 2072 return (error); 2073 } 2074 2075 /* 2076 * Set up IP6 options in pcb for insertion in output packets. 2077 * Store in mbuf with pointer in pcbopt, adding pseudo-option 2078 * with destination address if source routed. 2079 */ 2080 int 2081 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, struct socket *so) 2082 { 2083 struct ip6_pktopts *opt = *pktopt; 2084 int error = 0; 2085 struct proc *p = curproc; /* XXX */ 2086 int priv = 0; 2087 2088 /* turn off any old options. */ 2089 if (opt) 2090 ip6_clearpktopts(opt, -1); 2091 else 2092 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2093 *pktopt = 0; 2094 2095 if (!m || m->m_len == 0) { 2096 /* 2097 * Only turning off any previous options, regardless of 2098 * whether the opt is just created or given. 2099 */ 2100 free(opt, M_IP6OPT, 0); 2101 return (0); 2102 } 2103 2104 /* set options specified by user. */ 2105 if (p && !suser(p, 0)) 2106 priv = 1; 2107 if ((error = ip6_setpktopts(m, opt, NULL, priv, 2108 so->so_proto->pr_protocol)) != 0) { 2109 ip6_clearpktopts(opt, -1); /* XXX discard all options */ 2110 free(opt, M_IP6OPT, 0); 2111 return (error); 2112 } 2113 *pktopt = opt; 2114 return (0); 2115 } 2116 2117 /* 2118 * initialize ip6_pktopts. beware that there are non-zero default values in 2119 * the struct. 2120 */ 2121 void 2122 ip6_initpktopts(struct ip6_pktopts *opt) 2123 { 2124 2125 bzero(opt, sizeof(*opt)); 2126 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2127 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2128 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2129 } 2130 2131 int 2132 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2133 int priv, int uproto) 2134 { 2135 struct ip6_pktopts *opt; 2136 2137 if (*pktopt == NULL) { 2138 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2139 M_WAITOK); 2140 ip6_initpktopts(*pktopt); 2141 } 2142 opt = *pktopt; 2143 2144 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto)); 2145 } 2146 2147 int 2148 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf **mp) 2149 { 2150 void *optdata = NULL; 2151 int optdatalen = 0; 2152 struct ip6_ext *ip6e; 2153 int error = 0; 2154 struct in6_pktinfo null_pktinfo; 2155 int deftclass = 0, on; 2156 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2157 struct mbuf *m; 2158 2159 switch (optname) { 2160 case IPV6_PKTINFO: 2161 if (pktopt && pktopt->ip6po_pktinfo) 2162 optdata = (void *)pktopt->ip6po_pktinfo; 2163 else { 2164 /* XXX: we don't have to do this every time... */ 2165 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2166 optdata = (void *)&null_pktinfo; 2167 } 2168 optdatalen = sizeof(struct in6_pktinfo); 2169 break; 2170 case IPV6_TCLASS: 2171 if (pktopt && pktopt->ip6po_tclass >= 0) 2172 optdata = (void *)&pktopt->ip6po_tclass; 2173 else 2174 optdata = (void *)&deftclass; 2175 optdatalen = sizeof(int); 2176 break; 2177 case IPV6_HOPOPTS: 2178 if (pktopt && pktopt->ip6po_hbh) { 2179 optdata = (void *)pktopt->ip6po_hbh; 2180 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2181 optdatalen = (ip6e->ip6e_len + 1) << 3; 2182 } 2183 break; 2184 case IPV6_RTHDR: 2185 if (pktopt && pktopt->ip6po_rthdr) { 2186 optdata = (void *)pktopt->ip6po_rthdr; 2187 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2188 optdatalen = (ip6e->ip6e_len + 1) << 3; 2189 } 2190 break; 2191 case IPV6_RTHDRDSTOPTS: 2192 if (pktopt && pktopt->ip6po_dest1) { 2193 optdata = (void *)pktopt->ip6po_dest1; 2194 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2195 optdatalen = (ip6e->ip6e_len + 1) << 3; 2196 } 2197 break; 2198 case IPV6_DSTOPTS: 2199 if (pktopt && pktopt->ip6po_dest2) { 2200 optdata = (void *)pktopt->ip6po_dest2; 2201 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2202 optdatalen = (ip6e->ip6e_len + 1) << 3; 2203 } 2204 break; 2205 case IPV6_NEXTHOP: 2206 if (pktopt && pktopt->ip6po_nexthop) { 2207 optdata = (void *)pktopt->ip6po_nexthop; 2208 optdatalen = pktopt->ip6po_nexthop->sa_len; 2209 } 2210 break; 2211 case IPV6_USE_MIN_MTU: 2212 if (pktopt) 2213 optdata = (void *)&pktopt->ip6po_minmtu; 2214 else 2215 optdata = (void *)&defminmtu; 2216 optdatalen = sizeof(int); 2217 break; 2218 case IPV6_DONTFRAG: 2219 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2220 on = 1; 2221 else 2222 on = 0; 2223 optdata = (void *)&on; 2224 optdatalen = sizeof(on); 2225 break; 2226 default: /* should not happen */ 2227 #ifdef DIAGNOSTIC 2228 panic("ip6_getpcbopt: unexpected option"); 2229 #endif 2230 return (ENOPROTOOPT); 2231 } 2232 2233 if (optdatalen > MCLBYTES) 2234 return (EMSGSIZE); /* XXX */ 2235 *mp = m = m_get(M_WAIT, MT_SOOPTS); 2236 if (optdatalen > MLEN) 2237 MCLGET(m, M_WAIT); 2238 m->m_len = optdatalen; 2239 if (optdatalen) 2240 bcopy(optdata, mtod(m, void *), optdatalen); 2241 2242 return (error); 2243 } 2244 2245 void 2246 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2247 { 2248 if (optname == -1 || optname == IPV6_PKTINFO) { 2249 if (pktopt->ip6po_pktinfo) 2250 free(pktopt->ip6po_pktinfo, M_IP6OPT, 0); 2251 pktopt->ip6po_pktinfo = NULL; 2252 } 2253 if (optname == -1 || optname == IPV6_HOPLIMIT) 2254 pktopt->ip6po_hlim = -1; 2255 if (optname == -1 || optname == IPV6_TCLASS) 2256 pktopt->ip6po_tclass = -1; 2257 if (optname == -1 || optname == IPV6_NEXTHOP) { 2258 if (pktopt->ip6po_nextroute.ro_rt) { 2259 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2260 pktopt->ip6po_nextroute.ro_rt = NULL; 2261 } 2262 if (pktopt->ip6po_nexthop) 2263 free(pktopt->ip6po_nexthop, M_IP6OPT, 0); 2264 pktopt->ip6po_nexthop = NULL; 2265 } 2266 if (optname == -1 || optname == IPV6_HOPOPTS) { 2267 if (pktopt->ip6po_hbh) 2268 free(pktopt->ip6po_hbh, M_IP6OPT, 0); 2269 pktopt->ip6po_hbh = NULL; 2270 } 2271 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2272 if (pktopt->ip6po_dest1) 2273 free(pktopt->ip6po_dest1, M_IP6OPT, 0); 2274 pktopt->ip6po_dest1 = NULL; 2275 } 2276 if (optname == -1 || optname == IPV6_RTHDR) { 2277 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2278 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT, 0); 2279 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2280 if (pktopt->ip6po_route.ro_rt) { 2281 RTFREE(pktopt->ip6po_route.ro_rt); 2282 pktopt->ip6po_route.ro_rt = NULL; 2283 } 2284 } 2285 if (optname == -1 || optname == IPV6_DSTOPTS) { 2286 if (pktopt->ip6po_dest2) 2287 free(pktopt->ip6po_dest2, M_IP6OPT, 0); 2288 pktopt->ip6po_dest2 = NULL; 2289 } 2290 } 2291 2292 #define PKTOPT_EXTHDRCPY(type) \ 2293 do {\ 2294 if (src->type) {\ 2295 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2296 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2297 if (dst->type == NULL && canwait == M_NOWAIT)\ 2298 goto bad;\ 2299 bcopy(src->type, dst->type, hlen);\ 2300 }\ 2301 } while (/*CONSTCOND*/ 0) 2302 2303 int 2304 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2305 { 2306 dst->ip6po_hlim = src->ip6po_hlim; 2307 dst->ip6po_tclass = src->ip6po_tclass; 2308 dst->ip6po_flags = src->ip6po_flags; 2309 if (src->ip6po_pktinfo) { 2310 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2311 M_IP6OPT, canwait); 2312 if (dst->ip6po_pktinfo == NULL) 2313 goto bad; 2314 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2315 } 2316 if (src->ip6po_nexthop) { 2317 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2318 M_IP6OPT, canwait); 2319 if (dst->ip6po_nexthop == NULL) 2320 goto bad; 2321 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2322 src->ip6po_nexthop->sa_len); 2323 } 2324 PKTOPT_EXTHDRCPY(ip6po_hbh); 2325 PKTOPT_EXTHDRCPY(ip6po_dest1); 2326 PKTOPT_EXTHDRCPY(ip6po_dest2); 2327 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2328 return (0); 2329 2330 bad: 2331 ip6_clearpktopts(dst, -1); 2332 return (ENOBUFS); 2333 } 2334 #undef PKTOPT_EXTHDRCPY 2335 2336 void 2337 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2338 { 2339 if (pktopt == NULL) 2340 return; 2341 2342 ip6_clearpktopts(pktopt, -1); 2343 2344 free(pktopt, M_IP6OPT, 0); 2345 } 2346 2347 /* 2348 * Set the IP6 multicast options in response to user setsockopt(). 2349 */ 2350 int 2351 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m) 2352 { 2353 int error = 0; 2354 u_int loop, ifindex; 2355 struct ipv6_mreq *mreq; 2356 struct ifnet *ifp; 2357 struct ip6_moptions *im6o = *im6op; 2358 struct route_in6 ro; 2359 struct sockaddr_in6 *dst; 2360 struct in6_multi_mship *imm; 2361 struct proc *p = curproc; /* XXX */ 2362 2363 if (im6o == NULL) { 2364 /* 2365 * No multicast option buffer attached to the pcb; 2366 * allocate one and initialize to default values. 2367 */ 2368 im6o = (struct ip6_moptions *) 2369 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 2370 2371 if (im6o == NULL) 2372 return (ENOBUFS); 2373 *im6op = im6o; 2374 im6o->im6o_multicast_ifp = NULL; 2375 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2376 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2377 LIST_INIT(&im6o->im6o_memberships); 2378 } 2379 2380 switch (optname) { 2381 2382 case IPV6_MULTICAST_IF: 2383 /* 2384 * Select the interface for outgoing multicast packets. 2385 */ 2386 if (m == NULL || m->m_len != sizeof(u_int)) { 2387 error = EINVAL; 2388 break; 2389 } 2390 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 2391 if (ifindex == 0) 2392 ifp = NULL; 2393 else { 2394 ifp = if_get(ifindex); 2395 if (ifp == NULL) { 2396 error = ENXIO; /* XXX EINVAL? */ 2397 break; 2398 } 2399 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 2400 error = EADDRNOTAVAIL; 2401 break; 2402 } 2403 } 2404 im6o->im6o_multicast_ifp = ifp; 2405 break; 2406 2407 case IPV6_MULTICAST_HOPS: 2408 { 2409 /* 2410 * Set the IP6 hoplimit for outgoing multicast packets. 2411 */ 2412 int optval; 2413 if (m == NULL || m->m_len != sizeof(int)) { 2414 error = EINVAL; 2415 break; 2416 } 2417 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 2418 if (optval < -1 || optval >= 256) 2419 error = EINVAL; 2420 else if (optval == -1) 2421 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2422 else 2423 im6o->im6o_multicast_hlim = optval; 2424 break; 2425 } 2426 2427 case IPV6_MULTICAST_LOOP: 2428 /* 2429 * Set the loopback flag for outgoing multicast packets. 2430 * Must be zero or one. 2431 */ 2432 if (m == NULL || m->m_len != sizeof(u_int)) { 2433 error = EINVAL; 2434 break; 2435 } 2436 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2437 if (loop > 1) { 2438 error = EINVAL; 2439 break; 2440 } 2441 im6o->im6o_multicast_loop = loop; 2442 break; 2443 2444 case IPV6_JOIN_GROUP: 2445 /* 2446 * Add a multicast group membership. 2447 * Group must be a valid IP6 multicast address. 2448 */ 2449 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2450 error = EINVAL; 2451 break; 2452 } 2453 mreq = mtod(m, struct ipv6_mreq *); 2454 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2455 /* 2456 * We use the unspecified address to specify to accept 2457 * all multicast addresses. Only super user is allowed 2458 * to do this. 2459 */ 2460 if (suser(p, 0)) 2461 { 2462 error = EACCES; 2463 break; 2464 } 2465 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2466 error = EINVAL; 2467 break; 2468 } 2469 2470 /* 2471 * If no interface was explicitly specified, choose an 2472 * appropriate one according to the given multicast address. 2473 */ 2474 if (mreq->ipv6mr_interface == 0) { 2475 /* 2476 * Look up the routing table for the 2477 * address, and choose the outgoing interface. 2478 * XXX: is it a good approach? 2479 */ 2480 bzero(&ro, sizeof(ro)); 2481 ro.ro_tableid = m->m_pkthdr.ph_rtableid; 2482 dst = &ro.ro_dst; 2483 dst->sin6_len = sizeof(struct sockaddr_in6); 2484 dst->sin6_family = AF_INET6; 2485 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2486 rtalloc((struct route *)&ro); 2487 if (ro.ro_rt == NULL) { 2488 error = EADDRNOTAVAIL; 2489 break; 2490 } 2491 ifp = ro.ro_rt->rt_ifp; 2492 rtfree(ro.ro_rt); 2493 } else { 2494 /* 2495 * If the interface is specified, validate it. 2496 */ 2497 ifp = if_get(mreq->ipv6mr_interface); 2498 if (ifp == NULL) { 2499 error = ENXIO; /* XXX EINVAL? */ 2500 break; 2501 } 2502 } 2503 2504 /* 2505 * See if we found an interface, and confirm that it 2506 * supports multicast 2507 */ 2508 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2509 error = EADDRNOTAVAIL; 2510 break; 2511 } 2512 /* 2513 * Put interface index into the multicast address, 2514 * if the address has link/interface-local scope. 2515 */ 2516 if (IN6_IS_SCOPE_EMBED(&mreq->ipv6mr_multiaddr)) { 2517 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2518 htons(ifp->if_index); 2519 } 2520 /* 2521 * See if the membership already exists. 2522 */ 2523 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) 2524 if (imm->i6mm_maddr->in6m_ifidx == ifp->if_index && 2525 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2526 &mreq->ipv6mr_multiaddr)) 2527 break; 2528 if (imm != NULL) { 2529 error = EADDRINUSE; 2530 break; 2531 } 2532 /* 2533 * Everything looks good; add a new record to the multicast 2534 * address list for the given interface. 2535 */ 2536 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error); 2537 if (!imm) 2538 break; 2539 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2540 break; 2541 2542 case IPV6_LEAVE_GROUP: 2543 /* 2544 * Drop a multicast group membership. 2545 * Group must be a valid IP6 multicast address. 2546 */ 2547 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2548 error = EINVAL; 2549 break; 2550 } 2551 mreq = mtod(m, struct ipv6_mreq *); 2552 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2553 if (suser(p, 0)) 2554 { 2555 error = EACCES; 2556 break; 2557 } 2558 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2559 error = EINVAL; 2560 break; 2561 } 2562 /* 2563 * If an interface address was specified, get a pointer 2564 * to its ifnet structure. 2565 */ 2566 if (mreq->ipv6mr_interface == 0) 2567 ifp = NULL; 2568 else { 2569 ifp = if_get(mreq->ipv6mr_interface); 2570 if (ifp == NULL) { 2571 error = ENXIO; /* XXX EINVAL? */ 2572 break; 2573 } 2574 } 2575 2576 /* 2577 * Put interface index into the multicast address, 2578 * if the address has link-local scope. 2579 */ 2580 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2581 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2582 htons(mreq->ipv6mr_interface); 2583 } 2584 /* 2585 * Find the membership in the membership list. 2586 */ 2587 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2588 if ((ifp == NULL || 2589 imm->i6mm_maddr->in6m_ifidx == ifp->if_index) && 2590 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2591 &mreq->ipv6mr_multiaddr)) 2592 break; 2593 } 2594 if (imm == NULL) { 2595 /* Unable to resolve interface */ 2596 error = EADDRNOTAVAIL; 2597 break; 2598 } 2599 /* 2600 * Give up the multicast address record to which the 2601 * membership points. 2602 */ 2603 LIST_REMOVE(imm, i6mm_chain); 2604 in6_leavegroup(imm); 2605 break; 2606 2607 default: 2608 error = EOPNOTSUPP; 2609 break; 2610 } 2611 2612 /* 2613 * If all options have default values, no need to keep the option 2614 * structure. 2615 */ 2616 if (im6o->im6o_multicast_ifp == NULL && 2617 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2618 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2619 LIST_EMPTY(&im6o->im6o_memberships)) { 2620 free(*im6op, M_IPMOPTS, 0); 2621 *im6op = NULL; 2622 } 2623 2624 return (error); 2625 } 2626 2627 /* 2628 * Return the IP6 multicast options in response to user getsockopt(). 2629 */ 2630 int 2631 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp) 2632 { 2633 u_int *hlim, *loop, *ifindex; 2634 2635 *mp = m_get(M_WAIT, MT_SOOPTS); 2636 2637 switch (optname) { 2638 2639 case IPV6_MULTICAST_IF: 2640 ifindex = mtod(*mp, u_int *); 2641 (*mp)->m_len = sizeof(u_int); 2642 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2643 *ifindex = 0; 2644 else 2645 *ifindex = im6o->im6o_multicast_ifp->if_index; 2646 return (0); 2647 2648 case IPV6_MULTICAST_HOPS: 2649 hlim = mtod(*mp, u_int *); 2650 (*mp)->m_len = sizeof(u_int); 2651 if (im6o == NULL) 2652 *hlim = ip6_defmcasthlim; 2653 else 2654 *hlim = im6o->im6o_multicast_hlim; 2655 return (0); 2656 2657 case IPV6_MULTICAST_LOOP: 2658 loop = mtod(*mp, u_int *); 2659 (*mp)->m_len = sizeof(u_int); 2660 if (im6o == NULL) 2661 *loop = ip6_defmcasthlim; 2662 else 2663 *loop = im6o->im6o_multicast_loop; 2664 return (0); 2665 2666 default: 2667 return (EOPNOTSUPP); 2668 } 2669 } 2670 2671 /* 2672 * Discard the IP6 multicast options. 2673 */ 2674 void 2675 ip6_freemoptions(struct ip6_moptions *im6o) 2676 { 2677 struct in6_multi_mship *imm; 2678 2679 if (im6o == NULL) 2680 return; 2681 2682 while (!LIST_EMPTY(&im6o->im6o_memberships)) { 2683 imm = LIST_FIRST(&im6o->im6o_memberships); 2684 LIST_REMOVE(imm, i6mm_chain); 2685 in6_leavegroup(imm); 2686 } 2687 free(im6o, M_IPMOPTS, 0); 2688 } 2689 2690 /* 2691 * Set IPv6 outgoing packet options based on advanced API. 2692 */ 2693 int 2694 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2695 struct ip6_pktopts *stickyopt, int priv, int uproto) 2696 { 2697 u_int clen; 2698 struct cmsghdr *cm = 0; 2699 caddr_t cmsgs; 2700 int error; 2701 2702 if (control == NULL || opt == NULL) 2703 return (EINVAL); 2704 2705 ip6_initpktopts(opt); 2706 if (stickyopt) { 2707 int error; 2708 2709 /* 2710 * If stickyopt is provided, make a local copy of the options 2711 * for this particular packet, then override them by ancillary 2712 * objects. 2713 * XXX: copypktopts() does not copy the cached route to a next 2714 * hop (if any). This is not very good in terms of efficiency, 2715 * but we can allow this since this option should be rarely 2716 * used. 2717 */ 2718 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2719 return (error); 2720 } 2721 2722 /* 2723 * XXX: Currently, we assume all the optional information is stored 2724 * in a single mbuf. 2725 */ 2726 if (control->m_next) 2727 return (EINVAL); 2728 2729 clen = control->m_len; 2730 cmsgs = mtod(control, caddr_t); 2731 do { 2732 if (clen < CMSG_LEN(0)) 2733 return (EINVAL); 2734 cm = (struct cmsghdr *)cmsgs; 2735 if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > clen || 2736 CMSG_ALIGN(cm->cmsg_len) > clen) 2737 return (EINVAL); 2738 if (cm->cmsg_level == IPPROTO_IPV6) { 2739 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2740 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto); 2741 if (error) 2742 return (error); 2743 } 2744 2745 clen -= CMSG_ALIGN(cm->cmsg_len); 2746 cmsgs += CMSG_ALIGN(cm->cmsg_len); 2747 } while (clen); 2748 2749 return (0); 2750 } 2751 2752 /* 2753 * Set a particular packet option, as a sticky option or an ancillary data 2754 * item. "len" can be 0 only when it's a sticky option. 2755 * We have 4 cases of combination of "sticky" and "cmsg": 2756 * "sticky=0, cmsg=0": impossible 2757 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2758 * "sticky=1, cmsg=0": RFC3542 socket option 2759 * "sticky=1, cmsg=1": RFC2292 socket option 2760 */ 2761 int 2762 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2763 int priv, int sticky, int cmsg, int uproto) 2764 { 2765 int minmtupolicy; 2766 2767 if (!sticky && !cmsg) { 2768 #ifdef DIAGNOSTIC 2769 printf("ip6_setpktopt: impossible case\n"); 2770 #endif 2771 return (EINVAL); 2772 } 2773 2774 /* 2775 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2776 * not be specified in the context of RFC3542. Conversely, 2777 * RFC3542 types should not be specified in the context of RFC2292. 2778 */ 2779 if (!cmsg) { 2780 switch (optname) { 2781 case IPV6_2292PKTINFO: 2782 case IPV6_2292HOPLIMIT: 2783 case IPV6_2292NEXTHOP: 2784 case IPV6_2292HOPOPTS: 2785 case IPV6_2292DSTOPTS: 2786 case IPV6_2292RTHDR: 2787 case IPV6_2292PKTOPTIONS: 2788 return (ENOPROTOOPT); 2789 } 2790 } 2791 if (sticky && cmsg) { 2792 switch (optname) { 2793 case IPV6_PKTINFO: 2794 case IPV6_HOPLIMIT: 2795 case IPV6_NEXTHOP: 2796 case IPV6_HOPOPTS: 2797 case IPV6_DSTOPTS: 2798 case IPV6_RTHDRDSTOPTS: 2799 case IPV6_RTHDR: 2800 case IPV6_USE_MIN_MTU: 2801 case IPV6_DONTFRAG: 2802 case IPV6_TCLASS: 2803 return (ENOPROTOOPT); 2804 } 2805 } 2806 2807 switch (optname) { 2808 case IPV6_2292PKTINFO: 2809 case IPV6_PKTINFO: 2810 { 2811 struct ifnet *ifp = NULL; 2812 struct in6_pktinfo *pktinfo; 2813 2814 if (len != sizeof(struct in6_pktinfo)) 2815 return (EINVAL); 2816 2817 pktinfo = (struct in6_pktinfo *)buf; 2818 2819 /* 2820 * An application can clear any sticky IPV6_PKTINFO option by 2821 * doing a "regular" setsockopt with ipi6_addr being 2822 * in6addr_any and ipi6_ifindex being zero. 2823 * [RFC 3542, Section 6] 2824 */ 2825 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2826 pktinfo->ipi6_ifindex == 0 && 2827 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2828 ip6_clearpktopts(opt, optname); 2829 break; 2830 } 2831 2832 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2833 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2834 return (EINVAL); 2835 } 2836 2837 if (pktinfo->ipi6_ifindex) { 2838 ifp = if_get(pktinfo->ipi6_ifindex); 2839 if (ifp == NULL) 2840 return (ENXIO); 2841 } 2842 2843 /* 2844 * We store the address anyway, and let in6_selectsrc() 2845 * validate the specified address. This is because ipi6_addr 2846 * may not have enough information about its scope zone, and 2847 * we may need additional information (such as outgoing 2848 * interface or the scope zone of a destination address) to 2849 * disambiguate the scope. 2850 * XXX: the delay of the validation may confuse the 2851 * application when it is used as a sticky option. 2852 */ 2853 if (opt->ip6po_pktinfo == NULL) { 2854 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2855 M_IP6OPT, M_NOWAIT); 2856 if (opt->ip6po_pktinfo == NULL) 2857 return (ENOBUFS); 2858 } 2859 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2860 break; 2861 } 2862 2863 case IPV6_2292HOPLIMIT: 2864 case IPV6_HOPLIMIT: 2865 { 2866 int *hlimp; 2867 2868 /* 2869 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2870 * to simplify the ordering among hoplimit options. 2871 */ 2872 if (optname == IPV6_HOPLIMIT && sticky) 2873 return (ENOPROTOOPT); 2874 2875 if (len != sizeof(int)) 2876 return (EINVAL); 2877 hlimp = (int *)buf; 2878 if (*hlimp < -1 || *hlimp > 255) 2879 return (EINVAL); 2880 2881 opt->ip6po_hlim = *hlimp; 2882 break; 2883 } 2884 2885 case IPV6_TCLASS: 2886 { 2887 int tclass; 2888 2889 if (len != sizeof(int)) 2890 return (EINVAL); 2891 tclass = *(int *)buf; 2892 if (tclass < -1 || tclass > 255) 2893 return (EINVAL); 2894 2895 opt->ip6po_tclass = tclass; 2896 break; 2897 } 2898 2899 case IPV6_2292NEXTHOP: 2900 case IPV6_NEXTHOP: 2901 if (!priv) 2902 return (EPERM); 2903 2904 if (len == 0) { /* just remove the option */ 2905 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2906 break; 2907 } 2908 2909 /* check if cmsg_len is large enough for sa_len */ 2910 if (len < sizeof(struct sockaddr) || len < *buf) 2911 return (EINVAL); 2912 2913 switch (((struct sockaddr *)buf)->sa_family) { 2914 case AF_INET6: 2915 { 2916 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2917 2918 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2919 return (EINVAL); 2920 2921 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2922 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2923 return (EINVAL); 2924 } 2925 if (IN6_IS_SCOPE_EMBED(&sa6->sin6_addr)) { 2926 if (if_get(sa6->sin6_scope_id) == NULL) 2927 return (EINVAL); 2928 sa6->sin6_addr.s6_addr16[1] = 2929 htonl(sa6->sin6_scope_id); 2930 } else if (sa6->sin6_scope_id) 2931 return (EINVAL); 2932 break; 2933 } 2934 case AF_LINK: /* eventually be supported? */ 2935 default: 2936 return (EAFNOSUPPORT); 2937 } 2938 2939 /* turn off the previous option, then set the new option. */ 2940 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2941 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2942 if (opt->ip6po_nexthop == NULL) 2943 return (ENOBUFS); 2944 bcopy(buf, opt->ip6po_nexthop, *buf); 2945 break; 2946 2947 case IPV6_2292HOPOPTS: 2948 case IPV6_HOPOPTS: 2949 { 2950 struct ip6_hbh *hbh; 2951 int hbhlen; 2952 2953 /* 2954 * XXX: We don't allow a non-privileged user to set ANY HbH 2955 * options, since per-option restriction has too much 2956 * overhead. 2957 */ 2958 if (!priv) 2959 return (EPERM); 2960 2961 if (len == 0) { 2962 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2963 break; /* just remove the option */ 2964 } 2965 2966 /* message length validation */ 2967 if (len < sizeof(struct ip6_hbh)) 2968 return (EINVAL); 2969 hbh = (struct ip6_hbh *)buf; 2970 hbhlen = (hbh->ip6h_len + 1) << 3; 2971 if (len != hbhlen) 2972 return (EINVAL); 2973 2974 /* turn off the previous option, then set the new option. */ 2975 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2976 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2977 if (opt->ip6po_hbh == NULL) 2978 return (ENOBUFS); 2979 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2980 2981 break; 2982 } 2983 2984 case IPV6_2292DSTOPTS: 2985 case IPV6_DSTOPTS: 2986 case IPV6_RTHDRDSTOPTS: 2987 { 2988 struct ip6_dest *dest, **newdest = NULL; 2989 int destlen; 2990 2991 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */ 2992 return (EPERM); 2993 2994 if (len == 0) { 2995 ip6_clearpktopts(opt, optname); 2996 break; /* just remove the option */ 2997 } 2998 2999 /* message length validation */ 3000 if (len < sizeof(struct ip6_dest)) 3001 return (EINVAL); 3002 dest = (struct ip6_dest *)buf; 3003 destlen = (dest->ip6d_len + 1) << 3; 3004 if (len != destlen) 3005 return (EINVAL); 3006 /* 3007 * Determine the position that the destination options header 3008 * should be inserted; before or after the routing header. 3009 */ 3010 switch (optname) { 3011 case IPV6_2292DSTOPTS: 3012 /* 3013 * The old advanced API is ambiguous on this point. 3014 * Our approach is to determine the position based 3015 * according to the existence of a routing header. 3016 * Note, however, that this depends on the order of the 3017 * extension headers in the ancillary data; the 1st 3018 * part of the destination options header must appear 3019 * before the routing header in the ancillary data, 3020 * too. 3021 * RFC3542 solved the ambiguity by introducing 3022 * separate ancillary data or option types. 3023 */ 3024 if (opt->ip6po_rthdr == NULL) 3025 newdest = &opt->ip6po_dest1; 3026 else 3027 newdest = &opt->ip6po_dest2; 3028 break; 3029 case IPV6_RTHDRDSTOPTS: 3030 newdest = &opt->ip6po_dest1; 3031 break; 3032 case IPV6_DSTOPTS: 3033 newdest = &opt->ip6po_dest2; 3034 break; 3035 } 3036 3037 /* turn off the previous option, then set the new option. */ 3038 ip6_clearpktopts(opt, optname); 3039 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3040 if (*newdest == NULL) 3041 return (ENOBUFS); 3042 bcopy(dest, *newdest, destlen); 3043 3044 break; 3045 } 3046 3047 case IPV6_2292RTHDR: 3048 case IPV6_RTHDR: 3049 { 3050 struct ip6_rthdr *rth; 3051 int rthlen; 3052 3053 if (len == 0) { 3054 ip6_clearpktopts(opt, IPV6_RTHDR); 3055 break; /* just remove the option */ 3056 } 3057 3058 /* message length validation */ 3059 if (len < sizeof(struct ip6_rthdr)) 3060 return (EINVAL); 3061 rth = (struct ip6_rthdr *)buf; 3062 rthlen = (rth->ip6r_len + 1) << 3; 3063 if (len != rthlen) 3064 return (EINVAL); 3065 3066 switch (rth->ip6r_type) { 3067 case IPV6_RTHDR_TYPE_0: 3068 if (rth->ip6r_len == 0) /* must contain one addr */ 3069 return (EINVAL); 3070 if (rth->ip6r_len % 2) /* length must be even */ 3071 return (EINVAL); 3072 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3073 return (EINVAL); 3074 break; 3075 default: 3076 return (EINVAL); /* not supported */ 3077 } 3078 /* turn off the previous option */ 3079 ip6_clearpktopts(opt, IPV6_RTHDR); 3080 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3081 if (opt->ip6po_rthdr == NULL) 3082 return (ENOBUFS); 3083 bcopy(rth, opt->ip6po_rthdr, rthlen); 3084 break; 3085 } 3086 3087 case IPV6_USE_MIN_MTU: 3088 if (len != sizeof(int)) 3089 return (EINVAL); 3090 minmtupolicy = *(int *)buf; 3091 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3092 minmtupolicy != IP6PO_MINMTU_DISABLE && 3093 minmtupolicy != IP6PO_MINMTU_ALL) { 3094 return (EINVAL); 3095 } 3096 opt->ip6po_minmtu = minmtupolicy; 3097 break; 3098 3099 case IPV6_DONTFRAG: 3100 if (len != sizeof(int)) 3101 return (EINVAL); 3102 3103 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3104 /* 3105 * we ignore this option for TCP sockets. 3106 * (RFC3542 leaves this case unspecified.) 3107 */ 3108 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3109 } else 3110 opt->ip6po_flags |= IP6PO_DONTFRAG; 3111 break; 3112 3113 default: 3114 return (ENOPROTOOPT); 3115 } /* end of switch */ 3116 3117 return (0); 3118 } 3119 3120 /* 3121 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3122 * packet to the input queue of a specified interface. Note that this 3123 * calls the output routine of the loopback "driver", but with an interface 3124 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3125 */ 3126 void 3127 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 3128 { 3129 struct mbuf *copym; 3130 struct ip6_hdr *ip6; 3131 3132 /* 3133 * Duplicate the packet. 3134 */ 3135 copym = m_copy(m, 0, M_COPYALL); 3136 if (copym == NULL) 3137 return; 3138 3139 /* 3140 * Make sure to deep-copy IPv6 header portion in case the data 3141 * is in an mbuf cluster, so that we can safely override the IPv6 3142 * header portion later. 3143 */ 3144 if ((copym->m_flags & M_EXT) != 0 || 3145 copym->m_len < sizeof(struct ip6_hdr)) { 3146 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3147 if (copym == NULL) 3148 return; 3149 } 3150 3151 #ifdef DIAGNOSTIC 3152 if (copym->m_len < sizeof(*ip6)) { 3153 m_freem(copym); 3154 return; 3155 } 3156 #endif 3157 3158 ip6 = mtod(copym, struct ip6_hdr *); 3159 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 3160 ip6->ip6_src.s6_addr16[1] = 0; 3161 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 3162 ip6->ip6_dst.s6_addr16[1] = 0; 3163 3164 (void)looutput(ifp, copym, sin6tosa(dst), NULL); 3165 } 3166 3167 /* 3168 * Chop IPv6 header off from the payload. 3169 */ 3170 int 3171 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3172 { 3173 struct mbuf *mh; 3174 struct ip6_hdr *ip6; 3175 3176 ip6 = mtod(m, struct ip6_hdr *); 3177 if (m->m_len > sizeof(*ip6)) { 3178 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3179 if (mh == 0) { 3180 m_freem(m); 3181 return ENOBUFS; 3182 } 3183 M_MOVE_PKTHDR(mh, m); 3184 MH_ALIGN(mh, sizeof(*ip6)); 3185 m->m_len -= sizeof(*ip6); 3186 m->m_data += sizeof(*ip6); 3187 mh->m_next = m; 3188 m = mh; 3189 m->m_len = sizeof(*ip6); 3190 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3191 } 3192 exthdrs->ip6e_ip6 = m; 3193 return 0; 3194 } 3195 3196 u_int32_t 3197 ip6_randomid(void) 3198 { 3199 return idgen32(&ip6_id_ctx); 3200 } 3201 3202 void 3203 ip6_randomid_init(void) 3204 { 3205 idgen32_init(&ip6_id_ctx); 3206 } 3207 3208 /* 3209 * Compute significant parts of the IPv6 checksum pseudo-header 3210 * for use in a delayed TCP/UDP checksum calculation. 3211 */ 3212 static __inline u_int16_t __attribute__((__unused__)) 3213 in6_cksum_phdr(const struct in6_addr *src, const struct in6_addr *dst, 3214 u_int32_t len, u_int32_t nxt) 3215 { 3216 u_int32_t sum = 0; 3217 const u_int16_t *w; 3218 3219 w = (const u_int16_t *) src; 3220 sum += w[0]; 3221 if (!IN6_IS_SCOPE_EMBED(src)) 3222 sum += w[1]; 3223 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 3224 sum += w[6]; sum += w[7]; 3225 3226 w = (const u_int16_t *) dst; 3227 sum += w[0]; 3228 if (!IN6_IS_SCOPE_EMBED(dst)) 3229 sum += w[1]; 3230 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 3231 sum += w[6]; sum += w[7]; 3232 3233 sum += (u_int16_t)(len >> 16) + (u_int16_t)(len /*& 0xffff*/); 3234 3235 sum += (u_int16_t)(nxt >> 16) + (u_int16_t)(nxt /*& 0xffff*/); 3236 3237 sum = (u_int16_t)(sum >> 16) + (u_int16_t)(sum /*& 0xffff*/); 3238 3239 if (sum > 0xffff) 3240 sum -= 0xffff; 3241 3242 return (sum); 3243 } 3244 3245 /* 3246 * Process a delayed payload checksum calculation. 3247 */ 3248 void 3249 in6_delayed_cksum(struct mbuf *m, u_int8_t nxt) 3250 { 3251 int nxtp, offset; 3252 u_int16_t csum; 3253 3254 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxtp); 3255 if (offset <= 0 || nxtp != nxt) 3256 /* If the desired next protocol isn't found, punt. */ 3257 return; 3258 csum = (u_int16_t)(in6_cksum(m, 0, offset, m->m_pkthdr.len - offset)); 3259 3260 switch (nxt) { 3261 case IPPROTO_TCP: 3262 offset += offsetof(struct tcphdr, th_sum); 3263 break; 3264 3265 case IPPROTO_UDP: 3266 offset += offsetof(struct udphdr, uh_sum); 3267 if (csum == 0) 3268 csum = 0xffff; 3269 break; 3270 3271 case IPPROTO_ICMPV6: 3272 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 3273 break; 3274 } 3275 3276 if ((offset + sizeof(u_int16_t)) > m->m_len) 3277 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 3278 else 3279 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 3280 } 3281 3282 void 3283 in6_proto_cksum_out(struct mbuf *m, struct ifnet *ifp) 3284 { 3285 /* some hw and in6_delayed_cksum need the pseudo header cksum */ 3286 if (m->m_pkthdr.csum_flags & 3287 (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT|M_ICMP_CSUM_OUT)) { 3288 struct ip6_hdr *ip6; 3289 int nxt, offset; 3290 u_int16_t csum; 3291 3292 ip6 = mtod(m, struct ip6_hdr *); 3293 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt); 3294 csum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 3295 htonl(m->m_pkthdr.len - offset), htonl(nxt)); 3296 if (nxt == IPPROTO_TCP) 3297 offset += offsetof(struct tcphdr, th_sum); 3298 else if (nxt == IPPROTO_UDP) 3299 offset += offsetof(struct udphdr, uh_sum); 3300 else if (nxt == IPPROTO_ICMPV6) 3301 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 3302 if ((offset + sizeof(u_int16_t)) > m->m_len) 3303 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 3304 else 3305 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 3306 } 3307 3308 if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) { 3309 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_TCPv6) || 3310 ifp->if_bridgeport != NULL) { 3311 tcpstat.tcps_outswcsum++; 3312 in6_delayed_cksum(m, IPPROTO_TCP); 3313 m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_OUT; /* Clear */ 3314 } 3315 } else if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) { 3316 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_UDPv6) || 3317 ifp->if_bridgeport != NULL) { 3318 udpstat.udps_outswcsum++; 3319 in6_delayed_cksum(m, IPPROTO_UDP); 3320 m->m_pkthdr.csum_flags &= ~M_UDP_CSUM_OUT; /* Clear */ 3321 } 3322 } else if (m->m_pkthdr.csum_flags & M_ICMP_CSUM_OUT) { 3323 in6_delayed_cksum(m, IPPROTO_ICMPV6); 3324 m->m_pkthdr.csum_flags &= ~M_ICMP_CSUM_OUT; /* Clear */ 3325 } 3326 } 3327