1 /* $OpenBSD: ip6_output.c,v 1.108 2009/10/28 21:03:17 deraadt Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include "pf.h" 65 66 #include <sys/param.h> 67 #include <sys/malloc.h> 68 #include <sys/mbuf.h> 69 #include <sys/errno.h> 70 #include <sys/protosw.h> 71 #include <sys/socket.h> 72 #include <sys/socketvar.h> 73 #include <sys/systm.h> 74 #include <sys/proc.h> 75 76 #include <net/if.h> 77 #include <net/if_enc.h> 78 #include <net/route.h> 79 80 #include <netinet/in.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_systm.h> 83 #include <netinet/ip.h> 84 #include <netinet/in_pcb.h> 85 86 #include <netinet/ip6.h> 87 #include <netinet/icmp6.h> 88 #include <netinet6/ip6_var.h> 89 #include <netinet6/nd6.h> 90 #include <netinet6/ip6protosw.h> 91 92 #include <crypto/idgen.h> 93 94 #if NPF > 0 95 #include <net/pfvar.h> 96 #endif 97 98 #ifdef IPSEC 99 #include <netinet/ip_ipsp.h> 100 #include <netinet/ip_ah.h> 101 #include <netinet/ip_esp.h> 102 #include <netinet/udp.h> 103 #include <netinet/tcp.h> 104 #include <net/pfkeyv2.h> 105 106 extern u_int8_t get_sa_require(struct inpcb *); 107 108 extern int ipsec_auth_default_level; 109 extern int ipsec_esp_trans_default_level; 110 extern int ipsec_esp_network_default_level; 111 extern int ipsec_ipcomp_default_level; 112 #endif /* IPSEC */ 113 114 struct ip6_exthdrs { 115 struct mbuf *ip6e_ip6; 116 struct mbuf *ip6e_hbh; 117 struct mbuf *ip6e_dest1; 118 struct mbuf *ip6e_rthdr; 119 struct mbuf *ip6e_dest2; 120 }; 121 122 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, int, int); 123 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, struct socket *); 124 static int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf **); 125 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int, int, 126 int, int); 127 static int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *); 128 static int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf **); 129 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 130 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 131 struct ip6_frag **); 132 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 133 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 134 static int ip6_getpmtu(struct route_in6 *, struct route_in6 *, 135 struct ifnet *, struct in6_addr *, u_long *, int *); 136 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 137 138 /* Context for non-repeating IDs */ 139 struct idgen32_ctx ip6_id_ctx; 140 141 /* 142 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 143 * header (with pri, len, nxt, hlim, src, dst). 144 * This function may modify ver and hlim only. 145 * The mbuf chain containing the packet will be freed. 146 * The mbuf opt, if present, will not be freed. 147 * 148 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 149 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 150 * which is rt_rmx.rmx_mtu. 151 * 152 * ifpp - XXX: just for statistics 153 */ 154 int 155 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, struct route_in6 *ro, 156 int flags, struct ip6_moptions *im6o, struct ifnet **ifpp, 157 struct inpcb *inp) 158 { 159 struct ip6_hdr *ip6, *mhip6; 160 struct ifnet *ifp, *origifp = NULL; 161 struct mbuf *m = m0; 162 int hlen, tlen, len, off; 163 struct route_in6 ip6route; 164 struct rtentry *rt = NULL; 165 struct sockaddr_in6 *dst, dstsock; 166 int error = 0; 167 struct in6_ifaddr *ia = NULL; 168 u_long mtu; 169 int alwaysfrag, dontfrag; 170 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 171 struct ip6_exthdrs exthdrs; 172 struct in6_addr finaldst; 173 struct route_in6 *ro_pmtu = NULL; 174 int hdrsplit = 0; 175 u_int8_t sproto = 0; 176 #ifdef IPSEC 177 struct m_tag *mtag; 178 union sockaddr_union sdst; 179 struct tdb_ident *tdbi; 180 u_int32_t sspi; 181 struct tdb *tdb; 182 int s; 183 #endif /* IPSEC */ 184 185 #ifdef IPSEC 186 if (inp && (inp->inp_flags & INP_IPV6) == 0) 187 panic("ip6_output: IPv4 pcb is passed"); 188 #endif /* IPSEC */ 189 190 ip6 = mtod(m, struct ip6_hdr *); 191 finaldst = ip6->ip6_dst; 192 193 #define MAKE_EXTHDR(hp, mp) \ 194 do { \ 195 if (hp) { \ 196 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 197 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 198 ((eh)->ip6e_len + 1) << 3); \ 199 if (error) \ 200 goto freehdrs; \ 201 } \ 202 } while (0) 203 204 bzero(&exthdrs, sizeof(exthdrs)); 205 206 if (opt) { 207 /* Hop-by-Hop options header */ 208 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 209 /* Destination options header(1st part) */ 210 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 211 /* Routing header */ 212 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 213 /* Destination options header(2nd part) */ 214 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 215 } 216 217 #ifdef IPSEC 218 if (!ipsec_in_use && !inp) 219 goto done_spd; 220 221 /* 222 * splnet is chosen over spltdb because we are not allowed to 223 * lower the level, and udp6_output calls us in splnet(). XXX check 224 */ 225 s = splnet(); 226 227 /* 228 * Check if there was an outgoing SA bound to the flow 229 * from a transport protocol. 230 */ 231 ip6 = mtod(m, struct ip6_hdr *); 232 233 /* Do we have any pending SAs to apply ? */ 234 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL); 235 if (mtag != NULL) { 236 #ifdef DIAGNOSTIC 237 if (mtag->m_tag_len != sizeof (struct tdb_ident)) 238 panic("ip6_output: tag of length %d (should be %d", 239 mtag->m_tag_len, sizeof (struct tdb_ident)); 240 #endif 241 tdbi = (struct tdb_ident *)(mtag + 1); 242 tdb = gettdb(tdbi->spi, &tdbi->dst, tdbi->proto); 243 if (tdb == NULL) 244 error = -EINVAL; 245 m_tag_delete(m, mtag); 246 } else 247 tdb = ipsp_spd_lookup(m, AF_INET6, sizeof(struct ip6_hdr), 248 &error, IPSP_DIRECTION_OUT, NULL, inp); 249 250 if (tdb == NULL) { 251 splx(s); 252 253 if (error == 0) { 254 /* 255 * No IPsec processing required, we'll just send the 256 * packet out. 257 */ 258 sproto = 0; 259 260 /* Fall through to routing/multicast handling */ 261 } else { 262 /* 263 * -EINVAL is used to indicate that the packet should 264 * be silently dropped, typically because we've asked 265 * key management for an SA. 266 */ 267 if (error == -EINVAL) /* Should silently drop packet */ 268 error = 0; 269 270 goto freehdrs; 271 } 272 } else { 273 /* Loop detection */ 274 for (mtag = m_tag_first(m); mtag != NULL; 275 mtag = m_tag_next(m, mtag)) { 276 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE && 277 mtag->m_tag_id != 278 PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED) 279 continue; 280 tdbi = (struct tdb_ident *)(mtag + 1); 281 if (tdbi->spi == tdb->tdb_spi && 282 tdbi->proto == tdb->tdb_sproto && 283 !bcmp(&tdbi->dst, &tdb->tdb_dst, 284 sizeof(union sockaddr_union))) { 285 splx(s); 286 sproto = 0; /* mark as no-IPsec-needed */ 287 goto done_spd; 288 } 289 } 290 291 /* We need to do IPsec */ 292 bcopy(&tdb->tdb_dst, &sdst, sizeof(sdst)); 293 sspi = tdb->tdb_spi; 294 sproto = tdb->tdb_sproto; 295 splx(s); 296 } 297 298 /* Fall through to the routing/multicast handling code */ 299 done_spd: 300 #endif /* IPSEC */ 301 302 /* 303 * Calculate the total length of the extension header chain. 304 * Keep the length of the unfragmentable part for fragmentation. 305 */ 306 optlen = 0; 307 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 308 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 309 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 310 unfragpartlen = optlen + sizeof(struct ip6_hdr); 311 /* NOTE: we don't add AH/ESP length here. do that later. */ 312 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 313 314 /* 315 * If we need IPsec, or there is at least one extension header, 316 * separate IP6 header from the payload. 317 */ 318 if ((sproto || optlen) && !hdrsplit) { 319 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 320 m = NULL; 321 goto freehdrs; 322 } 323 m = exthdrs.ip6e_ip6; 324 hdrsplit++; 325 } 326 327 /* adjust pointer */ 328 ip6 = mtod(m, struct ip6_hdr *); 329 330 /* adjust mbuf packet header length */ 331 m->m_pkthdr.len += optlen; 332 plen = m->m_pkthdr.len - sizeof(*ip6); 333 334 /* If this is a jumbo payload, insert a jumbo payload option. */ 335 if (plen > IPV6_MAXPACKET) { 336 if (!hdrsplit) { 337 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 338 m = NULL; 339 goto freehdrs; 340 } 341 m = exthdrs.ip6e_ip6; 342 hdrsplit++; 343 } 344 /* adjust pointer */ 345 ip6 = mtod(m, struct ip6_hdr *); 346 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 347 goto freehdrs; 348 ip6->ip6_plen = 0; 349 } else 350 ip6->ip6_plen = htons(plen); 351 352 /* 353 * Concatenate headers and fill in next header fields. 354 * Here we have, on "m" 355 * IPv6 payload 356 * and we insert headers accordingly. Finally, we should be getting: 357 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 358 * 359 * during the header composing process, "m" points to IPv6 header. 360 * "mprev" points to an extension header prior to esp. 361 */ 362 { 363 u_char *nexthdrp = &ip6->ip6_nxt; 364 struct mbuf *mprev = m; 365 366 /* 367 * we treat dest2 specially. this makes IPsec processing 368 * much easier. the goal here is to make mprev point the 369 * mbuf prior to dest2. 370 * 371 * result: IPv6 dest2 payload 372 * m and mprev will point to IPv6 header. 373 */ 374 if (exthdrs.ip6e_dest2) { 375 if (!hdrsplit) 376 panic("assumption failed: hdr not split"); 377 exthdrs.ip6e_dest2->m_next = m->m_next; 378 m->m_next = exthdrs.ip6e_dest2; 379 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 380 ip6->ip6_nxt = IPPROTO_DSTOPTS; 381 } 382 383 #define MAKE_CHAIN(m, mp, p, i)\ 384 do {\ 385 if (m) {\ 386 if (!hdrsplit) \ 387 panic("assumption failed: hdr not split"); \ 388 *mtod((m), u_char *) = *(p);\ 389 *(p) = (i);\ 390 p = mtod((m), u_char *);\ 391 (m)->m_next = (mp)->m_next;\ 392 (mp)->m_next = (m);\ 393 (mp) = (m);\ 394 }\ 395 } while (0) 396 /* 397 * result: IPv6 hbh dest1 rthdr dest2 payload 398 * m will point to IPv6 header. mprev will point to the 399 * extension header prior to dest2 (rthdr in the above case). 400 */ 401 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 402 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 403 IPPROTO_DSTOPTS); 404 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 405 IPPROTO_ROUTING); 406 } 407 408 /* 409 * If there is a routing header, replace the destination address field 410 * with the first hop of the routing header. 411 */ 412 if (exthdrs.ip6e_rthdr) { 413 struct ip6_rthdr *rh; 414 struct ip6_rthdr0 *rh0; 415 struct in6_addr *addr; 416 417 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 418 struct ip6_rthdr *)); 419 switch (rh->ip6r_type) { 420 case IPV6_RTHDR_TYPE_0: 421 rh0 = (struct ip6_rthdr0 *)rh; 422 addr = (struct in6_addr *)(rh0 + 1); 423 ip6->ip6_dst = addr[0]; 424 bcopy(&addr[1], &addr[0], 425 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)); 426 addr[rh0->ip6r0_segleft - 1] = finaldst; 427 break; 428 default: /* is it possible? */ 429 error = EINVAL; 430 goto bad; 431 } 432 } 433 434 /* Source address validation */ 435 if (!(flags & IPV6_UNSPECSRC) && 436 IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 437 /* 438 * XXX: we can probably assume validation in the caller, but 439 * we explicitly check the address here for safety. 440 */ 441 error = EOPNOTSUPP; 442 ip6stat.ip6s_badscope++; 443 goto bad; 444 } 445 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 446 error = EOPNOTSUPP; 447 ip6stat.ip6s_badscope++; 448 goto bad; 449 } 450 451 ip6stat.ip6s_localout++; 452 453 /* 454 * Route packet. 455 */ 456 #if NPF > 0 457 reroute: 458 #endif 459 460 /* initialize cached route */ 461 if (ro == 0) { 462 ro = &ip6route; 463 bzero((caddr_t)ro, sizeof(*ro)); 464 } 465 ro_pmtu = ro; 466 if (opt && opt->ip6po_rthdr) 467 ro = &opt->ip6po_route; 468 dst = (struct sockaddr_in6 *)&ro->ro_dst; 469 470 /* 471 * if specified, try to fill in the traffic class field. 472 * do not override if a non-zero value is already set. 473 * we check the diffserv field and the ecn field separately. 474 */ 475 if (opt && opt->ip6po_tclass >= 0) { 476 int mask = 0; 477 478 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 479 mask |= 0xfc; 480 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 481 mask |= 0x03; 482 if (mask != 0) 483 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 484 } 485 486 /* fill in or override the hop limit field, if necessary. */ 487 if (opt && opt->ip6po_hlim != -1) 488 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 489 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 490 if (im6o != NULL) 491 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 492 else 493 ip6->ip6_hlim = ip6_defmcasthlim; 494 } 495 496 #ifdef IPSEC 497 /* 498 * Check if the packet needs encapsulation. 499 * ipsp_process_packet will never come back to here. 500 */ 501 if (sproto != 0) { 502 s = splnet(); 503 504 #if NPF > 0 505 if (pf_test6(PF_OUT, &encif[0].sc_if, &m, NULL) != PF_PASS) { 506 splx(s); 507 error = EHOSTUNREACH; 508 m_freem(m); 509 goto done; 510 } 511 if (m == NULL) { 512 splx(s); 513 goto done; 514 } 515 ip6 = mtod(m, struct ip6_hdr *); 516 /* 517 * PF_TAG_REROUTE handling or not... 518 * Packet is entering IPsec so the routing is 519 * already overruled by the IPsec policy. 520 * Until now the change was not reconsidered. 521 * What's the behaviour? 522 */ 523 #endif 524 /* 525 * XXX what should we do if ip6_hlim == 0 and the 526 * packet gets tunneled? 527 */ 528 529 tdb = gettdb(sspi, &sdst, sproto); 530 if (tdb == NULL) { 531 splx(s); 532 error = EHOSTUNREACH; 533 m_freem(m); 534 goto done; 535 } 536 537 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 538 539 /* Callee frees mbuf */ 540 /* 541 * if we are source-routing, do not attempt to tunnel the 542 * packet just because ip6_dst is different from what tdb has. 543 * XXX 544 */ 545 error = ipsp_process_packet(m, tdb, AF_INET6, 546 exthdrs.ip6e_rthdr ? 1 : 0); 547 splx(s); 548 549 return error; /* Nothing more to be done */ 550 } 551 #endif /* IPSEC */ 552 553 bzero(&dstsock, sizeof(dstsock)); 554 dstsock.sin6_family = AF_INET6; 555 dstsock.sin6_addr = ip6->ip6_dst; 556 dstsock.sin6_len = sizeof(dstsock); 557 if ((error = in6_selectroute(&dstsock, opt, im6o, ro, &ifp, 558 &rt)) != 0) { 559 switch (error) { 560 case EHOSTUNREACH: 561 ip6stat.ip6s_noroute++; 562 break; 563 case EADDRNOTAVAIL: 564 default: 565 break; /* XXX statistics? */ 566 } 567 if (ifp != NULL) 568 in6_ifstat_inc(ifp, ifs6_out_discard); 569 goto bad; 570 } 571 if (rt == NULL) { 572 /* 573 * If in6_selectroute() does not return a route entry, 574 * dst may not have been updated. 575 */ 576 *dst = dstsock; /* XXX */ 577 } 578 579 /* 580 * then rt (for unicast) and ifp must be non-NULL valid values. 581 */ 582 if (rt) { 583 ia = (struct in6_ifaddr *)(rt->rt_ifa); 584 rt->rt_use++; 585 } 586 587 if ((flags & IPV6_FORWARDING) == 0) { 588 /* XXX: the FORWARDING flag can be set for mrouting. */ 589 in6_ifstat_inc(ifp, ifs6_out_request); 590 } 591 592 /* 593 * The outgoing interface must be in the zone of source and 594 * destination addresses. We should use ia_ifp to support the 595 * case of sending packets to an address of our own. 596 */ 597 if (ia != NULL && ia->ia_ifp) 598 origifp = ia->ia_ifp; 599 else 600 origifp = ifp; 601 602 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 603 if (opt && opt->ip6po_nextroute.ro_rt) { 604 /* 605 * The nexthop is explicitly specified by the 606 * application. We assume the next hop is an IPv6 607 * address. 608 */ 609 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 610 } else if ((rt->rt_flags & RTF_GATEWAY)) 611 dst = (struct sockaddr_in6 *)rt->rt_gateway; 612 } 613 614 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 615 /* Unicast */ 616 617 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 618 } else { 619 /* Multicast */ 620 struct in6_multi *in6m; 621 622 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 623 624 in6_ifstat_inc(ifp, ifs6_out_mcast); 625 626 /* 627 * Confirm that the outgoing interface supports multicast. 628 */ 629 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 630 ip6stat.ip6s_noroute++; 631 in6_ifstat_inc(ifp, ifs6_out_discard); 632 error = ENETUNREACH; 633 goto bad; 634 } 635 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 636 if (in6m != NULL && 637 (im6o == NULL || im6o->im6o_multicast_loop)) { 638 /* 639 * If we belong to the destination multicast group 640 * on the outgoing interface, and the caller did not 641 * forbid loopback, loop back a copy. 642 */ 643 ip6_mloopback(ifp, m, dst); 644 } else { 645 /* 646 * If we are acting as a multicast router, perform 647 * multicast forwarding as if the packet had just 648 * arrived on the interface to which we are about 649 * to send. The multicast forwarding function 650 * recursively calls this function, using the 651 * IPV6_FORWARDING flag to prevent infinite recursion. 652 * 653 * Multicasts that are looped back by ip6_mloopback(), 654 * above, will be forwarded by the ip6_input() routine, 655 * if necessary. 656 */ 657 #ifdef MROUTING 658 if (ip6_mforwarding && ip6_mrouter && 659 (flags & IPV6_FORWARDING) == 0) { 660 if (ip6_mforward(ip6, ifp, m) != 0) { 661 m_freem(m); 662 goto done; 663 } 664 } 665 #endif 666 } 667 /* 668 * Multicasts with a hoplimit of zero may be looped back, 669 * above, but must not be transmitted on a network. 670 * Also, multicasts addressed to the loopback interface 671 * are not sent -- the above call to ip6_mloopback() will 672 * loop back a copy if this host actually belongs to the 673 * destination group on the loopback interface. 674 */ 675 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 676 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 677 m_freem(m); 678 goto done; 679 } 680 } 681 682 /* 683 * Fill the outgoing interface to tell the upper layer 684 * to increment per-interface statistics. 685 */ 686 if (ifpp) 687 *ifpp = ifp; 688 689 /* Determine path MTU. */ 690 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu, 691 &alwaysfrag)) != 0) 692 goto bad; 693 694 /* 695 * The caller of this function may specify to use the minimum MTU 696 * in some cases. 697 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 698 * setting. The logic is a bit complicated; by default, unicast 699 * packets will follow path MTU while multicast packets will be sent at 700 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 701 * including unicast ones will be sent at the minimum MTU. Multicast 702 * packets will always be sent at the minimum MTU unless 703 * IP6PO_MINMTU_DISABLE is explicitly specified. 704 * See RFC 3542 for more details. 705 */ 706 if (mtu > IPV6_MMTU) { 707 if ((flags & IPV6_MINMTU)) 708 mtu = IPV6_MMTU; 709 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 710 mtu = IPV6_MMTU; 711 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 712 (opt == NULL || 713 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 714 mtu = IPV6_MMTU; 715 } 716 } 717 718 /* Fake scoped addresses */ 719 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 720 /* 721 * If source or destination address is a scoped address, and 722 * the packet is going to be sent to a loopback interface, 723 * we should keep the original interface. 724 */ 725 726 /* 727 * XXX: this is a very experimental and temporary solution. 728 * We eventually have sockaddr_in6 and use the sin6_scope_id 729 * field of the structure here. 730 * We rely on the consistency between two scope zone ids 731 * of source add destination, which should already be assured 732 * Larger scopes than link will be supported in the near 733 * future. 734 */ 735 origifp = NULL; 736 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 737 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 738 else if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 739 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 740 /* 741 * XXX: origifp can be NULL even in those two cases above. 742 * For example, if we remove the (only) link-local address 743 * from the loopback interface, and try to send a link-local 744 * address without link-id information. Then the source 745 * address is ::1, and the destination address is the 746 * link-local address with its s6_addr16[1] being zero. 747 * What is worse, if the packet goes to the loopback interface 748 * by a default rejected route, the null pointer would be 749 * passed to looutput, and the kernel would hang. 750 * The following last resort would prevent such disaster. 751 */ 752 if (origifp == NULL) 753 origifp = ifp; 754 } else 755 origifp = ifp; 756 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 757 ip6->ip6_src.s6_addr16[1] = 0; 758 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 759 ip6->ip6_dst.s6_addr16[1] = 0; 760 761 /* 762 * If the outgoing packet contains a hop-by-hop options header, 763 * it must be examined and processed even by the source node. 764 * (RFC 2460, section 4.) 765 */ 766 if (exthdrs.ip6e_hbh) { 767 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 768 u_int32_t dummy1; /* XXX unused */ 769 u_int32_t dummy2; /* XXX unused */ 770 771 /* 772 * XXX: if we have to send an ICMPv6 error to the sender, 773 * we need the M_LOOP flag since icmp6_error() expects 774 * the IPv6 and the hop-by-hop options header are 775 * continuous unless the flag is set. 776 */ 777 m->m_flags |= M_LOOP; 778 m->m_pkthdr.rcvif = ifp; 779 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 780 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 781 &dummy1, &dummy2) < 0) { 782 /* m was already freed at this point */ 783 error = EINVAL;/* better error? */ 784 goto done; 785 } 786 m->m_flags &= ~M_LOOP; /* XXX */ 787 m->m_pkthdr.rcvif = NULL; 788 } 789 790 #if NPF > 0 791 if (pf_test6(PF_OUT, ifp, &m, NULL) != PF_PASS) { 792 error = EHOSTUNREACH; 793 m_freem(m); 794 goto done; 795 } 796 if (m == NULL) 797 goto done; 798 ip6 = mtod(m, struct ip6_hdr *); 799 if ((m->m_pkthdr.pf.flags & (PF_TAG_REROUTE | PF_TAG_GENERATED)) == 800 (PF_TAG_REROUTE | PF_TAG_GENERATED)) { 801 /* already rerun the route lookup, go on */ 802 m->m_pkthdr.pf.flags &= ~(PF_TAG_GENERATED | PF_TAG_REROUTE); 803 } else if (m->m_pkthdr.pf.flags & PF_TAG_REROUTE) { 804 /* tag as generated to skip over pf_test on rerun */ 805 m->m_pkthdr.pf.flags |= PF_TAG_GENERATED; 806 finaldst = ip6->ip6_dst; 807 ro = NULL; 808 goto reroute; 809 } 810 #endif 811 812 /* 813 * Send the packet to the outgoing interface. 814 * If necessary, do IPv6 fragmentation before sending. 815 * 816 * the logic here is rather complex: 817 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 818 * 1-a: send as is if tlen <= path mtu 819 * 1-b: fragment if tlen > path mtu 820 * 821 * 2: if user asks us not to fragment (dontfrag == 1) 822 * 2-a: send as is if tlen <= interface mtu 823 * 2-b: error if tlen > interface mtu 824 * 825 * 3: if we always need to attach fragment header (alwaysfrag == 1) 826 * always fragment 827 * 828 * 4: if dontfrag == 1 && alwaysfrag == 1 829 * error, as we cannot handle this conflicting request 830 */ 831 tlen = m->m_pkthdr.len; 832 833 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) 834 dontfrag = 1; 835 else 836 dontfrag = 0; 837 if (dontfrag && alwaysfrag) { /* case 4 */ 838 /* conflicting request - can't transmit */ 839 error = EMSGSIZE; 840 goto bad; 841 } 842 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */ 843 /* 844 * Even if the DONTFRAG option is specified, we cannot send the 845 * packet when the data length is larger than the MTU of the 846 * outgoing interface. 847 * Notify the error by sending IPV6_PATHMTU ancillary data as 848 * well as returning an error code (the latter is not described 849 * in the API spec.) 850 */ 851 #if 0 852 u_int32_t mtu32; 853 struct ip6ctlparam ip6cp; 854 855 mtu32 = (u_int32_t)mtu; 856 bzero(&ip6cp, sizeof(ip6cp)); 857 ip6cp.ip6c_cmdarg = (void *)&mtu32; 858 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 859 (void *)&ip6cp); 860 #endif 861 862 error = EMSGSIZE; 863 goto bad; 864 } 865 866 /* 867 * transmit packet without fragmentation 868 */ 869 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */ 870 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 871 goto done; 872 } 873 874 /* 875 * try to fragment the packet. case 1-b and 3 876 */ 877 if (mtu < IPV6_MMTU) { 878 /* path MTU cannot be less than IPV6_MMTU */ 879 error = EMSGSIZE; 880 in6_ifstat_inc(ifp, ifs6_out_fragfail); 881 goto bad; 882 } else if (ip6->ip6_plen == 0) { 883 /* jumbo payload cannot be fragmented */ 884 error = EMSGSIZE; 885 in6_ifstat_inc(ifp, ifs6_out_fragfail); 886 goto bad; 887 } else { 888 struct mbuf **mnext, *m_frgpart; 889 struct ip6_frag *ip6f; 890 u_int32_t id = htonl(ip6_randomid()); 891 u_char nextproto; 892 #if 0 893 struct ip6ctlparam ip6cp; 894 u_int32_t mtu32; 895 #endif 896 897 /* 898 * Too large for the destination or interface; 899 * fragment if possible. 900 * Must be able to put at least 8 bytes per fragment. 901 */ 902 hlen = unfragpartlen; 903 if (mtu > IPV6_MAXPACKET) 904 mtu = IPV6_MAXPACKET; 905 906 #if 0 907 /* Notify a proper path MTU to applications. */ 908 mtu32 = (u_int32_t)mtu; 909 bzero(&ip6cp, sizeof(ip6cp)); 910 ip6cp.ip6c_cmdarg = (void *)&mtu32; 911 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst, 912 (void *)&ip6cp); 913 #endif 914 915 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 916 if (len < 8) { 917 error = EMSGSIZE; 918 in6_ifstat_inc(ifp, ifs6_out_fragfail); 919 goto bad; 920 } 921 922 mnext = &m->m_nextpkt; 923 924 /* 925 * Change the next header field of the last header in the 926 * unfragmentable part. 927 */ 928 if (exthdrs.ip6e_rthdr) { 929 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 930 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 931 } else if (exthdrs.ip6e_dest1) { 932 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 933 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 934 } else if (exthdrs.ip6e_hbh) { 935 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 936 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 937 } else { 938 nextproto = ip6->ip6_nxt; 939 ip6->ip6_nxt = IPPROTO_FRAGMENT; 940 } 941 942 /* 943 * Loop through length of segment after first fragment, 944 * make new header and copy data of each part and link onto 945 * chain. 946 */ 947 m0 = m; 948 for (off = hlen; off < tlen; off += len) { 949 struct mbuf *mlast; 950 951 MGETHDR(m, M_DONTWAIT, MT_HEADER); 952 if (!m) { 953 error = ENOBUFS; 954 ip6stat.ip6s_odropped++; 955 goto sendorfree; 956 } 957 m->m_pkthdr.rcvif = NULL; 958 m->m_flags = m0->m_flags & M_COPYFLAGS; 959 *mnext = m; 960 mnext = &m->m_nextpkt; 961 m->m_data += max_linkhdr; 962 mhip6 = mtod(m, struct ip6_hdr *); 963 *mhip6 = *ip6; 964 m->m_len = sizeof(*mhip6); 965 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 966 if (error) { 967 ip6stat.ip6s_odropped++; 968 goto sendorfree; 969 } 970 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 971 if (off + len >= tlen) 972 len = tlen - off; 973 else 974 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 975 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 976 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 977 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 978 error = ENOBUFS; 979 ip6stat.ip6s_odropped++; 980 goto sendorfree; 981 } 982 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 983 ; 984 mlast->m_next = m_frgpart; 985 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 986 m->m_pkthdr.rcvif = (struct ifnet *)0; 987 ip6f->ip6f_reserved = 0; 988 ip6f->ip6f_ident = id; 989 ip6f->ip6f_nxt = nextproto; 990 ip6stat.ip6s_ofragments++; 991 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 992 } 993 994 in6_ifstat_inc(ifp, ifs6_out_fragok); 995 } 996 997 /* 998 * Remove leading garbages. 999 */ 1000 sendorfree: 1001 m = m0->m_nextpkt; 1002 m0->m_nextpkt = 0; 1003 m_freem(m0); 1004 for (m0 = m; m; m = m0) { 1005 m0 = m->m_nextpkt; 1006 m->m_nextpkt = 0; 1007 if (error == 0) { 1008 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1009 } else 1010 m_freem(m); 1011 } 1012 1013 if (error == 0) 1014 ip6stat.ip6s_fragmented++; 1015 1016 done: 1017 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1018 RTFREE(ro->ro_rt); 1019 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1020 RTFREE(ro_pmtu->ro_rt); 1021 } 1022 1023 return (error); 1024 1025 freehdrs: 1026 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1027 m_freem(exthdrs.ip6e_dest1); 1028 m_freem(exthdrs.ip6e_rthdr); 1029 m_freem(exthdrs.ip6e_dest2); 1030 /* FALLTHROUGH */ 1031 bad: 1032 m_freem(m); 1033 goto done; 1034 } 1035 1036 static int 1037 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1038 { 1039 struct mbuf *m; 1040 1041 if (hlen > MCLBYTES) 1042 return (ENOBUFS); /* XXX */ 1043 1044 MGET(m, M_DONTWAIT, MT_DATA); 1045 if (!m) 1046 return (ENOBUFS); 1047 1048 if (hlen > MLEN) { 1049 MCLGET(m, M_DONTWAIT); 1050 if ((m->m_flags & M_EXT) == 0) { 1051 m_free(m); 1052 return (ENOBUFS); 1053 } 1054 } 1055 m->m_len = hlen; 1056 if (hdr) 1057 bcopy(hdr, mtod(m, caddr_t), hlen); 1058 1059 *mp = m; 1060 return (0); 1061 } 1062 1063 /* 1064 * Insert jumbo payload option. 1065 */ 1066 static int 1067 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1068 { 1069 struct mbuf *mopt; 1070 u_int8_t *optbuf; 1071 u_int32_t v; 1072 1073 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1074 1075 /* 1076 * If there is no hop-by-hop options header, allocate new one. 1077 * If there is one but it doesn't have enough space to store the 1078 * jumbo payload option, allocate a cluster to store the whole options. 1079 * Otherwise, use it to store the options. 1080 */ 1081 if (exthdrs->ip6e_hbh == 0) { 1082 MGET(mopt, M_DONTWAIT, MT_DATA); 1083 if (mopt == 0) 1084 return (ENOBUFS); 1085 mopt->m_len = JUMBOOPTLEN; 1086 optbuf = mtod(mopt, u_int8_t *); 1087 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1088 exthdrs->ip6e_hbh = mopt; 1089 } else { 1090 struct ip6_hbh *hbh; 1091 1092 mopt = exthdrs->ip6e_hbh; 1093 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1094 /* 1095 * XXX assumption: 1096 * - exthdrs->ip6e_hbh is not referenced from places 1097 * other than exthdrs. 1098 * - exthdrs->ip6e_hbh is not an mbuf chain. 1099 */ 1100 int oldoptlen = mopt->m_len; 1101 struct mbuf *n; 1102 1103 /* 1104 * XXX: give up if the whole (new) hbh header does 1105 * not fit even in an mbuf cluster. 1106 */ 1107 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1108 return (ENOBUFS); 1109 1110 /* 1111 * As a consequence, we must always prepare a cluster 1112 * at this point. 1113 */ 1114 MGET(n, M_DONTWAIT, MT_DATA); 1115 if (n) { 1116 MCLGET(n, M_DONTWAIT); 1117 if ((n->m_flags & M_EXT) == 0) { 1118 m_freem(n); 1119 n = NULL; 1120 } 1121 } 1122 if (!n) 1123 return (ENOBUFS); 1124 n->m_len = oldoptlen + JUMBOOPTLEN; 1125 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1126 oldoptlen); 1127 optbuf = mtod(n, u_int8_t *) + oldoptlen; 1128 m_freem(mopt); 1129 mopt = exthdrs->ip6e_hbh = n; 1130 } else { 1131 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 1132 mopt->m_len += JUMBOOPTLEN; 1133 } 1134 optbuf[0] = IP6OPT_PADN; 1135 optbuf[1] = 0; 1136 1137 /* 1138 * Adjust the header length according to the pad and 1139 * the jumbo payload option. 1140 */ 1141 hbh = mtod(mopt, struct ip6_hbh *); 1142 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1143 } 1144 1145 /* fill in the option. */ 1146 optbuf[2] = IP6OPT_JUMBO; 1147 optbuf[3] = 4; 1148 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1149 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1150 1151 /* finally, adjust the packet header length */ 1152 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1153 1154 return (0); 1155 #undef JUMBOOPTLEN 1156 } 1157 1158 /* 1159 * Insert fragment header and copy unfragmentable header portions. 1160 */ 1161 static int 1162 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1163 struct ip6_frag **frghdrp) 1164 { 1165 struct mbuf *n, *mlast; 1166 1167 if (hlen > sizeof(struct ip6_hdr)) { 1168 n = m_copym(m0, sizeof(struct ip6_hdr), 1169 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1170 if (n == 0) 1171 return (ENOBUFS); 1172 m->m_next = n; 1173 } else 1174 n = m; 1175 1176 /* Search for the last mbuf of unfragmentable part. */ 1177 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1178 ; 1179 1180 if ((mlast->m_flags & M_EXT) == 0 && 1181 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1182 /* use the trailing space of the last mbuf for the fragment hdr */ 1183 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1184 mlast->m_len); 1185 mlast->m_len += sizeof(struct ip6_frag); 1186 m->m_pkthdr.len += sizeof(struct ip6_frag); 1187 } else { 1188 /* allocate a new mbuf for the fragment header */ 1189 struct mbuf *mfrg; 1190 1191 MGET(mfrg, M_DONTWAIT, MT_DATA); 1192 if (mfrg == 0) 1193 return (ENOBUFS); 1194 mfrg->m_len = sizeof(struct ip6_frag); 1195 *frghdrp = mtod(mfrg, struct ip6_frag *); 1196 mlast->m_next = mfrg; 1197 } 1198 1199 return (0); 1200 } 1201 1202 static int 1203 ip6_getpmtu(struct route_in6 *ro_pmtu, struct route_in6 *ro, 1204 struct ifnet *ifp, struct in6_addr *dst, u_long *mtup, 1205 int *alwaysfragp) 1206 { 1207 u_int32_t mtu = 0; 1208 int alwaysfrag = 0; 1209 int error = 0; 1210 1211 if (ro_pmtu != ro) { 1212 /* The first hop and the final destination may differ. */ 1213 struct sockaddr_in6 *sa6_dst = 1214 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1215 if (ro_pmtu->ro_rt && 1216 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 || 1217 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) { 1218 RTFREE(ro_pmtu->ro_rt); 1219 ro_pmtu->ro_rt = (struct rtentry *)NULL; 1220 } 1221 if (ro_pmtu->ro_rt == 0) { 1222 bzero(sa6_dst, sizeof(*sa6_dst)); 1223 sa6_dst->sin6_family = AF_INET6; 1224 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1225 sa6_dst->sin6_addr = *dst; 1226 1227 rtalloc((struct route *)ro_pmtu); 1228 } 1229 } 1230 if (ro_pmtu->ro_rt) { 1231 u_int32_t ifmtu; 1232 1233 if (ifp == NULL) 1234 ifp = ro_pmtu->ro_rt->rt_ifp; 1235 ifmtu = IN6_LINKMTU(ifp); 1236 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 1237 if (mtu == 0) 1238 mtu = ifmtu; 1239 else if (mtu < IPV6_MMTU) { 1240 /* 1241 * RFC2460 section 5, last paragraph: 1242 * if we record ICMPv6 too big message with 1243 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1244 * or smaller, with fragment header attached. 1245 * (fragment header is needed regardless from the 1246 * packet size, for translators to identify packets) 1247 */ 1248 alwaysfrag = 1; 1249 mtu = IPV6_MMTU; 1250 } else if (mtu > ifmtu) { 1251 /* 1252 * The MTU on the route is larger than the MTU on 1253 * the interface! This shouldn't happen, unless the 1254 * MTU of the interface has been changed after the 1255 * interface was brought up. Change the MTU in the 1256 * route to match the interface MTU (as long as the 1257 * field isn't locked). 1258 */ 1259 mtu = ifmtu; 1260 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU)) 1261 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; 1262 } 1263 } else if (ifp) { 1264 mtu = IN6_LINKMTU(ifp); 1265 } else 1266 error = EHOSTUNREACH; /* XXX */ 1267 1268 *mtup = mtu; 1269 if (alwaysfragp) 1270 *alwaysfragp = alwaysfrag; 1271 return (error); 1272 } 1273 1274 /* 1275 * IP6 socket option processing. 1276 */ 1277 int 1278 ip6_ctloutput(int op, struct socket *so, int level, int optname, 1279 struct mbuf **mp) 1280 { 1281 int privileged, optdatalen, uproto; 1282 void *optdata; 1283 struct inpcb *inp = sotoinpcb(so); 1284 struct mbuf *m = *mp; 1285 int error, optval; 1286 int optlen; 1287 #ifdef IPSEC 1288 struct proc *p = curproc; /* XXX */ 1289 struct tdb *tdb; 1290 struct tdb_ident *tdbip, tdbi; 1291 int s; 1292 #endif 1293 1294 optlen = m ? m->m_len : 0; 1295 error = optval = 0; 1296 1297 privileged = (inp->inp_socket->so_state & SS_PRIV); 1298 uproto = (int)so->so_proto->pr_protocol; 1299 1300 if (level == IPPROTO_IPV6) { 1301 switch (op) { 1302 case PRCO_SETOPT: 1303 switch (optname) { 1304 case IPV6_2292PKTOPTIONS: 1305 { 1306 error = ip6_pcbopts(&inp->inp_outputopts6, 1307 m, so); 1308 break; 1309 } 1310 1311 /* 1312 * Use of some Hop-by-Hop options or some 1313 * Destination options, might require special 1314 * privilege. That is, normal applications 1315 * (without special privilege) might be forbidden 1316 * from setting certain options in outgoing packets, 1317 * and might never see certain options in received 1318 * packets. [RFC 2292 Section 6] 1319 * KAME specific note: 1320 * KAME prevents non-privileged users from sending or 1321 * receiving ANY hbh/dst options in order to avoid 1322 * overhead of parsing options in the kernel. 1323 */ 1324 case IPV6_RECVHOPOPTS: 1325 case IPV6_RECVDSTOPTS: 1326 case IPV6_RECVRTHDRDSTOPTS: 1327 if (!privileged) { 1328 error = EPERM; 1329 break; 1330 } 1331 /* FALLTHROUGH */ 1332 case IPV6_UNICAST_HOPS: 1333 case IPV6_HOPLIMIT: 1334 case IPV6_FAITH: 1335 1336 case IPV6_RECVPKTINFO: 1337 case IPV6_RECVHOPLIMIT: 1338 case IPV6_RECVRTHDR: 1339 case IPV6_RECVPATHMTU: 1340 case IPV6_RECVTCLASS: 1341 case IPV6_V6ONLY: 1342 case IPV6_AUTOFLOWLABEL: 1343 if (optlen != sizeof(int)) { 1344 error = EINVAL; 1345 break; 1346 } 1347 optval = *mtod(m, int *); 1348 switch (optname) { 1349 1350 case IPV6_UNICAST_HOPS: 1351 if (optval < -1 || optval >= 256) 1352 error = EINVAL; 1353 else { 1354 /* -1 = kernel default */ 1355 inp->inp_hops = optval; 1356 } 1357 break; 1358 #define OPTSET(bit) \ 1359 do { \ 1360 if (optval) \ 1361 inp->inp_flags |= (bit); \ 1362 else \ 1363 inp->inp_flags &= ~(bit); \ 1364 } while (/*CONSTCOND*/ 0) 1365 #define OPTSET2292(bit) \ 1366 do { \ 1367 inp->inp_flags |= IN6P_RFC2292; \ 1368 if (optval) \ 1369 inp->inp_flags |= (bit); \ 1370 else \ 1371 inp->inp_flags &= ~(bit); \ 1372 } while (/*CONSTCOND*/ 0) 1373 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1374 1375 case IPV6_RECVPKTINFO: 1376 /* cannot mix with RFC2292 */ 1377 if (OPTBIT(IN6P_RFC2292)) { 1378 error = EINVAL; 1379 break; 1380 } 1381 OPTSET(IN6P_PKTINFO); 1382 break; 1383 1384 case IPV6_HOPLIMIT: 1385 { 1386 struct ip6_pktopts **optp; 1387 1388 /* cannot mix with RFC2292 */ 1389 if (OPTBIT(IN6P_RFC2292)) { 1390 error = EINVAL; 1391 break; 1392 } 1393 optp = &inp->inp_outputopts6; 1394 error = ip6_pcbopt(IPV6_HOPLIMIT, 1395 (u_char *)&optval, 1396 sizeof(optval), 1397 optp, 1398 privileged, uproto); 1399 break; 1400 } 1401 1402 case IPV6_RECVHOPLIMIT: 1403 /* cannot mix with RFC2292 */ 1404 if (OPTBIT(IN6P_RFC2292)) { 1405 error = EINVAL; 1406 break; 1407 } 1408 OPTSET(IN6P_HOPLIMIT); 1409 break; 1410 1411 case IPV6_RECVHOPOPTS: 1412 /* cannot mix with RFC2292 */ 1413 if (OPTBIT(IN6P_RFC2292)) { 1414 error = EINVAL; 1415 break; 1416 } 1417 OPTSET(IN6P_HOPOPTS); 1418 break; 1419 1420 case IPV6_RECVDSTOPTS: 1421 /* cannot mix with RFC2292 */ 1422 if (OPTBIT(IN6P_RFC2292)) { 1423 error = EINVAL; 1424 break; 1425 } 1426 OPTSET(IN6P_DSTOPTS); 1427 break; 1428 1429 case IPV6_RECVRTHDRDSTOPTS: 1430 /* cannot mix with RFC2292 */ 1431 if (OPTBIT(IN6P_RFC2292)) { 1432 error = EINVAL; 1433 break; 1434 } 1435 OPTSET(IN6P_RTHDRDSTOPTS); 1436 break; 1437 1438 case IPV6_RECVRTHDR: 1439 /* cannot mix with RFC2292 */ 1440 if (OPTBIT(IN6P_RFC2292)) { 1441 error = EINVAL; 1442 break; 1443 } 1444 OPTSET(IN6P_RTHDR); 1445 break; 1446 1447 case IPV6_FAITH: 1448 OPTSET(IN6P_FAITH); 1449 break; 1450 1451 case IPV6_RECVPATHMTU: 1452 /* 1453 * We ignore this option for TCP 1454 * sockets. 1455 * (RFC3542 leaves this case 1456 * unspecified.) 1457 */ 1458 if (uproto != IPPROTO_TCP) 1459 OPTSET(IN6P_MTU); 1460 break; 1461 1462 case IPV6_V6ONLY: 1463 /* 1464 * make setsockopt(IPV6_V6ONLY) 1465 * available only prior to bind(2). 1466 * see ipng mailing list, Jun 22 2001. 1467 */ 1468 if (inp->inp_lport || 1469 !IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6)) { 1470 error = EINVAL; 1471 break; 1472 } 1473 if ((ip6_v6only && optval) || 1474 (!ip6_v6only && !optval)) 1475 error = 0; 1476 else 1477 error = EINVAL; 1478 break; 1479 case IPV6_RECVTCLASS: 1480 /* cannot mix with RFC2292 XXX */ 1481 if (OPTBIT(IN6P_RFC2292)) { 1482 error = EINVAL; 1483 break; 1484 } 1485 OPTSET(IN6P_TCLASS); 1486 break; 1487 case IPV6_AUTOFLOWLABEL: 1488 OPTSET(IN6P_AUTOFLOWLABEL); 1489 break; 1490 1491 } 1492 break; 1493 1494 case IPV6_TCLASS: 1495 case IPV6_DONTFRAG: 1496 case IPV6_USE_MIN_MTU: 1497 if (optlen != sizeof(optval)) { 1498 error = EINVAL; 1499 break; 1500 } 1501 optval = *mtod(m, int *); 1502 { 1503 struct ip6_pktopts **optp; 1504 optp = &inp->inp_outputopts6; 1505 error = ip6_pcbopt(optname, 1506 (u_char *)&optval, 1507 sizeof(optval), 1508 optp, 1509 privileged, uproto); 1510 break; 1511 } 1512 1513 case IPV6_2292PKTINFO: 1514 case IPV6_2292HOPLIMIT: 1515 case IPV6_2292HOPOPTS: 1516 case IPV6_2292DSTOPTS: 1517 case IPV6_2292RTHDR: 1518 /* RFC 2292 */ 1519 if (optlen != sizeof(int)) { 1520 error = EINVAL; 1521 break; 1522 } 1523 optval = *mtod(m, int *); 1524 switch (optname) { 1525 case IPV6_2292PKTINFO: 1526 OPTSET2292(IN6P_PKTINFO); 1527 break; 1528 case IPV6_2292HOPLIMIT: 1529 OPTSET2292(IN6P_HOPLIMIT); 1530 break; 1531 case IPV6_2292HOPOPTS: 1532 /* 1533 * Check super-user privilege. 1534 * See comments for IPV6_RECVHOPOPTS. 1535 */ 1536 if (!privileged) 1537 return (EPERM); 1538 OPTSET2292(IN6P_HOPOPTS); 1539 break; 1540 case IPV6_2292DSTOPTS: 1541 if (!privileged) 1542 return (EPERM); 1543 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 1544 break; 1545 case IPV6_2292RTHDR: 1546 OPTSET2292(IN6P_RTHDR); 1547 break; 1548 } 1549 break; 1550 case IPV6_PKTINFO: 1551 case IPV6_HOPOPTS: 1552 case IPV6_RTHDR: 1553 case IPV6_DSTOPTS: 1554 case IPV6_RTHDRDSTOPTS: 1555 case IPV6_NEXTHOP: 1556 { 1557 /* new advanced API (RFC3542) */ 1558 u_char *optbuf; 1559 int optbuflen; 1560 struct ip6_pktopts **optp; 1561 1562 /* cannot mix with RFC2292 */ 1563 if (OPTBIT(IN6P_RFC2292)) { 1564 error = EINVAL; 1565 break; 1566 } 1567 1568 if (m && m->m_next) { 1569 error = EINVAL; /* XXX */ 1570 break; 1571 } 1572 if (m) { 1573 optbuf = mtod(m, u_char *); 1574 optbuflen = m->m_len; 1575 } else { 1576 optbuf = NULL; 1577 optbuflen = 0; 1578 } 1579 optp = &inp->inp_outputopts6; 1580 error = ip6_pcbopt(optname, 1581 optbuf, optbuflen, 1582 optp, privileged, uproto); 1583 break; 1584 } 1585 #undef OPTSET 1586 1587 case IPV6_MULTICAST_IF: 1588 case IPV6_MULTICAST_HOPS: 1589 case IPV6_MULTICAST_LOOP: 1590 case IPV6_JOIN_GROUP: 1591 case IPV6_LEAVE_GROUP: 1592 error = ip6_setmoptions(optname, 1593 &inp->inp_moptions6, 1594 m); 1595 break; 1596 1597 case IPV6_PORTRANGE: 1598 optval = *mtod(m, int *); 1599 1600 switch (optval) { 1601 case IPV6_PORTRANGE_DEFAULT: 1602 inp->inp_flags &= ~(IN6P_LOWPORT); 1603 inp->inp_flags &= ~(IN6P_HIGHPORT); 1604 break; 1605 1606 case IPV6_PORTRANGE_HIGH: 1607 inp->inp_flags &= ~(IN6P_LOWPORT); 1608 inp->inp_flags |= IN6P_HIGHPORT; 1609 break; 1610 1611 case IPV6_PORTRANGE_LOW: 1612 inp->inp_flags &= ~(IN6P_HIGHPORT); 1613 inp->inp_flags |= IN6P_LOWPORT; 1614 break; 1615 1616 default: 1617 error = EINVAL; 1618 break; 1619 } 1620 break; 1621 1622 case IPSEC6_OUTSA: 1623 #ifndef IPSEC 1624 error = EINVAL; 1625 #else 1626 s = spltdb(); 1627 if (m == 0 || m->m_len != sizeof(struct tdb_ident)) { 1628 error = EINVAL; 1629 } else { 1630 tdbip = mtod(m, struct tdb_ident *); 1631 tdb = gettdb(tdbip->spi, &tdbip->dst, 1632 tdbip->proto); 1633 if (tdb == NULL) 1634 error = ESRCH; 1635 else 1636 tdb_add_inp(tdb, inp, 0); 1637 } 1638 splx(s); 1639 #endif 1640 break; 1641 1642 case IPV6_AUTH_LEVEL: 1643 case IPV6_ESP_TRANS_LEVEL: 1644 case IPV6_ESP_NETWORK_LEVEL: 1645 case IPV6_IPCOMP_LEVEL: 1646 #ifndef IPSEC 1647 error = EINVAL; 1648 #else 1649 if (m == 0 || m->m_len != sizeof(int)) { 1650 error = EINVAL; 1651 break; 1652 } 1653 optval = *mtod(m, int *); 1654 1655 if (optval < IPSEC_LEVEL_BYPASS || 1656 optval > IPSEC_LEVEL_UNIQUE) { 1657 error = EINVAL; 1658 break; 1659 } 1660 1661 switch (optname) { 1662 case IPV6_AUTH_LEVEL: 1663 if (optval < ipsec_auth_default_level && 1664 suser(p, 0)) { 1665 error = EACCES; 1666 break; 1667 } 1668 inp->inp_seclevel[SL_AUTH] = optval; 1669 break; 1670 1671 case IPV6_ESP_TRANS_LEVEL: 1672 if (optval < ipsec_esp_trans_default_level && 1673 suser(p, 0)) { 1674 error = EACCES; 1675 break; 1676 } 1677 inp->inp_seclevel[SL_ESP_TRANS] = optval; 1678 break; 1679 1680 case IPV6_ESP_NETWORK_LEVEL: 1681 if (optval < ipsec_esp_network_default_level && 1682 suser(p, 0)) { 1683 error = EACCES; 1684 break; 1685 } 1686 inp->inp_seclevel[SL_ESP_NETWORK] = optval; 1687 break; 1688 1689 case IPV6_IPCOMP_LEVEL: 1690 if (optval < ipsec_ipcomp_default_level && 1691 suser(p, 0)) { 1692 error = EACCES; 1693 break; 1694 } 1695 inp->inp_seclevel[SL_IPCOMP] = optval; 1696 break; 1697 } 1698 if (!error) 1699 inp->inp_secrequire = get_sa_require(inp); 1700 #endif 1701 break; 1702 1703 default: 1704 error = ENOPROTOOPT; 1705 break; 1706 } 1707 if (m) 1708 (void)m_free(m); 1709 break; 1710 1711 case PRCO_GETOPT: 1712 switch (optname) { 1713 1714 case IPV6_2292PKTOPTIONS: 1715 /* 1716 * RFC3542 (effectively) deprecated the 1717 * semantics of the 2292-style pktoptions. 1718 * Since it was not reliable in nature (i.e., 1719 * applications had to expect the lack of some 1720 * information after all), it would make sense 1721 * to simplify this part by always returning 1722 * empty data. 1723 */ 1724 *mp = m_get(M_WAIT, MT_SOOPTS); 1725 (*mp)->m_len = 0; 1726 break; 1727 1728 case IPV6_RECVHOPOPTS: 1729 case IPV6_RECVDSTOPTS: 1730 case IPV6_RECVRTHDRDSTOPTS: 1731 case IPV6_UNICAST_HOPS: 1732 case IPV6_RECVPKTINFO: 1733 case IPV6_RECVHOPLIMIT: 1734 case IPV6_RECVRTHDR: 1735 case IPV6_RECVPATHMTU: 1736 1737 case IPV6_FAITH: 1738 case IPV6_V6ONLY: 1739 case IPV6_PORTRANGE: 1740 case IPV6_RECVTCLASS: 1741 case IPV6_AUTOFLOWLABEL: 1742 switch (optname) { 1743 1744 case IPV6_RECVHOPOPTS: 1745 optval = OPTBIT(IN6P_HOPOPTS); 1746 break; 1747 1748 case IPV6_RECVDSTOPTS: 1749 optval = OPTBIT(IN6P_DSTOPTS); 1750 break; 1751 1752 case IPV6_RECVRTHDRDSTOPTS: 1753 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 1754 break; 1755 1756 case IPV6_UNICAST_HOPS: 1757 optval = inp->inp_hops; 1758 break; 1759 1760 case IPV6_RECVPKTINFO: 1761 optval = OPTBIT(IN6P_PKTINFO); 1762 break; 1763 1764 case IPV6_RECVHOPLIMIT: 1765 optval = OPTBIT(IN6P_HOPLIMIT); 1766 break; 1767 1768 case IPV6_RECVRTHDR: 1769 optval = OPTBIT(IN6P_RTHDR); 1770 break; 1771 1772 case IPV6_RECVPATHMTU: 1773 optval = OPTBIT(IN6P_MTU); 1774 break; 1775 1776 case IPV6_FAITH: 1777 optval = OPTBIT(IN6P_FAITH); 1778 break; 1779 1780 case IPV6_V6ONLY: 1781 optval = (ip6_v6only != 0); /* XXX */ 1782 break; 1783 1784 case IPV6_PORTRANGE: 1785 { 1786 int flags; 1787 flags = inp->inp_flags; 1788 if (flags & IN6P_HIGHPORT) 1789 optval = IPV6_PORTRANGE_HIGH; 1790 else if (flags & IN6P_LOWPORT) 1791 optval = IPV6_PORTRANGE_LOW; 1792 else 1793 optval = 0; 1794 break; 1795 } 1796 case IPV6_RECVTCLASS: 1797 optval = OPTBIT(IN6P_TCLASS); 1798 break; 1799 1800 case IPV6_AUTOFLOWLABEL: 1801 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1802 break; 1803 } 1804 if (error) 1805 break; 1806 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1807 m->m_len = sizeof(int); 1808 *mtod(m, int *) = optval; 1809 break; 1810 1811 case IPV6_PATHMTU: 1812 { 1813 u_long pmtu = 0; 1814 struct ip6_mtuinfo mtuinfo; 1815 struct route_in6 *ro = (struct route_in6 *)&inp->inp_route6; 1816 1817 if (!(so->so_state & SS_ISCONNECTED)) 1818 return (ENOTCONN); 1819 /* 1820 * XXX: we dot not consider the case of source 1821 * routing, or optional information to specify 1822 * the outgoing interface. 1823 */ 1824 error = ip6_getpmtu(ro, NULL, NULL, 1825 &inp->inp_faddr6, &pmtu, NULL); 1826 if (error) 1827 break; 1828 if (pmtu > IPV6_MAXPACKET) 1829 pmtu = IPV6_MAXPACKET; 1830 1831 bzero(&mtuinfo, sizeof(mtuinfo)); 1832 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1833 optdata = (void *)&mtuinfo; 1834 optdatalen = sizeof(mtuinfo); 1835 if (optdatalen > MCLBYTES) 1836 return (EMSGSIZE); /* XXX */ 1837 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1838 if (optdatalen > MLEN) 1839 MCLGET(m, M_WAIT); 1840 m->m_len = optdatalen; 1841 bcopy(optdata, mtod(m, void *), optdatalen); 1842 break; 1843 } 1844 1845 case IPV6_2292PKTINFO: 1846 case IPV6_2292HOPLIMIT: 1847 case IPV6_2292HOPOPTS: 1848 case IPV6_2292RTHDR: 1849 case IPV6_2292DSTOPTS: 1850 switch (optname) { 1851 case IPV6_2292PKTINFO: 1852 optval = OPTBIT(IN6P_PKTINFO); 1853 break; 1854 case IPV6_2292HOPLIMIT: 1855 optval = OPTBIT(IN6P_HOPLIMIT); 1856 break; 1857 case IPV6_2292HOPOPTS: 1858 optval = OPTBIT(IN6P_HOPOPTS); 1859 break; 1860 case IPV6_2292RTHDR: 1861 optval = OPTBIT(IN6P_RTHDR); 1862 break; 1863 case IPV6_2292DSTOPTS: 1864 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 1865 break; 1866 } 1867 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1868 m->m_len = sizeof(int); 1869 *mtod(m, int *) = optval; 1870 break; 1871 case IPV6_PKTINFO: 1872 case IPV6_HOPOPTS: 1873 case IPV6_RTHDR: 1874 case IPV6_DSTOPTS: 1875 case IPV6_RTHDRDSTOPTS: 1876 case IPV6_NEXTHOP: 1877 case IPV6_TCLASS: 1878 case IPV6_DONTFRAG: 1879 case IPV6_USE_MIN_MTU: 1880 error = ip6_getpcbopt(inp->inp_outputopts6, 1881 optname, mp); 1882 break; 1883 1884 case IPV6_MULTICAST_IF: 1885 case IPV6_MULTICAST_HOPS: 1886 case IPV6_MULTICAST_LOOP: 1887 case IPV6_JOIN_GROUP: 1888 case IPV6_LEAVE_GROUP: 1889 error = ip6_getmoptions(optname, 1890 inp->inp_moptions6, mp); 1891 break; 1892 1893 case IPSEC6_OUTSA: 1894 #ifndef IPSEC 1895 error = EINVAL; 1896 #else 1897 s = spltdb(); 1898 if (inp->inp_tdb_out == NULL) { 1899 error = ENOENT; 1900 } else { 1901 tdbi.spi = inp->inp_tdb_out->tdb_spi; 1902 tdbi.dst = inp->inp_tdb_out->tdb_dst; 1903 tdbi.proto = inp->inp_tdb_out->tdb_sproto; 1904 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1905 m->m_len = sizeof(tdbi); 1906 bcopy((caddr_t)&tdbi, mtod(m, caddr_t), 1907 (unsigned)m->m_len); 1908 } 1909 splx(s); 1910 #endif 1911 break; 1912 1913 case IPV6_AUTH_LEVEL: 1914 case IPV6_ESP_TRANS_LEVEL: 1915 case IPV6_ESP_NETWORK_LEVEL: 1916 case IPV6_IPCOMP_LEVEL: 1917 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1918 #ifndef IPSEC 1919 m->m_len = sizeof(int); 1920 *mtod(m, int *) = IPSEC_LEVEL_NONE; 1921 #else 1922 m->m_len = sizeof(int); 1923 switch (optname) { 1924 case IPV6_AUTH_LEVEL: 1925 optval = inp->inp_seclevel[SL_AUTH]; 1926 break; 1927 1928 case IPV6_ESP_TRANS_LEVEL: 1929 optval = 1930 inp->inp_seclevel[SL_ESP_TRANS]; 1931 break; 1932 1933 case IPV6_ESP_NETWORK_LEVEL: 1934 optval = 1935 inp->inp_seclevel[SL_ESP_NETWORK]; 1936 break; 1937 1938 case IPV6_IPCOMP_LEVEL: 1939 optval = inp->inp_seclevel[SL_IPCOMP]; 1940 break; 1941 } 1942 *mtod(m, int *) = optval; 1943 #endif 1944 break; 1945 1946 default: 1947 error = ENOPROTOOPT; 1948 break; 1949 } 1950 break; 1951 } 1952 } else { 1953 error = EINVAL; 1954 if (op == PRCO_SETOPT && *mp) 1955 (void)m_free(*mp); 1956 } 1957 return (error); 1958 } 1959 1960 int 1961 ip6_raw_ctloutput(int op, struct socket *so, int level, int optname, 1962 struct mbuf **mp) 1963 { 1964 int error = 0, optval, optlen; 1965 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1966 struct inpcb *inp = sotoinpcb(so); 1967 struct mbuf *m = *mp; 1968 1969 optlen = m ? m->m_len : 0; 1970 1971 if (level != IPPROTO_IPV6) { 1972 if (op == PRCO_SETOPT && *mp) 1973 (void)m_free(*mp); 1974 return (EINVAL); 1975 } 1976 1977 switch (optname) { 1978 case IPV6_CHECKSUM: 1979 /* 1980 * For ICMPv6 sockets, no modification allowed for checksum 1981 * offset, permit "no change" values to help existing apps. 1982 * 1983 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 1984 * for an ICMPv6 socket will fail." 1985 * The current behavior does not meet RFC3542. 1986 */ 1987 switch (op) { 1988 case PRCO_SETOPT: 1989 if (optlen != sizeof(int)) { 1990 error = EINVAL; 1991 break; 1992 } 1993 optval = *mtod(m, int *); 1994 if ((optval % 2) != 0) { 1995 /* the API assumes even offset values */ 1996 error = EINVAL; 1997 } else if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) { 1998 if (optval != icmp6off) 1999 error = EINVAL; 2000 } else 2001 inp->in6p_cksum = optval; 2002 break; 2003 2004 case PRCO_GETOPT: 2005 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2006 optval = icmp6off; 2007 else 2008 optval = inp->in6p_cksum; 2009 2010 *mp = m = m_get(M_WAIT, MT_SOOPTS); 2011 m->m_len = sizeof(int); 2012 *mtod(m, int *) = optval; 2013 break; 2014 2015 default: 2016 error = EINVAL; 2017 break; 2018 } 2019 break; 2020 2021 default: 2022 error = ENOPROTOOPT; 2023 break; 2024 } 2025 2026 if (op == PRCO_SETOPT && m) 2027 (void)m_free(m); 2028 2029 return (error); 2030 } 2031 2032 /* 2033 * Set up IP6 options in pcb for insertion in output packets. 2034 * Store in mbuf with pointer in pcbopt, adding pseudo-option 2035 * with destination address if source routed. 2036 */ 2037 static int 2038 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, struct socket *so) 2039 { 2040 struct ip6_pktopts *opt = *pktopt; 2041 int error = 0; 2042 struct proc *p = curproc; /* XXX */ 2043 int priv = 0; 2044 2045 /* turn off any old options. */ 2046 if (opt) 2047 ip6_clearpktopts(opt, -1); 2048 else 2049 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 2050 *pktopt = 0; 2051 2052 if (!m || m->m_len == 0) { 2053 /* 2054 * Only turning off any previous options, regardless of 2055 * whether the opt is just created or given. 2056 */ 2057 free(opt, M_IP6OPT); 2058 return (0); 2059 } 2060 2061 /* set options specified by user. */ 2062 if (p && !suser(p, 0)) 2063 priv = 1; 2064 if ((error = ip6_setpktopts(m, opt, NULL, priv, 2065 so->so_proto->pr_protocol)) != 0) { 2066 ip6_clearpktopts(opt, -1); /* XXX discard all options */ 2067 free(opt, M_IP6OPT); 2068 return (error); 2069 } 2070 *pktopt = opt; 2071 return (0); 2072 } 2073 2074 /* 2075 * initialize ip6_pktopts. beware that there are non-zero default values in 2076 * the struct. 2077 */ 2078 void 2079 ip6_initpktopts(struct ip6_pktopts *opt) 2080 { 2081 2082 bzero(opt, sizeof(*opt)); 2083 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2084 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2085 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2086 } 2087 2088 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */ 2089 static int 2090 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2091 int priv, int uproto) 2092 { 2093 struct ip6_pktopts *opt; 2094 2095 if (*pktopt == NULL) { 2096 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2097 M_WAITOK); 2098 ip6_initpktopts(*pktopt); 2099 } 2100 opt = *pktopt; 2101 2102 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto)); 2103 } 2104 2105 static int 2106 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf **mp) 2107 { 2108 void *optdata = NULL; 2109 int optdatalen = 0; 2110 struct ip6_ext *ip6e; 2111 int error = 0; 2112 struct in6_pktinfo null_pktinfo; 2113 int deftclass = 0, on; 2114 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2115 struct mbuf *m; 2116 2117 switch (optname) { 2118 case IPV6_PKTINFO: 2119 if (pktopt && pktopt->ip6po_pktinfo) 2120 optdata = (void *)pktopt->ip6po_pktinfo; 2121 else { 2122 /* XXX: we don't have to do this every time... */ 2123 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2124 optdata = (void *)&null_pktinfo; 2125 } 2126 optdatalen = sizeof(struct in6_pktinfo); 2127 break; 2128 case IPV6_TCLASS: 2129 if (pktopt && pktopt->ip6po_tclass >= 0) 2130 optdata = (void *)&pktopt->ip6po_tclass; 2131 else 2132 optdata = (void *)&deftclass; 2133 optdatalen = sizeof(int); 2134 break; 2135 case IPV6_HOPOPTS: 2136 if (pktopt && pktopt->ip6po_hbh) { 2137 optdata = (void *)pktopt->ip6po_hbh; 2138 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 2139 optdatalen = (ip6e->ip6e_len + 1) << 3; 2140 } 2141 break; 2142 case IPV6_RTHDR: 2143 if (pktopt && pktopt->ip6po_rthdr) { 2144 optdata = (void *)pktopt->ip6po_rthdr; 2145 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 2146 optdatalen = (ip6e->ip6e_len + 1) << 3; 2147 } 2148 break; 2149 case IPV6_RTHDRDSTOPTS: 2150 if (pktopt && pktopt->ip6po_dest1) { 2151 optdata = (void *)pktopt->ip6po_dest1; 2152 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 2153 optdatalen = (ip6e->ip6e_len + 1) << 3; 2154 } 2155 break; 2156 case IPV6_DSTOPTS: 2157 if (pktopt && pktopt->ip6po_dest2) { 2158 optdata = (void *)pktopt->ip6po_dest2; 2159 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 2160 optdatalen = (ip6e->ip6e_len + 1) << 3; 2161 } 2162 break; 2163 case IPV6_NEXTHOP: 2164 if (pktopt && pktopt->ip6po_nexthop) { 2165 optdata = (void *)pktopt->ip6po_nexthop; 2166 optdatalen = pktopt->ip6po_nexthop->sa_len; 2167 } 2168 break; 2169 case IPV6_USE_MIN_MTU: 2170 if (pktopt) 2171 optdata = (void *)&pktopt->ip6po_minmtu; 2172 else 2173 optdata = (void *)&defminmtu; 2174 optdatalen = sizeof(int); 2175 break; 2176 case IPV6_DONTFRAG: 2177 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2178 on = 1; 2179 else 2180 on = 0; 2181 optdata = (void *)&on; 2182 optdatalen = sizeof(on); 2183 break; 2184 default: /* should not happen */ 2185 #ifdef DIAGNOSTIC 2186 panic("ip6_getpcbopt: unexpected option\n"); 2187 #endif 2188 return (ENOPROTOOPT); 2189 } 2190 2191 if (optdatalen > MCLBYTES) 2192 return (EMSGSIZE); /* XXX */ 2193 *mp = m = m_get(M_WAIT, MT_SOOPTS); 2194 if (optdatalen > MLEN) 2195 MCLGET(m, M_WAIT); 2196 m->m_len = optdatalen; 2197 if (optdatalen) 2198 bcopy(optdata, mtod(m, void *), optdatalen); 2199 2200 return (error); 2201 } 2202 2203 void 2204 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2205 { 2206 if (optname == -1 || optname == IPV6_PKTINFO) { 2207 if (pktopt->ip6po_pktinfo) 2208 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2209 pktopt->ip6po_pktinfo = NULL; 2210 } 2211 if (optname == -1 || optname == IPV6_HOPLIMIT) 2212 pktopt->ip6po_hlim = -1; 2213 if (optname == -1 || optname == IPV6_TCLASS) 2214 pktopt->ip6po_tclass = -1; 2215 if (optname == -1 || optname == IPV6_NEXTHOP) { 2216 if (pktopt->ip6po_nextroute.ro_rt) { 2217 RTFREE(pktopt->ip6po_nextroute.ro_rt); 2218 pktopt->ip6po_nextroute.ro_rt = NULL; 2219 } 2220 if (pktopt->ip6po_nexthop) 2221 free(pktopt->ip6po_nexthop, M_IP6OPT); 2222 pktopt->ip6po_nexthop = NULL; 2223 } 2224 if (optname == -1 || optname == IPV6_HOPOPTS) { 2225 if (pktopt->ip6po_hbh) 2226 free(pktopt->ip6po_hbh, M_IP6OPT); 2227 pktopt->ip6po_hbh = NULL; 2228 } 2229 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2230 if (pktopt->ip6po_dest1) 2231 free(pktopt->ip6po_dest1, M_IP6OPT); 2232 pktopt->ip6po_dest1 = NULL; 2233 } 2234 if (optname == -1 || optname == IPV6_RTHDR) { 2235 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2236 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2237 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2238 if (pktopt->ip6po_route.ro_rt) { 2239 RTFREE(pktopt->ip6po_route.ro_rt); 2240 pktopt->ip6po_route.ro_rt = NULL; 2241 } 2242 } 2243 if (optname == -1 || optname == IPV6_DSTOPTS) { 2244 if (pktopt->ip6po_dest2) 2245 free(pktopt->ip6po_dest2, M_IP6OPT); 2246 pktopt->ip6po_dest2 = NULL; 2247 } 2248 } 2249 2250 #define PKTOPT_EXTHDRCPY(type) \ 2251 do {\ 2252 if (src->type) {\ 2253 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2254 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2255 if (dst->type == NULL && canwait == M_NOWAIT)\ 2256 goto bad;\ 2257 bcopy(src->type, dst->type, hlen);\ 2258 }\ 2259 } while (/*CONSTCOND*/ 0) 2260 2261 static int 2262 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2263 { 2264 dst->ip6po_hlim = src->ip6po_hlim; 2265 dst->ip6po_tclass = src->ip6po_tclass; 2266 dst->ip6po_flags = src->ip6po_flags; 2267 if (src->ip6po_pktinfo) { 2268 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2269 M_IP6OPT, canwait); 2270 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT) 2271 goto bad; 2272 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2273 } 2274 if (src->ip6po_nexthop) { 2275 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2276 M_IP6OPT, canwait); 2277 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT) 2278 goto bad; 2279 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2280 src->ip6po_nexthop->sa_len); 2281 } 2282 PKTOPT_EXTHDRCPY(ip6po_hbh); 2283 PKTOPT_EXTHDRCPY(ip6po_dest1); 2284 PKTOPT_EXTHDRCPY(ip6po_dest2); 2285 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2286 return (0); 2287 2288 bad: 2289 ip6_clearpktopts(dst, -1); 2290 return (ENOBUFS); 2291 } 2292 #undef PKTOPT_EXTHDRCPY 2293 2294 void 2295 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2296 { 2297 if (pktopt == NULL) 2298 return; 2299 2300 ip6_clearpktopts(pktopt, -1); 2301 2302 free(pktopt, M_IP6OPT); 2303 } 2304 2305 /* 2306 * Set the IP6 multicast options in response to user setsockopt(). 2307 */ 2308 static int 2309 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m) 2310 { 2311 int error = 0; 2312 u_int loop, ifindex; 2313 struct ipv6_mreq *mreq; 2314 struct ifnet *ifp; 2315 struct ip6_moptions *im6o = *im6op; 2316 struct route_in6 ro; 2317 struct sockaddr_in6 *dst; 2318 struct in6_multi_mship *imm; 2319 struct proc *p = curproc; /* XXX */ 2320 2321 if (im6o == NULL) { 2322 /* 2323 * No multicast option buffer attached to the pcb; 2324 * allocate one and initialize to default values. 2325 */ 2326 im6o = (struct ip6_moptions *) 2327 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 2328 2329 if (im6o == NULL) 2330 return (ENOBUFS); 2331 *im6op = im6o; 2332 im6o->im6o_multicast_ifp = NULL; 2333 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2334 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 2335 LIST_INIT(&im6o->im6o_memberships); 2336 } 2337 2338 switch (optname) { 2339 2340 case IPV6_MULTICAST_IF: 2341 /* 2342 * Select the interface for outgoing multicast packets. 2343 */ 2344 if (m == NULL || m->m_len != sizeof(u_int)) { 2345 error = EINVAL; 2346 break; 2347 } 2348 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex)); 2349 if (ifindex == 0) 2350 ifp = NULL; 2351 else { 2352 if (ifindex < 0 || if_indexlim <= ifindex || 2353 !ifindex2ifnet[ifindex]) { 2354 error = ENXIO; /* XXX EINVAL? */ 2355 break; 2356 } 2357 ifp = ifindex2ifnet[ifindex]; 2358 if (ifp == NULL || 2359 (ifp->if_flags & IFF_MULTICAST) == 0) { 2360 error = EADDRNOTAVAIL; 2361 break; 2362 } 2363 } 2364 im6o->im6o_multicast_ifp = ifp; 2365 break; 2366 2367 case IPV6_MULTICAST_HOPS: 2368 { 2369 /* 2370 * Set the IP6 hoplimit for outgoing multicast packets. 2371 */ 2372 int optval; 2373 if (m == NULL || m->m_len != sizeof(int)) { 2374 error = EINVAL; 2375 break; 2376 } 2377 bcopy(mtod(m, u_int *), &optval, sizeof(optval)); 2378 if (optval < -1 || optval >= 256) 2379 error = EINVAL; 2380 else if (optval == -1) 2381 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 2382 else 2383 im6o->im6o_multicast_hlim = optval; 2384 break; 2385 } 2386 2387 case IPV6_MULTICAST_LOOP: 2388 /* 2389 * Set the loopback flag for outgoing multicast packets. 2390 * Must be zero or one. 2391 */ 2392 if (m == NULL || m->m_len != sizeof(u_int)) { 2393 error = EINVAL; 2394 break; 2395 } 2396 bcopy(mtod(m, u_int *), &loop, sizeof(loop)); 2397 if (loop > 1) { 2398 error = EINVAL; 2399 break; 2400 } 2401 im6o->im6o_multicast_loop = loop; 2402 break; 2403 2404 case IPV6_JOIN_GROUP: 2405 /* 2406 * Add a multicast group membership. 2407 * Group must be a valid IP6 multicast address. 2408 */ 2409 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2410 error = EINVAL; 2411 break; 2412 } 2413 mreq = mtod(m, struct ipv6_mreq *); 2414 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2415 /* 2416 * We use the unspecified address to specify to accept 2417 * all multicast addresses. Only super user is allowed 2418 * to do this. 2419 */ 2420 if (suser(p, 0)) 2421 { 2422 error = EACCES; 2423 break; 2424 } 2425 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2426 error = EINVAL; 2427 break; 2428 } 2429 2430 /* 2431 * If no interface was explicitly specified, choose an 2432 * appropriate one according to the given multicast address. 2433 */ 2434 if (mreq->ipv6mr_interface == 0) { 2435 /* 2436 * Look up the routing table for the 2437 * address, and choose the outgoing interface. 2438 * XXX: is it a good approach? 2439 */ 2440 ro.ro_rt = NULL; 2441 dst = (struct sockaddr_in6 *)&ro.ro_dst; 2442 bzero(dst, sizeof(*dst)); 2443 dst->sin6_len = sizeof(struct sockaddr_in6); 2444 dst->sin6_family = AF_INET6; 2445 dst->sin6_addr = mreq->ipv6mr_multiaddr; 2446 rtalloc((struct route *)&ro); 2447 if (ro.ro_rt == NULL) { 2448 error = EADDRNOTAVAIL; 2449 break; 2450 } 2451 ifp = ro.ro_rt->rt_ifp; 2452 rtfree(ro.ro_rt); 2453 } else { 2454 /* 2455 * If the interface is specified, validate it. 2456 */ 2457 if (mreq->ipv6mr_interface < 0 || 2458 if_indexlim <= mreq->ipv6mr_interface || 2459 !ifindex2ifnet[mreq->ipv6mr_interface]) { 2460 error = ENXIO; /* XXX EINVAL? */ 2461 break; 2462 } 2463 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2464 } 2465 2466 /* 2467 * See if we found an interface, and confirm that it 2468 * supports multicast 2469 */ 2470 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 2471 error = EADDRNOTAVAIL; 2472 break; 2473 } 2474 /* 2475 * Put interface index into the multicast address, 2476 * if the address has link/interface-local scope. 2477 */ 2478 if (IN6_IS_SCOPE_EMBED(&mreq->ipv6mr_multiaddr)) { 2479 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2480 htons(ifp->if_index); 2481 } 2482 /* 2483 * See if the membership already exists. 2484 */ 2485 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) 2486 if (imm->i6mm_maddr->in6m_ifp == ifp && 2487 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2488 &mreq->ipv6mr_multiaddr)) 2489 break; 2490 if (imm != NULL) { 2491 error = EADDRINUSE; 2492 break; 2493 } 2494 /* 2495 * Everything looks good; add a new record to the multicast 2496 * address list for the given interface. 2497 */ 2498 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error); 2499 if (!imm) 2500 break; 2501 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2502 break; 2503 2504 case IPV6_LEAVE_GROUP: 2505 /* 2506 * Drop a multicast group membership. 2507 * Group must be a valid IP6 multicast address. 2508 */ 2509 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2510 error = EINVAL; 2511 break; 2512 } 2513 mreq = mtod(m, struct ipv6_mreq *); 2514 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2515 if (suser(p, 0)) 2516 { 2517 error = EACCES; 2518 break; 2519 } 2520 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2521 error = EINVAL; 2522 break; 2523 } 2524 /* 2525 * If an interface address was specified, get a pointer 2526 * to its ifnet structure. 2527 */ 2528 if (mreq->ipv6mr_interface == 0) 2529 ifp = NULL; 2530 else { 2531 if (mreq->ipv6mr_interface < 0 || 2532 if_indexlim <= mreq->ipv6mr_interface || 2533 !ifindex2ifnet[mreq->ipv6mr_interface]) { 2534 error = ENXIO; /* XXX EINVAL? */ 2535 break; 2536 } 2537 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 2538 } 2539 2540 /* 2541 * Put interface index into the multicast address, 2542 * if the address has link-local scope. 2543 */ 2544 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2545 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2546 htons(mreq->ipv6mr_interface); 2547 } 2548 /* 2549 * Find the membership in the membership list. 2550 */ 2551 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2552 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) && 2553 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2554 &mreq->ipv6mr_multiaddr)) 2555 break; 2556 } 2557 if (imm == NULL) { 2558 /* Unable to resolve interface */ 2559 error = EADDRNOTAVAIL; 2560 break; 2561 } 2562 /* 2563 * Give up the multicast address record to which the 2564 * membership points. 2565 */ 2566 LIST_REMOVE(imm, i6mm_chain); 2567 in6_leavegroup(imm); 2568 break; 2569 2570 default: 2571 error = EOPNOTSUPP; 2572 break; 2573 } 2574 2575 /* 2576 * If all options have default values, no need to keep the option 2577 * structure. 2578 */ 2579 if (im6o->im6o_multicast_ifp == NULL && 2580 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2581 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2582 LIST_EMPTY(&im6o->im6o_memberships)) { 2583 free(*im6op, M_IPMOPTS); 2584 *im6op = NULL; 2585 } 2586 2587 return (error); 2588 } 2589 2590 /* 2591 * Return the IP6 multicast options in response to user getsockopt(). 2592 */ 2593 static int 2594 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf **mp) 2595 { 2596 u_int *hlim, *loop, *ifindex; 2597 2598 *mp = m_get(M_WAIT, MT_SOOPTS); 2599 2600 switch (optname) { 2601 2602 case IPV6_MULTICAST_IF: 2603 ifindex = mtod(*mp, u_int *); 2604 (*mp)->m_len = sizeof(u_int); 2605 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2606 *ifindex = 0; 2607 else 2608 *ifindex = im6o->im6o_multicast_ifp->if_index; 2609 return (0); 2610 2611 case IPV6_MULTICAST_HOPS: 2612 hlim = mtod(*mp, u_int *); 2613 (*mp)->m_len = sizeof(u_int); 2614 if (im6o == NULL) 2615 *hlim = ip6_defmcasthlim; 2616 else 2617 *hlim = im6o->im6o_multicast_hlim; 2618 return (0); 2619 2620 case IPV6_MULTICAST_LOOP: 2621 loop = mtod(*mp, u_int *); 2622 (*mp)->m_len = sizeof(u_int); 2623 if (im6o == NULL) 2624 *loop = ip6_defmcasthlim; 2625 else 2626 *loop = im6o->im6o_multicast_loop; 2627 return (0); 2628 2629 default: 2630 return (EOPNOTSUPP); 2631 } 2632 } 2633 2634 /* 2635 * Discard the IP6 multicast options. 2636 */ 2637 void 2638 ip6_freemoptions(struct ip6_moptions *im6o) 2639 { 2640 struct in6_multi_mship *imm; 2641 2642 if (im6o == NULL) 2643 return; 2644 2645 while (!LIST_EMPTY(&im6o->im6o_memberships)) { 2646 imm = LIST_FIRST(&im6o->im6o_memberships); 2647 LIST_REMOVE(imm, i6mm_chain); 2648 in6_leavegroup(imm); 2649 } 2650 free(im6o, M_IPMOPTS); 2651 } 2652 2653 /* 2654 * Set IPv6 outgoing packet options based on advanced API. 2655 */ 2656 int 2657 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2658 struct ip6_pktopts *stickyopt, int priv, int uproto) 2659 { 2660 u_int clen; 2661 struct cmsghdr *cm = 0; 2662 caddr_t cmsgs; 2663 int error; 2664 2665 if (control == NULL || opt == NULL) 2666 return (EINVAL); 2667 2668 ip6_initpktopts(opt); 2669 if (stickyopt) { 2670 int error; 2671 2672 /* 2673 * If stickyopt is provided, make a local copy of the options 2674 * for this particular packet, then override them by ancillary 2675 * objects. 2676 * XXX: copypktopts() does not copy the cached route to a next 2677 * hop (if any). This is not very good in terms of efficiency, 2678 * but we can allow this since this option should be rarely 2679 * used. 2680 */ 2681 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2682 return (error); 2683 } 2684 2685 /* 2686 * XXX: Currently, we assume all the optional information is stored 2687 * in a single mbuf. 2688 */ 2689 if (control->m_next) 2690 return (EINVAL); 2691 2692 clen = control->m_len; 2693 cmsgs = mtod(control, caddr_t); 2694 do { 2695 if (clen < CMSG_LEN(0)) 2696 return (EINVAL); 2697 cm = (struct cmsghdr *)cmsgs; 2698 if (cm->cmsg_len < CMSG_LEN(0) || 2699 CMSG_ALIGN(cm->cmsg_len) > clen) 2700 return (EINVAL); 2701 if (cm->cmsg_level == IPPROTO_IPV6) { 2702 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2703 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto); 2704 if (error) 2705 return (error); 2706 } 2707 2708 clen -= CMSG_ALIGN(cm->cmsg_len); 2709 cmsgs += CMSG_ALIGN(cm->cmsg_len); 2710 } while (clen); 2711 2712 return (0); 2713 } 2714 2715 /* 2716 * Set a particular packet option, as a sticky option or an ancillary data 2717 * item. "len" can be 0 only when it's a sticky option. 2718 * We have 4 cases of combination of "sticky" and "cmsg": 2719 * "sticky=0, cmsg=0": impossible 2720 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2721 * "sticky=1, cmsg=0": RFC3542 socket option 2722 * "sticky=1, cmsg=1": RFC2292 socket option 2723 */ 2724 static int 2725 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2726 int priv, int sticky, int cmsg, int uproto) 2727 { 2728 int minmtupolicy; 2729 2730 if (!sticky && !cmsg) { 2731 #ifdef DIAGNOSTIC 2732 printf("ip6_setpktopt: impossible case\n"); 2733 #endif 2734 return (EINVAL); 2735 } 2736 2737 /* 2738 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2739 * not be specified in the context of RFC3542. Conversely, 2740 * RFC3542 types should not be specified in the context of RFC2292. 2741 */ 2742 if (!cmsg) { 2743 switch (optname) { 2744 case IPV6_2292PKTINFO: 2745 case IPV6_2292HOPLIMIT: 2746 case IPV6_2292NEXTHOP: 2747 case IPV6_2292HOPOPTS: 2748 case IPV6_2292DSTOPTS: 2749 case IPV6_2292RTHDR: 2750 case IPV6_2292PKTOPTIONS: 2751 return (ENOPROTOOPT); 2752 } 2753 } 2754 if (sticky && cmsg) { 2755 switch (optname) { 2756 case IPV6_PKTINFO: 2757 case IPV6_HOPLIMIT: 2758 case IPV6_NEXTHOP: 2759 case IPV6_HOPOPTS: 2760 case IPV6_DSTOPTS: 2761 case IPV6_RTHDRDSTOPTS: 2762 case IPV6_RTHDR: 2763 case IPV6_USE_MIN_MTU: 2764 case IPV6_DONTFRAG: 2765 case IPV6_TCLASS: 2766 return (ENOPROTOOPT); 2767 } 2768 } 2769 2770 switch (optname) { 2771 case IPV6_2292PKTINFO: 2772 case IPV6_PKTINFO: 2773 { 2774 struct ifnet *ifp = NULL; 2775 struct in6_pktinfo *pktinfo; 2776 2777 if (len != sizeof(struct in6_pktinfo)) 2778 return (EINVAL); 2779 2780 pktinfo = (struct in6_pktinfo *)buf; 2781 2782 /* 2783 * An application can clear any sticky IPV6_PKTINFO option by 2784 * doing a "regular" setsockopt with ipi6_addr being 2785 * in6addr_any and ipi6_ifindex being zero. 2786 * [RFC 3542, Section 6] 2787 */ 2788 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2789 pktinfo->ipi6_ifindex == 0 && 2790 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2791 ip6_clearpktopts(opt, optname); 2792 break; 2793 } 2794 2795 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2796 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2797 return (EINVAL); 2798 } 2799 2800 /* validate the interface index if specified. */ 2801 if (pktinfo->ipi6_ifindex >= if_indexlim || 2802 pktinfo->ipi6_ifindex < 0) { 2803 return (ENXIO); 2804 } 2805 if (pktinfo->ipi6_ifindex) { 2806 ifp = ifindex2ifnet[pktinfo->ipi6_ifindex]; 2807 if (ifp == NULL) 2808 return (ENXIO); 2809 } 2810 2811 /* 2812 * We store the address anyway, and let in6_selectsrc() 2813 * validate the specified address. This is because ipi6_addr 2814 * may not have enough information about its scope zone, and 2815 * we may need additional information (such as outgoing 2816 * interface or the scope zone of a destination address) to 2817 * disambiguate the scope. 2818 * XXX: the delay of the validation may confuse the 2819 * application when it is used as a sticky option. 2820 */ 2821 if (opt->ip6po_pktinfo == NULL) { 2822 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2823 M_IP6OPT, M_NOWAIT); 2824 if (opt->ip6po_pktinfo == NULL) 2825 return (ENOBUFS); 2826 } 2827 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2828 break; 2829 } 2830 2831 case IPV6_2292HOPLIMIT: 2832 case IPV6_HOPLIMIT: 2833 { 2834 int *hlimp; 2835 2836 /* 2837 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2838 * to simplify the ordering among hoplimit options. 2839 */ 2840 if (optname == IPV6_HOPLIMIT && sticky) 2841 return (ENOPROTOOPT); 2842 2843 if (len != sizeof(int)) 2844 return (EINVAL); 2845 hlimp = (int *)buf; 2846 if (*hlimp < -1 || *hlimp > 255) 2847 return (EINVAL); 2848 2849 opt->ip6po_hlim = *hlimp; 2850 break; 2851 } 2852 2853 case IPV6_TCLASS: 2854 { 2855 int tclass; 2856 2857 if (len != sizeof(int)) 2858 return (EINVAL); 2859 tclass = *(int *)buf; 2860 if (tclass < -1 || tclass > 255) 2861 return (EINVAL); 2862 2863 opt->ip6po_tclass = tclass; 2864 break; 2865 } 2866 2867 case IPV6_2292NEXTHOP: 2868 case IPV6_NEXTHOP: 2869 if (!priv) 2870 return (EPERM); 2871 2872 if (len == 0) { /* just remove the option */ 2873 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2874 break; 2875 } 2876 2877 /* check if cmsg_len is large enough for sa_len */ 2878 if (len < sizeof(struct sockaddr) || len < *buf) 2879 return (EINVAL); 2880 2881 switch (((struct sockaddr *)buf)->sa_family) { 2882 case AF_INET6: 2883 { 2884 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 2885 2886 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 2887 return (EINVAL); 2888 2889 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 2890 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 2891 return (EINVAL); 2892 } 2893 if (IN6_IS_SCOPE_EMBED(&sa6->sin6_addr)) { 2894 if (sa6->sin6_scope_id < 0 || 2895 if_indexlim <= sa6->sin6_scope_id || 2896 !ifindex2ifnet[sa6->sin6_scope_id]) 2897 return (EINVAL); 2898 sa6->sin6_addr.s6_addr16[1] = 2899 htonl(sa6->sin6_scope_id); 2900 } else if (sa6->sin6_scope_id) 2901 return (EINVAL); 2902 break; 2903 } 2904 case AF_LINK: /* eventually be supported? */ 2905 default: 2906 return (EAFNOSUPPORT); 2907 } 2908 2909 /* turn off the previous option, then set the new option. */ 2910 ip6_clearpktopts(opt, IPV6_NEXTHOP); 2911 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 2912 if (opt->ip6po_nexthop == NULL) 2913 return (ENOBUFS); 2914 bcopy(buf, opt->ip6po_nexthop, *buf); 2915 break; 2916 2917 case IPV6_2292HOPOPTS: 2918 case IPV6_HOPOPTS: 2919 { 2920 struct ip6_hbh *hbh; 2921 int hbhlen; 2922 2923 /* 2924 * XXX: We don't allow a non-privileged user to set ANY HbH 2925 * options, since per-option restriction has too much 2926 * overhead. 2927 */ 2928 if (!priv) 2929 return (EPERM); 2930 2931 if (len == 0) { 2932 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2933 break; /* just remove the option */ 2934 } 2935 2936 /* message length validation */ 2937 if (len < sizeof(struct ip6_hbh)) 2938 return (EINVAL); 2939 hbh = (struct ip6_hbh *)buf; 2940 hbhlen = (hbh->ip6h_len + 1) << 3; 2941 if (len != hbhlen) 2942 return (EINVAL); 2943 2944 /* turn off the previous option, then set the new option. */ 2945 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2946 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2947 if (opt->ip6po_hbh == NULL) 2948 return (ENOBUFS); 2949 bcopy(hbh, opt->ip6po_hbh, hbhlen); 2950 2951 break; 2952 } 2953 2954 case IPV6_2292DSTOPTS: 2955 case IPV6_DSTOPTS: 2956 case IPV6_RTHDRDSTOPTS: 2957 { 2958 struct ip6_dest *dest, **newdest = NULL; 2959 int destlen; 2960 2961 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */ 2962 return (EPERM); 2963 2964 if (len == 0) { 2965 ip6_clearpktopts(opt, optname); 2966 break; /* just remove the option */ 2967 } 2968 2969 /* message length validation */ 2970 if (len < sizeof(struct ip6_dest)) 2971 return (EINVAL); 2972 dest = (struct ip6_dest *)buf; 2973 destlen = (dest->ip6d_len + 1) << 3; 2974 if (len != destlen) 2975 return (EINVAL); 2976 /* 2977 * Determine the position that the destination options header 2978 * should be inserted; before or after the routing header. 2979 */ 2980 switch (optname) { 2981 case IPV6_2292DSTOPTS: 2982 /* 2983 * The old advanced API is ambiguous on this point. 2984 * Our approach is to determine the position based 2985 * according to the existence of a routing header. 2986 * Note, however, that this depends on the order of the 2987 * extension headers in the ancillary data; the 1st 2988 * part of the destination options header must appear 2989 * before the routing header in the ancillary data, 2990 * too. 2991 * RFC3542 solved the ambiguity by introducing 2992 * separate ancillary data or option types. 2993 */ 2994 if (opt->ip6po_rthdr == NULL) 2995 newdest = &opt->ip6po_dest1; 2996 else 2997 newdest = &opt->ip6po_dest2; 2998 break; 2999 case IPV6_RTHDRDSTOPTS: 3000 newdest = &opt->ip6po_dest1; 3001 break; 3002 case IPV6_DSTOPTS: 3003 newdest = &opt->ip6po_dest2; 3004 break; 3005 } 3006 3007 /* turn off the previous option, then set the new option. */ 3008 ip6_clearpktopts(opt, optname); 3009 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3010 if (*newdest == NULL) 3011 return (ENOBUFS); 3012 bcopy(dest, *newdest, destlen); 3013 3014 break; 3015 } 3016 3017 case IPV6_2292RTHDR: 3018 case IPV6_RTHDR: 3019 { 3020 struct ip6_rthdr *rth; 3021 int rthlen; 3022 3023 if (len == 0) { 3024 ip6_clearpktopts(opt, IPV6_RTHDR); 3025 break; /* just remove the option */ 3026 } 3027 3028 /* message length validation */ 3029 if (len < sizeof(struct ip6_rthdr)) 3030 return (EINVAL); 3031 rth = (struct ip6_rthdr *)buf; 3032 rthlen = (rth->ip6r_len + 1) << 3; 3033 if (len != rthlen) 3034 return (EINVAL); 3035 3036 switch (rth->ip6r_type) { 3037 case IPV6_RTHDR_TYPE_0: 3038 if (rth->ip6r_len == 0) /* must contain one addr */ 3039 return (EINVAL); 3040 if (rth->ip6r_len % 2) /* length must be even */ 3041 return (EINVAL); 3042 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3043 return (EINVAL); 3044 break; 3045 default: 3046 return (EINVAL); /* not supported */ 3047 } 3048 /* turn off the previous option */ 3049 ip6_clearpktopts(opt, IPV6_RTHDR); 3050 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3051 if (opt->ip6po_rthdr == NULL) 3052 return (ENOBUFS); 3053 bcopy(rth, opt->ip6po_rthdr, rthlen); 3054 break; 3055 } 3056 3057 case IPV6_USE_MIN_MTU: 3058 if (len != sizeof(int)) 3059 return (EINVAL); 3060 minmtupolicy = *(int *)buf; 3061 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3062 minmtupolicy != IP6PO_MINMTU_DISABLE && 3063 minmtupolicy != IP6PO_MINMTU_ALL) { 3064 return (EINVAL); 3065 } 3066 opt->ip6po_minmtu = minmtupolicy; 3067 break; 3068 3069 case IPV6_DONTFRAG: 3070 if (len != sizeof(int)) 3071 return (EINVAL); 3072 3073 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3074 /* 3075 * we ignore this option for TCP sockets. 3076 * (RFC3542 leaves this case unspecified.) 3077 */ 3078 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3079 } else 3080 opt->ip6po_flags |= IP6PO_DONTFRAG; 3081 break; 3082 3083 default: 3084 return (ENOPROTOOPT); 3085 } /* end of switch */ 3086 3087 return (0); 3088 } 3089 3090 /* 3091 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3092 * packet to the input queue of a specified interface. Note that this 3093 * calls the output routine of the loopback "driver", but with an interface 3094 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 3095 */ 3096 void 3097 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 3098 { 3099 struct mbuf *copym; 3100 struct ip6_hdr *ip6; 3101 3102 /* 3103 * Duplicate the packet. 3104 */ 3105 copym = m_copy(m, 0, M_COPYALL); 3106 if (copym == NULL) 3107 return; 3108 3109 /* 3110 * Make sure to deep-copy IPv6 header portion in case the data 3111 * is in an mbuf cluster, so that we can safely override the IPv6 3112 * header portion later. 3113 */ 3114 if ((copym->m_flags & M_EXT) != 0 || 3115 copym->m_len < sizeof(struct ip6_hdr)) { 3116 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3117 if (copym == NULL) 3118 return; 3119 } 3120 3121 #ifdef DIAGNOSTIC 3122 if (copym->m_len < sizeof(*ip6)) { 3123 m_freem(copym); 3124 return; 3125 } 3126 #endif 3127 3128 ip6 = mtod(copym, struct ip6_hdr *); 3129 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 3130 ip6->ip6_src.s6_addr16[1] = 0; 3131 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 3132 ip6->ip6_dst.s6_addr16[1] = 0; 3133 3134 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL); 3135 } 3136 3137 /* 3138 * Chop IPv6 header off from the payload. 3139 */ 3140 static int 3141 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3142 { 3143 struct mbuf *mh; 3144 struct ip6_hdr *ip6; 3145 3146 ip6 = mtod(m, struct ip6_hdr *); 3147 if (m->m_len > sizeof(*ip6)) { 3148 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 3149 if (mh == 0) { 3150 m_freem(m); 3151 return ENOBUFS; 3152 } 3153 M_MOVE_PKTHDR(mh, m); 3154 MH_ALIGN(mh, sizeof(*ip6)); 3155 m->m_len -= sizeof(*ip6); 3156 m->m_data += sizeof(*ip6); 3157 mh->m_next = m; 3158 m = mh; 3159 m->m_len = sizeof(*ip6); 3160 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3161 } 3162 exthdrs->ip6e_ip6 = m; 3163 return 0; 3164 } 3165 3166 /* 3167 * Compute IPv6 extension header length. 3168 */ 3169 int 3170 ip6_optlen(struct inpcb *inp) 3171 { 3172 int len; 3173 3174 if (!inp->inp_outputopts6) 3175 return 0; 3176 3177 len = 0; 3178 #define elen(x) \ 3179 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3180 3181 len += elen(inp->inp_outputopts6->ip6po_hbh); 3182 len += elen(inp->inp_outputopts6->ip6po_dest1); 3183 len += elen(inp->inp_outputopts6->ip6po_rthdr); 3184 len += elen(inp->inp_outputopts6->ip6po_dest2); 3185 return len; 3186 #undef elen 3187 } 3188 3189 u_int32_t 3190 ip6_randomid(void) 3191 { 3192 return idgen32(&ip6_id_ctx); 3193 } 3194 3195 void 3196 ip6_randomid_init(void) 3197 { 3198 idgen32_init(&ip6_id_ctx); 3199 } 3200