1 /* $OpenBSD: ip6_output.c,v 1.49 2001/08/22 14:18:36 niklas Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the University of 48 * California, Berkeley and its contributors. 49 * 4. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 66 */ 67 68 #include <sys/param.h> 69 #include <sys/malloc.h> 70 #include <sys/mbuf.h> 71 #include <sys/errno.h> 72 #include <sys/protosw.h> 73 #include <sys/socket.h> 74 #include <sys/socketvar.h> 75 #include <sys/systm.h> 76 #include <sys/proc.h> 77 78 #include <net/if.h> 79 #include <net/route.h> 80 81 #include <netinet/in.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_systm.h> 84 #include <netinet/ip.h> 85 #include <netinet/in_pcb.h> 86 87 #include <netinet/ip6.h> 88 #include <netinet/icmp6.h> 89 #include <netinet6/ip6_var.h> 90 #include <netinet6/nd6.h> 91 92 #ifdef IPSEC 93 #include <netinet/ip_ah.h> 94 #include <netinet/ip_esp.h> 95 #include <netinet/udp.h> 96 #include <netinet/tcp.h> 97 #include <net/pfkeyv2.h> 98 99 extern u_int8_t get_sa_require __P((struct inpcb *)); 100 101 extern int ipsec_auth_default_level; 102 extern int ipsec_esp_trans_default_level; 103 extern int ipsec_esp_network_default_level; 104 extern int ipsec_ipcomp_default_level; 105 #endif /* IPSEC */ 106 107 struct ip6_exthdrs { 108 struct mbuf *ip6e_ip6; 109 struct mbuf *ip6e_hbh; 110 struct mbuf *ip6e_dest1; 111 struct mbuf *ip6e_rthdr; 112 struct mbuf *ip6e_dest2; 113 }; 114 115 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *, 116 struct socket *)); 117 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *)); 118 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **)); 119 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int)); 120 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int, 121 struct ip6_frag **)); 122 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t)); 123 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *)); 124 125 /* 126 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 127 * header (with pri, len, nxt, hlim, src, dst). 128 * This function may modify ver and hlim only. 129 * The mbuf chain containing the packet will be freed. 130 * The mbuf opt, if present, will not be freed. 131 * 132 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and 133 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 134 * which is rt_rmx.rmx_mtu. 135 */ 136 int 137 ip6_output(m0, opt, ro, flags, im6o, ifpp) 138 struct mbuf *m0; 139 struct ip6_pktopts *opt; 140 struct route_in6 *ro; 141 int flags; 142 struct ip6_moptions *im6o; 143 struct ifnet **ifpp; /* XXX: just for statistics */ 144 { 145 struct ip6_hdr *ip6, *mhip6; 146 struct ifnet *ifp, *origifp; 147 struct mbuf *m = m0; 148 int hlen, tlen, len, off; 149 struct route_in6 ip6route; 150 struct sockaddr_in6 *dst; 151 int error = 0; 152 struct in6_ifaddr *ia; 153 u_long mtu; 154 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 155 struct ip6_exthdrs exthdrs; 156 struct in6_addr finaldst; 157 struct route_in6 *ro_pmtu = NULL; 158 int hdrsplit = 0; 159 u_int8_t sproto = 0; 160 #ifdef IPSEC 161 struct m_tag *mtag; 162 union sockaddr_union sdst; 163 struct tdb_ident *tdbi; 164 u_int32_t sspi; 165 struct inpcb *inp; 166 struct tdb *tdb; 167 int s; 168 #endif /* IPSEC */ 169 170 #ifdef IPSEC 171 inp = NULL; /*XXX*/ 172 if (inp && (inp->inp_flags & INP_IPV6) == 0) 173 panic("ip6_output: IPv4 pcb is passed"); 174 #endif /* IPSEC */ 175 176 #define MAKE_EXTHDR(hp, mp) \ 177 do { \ 178 if (hp) { \ 179 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 180 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 181 ((eh)->ip6e_len + 1) << 3); \ 182 if (error) \ 183 goto freehdrs; \ 184 } \ 185 } while (0) 186 187 bzero(&exthdrs, sizeof(exthdrs)); 188 if (opt) { 189 /* Hop-by-Hop options header */ 190 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 191 /* Destination options header(1st part) */ 192 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 193 /* Routing header */ 194 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 195 /* Destination options header(2nd part) */ 196 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 197 } 198 199 #ifdef IPSEC 200 /* 201 * splnet is chosen over spltdb because we are not allowed to 202 * lower the level, and udp6_output calls us in splnet(). XXX check 203 */ 204 s = splnet(); 205 206 /* 207 * Check if there was an outgoing SA bound to the flow 208 * from a transport protocol. 209 */ 210 ip6 = mtod(m, struct ip6_hdr *); 211 212 /* Do we have any pending SAs to apply ? */ 213 mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL); 214 if (mtag != NULL) { 215 #ifdef DIAGNOSTIC 216 if (mtag->m_tag_len != sizeof (struct tdb_ident)) 217 panic("ip6_output: tag of length %d (should be %d", 218 mtag->m_tag_len, sizeof (struct tdb_ident)); 219 #endif 220 tdbi = (struct tdb_ident *)(mtag + 1); 221 tdb = gettdb(tdbi->spi, &tdbi->dst, tdbi->proto); 222 if (tdb == NULL) 223 error = -EINVAL; 224 m_tag_delete(m, mtag); 225 } 226 else 227 tdb = ipsp_spd_lookup(m, AF_INET6, sizeof(struct ip6_hdr), 228 &error, IPSP_DIRECTION_OUT, NULL, inp); 229 230 if (tdb == NULL) { 231 splx(s); 232 233 if (error == 0) { 234 /* 235 * No IPsec processing required, we'll just send the 236 * packet out. 237 */ 238 sproto = 0; 239 240 /* Fall through to routing/multicast handling */ 241 } else { 242 /* 243 * -EINVAL is used to indicate that the packet should 244 * be silently dropped, typically because we've asked 245 * key management for an SA. 246 */ 247 if (error == -EINVAL) /* Should silently drop packet */ 248 error = 0; 249 250 goto freehdrs; 251 } 252 } else { 253 /* Loop detection */ 254 for (mtag = m_tag_first(m); mtag != NULL; 255 mtag = m_tag_next(m, mtag)) { 256 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE && 257 mtag->m_tag_id != 258 PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED) 259 continue; 260 tdbi = (struct tdb_ident *)(mtag + 1); 261 if (tdbi->spi == tdb->tdb_spi && 262 tdbi->proto == tdb->tdb_sproto && 263 !bcmp(&tdbi->dst, &tdb->tdb_dst, 264 sizeof(union sockaddr_union))) { 265 splx(s); 266 sproto = 0; /* mark as no-IPsec-needed */ 267 goto done_spd; 268 } 269 } 270 271 /* We need to do IPsec */ 272 bcopy(&tdb->tdb_dst, &sdst, sizeof(sdst)); 273 sspi = tdb->tdb_spi; 274 sproto = tdb->tdb_sproto; 275 splx(s); 276 277 #if 1 /* XXX */ 278 /* if we have any extension header, we cannot perform IPsec */ 279 if (exthdrs.ip6e_hbh || exthdrs.ip6e_dest1 || 280 exthdrs.ip6e_rthdr || exthdrs.ip6e_dest2) { 281 error = EHOSTUNREACH; 282 goto freehdrs; 283 } 284 #endif 285 } 286 287 /* Fall through to the routing/multicast handling code */ 288 done_spd: 289 #endif /* IPSEC */ 290 291 /* 292 * Calculate the total length of the extension header chain. 293 * Keep the length of the unfragmentable part for fragmentation. 294 */ 295 optlen = 0; 296 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 297 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 298 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 299 unfragpartlen = optlen + sizeof(struct ip6_hdr); 300 /* NOTE: we don't add AH/ESP length here. do that later. */ 301 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 302 303 /* 304 * If we need IPsec, or there is at least one extension header, 305 * separate IP6 header from the payload. 306 */ 307 if ((sproto || optlen) && !hdrsplit) { 308 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 309 m = NULL; 310 goto freehdrs; 311 } 312 m = exthdrs.ip6e_ip6; 313 hdrsplit++; 314 } 315 316 /* adjust pointer */ 317 ip6 = mtod(m, struct ip6_hdr *); 318 319 /* adjust mbuf packet header length */ 320 m->m_pkthdr.len += optlen; 321 plen = m->m_pkthdr.len - sizeof(*ip6); 322 323 /* If this is a jumbo payload, insert a jumbo payload option. */ 324 if (plen > IPV6_MAXPACKET) { 325 if (!hdrsplit) { 326 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 327 m = NULL; 328 goto freehdrs; 329 } 330 m = exthdrs.ip6e_ip6; 331 hdrsplit++; 332 } 333 /* adjust pointer */ 334 ip6 = mtod(m, struct ip6_hdr *); 335 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 336 goto freehdrs; 337 ip6->ip6_plen = 0; 338 } else 339 ip6->ip6_plen = htons(plen); 340 341 /* 342 * Concatenate headers and fill in next header fields. 343 * Here we have, on "m" 344 * IPv6 payload 345 * and we insert headers accordingly. Finally, we should be getting: 346 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 347 * 348 * during the header composing process, "m" points to IPv6 header. 349 * "mprev" points to an extension header prior to esp. 350 */ 351 { 352 u_char *nexthdrp = &ip6->ip6_nxt; 353 struct mbuf *mprev = m; 354 355 /* 356 * we treat dest2 specially. this makes IPsec processing 357 * much easier. 358 * 359 * result: IPv6 dest2 payload 360 * m and mprev will point to IPv6 header. 361 */ 362 if (exthdrs.ip6e_dest2) { 363 if (!hdrsplit) 364 panic("assumption failed: hdr not split"); 365 exthdrs.ip6e_dest2->m_next = m->m_next; 366 m->m_next = exthdrs.ip6e_dest2; 367 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 368 ip6->ip6_nxt = IPPROTO_DSTOPTS; 369 } 370 371 #define MAKE_CHAIN(m, mp, p, i)\ 372 do {\ 373 if (m) {\ 374 if (!hdrsplit) \ 375 panic("assumption failed: hdr not split"); \ 376 *mtod((m), u_char *) = *(p);\ 377 *(p) = (i);\ 378 p = mtod((m), u_char *);\ 379 (m)->m_next = (mp)->m_next;\ 380 (mp)->m_next = (m);\ 381 (mp) = (m);\ 382 }\ 383 } while (0) 384 /* 385 * result: IPv6 hbh dest1 rthdr dest2 payload 386 * m will point to IPv6 header. mprev will point to the 387 * extension header prior to dest2 (rthdr in the above case). 388 */ 389 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, 390 nexthdrp, IPPROTO_HOPOPTS); 391 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, 392 nexthdrp, IPPROTO_DSTOPTS); 393 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, 394 nexthdrp, IPPROTO_ROUTING); 395 396 #if 0 /*KAME IPSEC*/ 397 if (!needipsec) 398 goto skip_ipsec2; 399 400 /* 401 * pointers after IPsec headers are not valid any more. 402 * other pointers need a great care too. 403 * (IPsec routines should not mangle mbufs prior to AH/ESP) 404 */ 405 exthdrs.ip6e_dest2 = NULL; 406 407 { 408 struct ip6_rthdr *rh = NULL; 409 int segleft_org = 0; 410 struct ipsec_output_state state; 411 412 if (exthdrs.ip6e_rthdr) { 413 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *); 414 segleft_org = rh->ip6r_segleft; 415 rh->ip6r_segleft = 0; 416 } 417 418 bzero(&state, sizeof(state)); 419 state.m = m; 420 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags, 421 &needipsectun); 422 m = state.m; 423 if (error) { 424 /* mbuf is already reclaimed in ipsec6_output_trans. */ 425 m = NULL; 426 switch (error) { 427 case EHOSTUNREACH: 428 case ENETUNREACH: 429 case EMSGSIZE: 430 case ENOBUFS: 431 case ENOMEM: 432 break; 433 default: 434 printf("ip6_output (ipsec): error code %d\n", error); 435 /*fall through*/ 436 case ENOENT: 437 /* don't show these error codes to the user */ 438 error = 0; 439 break; 440 } 441 goto bad; 442 } 443 if (exthdrs.ip6e_rthdr) { 444 /* ah6_output doesn't modify mbuf chain */ 445 rh->ip6r_segleft = segleft_org; 446 } 447 } 448 skip_ipsec2:; 449 #endif 450 } 451 452 /* 453 * If there is a routing header, replace destination address field 454 * with the first hop of the routing header. 455 */ 456 if (exthdrs.ip6e_rthdr) { 457 struct ip6_rthdr *rh = 458 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 459 struct ip6_rthdr *)); 460 struct ip6_rthdr0 *rh0; 461 462 finaldst = ip6->ip6_dst; 463 switch(rh->ip6r_type) { 464 case IPV6_RTHDR_TYPE_0: 465 rh0 = (struct ip6_rthdr0 *)rh; 466 ip6->ip6_dst = rh0->ip6r0_addr[0]; 467 bcopy((caddr_t)&rh0->ip6r0_addr[1], 468 (caddr_t)&rh0->ip6r0_addr[0], 469 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1) 470 ); 471 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst; 472 break; 473 default: /* is it possible? */ 474 error = EINVAL; 475 goto bad; 476 } 477 } 478 479 /* Source address validation */ 480 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 481 (flags & IPV6_DADOUTPUT) == 0) { 482 error = EOPNOTSUPP; 483 ip6stat.ip6s_badscope++; 484 goto bad; 485 } 486 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 487 error = EOPNOTSUPP; 488 ip6stat.ip6s_badscope++; 489 goto bad; 490 } 491 492 ip6stat.ip6s_localout++; 493 494 /* 495 * Route packet. 496 */ 497 if (ro == 0) { 498 ro = &ip6route; 499 bzero((caddr_t)ro, sizeof(*ro)); 500 } 501 ro_pmtu = ro; 502 if (opt && opt->ip6po_rthdr) 503 ro = &opt->ip6po_route; 504 dst = (struct sockaddr_in6 *)&ro->ro_dst; 505 /* 506 * If there is a cached route, 507 * check that it is to the same destination 508 * and is still up. If not, free it and try again. 509 */ 510 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 511 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) { 512 RTFREE(ro->ro_rt); 513 ro->ro_rt = (struct rtentry *)0; 514 } 515 if (ro->ro_rt == 0) { 516 bzero(dst, sizeof(*dst)); 517 dst->sin6_family = AF_INET6; 518 dst->sin6_len = sizeof(struct sockaddr_in6); 519 dst->sin6_addr = ip6->ip6_dst; 520 } 521 #ifdef IPSEC 522 /* 523 * Check if the packet needs encapsulation. 524 * ipsp_process_packet will never come back to here. 525 */ 526 if (sproto != 0) { 527 s = splnet(); 528 529 /* fill in IPv6 header which would be filled later */ 530 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 531 if (opt && opt->ip6po_hlim != -1) 532 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 533 } else { 534 if (im6o != NULL) 535 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 536 else 537 ip6->ip6_hlim = ip6_defmcasthlim; 538 if (opt && opt->ip6po_hlim != -1) 539 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 540 541 /* 542 * XXX what should we do if ip6_hlim == 0 and the 543 * packet gets tunnelled? 544 */ 545 } 546 547 tdb = gettdb(sspi, &sdst, sproto); 548 if (tdb == NULL) { 549 splx(s); 550 error = EHOSTUNREACH; 551 m_freem(m); 552 goto done; 553 } 554 555 /* Latch to PCB */ 556 if (inp) 557 tdb_add_inp(tdb, inp, 0); 558 559 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 560 561 /* Callee frees mbuf */ 562 error = ipsp_process_packet(m, tdb, AF_INET6, 0); 563 splx(s); 564 return error; /* Nothing more to be done */ 565 } 566 #endif /* IPSEC */ 567 568 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 569 /* Unicast */ 570 571 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa)) 572 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) 573 /* xxx 574 * interface selection comes here 575 * if an interface is specified from an upper layer, 576 * ifp must point it. 577 */ 578 if (ro->ro_rt == 0) { 579 /* 580 * non-bsdi always clone routes, if parent is 581 * PRF_CLONING. 582 */ 583 rtalloc((struct route *)ro); 584 } 585 if (ro->ro_rt == 0) { 586 ip6stat.ip6s_noroute++; 587 error = EHOSTUNREACH; 588 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */ 589 goto bad; 590 } 591 ia = ifatoia6(ro->ro_rt->rt_ifa); 592 ifp = ro->ro_rt->rt_ifp; 593 ro->ro_rt->rt_use++; 594 if (ro->ro_rt->rt_flags & RTF_GATEWAY) 595 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway; 596 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 597 598 in6_ifstat_inc(ifp, ifs6_out_request); 599 600 /* 601 * Check if the outgoing interface conflicts with 602 * the interface specified by ifi6_ifindex (if specified). 603 * Note that loopback interface is always okay. 604 * (this may happen when we are sending a packet to one of 605 * our own addresses.) 606 */ 607 if (opt && opt->ip6po_pktinfo 608 && opt->ip6po_pktinfo->ipi6_ifindex) { 609 if (!(ifp->if_flags & IFF_LOOPBACK) 610 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) { 611 ip6stat.ip6s_noroute++; 612 in6_ifstat_inc(ifp, ifs6_out_discard); 613 error = EHOSTUNREACH; 614 goto bad; 615 } 616 } 617 618 if (opt && opt->ip6po_hlim != -1) 619 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 620 } else { 621 /* Multicast */ 622 struct in6_multi *in6m; 623 624 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 625 626 /* 627 * See if the caller provided any multicast options 628 */ 629 ifp = NULL; 630 if (im6o != NULL) { 631 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 632 if (im6o->im6o_multicast_ifp != NULL) 633 ifp = im6o->im6o_multicast_ifp; 634 } else 635 ip6->ip6_hlim = ip6_defmcasthlim; 636 637 /* 638 * See if the caller provided the outgoing interface 639 * as an ancillary data. 640 * Boundary check for ifindex is assumed to be already done. 641 */ 642 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex) 643 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex]; 644 645 /* 646 * If the destination is a node-local scope multicast, 647 * the packet should be loop-backed only. 648 */ 649 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) { 650 /* 651 * If the outgoing interface is already specified, 652 * it should be a loopback interface. 653 */ 654 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) { 655 ip6stat.ip6s_badscope++; 656 error = ENETUNREACH; /* XXX: better error? */ 657 /* XXX correct ifp? */ 658 in6_ifstat_inc(ifp, ifs6_out_discard); 659 goto bad; 660 } 661 else { 662 ifp = lo0ifp; 663 } 664 } 665 666 if (opt && opt->ip6po_hlim != -1) 667 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 668 669 /* 670 * If caller did not provide an interface lookup a 671 * default in the routing table. This is either a 672 * default for the speicfied group (i.e. a host 673 * route), or a multicast default (a route for the 674 * ``net'' ff00::/8). 675 */ 676 if (ifp == NULL) { 677 if (ro->ro_rt == 0) { 678 ro->ro_rt = rtalloc1((struct sockaddr *) 679 &ro->ro_dst, 0); 680 } 681 if (ro->ro_rt == 0) { 682 ip6stat.ip6s_noroute++; 683 error = EHOSTUNREACH; 684 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */ 685 goto bad; 686 } 687 ia = ifatoia6(ro->ro_rt->rt_ifa); 688 ifp = ro->ro_rt->rt_ifp; 689 ro->ro_rt->rt_use++; 690 } 691 692 if ((flags & IPV6_FORWARDING) == 0) 693 in6_ifstat_inc(ifp, ifs6_out_request); 694 in6_ifstat_inc(ifp, ifs6_out_mcast); 695 696 /* 697 * Confirm that the outgoing interface supports multicast. 698 */ 699 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 700 ip6stat.ip6s_noroute++; 701 in6_ifstat_inc(ifp, ifs6_out_discard); 702 error = ENETUNREACH; 703 goto bad; 704 } 705 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m); 706 if (in6m != NULL && 707 (im6o == NULL || im6o->im6o_multicast_loop)) { 708 /* 709 * If we belong to the destination multicast group 710 * on the outgoing interface, and the caller did not 711 * forbid loopback, loop back a copy. 712 */ 713 ip6_mloopback(ifp, m, dst); 714 } else { 715 /* 716 * If we are acting as a multicast router, perform 717 * multicast forwarding as if the packet had just 718 * arrived on the interface to which we are about 719 * to send. The multicast forwarding function 720 * recursively calls this function, using the 721 * IPV6_FORWARDING flag to prevent infinite recursion. 722 * 723 * Multicasts that are looped back by ip6_mloopback(), 724 * above, will be forwarded by the ip6_input() routine, 725 * if necessary. 726 */ 727 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 728 if (ip6_mforward(ip6, ifp, m) != 0) { 729 m_freem(m); 730 goto done; 731 } 732 } 733 } 734 /* 735 * Multicasts with a hoplimit of zero may be looped back, 736 * above, but must not be transmitted on a network. 737 * Also, multicasts addressed to the loopback interface 738 * are not sent -- the above call to ip6_mloopback() will 739 * loop back a copy if this host actually belongs to the 740 * destination group on the loopback interface. 741 */ 742 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) { 743 m_freem(m); 744 goto done; 745 } 746 } 747 748 /* 749 * Fill the outgoing inteface to tell the upper layer 750 * to increment per-interface statistics. 751 */ 752 if (ifpp) 753 *ifpp = ifp; 754 755 /* 756 * Determine path MTU. 757 */ 758 if (ro_pmtu != ro) { 759 /* The first hop and the final destination may differ. */ 760 struct sockaddr_in6 *sin6_fin = 761 (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 762 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 || 763 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr, 764 &finaldst))) { 765 RTFREE(ro_pmtu->ro_rt); 766 ro_pmtu->ro_rt = (struct rtentry *)0; 767 } 768 if (ro_pmtu->ro_rt == 0) { 769 bzero(sin6_fin, sizeof(*sin6_fin)); 770 sin6_fin->sin6_family = AF_INET6; 771 sin6_fin->sin6_len = sizeof(struct sockaddr_in6); 772 sin6_fin->sin6_addr = finaldst; 773 774 rtalloc((struct route *)ro_pmtu); 775 } 776 } 777 if (ro_pmtu->ro_rt != NULL) { 778 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu; 779 780 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu; 781 if (mtu > ifmtu || mtu == 0) { 782 /* 783 * The MTU on the route is larger than the MTU on 784 * the interface! This shouldn't happen, unless the 785 * MTU of the interface has been changed after the 786 * interface was brought up. Change the MTU in the 787 * route to match the interface MTU (as long as the 788 * field isn't locked). 789 * 790 * if MTU on the route is 0, we need to fix the MTU. 791 * this case happens with path MTU discovery timeouts. 792 */ 793 mtu = ifmtu; 794 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0) 795 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */ 796 } 797 } else { 798 mtu = nd_ifinfo[ifp->if_index].linkmtu; 799 } 800 801 /* Fake scoped addresses */ 802 if ((ifp->if_flags & IFF_LOOPBACK) != 0) { 803 /* 804 * If source or destination address is a scoped address, and 805 * the packet is going to be sent to a loopback interface, 806 * we should keep the original interface. 807 */ 808 809 /* 810 * XXX: this is a very experimental and temporary solution. 811 * We eventually have sockaddr_in6 and use the sin6_scope_id 812 * field of the structure here. 813 * We rely on the consistency between two scope zone ids 814 * of source add destination, which should already be assured 815 * Larger scopes than link will be supported in the near 816 * future. 817 */ 818 origifp = NULL; 819 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 820 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])]; 821 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 822 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])]; 823 /* 824 * XXX: origifp can be NULL even in those two cases above. 825 * For example, if we remove the (only) link-local address 826 * from the loopback interface, and try to send a link-local 827 * address without link-id information. Then the source 828 * address is ::1, and the destination address is the 829 * link-local address with its s6_addr16[1] being zero. 830 * What is worse, if the packet goes to the loopback interface 831 * by a default rejected route, the null pointer would be 832 * passed to looutput, and the kernel would hang. 833 * The following last resort would prevent such disaster. 834 */ 835 if (origifp == NULL) 836 origifp = ifp; 837 } 838 else 839 origifp = ifp; 840 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 841 ip6->ip6_src.s6_addr16[1] = 0; 842 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 843 ip6->ip6_dst.s6_addr16[1] = 0; 844 845 /* 846 * If the outgoing packet contains a hop-by-hop options header, 847 * it must be examined and processed even by the source node. 848 * (RFC 2460, section 4.) 849 */ 850 if (exthdrs.ip6e_hbh) { 851 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, 852 struct ip6_hbh *); 853 u_int32_t dummy1; /* XXX unused */ 854 u_int32_t dummy2; /* XXX unused */ 855 856 /* 857 * XXX: if we have to send an ICMPv6 error to the sender, 858 * we need the M_LOOP flag since icmp6_error() expects 859 * the IPv6 and the hop-by-hop options header are 860 * continuous unless the flag is set. 861 */ 862 m->m_flags |= M_LOOP; 863 m->m_pkthdr.rcvif = ifp; 864 if (ip6_process_hopopts(m, 865 (u_int8_t *)(hbh + 1), 866 ((hbh->ip6h_len + 1) << 3) - 867 sizeof(struct ip6_hbh), 868 &dummy1, &dummy2) < 0) { 869 /* m was already freed at this point */ 870 error = EINVAL;/* better error? */ 871 goto done; 872 } 873 m->m_flags &= ~M_LOOP; /* XXX */ 874 m->m_pkthdr.rcvif = NULL; 875 } 876 877 /* 878 * Send the packet to the outgoing interface. 879 * If necessary, do IPv6 fragmentation before sending. 880 */ 881 tlen = m->m_pkthdr.len; 882 if (tlen <= mtu 883 #ifdef notyet 884 /* 885 * On any link that cannot convey a 1280-octet packet in one piece, 886 * link-specific fragmentation and reassembly must be provided at 887 * a layer below IPv6. [RFC 2460, sec.5] 888 * Thus if the interface has ability of link-level fragmentation, 889 * we can just send the packet even if the packet size is 890 * larger than the link's MTU. 891 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet... 892 */ 893 894 || ifp->if_flags & IFF_FRAGMENTABLE 895 #endif 896 ) 897 { 898 #ifdef OLDIP6OUTPUT 899 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst, 900 ro->ro_rt); 901 #else 902 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 903 #endif 904 goto done; 905 } else if (mtu < IPV6_MMTU) { 906 /* 907 * note that path MTU is never less than IPV6_MMTU 908 * (see icmp6_input). 909 */ 910 error = EMSGSIZE; 911 in6_ifstat_inc(ifp, ifs6_out_fragfail); 912 goto bad; 913 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */ 914 error = EMSGSIZE; 915 in6_ifstat_inc(ifp, ifs6_out_fragfail); 916 goto bad; 917 } else { 918 struct mbuf **mnext, *m_frgpart; 919 struct ip6_frag *ip6f; 920 u_int32_t id = htonl(ip6_id++); 921 u_char nextproto; 922 923 /* 924 * Too large for the destination or interface; 925 * fragment if possible. 926 * Must be able to put at least 8 bytes per fragment. 927 */ 928 hlen = unfragpartlen; 929 if (mtu > IPV6_MAXPACKET) 930 mtu = IPV6_MAXPACKET; 931 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 932 if (len < 8) { 933 error = EMSGSIZE; 934 in6_ifstat_inc(ifp, ifs6_out_fragfail); 935 goto bad; 936 } 937 938 mnext = &m->m_nextpkt; 939 940 /* 941 * Change the next header field of the last header in the 942 * unfragmentable part. 943 */ 944 if (exthdrs.ip6e_rthdr) { 945 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 946 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 947 } else if (exthdrs.ip6e_dest1) { 948 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 949 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 950 } else if (exthdrs.ip6e_hbh) { 951 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 952 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 953 } else { 954 nextproto = ip6->ip6_nxt; 955 ip6->ip6_nxt = IPPROTO_FRAGMENT; 956 } 957 958 /* 959 * Loop through length of segment after first fragment, 960 * make new header and copy data of each part and link onto chain. 961 */ 962 m0 = m; 963 for (off = hlen; off < tlen; off += len) { 964 MGETHDR(m, M_DONTWAIT, MT_HEADER); 965 if (!m) { 966 error = ENOBUFS; 967 ip6stat.ip6s_odropped++; 968 goto sendorfree; 969 } 970 m->m_flags = m0->m_flags & M_COPYFLAGS; 971 *mnext = m; 972 mnext = &m->m_nextpkt; 973 m->m_data += max_linkhdr; 974 mhip6 = mtod(m, struct ip6_hdr *); 975 *mhip6 = *ip6; 976 m->m_len = sizeof(*mhip6); 977 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 978 if (error) { 979 ip6stat.ip6s_odropped++; 980 goto sendorfree; 981 } 982 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 983 if (off + len >= tlen) 984 len = tlen - off; 985 else 986 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 987 mhip6->ip6_plen = htons((u_short)(len + hlen + 988 sizeof(*ip6f) - 989 sizeof(struct ip6_hdr))); 990 if ((m_frgpart = m_copy(m0, off, len)) == 0) { 991 error = ENOBUFS; 992 ip6stat.ip6s_odropped++; 993 goto sendorfree; 994 } 995 m_cat(m, m_frgpart); 996 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 997 m->m_pkthdr.rcvif = (struct ifnet *)0; 998 ip6f->ip6f_reserved = 0; 999 ip6f->ip6f_ident = id; 1000 ip6f->ip6f_nxt = nextproto; 1001 ip6stat.ip6s_ofragments++; 1002 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 1003 } 1004 1005 in6_ifstat_inc(ifp, ifs6_out_fragok); 1006 } 1007 1008 /* 1009 * Remove leading garbages. 1010 */ 1011 sendorfree: 1012 m = m0->m_nextpkt; 1013 m0->m_nextpkt = 0; 1014 m_freem(m0); 1015 for (m0 = m; m; m = m0) { 1016 m0 = m->m_nextpkt; 1017 m->m_nextpkt = 0; 1018 if (error == 0) { 1019 #ifdef OLDIP6OUTPUT 1020 error = (*ifp->if_output)(ifp, m, 1021 (struct sockaddr *)dst, 1022 ro->ro_rt); 1023 #else 1024 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt); 1025 #endif 1026 } else 1027 m_freem(m); 1028 } 1029 1030 if (error == 0) 1031 ip6stat.ip6s_fragmented++; 1032 1033 done: 1034 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */ 1035 RTFREE(ro->ro_rt); 1036 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 1037 RTFREE(ro_pmtu->ro_rt); 1038 } 1039 1040 return(error); 1041 1042 freehdrs: 1043 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 1044 m_freem(exthdrs.ip6e_dest1); 1045 m_freem(exthdrs.ip6e_rthdr); 1046 m_freem(exthdrs.ip6e_dest2); 1047 /* fall through */ 1048 bad: 1049 m_freem(m); 1050 goto done; 1051 } 1052 1053 static int 1054 ip6_copyexthdr(mp, hdr, hlen) 1055 struct mbuf **mp; 1056 caddr_t hdr; 1057 int hlen; 1058 { 1059 struct mbuf *m; 1060 1061 if (hlen > MCLBYTES) 1062 return(ENOBUFS); /* XXX */ 1063 1064 MGET(m, M_DONTWAIT, MT_DATA); 1065 if (!m) 1066 return(ENOBUFS); 1067 1068 if (hlen > MLEN) { 1069 MCLGET(m, M_DONTWAIT); 1070 if ((m->m_flags & M_EXT) == 0) { 1071 m_free(m); 1072 return(ENOBUFS); 1073 } 1074 } 1075 m->m_len = hlen; 1076 if (hdr) 1077 bcopy(hdr, mtod(m, caddr_t), hlen); 1078 1079 *mp = m; 1080 return(0); 1081 } 1082 1083 /* 1084 * Insert jumbo payload option. 1085 */ 1086 static int 1087 ip6_insert_jumboopt(exthdrs, plen) 1088 struct ip6_exthdrs *exthdrs; 1089 u_int32_t plen; 1090 { 1091 struct mbuf *mopt; 1092 u_char *optbuf; 1093 u_int32_t v; 1094 1095 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1096 1097 /* 1098 * If there is no hop-by-hop options header, allocate new one. 1099 * If there is one but it doesn't have enough space to store the 1100 * jumbo payload option, allocate a cluster to store the whole options. 1101 * Otherwise, use it to store the options. 1102 */ 1103 if (exthdrs->ip6e_hbh == 0) { 1104 MGET(mopt, M_DONTWAIT, MT_DATA); 1105 if (mopt == 0) 1106 return(ENOBUFS); 1107 mopt->m_len = JUMBOOPTLEN; 1108 optbuf = mtod(mopt, u_char *); 1109 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1110 exthdrs->ip6e_hbh = mopt; 1111 } else { 1112 struct ip6_hbh *hbh; 1113 1114 mopt = exthdrs->ip6e_hbh; 1115 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1116 /* 1117 * XXX assumption: 1118 * - exthdrs->ip6e_hbh is not referenced from places 1119 * other than exthdrs. 1120 * - exthdrs->ip6e_hbh is not an mbuf chain. 1121 */ 1122 int oldoptlen = mopt->m_len; 1123 struct mbuf *n; 1124 1125 /* 1126 * XXX: give up if the whole (new) hbh header does 1127 * not fit even in an mbuf cluster. 1128 */ 1129 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1130 return(ENOBUFS); 1131 1132 /* 1133 * As a consequence, we must always prepare a cluster 1134 * at this point. 1135 */ 1136 MGET(n, M_DONTWAIT, MT_DATA); 1137 if (n) { 1138 MCLGET(n, M_DONTWAIT); 1139 if ((n->m_flags & M_EXT) == 0) { 1140 m_freem(n); 1141 n = NULL; 1142 } 1143 } 1144 if (!n) 1145 return(ENOBUFS); 1146 n->m_len = oldoptlen + JUMBOOPTLEN; 1147 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1148 oldoptlen); 1149 optbuf = mtod(n, caddr_t) + oldoptlen; 1150 m_freem(mopt); 1151 mopt = exthdrs->ip6e_hbh = n; 1152 } else { 1153 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1154 mopt->m_len += JUMBOOPTLEN; 1155 } 1156 optbuf[0] = IP6OPT_PADN; 1157 optbuf[1] = 1; 1158 1159 /* 1160 * Adjust the header length according to the pad and 1161 * the jumbo payload option. 1162 */ 1163 hbh = mtod(mopt, struct ip6_hbh *); 1164 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1165 } 1166 1167 /* fill in the option. */ 1168 optbuf[2] = IP6OPT_JUMBO; 1169 optbuf[3] = 4; 1170 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1171 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1172 1173 /* finally, adjust the packet header length */ 1174 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1175 1176 return(0); 1177 #undef JUMBOOPTLEN 1178 } 1179 1180 /* 1181 * Insert fragment header and copy unfragmentable header portions. 1182 */ 1183 static int 1184 ip6_insertfraghdr(m0, m, hlen, frghdrp) 1185 struct mbuf *m0, *m; 1186 int hlen; 1187 struct ip6_frag **frghdrp; 1188 { 1189 struct mbuf *n, *mlast; 1190 1191 if (hlen > sizeof(struct ip6_hdr)) { 1192 n = m_copym(m0, sizeof(struct ip6_hdr), 1193 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 1194 if (n == 0) 1195 return(ENOBUFS); 1196 m->m_next = n; 1197 } else 1198 n = m; 1199 1200 /* Search for the last mbuf of unfragmentable part. */ 1201 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1202 ; 1203 1204 if ((mlast->m_flags & M_EXT) == 0 && 1205 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1206 /* use the trailing space of the last mbuf for the fragment hdr */ 1207 *frghdrp = 1208 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len); 1209 mlast->m_len += sizeof(struct ip6_frag); 1210 m->m_pkthdr.len += sizeof(struct ip6_frag); 1211 } else { 1212 /* allocate a new mbuf for the fragment header */ 1213 struct mbuf *mfrg; 1214 1215 MGET(mfrg, M_DONTWAIT, MT_DATA); 1216 if (mfrg == 0) 1217 return(ENOBUFS); 1218 mfrg->m_len = sizeof(struct ip6_frag); 1219 *frghdrp = mtod(mfrg, struct ip6_frag *); 1220 mlast->m_next = mfrg; 1221 } 1222 1223 return(0); 1224 } 1225 1226 /* 1227 * IP6 socket option processing. 1228 */ 1229 int 1230 ip6_ctloutput(op, so, level, optname, mp) 1231 int op; 1232 struct socket *so; 1233 int level, optname; 1234 struct mbuf **mp; 1235 { 1236 int privileged; 1237 struct inpcb *inp = sotoinpcb(so); 1238 struct mbuf *m = *mp; 1239 int error, optval; 1240 int optlen; 1241 #ifdef IPSEC 1242 struct proc *p = curproc; /* XXX */ 1243 struct tdb *tdb; 1244 struct tdb_ident *tdbip, tdbi; 1245 int s; 1246 #endif 1247 1248 optlen = m ? m->m_len : 0; 1249 error = optval = 0; 1250 1251 privileged = (inp->inp_socket->so_state & SS_PRIV); 1252 1253 if (level == IPPROTO_IPV6) { 1254 switch (op) { 1255 case PRCO_SETOPT: 1256 switch (optname) { 1257 case IPV6_PKTOPTIONS: 1258 /* m is freed in ip6_pcbopts */ 1259 return(ip6_pcbopts(&inp->inp_outputopts6, 1260 m, so)); 1261 case IPV6_HOPOPTS: 1262 case IPV6_DSTOPTS: 1263 if (!privileged) { 1264 error = EPERM; 1265 break; 1266 } 1267 /* fall through */ 1268 case IPV6_UNICAST_HOPS: 1269 case IPV6_RECVOPTS: 1270 case IPV6_RECVRETOPTS: 1271 case IPV6_RECVDSTADDR: 1272 case IPV6_PKTINFO: 1273 case IPV6_HOPLIMIT: 1274 case IPV6_RTHDR: 1275 case IPV6_CHECKSUM: 1276 case IPV6_FAITH: 1277 if (optlen != sizeof(int)) 1278 error = EINVAL; 1279 else { 1280 optval = *mtod(m, int *); 1281 switch (optname) { 1282 1283 case IPV6_UNICAST_HOPS: 1284 if (optval < -1 || optval >= 256) 1285 error = EINVAL; 1286 else { 1287 /* -1 = kernel default */ 1288 inp->inp_hops = optval; 1289 } 1290 break; 1291 #define OPTSET(bit) \ 1292 if (optval) \ 1293 inp->inp_flags |= bit; \ 1294 else \ 1295 inp->inp_flags &= ~bit; 1296 case IPV6_RECVOPTS: 1297 OPTSET(IN6P_RECVOPTS); 1298 break; 1299 1300 case IPV6_RECVRETOPTS: 1301 OPTSET(IN6P_RECVRETOPTS); 1302 break; 1303 1304 case IPV6_RECVDSTADDR: 1305 OPTSET(IN6P_RECVDSTADDR); 1306 break; 1307 1308 case IPV6_PKTINFO: 1309 OPTSET(IN6P_PKTINFO); 1310 break; 1311 1312 case IPV6_HOPLIMIT: 1313 OPTSET(IN6P_HOPLIMIT); 1314 break; 1315 1316 case IPV6_HOPOPTS: 1317 OPTSET(IN6P_HOPOPTS); 1318 break; 1319 1320 case IPV6_DSTOPTS: 1321 OPTSET(IN6P_DSTOPTS); 1322 break; 1323 1324 case IPV6_RTHDR: 1325 OPTSET(IN6P_RTHDR); 1326 break; 1327 1328 case IPV6_CHECKSUM: 1329 inp->in6p_cksum = optval; 1330 break; 1331 1332 case IPV6_FAITH: 1333 OPTSET(IN6P_FAITH); 1334 break; 1335 } 1336 } 1337 break; 1338 #undef OPTSET 1339 1340 case IPV6_MULTICAST_IF: 1341 case IPV6_MULTICAST_HOPS: 1342 case IPV6_MULTICAST_LOOP: 1343 case IPV6_JOIN_GROUP: 1344 case IPV6_LEAVE_GROUP: 1345 error = ip6_setmoptions(optname, 1346 &inp->inp_moptions6, m); 1347 break; 1348 1349 case IPV6_PORTRANGE: 1350 optval = *mtod(m, int *); 1351 1352 # define in6p inp 1353 # define in6p_flags inp_flags 1354 switch (optval) { 1355 case IPV6_PORTRANGE_DEFAULT: 1356 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1357 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1358 break; 1359 1360 case IPV6_PORTRANGE_HIGH: 1361 in6p->in6p_flags &= ~(IN6P_LOWPORT); 1362 in6p->in6p_flags |= IN6P_HIGHPORT; 1363 break; 1364 1365 case IPV6_PORTRANGE_LOW: 1366 in6p->in6p_flags &= ~(IN6P_HIGHPORT); 1367 in6p->in6p_flags |= IN6P_LOWPORT; 1368 break; 1369 1370 default: 1371 error = EINVAL; 1372 break; 1373 } 1374 # undef in6p 1375 # undef in6p_flags 1376 break; 1377 1378 #if 0 /*KAME IPSEC*/ 1379 case IPV6_IPSEC_POLICY: 1380 { 1381 caddr_t req = NULL; 1382 if (m != 0) 1383 req = mtod(m, caddr_t); 1384 error = ipsec6_set_policy(in6p, optname, req, 1385 privileged); 1386 } 1387 break; 1388 #endif /* IPSEC */ 1389 1390 case IPSEC6_OUTSA: 1391 #ifndef IPSEC 1392 error = EINVAL; 1393 #else 1394 s = spltdb(); 1395 if (m == 0 || m->m_len != sizeof(struct tdb_ident)) { 1396 error = EINVAL; 1397 } else { 1398 tdbip = mtod(m, struct tdb_ident *); 1399 tdb = gettdb(tdbip->spi, &tdbip->dst, 1400 tdbip->proto); 1401 if (tdb == NULL) 1402 error = ESRCH; 1403 else 1404 tdb_add_inp(tdb, inp, 0); 1405 } 1406 splx(s); 1407 #endif /* IPSEC */ 1408 break; 1409 1410 case IPV6_AUTH_LEVEL: 1411 case IPV6_ESP_TRANS_LEVEL: 1412 case IPV6_ESP_NETWORK_LEVEL: 1413 case IPV6_IPCOMP_LEVEL: 1414 #ifndef IPSEC 1415 error = EINVAL; 1416 #else 1417 if (m == 0 || m->m_len != sizeof(int)) { 1418 error = EINVAL; 1419 break; 1420 } 1421 optval = *mtod(m, int *); 1422 1423 if (optval < IPSEC_LEVEL_BYPASS || 1424 optval > IPSEC_LEVEL_UNIQUE) { 1425 error = EINVAL; 1426 break; 1427 } 1428 1429 switch (optname) { 1430 case IPV6_AUTH_LEVEL: 1431 if (optval < ipsec_auth_default_level && 1432 suser(p->p_ucred, &p->p_acflag)) { 1433 error = EACCES; 1434 break; 1435 } 1436 inp->inp_seclevel[SL_AUTH] = optval; 1437 break; 1438 1439 case IPV6_ESP_TRANS_LEVEL: 1440 if (optval < ipsec_esp_trans_default_level && 1441 suser(p->p_ucred, &p->p_acflag)) { 1442 error = EACCES; 1443 break; 1444 } 1445 inp->inp_seclevel[SL_ESP_TRANS] = optval; 1446 break; 1447 1448 case IPV6_ESP_NETWORK_LEVEL: 1449 if (optval < ipsec_esp_network_default_level && 1450 suser(p->p_ucred, &p->p_acflag)) { 1451 error = EACCES; 1452 break; 1453 } 1454 inp->inp_seclevel[SL_ESP_NETWORK] = optval; 1455 break; 1456 1457 case IPV6_IPCOMP_LEVEL: 1458 if (optval < ipsec_ipcomp_default_level && 1459 suser(p->p_ucred, &p->p_acflag)) { 1460 error = EACCES; 1461 break; 1462 } 1463 inp->inp_seclevel[SL_IPCOMP] = optval; 1464 break; 1465 } 1466 if (!error) 1467 inp->inp_secrequire = get_sa_require(inp); 1468 #endif 1469 break; 1470 1471 1472 default: 1473 error = ENOPROTOOPT; 1474 break; 1475 } 1476 if (m) 1477 (void)m_free(m); 1478 break; 1479 1480 case PRCO_GETOPT: 1481 switch (optname) { 1482 1483 case IPV6_OPTIONS: 1484 case IPV6_RETOPTS: 1485 #if 0 1486 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1487 if (in6p->in6p_options) { 1488 m->m_len = in6p->in6p_options->m_len; 1489 bcopy(mtod(in6p->in6p_options, caddr_t), 1490 mtod(m, caddr_t), 1491 (unsigned)m->m_len); 1492 } else 1493 m->m_len = 0; 1494 break; 1495 #else 1496 error = ENOPROTOOPT; 1497 break; 1498 #endif 1499 1500 case IPV6_PKTOPTIONS: 1501 if (inp->inp_options) { 1502 *mp = m_copym(inp->inp_options, 0, 1503 M_COPYALL, M_WAIT); 1504 } else { 1505 *mp = m_get(M_WAIT, MT_SOOPTS); 1506 (*mp)->m_len = 0; 1507 } 1508 break; 1509 1510 case IPV6_HOPOPTS: 1511 case IPV6_DSTOPTS: 1512 if (!privileged) { 1513 error = EPERM; 1514 break; 1515 } 1516 /* fall through */ 1517 case IPV6_UNICAST_HOPS: 1518 case IPV6_RECVOPTS: 1519 case IPV6_RECVRETOPTS: 1520 case IPV6_RECVDSTADDR: 1521 case IPV6_PKTINFO: 1522 case IPV6_HOPLIMIT: 1523 case IPV6_RTHDR: 1524 case IPV6_CHECKSUM: 1525 case IPV6_FAITH: 1526 case IPV6_PORTRANGE: 1527 switch (optname) { 1528 1529 case IPV6_UNICAST_HOPS: 1530 optval = inp->inp_hops; 1531 break; 1532 1533 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0) 1534 1535 case IPV6_RECVOPTS: 1536 optval = OPTBIT(IN6P_RECVOPTS); 1537 break; 1538 1539 case IPV6_RECVRETOPTS: 1540 optval = OPTBIT(IN6P_RECVRETOPTS); 1541 break; 1542 1543 case IPV6_RECVDSTADDR: 1544 optval = OPTBIT(IN6P_RECVDSTADDR); 1545 break; 1546 1547 case IPV6_PKTINFO: 1548 optval = OPTBIT(IN6P_PKTINFO); 1549 break; 1550 1551 case IPV6_HOPLIMIT: 1552 optval = OPTBIT(IN6P_HOPLIMIT); 1553 break; 1554 1555 case IPV6_HOPOPTS: 1556 optval = OPTBIT(IN6P_HOPOPTS); 1557 break; 1558 1559 case IPV6_DSTOPTS: 1560 optval = OPTBIT(IN6P_DSTOPTS); 1561 break; 1562 1563 case IPV6_RTHDR: 1564 optval = OPTBIT(IN6P_RTHDR); 1565 break; 1566 1567 case IPV6_CHECKSUM: 1568 optval = inp->in6p_cksum; 1569 break; 1570 1571 case IPV6_FAITH: 1572 optval = OPTBIT(IN6P_FAITH); 1573 break; 1574 1575 case IPV6_PORTRANGE: 1576 { 1577 int flags; 1578 1579 flags = inp->inp_flags; 1580 if (flags & IN6P_HIGHPORT) 1581 optval = IPV6_PORTRANGE_HIGH; 1582 else if (flags & IN6P_LOWPORT) 1583 optval = IPV6_PORTRANGE_LOW; 1584 else 1585 optval = 0; 1586 break; 1587 } 1588 } 1589 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1590 m->m_len = sizeof(int); 1591 *mtod(m, int *) = optval; 1592 break; 1593 1594 case IPV6_MULTICAST_IF: 1595 case IPV6_MULTICAST_HOPS: 1596 case IPV6_MULTICAST_LOOP: 1597 case IPV6_JOIN_GROUP: 1598 case IPV6_LEAVE_GROUP: 1599 error = ip6_getmoptions(optname, inp->inp_moptions6, mp); 1600 break; 1601 1602 #if 0 /*KAME IPSEC*/ 1603 case IPV6_IPSEC_POLICY: 1604 { 1605 caddr_t req = NULL; 1606 int len = 0; 1607 1608 if (m != 0) { 1609 req = mtod(m, caddr_t); 1610 len = m->m_len; 1611 } 1612 error = ipsec6_get_policy(in6p, req, mp); 1613 break; 1614 } 1615 #endif /* IPSEC */ 1616 1617 case IPSEC6_OUTSA: 1618 #ifndef IPSEC 1619 error = EINVAL; 1620 #else 1621 s = spltdb(); 1622 if (inp->inp_tdb_out == NULL) { 1623 error = ENOENT; 1624 } else { 1625 tdbi.spi = inp->inp_tdb_out->tdb_spi; 1626 tdbi.dst = inp->inp_tdb_out->tdb_dst; 1627 tdbi.proto = inp->inp_tdb_out->tdb_sproto; 1628 *mp = m = m_get(M_WAIT, MT_SOOPTS); 1629 m->m_len = sizeof(tdbi); 1630 bcopy((caddr_t)&tdbi, mtod(m, caddr_t), 1631 (unsigned)m->m_len); 1632 } 1633 splx(s); 1634 #endif /* IPSEC */ 1635 break; 1636 1637 case IPV6_AUTH_LEVEL: 1638 case IPV6_ESP_TRANS_LEVEL: 1639 case IPV6_ESP_NETWORK_LEVEL: 1640 case IPV6_IPCOMP_LEVEL: 1641 #ifndef IPSEC 1642 m->m_len = sizeof(int); 1643 *mtod(m, int *) = IPSEC_LEVEL_NONE; 1644 #else 1645 m->m_len = sizeof(int); 1646 switch (optname) { 1647 case IP_AUTH_LEVEL: 1648 optval = inp->inp_seclevel[SL_AUTH]; 1649 break; 1650 1651 case IP_ESP_TRANS_LEVEL: 1652 optval = 1653 inp->inp_seclevel[SL_ESP_TRANS]; 1654 break; 1655 1656 case IP_ESP_NETWORK_LEVEL: 1657 optval = 1658 inp->inp_seclevel[SL_ESP_NETWORK]; 1659 break; 1660 1661 case IP_IPCOMP_LEVEL: 1662 optval = inp->inp_seclevel[SL_IPCOMP]; 1663 break; 1664 } 1665 *mtod(m, int *) = optval; 1666 #endif 1667 break; 1668 1669 default: 1670 error = ENOPROTOOPT; 1671 break; 1672 } 1673 break; 1674 } 1675 } else { 1676 error = EINVAL; 1677 if (op == PRCO_SETOPT && *mp) 1678 (void)m_free(*mp); 1679 } 1680 return(error); 1681 } 1682 1683 /* 1684 * Set up IP6 options in pcb for insertion in output packets. 1685 * Store in mbuf with pointer in pcbopt, adding pseudo-option 1686 * with destination address if source routed. 1687 */ 1688 static int 1689 ip6_pcbopts(pktopt, m, so) 1690 struct ip6_pktopts **pktopt; 1691 struct mbuf *m; 1692 struct socket *so; 1693 { 1694 struct ip6_pktopts *opt = *pktopt; 1695 int error = 0; 1696 struct proc *p = curproc; /* XXX */ 1697 int priv = 0; 1698 1699 /* turn off any old options. */ 1700 if (opt) { 1701 if (opt->ip6po_m) 1702 (void)m_free(opt->ip6po_m); 1703 } 1704 else 1705 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK); 1706 *pktopt = 0; 1707 1708 if (!m || m->m_len == 0) { 1709 /* 1710 * Only turning off any previous options. 1711 */ 1712 if (opt) 1713 free(opt, M_IP6OPT); 1714 if (m) 1715 (void)m_free(m); 1716 return(0); 1717 } 1718 1719 /* set options specified by user. */ 1720 if (p && !suser(p->p_ucred, &p->p_acflag)) 1721 priv = 1; 1722 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) { 1723 (void)m_free(m); 1724 return(error); 1725 } 1726 *pktopt = opt; 1727 return(0); 1728 } 1729 1730 /* 1731 * Set the IP6 multicast options in response to user setsockopt(). 1732 */ 1733 static int 1734 ip6_setmoptions(optname, im6op, m) 1735 int optname; 1736 struct ip6_moptions **im6op; 1737 struct mbuf *m; 1738 { 1739 int error = 0; 1740 u_int loop, ifindex; 1741 struct ipv6_mreq *mreq; 1742 struct ifnet *ifp; 1743 struct ip6_moptions *im6o = *im6op; 1744 struct route_in6 ro; 1745 struct sockaddr_in6 *dst; 1746 struct in6_multi_mship *imm; 1747 struct proc *p = curproc; /* XXX */ 1748 1749 if (im6o == NULL) { 1750 /* 1751 * No multicast option buffer attached to the pcb; 1752 * allocate one and initialize to default values. 1753 */ 1754 im6o = (struct ip6_moptions *) 1755 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1756 1757 *im6op = im6o; 1758 im6o->im6o_multicast_ifp = NULL; 1759 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1760 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1761 LIST_INIT(&im6o->im6o_memberships); 1762 } 1763 1764 switch (optname) { 1765 1766 case IPV6_MULTICAST_IF: 1767 /* 1768 * Select the interface for outgoing multicast packets. 1769 */ 1770 if (m == NULL || m->m_len != sizeof(u_int)) { 1771 error = EINVAL; 1772 break; 1773 } 1774 ifindex = *(mtod(m, u_int *)); 1775 if (ifindex < 0 || if_index < ifindex) { 1776 error = ENXIO; /* XXX EINVAL? */ 1777 break; 1778 } 1779 ifp = ifindex2ifnet[ifindex]; 1780 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1781 error = EADDRNOTAVAIL; 1782 break; 1783 } 1784 im6o->im6o_multicast_ifp = ifp; 1785 break; 1786 1787 case IPV6_MULTICAST_HOPS: 1788 { 1789 /* 1790 * Set the IP6 hoplimit for outgoing multicast packets. 1791 */ 1792 int optval; 1793 if (m == NULL || m->m_len != sizeof(int)) { 1794 error = EINVAL; 1795 break; 1796 } 1797 optval = *(mtod(m, u_int *)); 1798 if (optval < -1 || optval >= 256) 1799 error = EINVAL; 1800 else if (optval == -1) 1801 im6o->im6o_multicast_hlim = ip6_defmcasthlim; 1802 else 1803 im6o->im6o_multicast_hlim = optval; 1804 break; 1805 } 1806 1807 case IPV6_MULTICAST_LOOP: 1808 /* 1809 * Set the loopback flag for outgoing multicast packets. 1810 * Must be zero or one. 1811 */ 1812 if (m == NULL || m->m_len != sizeof(u_int) || 1813 (loop = *(mtod(m, u_int *))) > 1) { 1814 error = EINVAL; 1815 break; 1816 } 1817 im6o->im6o_multicast_loop = loop; 1818 break; 1819 1820 case IPV6_JOIN_GROUP: 1821 /* 1822 * Add a multicast group membership. 1823 * Group must be a valid IP6 multicast address. 1824 */ 1825 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1826 error = EINVAL; 1827 break; 1828 } 1829 mreq = mtod(m, struct ipv6_mreq *); 1830 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1831 /* 1832 * We use the unspecified address to specify to accept 1833 * all multicast addresses. Only super user is allowed 1834 * to do this. 1835 */ 1836 if (suser(p->p_ucred, &p->p_acflag)) { 1837 error = EACCES; 1838 break; 1839 } 1840 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1841 error = EINVAL; 1842 break; 1843 } 1844 1845 /* 1846 * If the interface is specified, validate it. 1847 */ 1848 if (mreq->ipv6mr_interface < 0 1849 || if_index < mreq->ipv6mr_interface) { 1850 error = ENXIO; /* XXX EINVAL? */ 1851 break; 1852 } 1853 /* 1854 * If no interface was explicitly specified, choose an 1855 * appropriate one according to the given multicast address. 1856 */ 1857 if (mreq->ipv6mr_interface == 0) { 1858 /* 1859 * If the multicast address is in node-local scope, 1860 * the interface should be a loopback interface. 1861 * Otherwise, look up the routing table for the 1862 * address, and choose the outgoing interface. 1863 * XXX: is it a good approach? 1864 */ 1865 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) { 1866 ifp = lo0ifp; 1867 } 1868 else { 1869 ro.ro_rt = NULL; 1870 dst = (struct sockaddr_in6 *)&ro.ro_dst; 1871 bzero(dst, sizeof(*dst)); 1872 dst->sin6_len = sizeof(struct sockaddr_in6); 1873 dst->sin6_family = AF_INET6; 1874 dst->sin6_addr = mreq->ipv6mr_multiaddr; 1875 rtalloc((struct route *)&ro); 1876 if (ro.ro_rt == NULL) { 1877 error = EADDRNOTAVAIL; 1878 break; 1879 } 1880 ifp = ro.ro_rt->rt_ifp; 1881 rtfree(ro.ro_rt); 1882 } 1883 } else 1884 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1885 1886 /* 1887 * See if we found an interface, and confirm that it 1888 * supports multicast 1889 */ 1890 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { 1891 error = EADDRNOTAVAIL; 1892 break; 1893 } 1894 /* 1895 * Put interface index into the multicast address, 1896 * if the address has link-local scope. 1897 */ 1898 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1899 mreq->ipv6mr_multiaddr.s6_addr16[1] 1900 = htons(mreq->ipv6mr_interface); 1901 } 1902 /* 1903 * See if the membership already exists. 1904 */ 1905 for (imm = im6o->im6o_memberships.lh_first; 1906 imm != NULL; imm = imm->i6mm_chain.le_next) 1907 if (imm->i6mm_maddr->in6m_ifp == ifp && 1908 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1909 &mreq->ipv6mr_multiaddr)) 1910 break; 1911 if (imm != NULL) { 1912 error = EADDRINUSE; 1913 break; 1914 } 1915 /* 1916 * Everything looks good; add a new record to the multicast 1917 * address list for the given interface. 1918 */ 1919 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK); 1920 1921 if ((imm->i6mm_maddr = 1922 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) { 1923 free(imm, M_IPMADDR); 1924 break; 1925 } 1926 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 1927 break; 1928 1929 case IPV6_LEAVE_GROUP: 1930 /* 1931 * Drop a multicast group membership. 1932 * Group must be a valid IP6 multicast address. 1933 */ 1934 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1935 error = EINVAL; 1936 break; 1937 } 1938 mreq = mtod(m, struct ipv6_mreq *); 1939 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1940 if (suser(p->p_ucred, &p->p_acflag)) { 1941 error = EACCES; 1942 break; 1943 } 1944 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1945 error = EINVAL; 1946 break; 1947 } 1948 /* 1949 * If an interface address was specified, get a pointer 1950 * to its ifnet structure. 1951 */ 1952 if (mreq->ipv6mr_interface < 0 1953 || if_index < mreq->ipv6mr_interface) { 1954 error = ENXIO; /* XXX EINVAL? */ 1955 break; 1956 } 1957 ifp = ifindex2ifnet[mreq->ipv6mr_interface]; 1958 /* 1959 * Put interface index into the multicast address, 1960 * if the address has link-local scope. 1961 */ 1962 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 1963 mreq->ipv6mr_multiaddr.s6_addr16[1] 1964 = htons(mreq->ipv6mr_interface); 1965 } 1966 /* 1967 * Find the membership in the membership list. 1968 */ 1969 for (imm = im6o->im6o_memberships.lh_first; 1970 imm != NULL; imm = imm->i6mm_chain.le_next) { 1971 if ((ifp == NULL || 1972 imm->i6mm_maddr->in6m_ifp == ifp) && 1973 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 1974 &mreq->ipv6mr_multiaddr)) 1975 break; 1976 } 1977 if (imm == NULL) { 1978 /* Unable to resolve interface */ 1979 error = EADDRNOTAVAIL; 1980 break; 1981 } 1982 /* 1983 * Give up the multicast address record to which the 1984 * membership points. 1985 */ 1986 LIST_REMOVE(imm, i6mm_chain); 1987 in6_delmulti(imm->i6mm_maddr); 1988 free(imm, M_IPMADDR); 1989 break; 1990 1991 default: 1992 error = EOPNOTSUPP; 1993 break; 1994 } 1995 1996 /* 1997 * If all options have default values, no need to keep the mbuf. 1998 */ 1999 if (im6o->im6o_multicast_ifp == NULL && 2000 im6o->im6o_multicast_hlim == ip6_defmcasthlim && 2001 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2002 im6o->im6o_memberships.lh_first == NULL) { 2003 free(*im6op, M_IPMOPTS); 2004 *im6op = NULL; 2005 } 2006 2007 return(error); 2008 } 2009 2010 /* 2011 * Return the IP6 multicast options in response to user getsockopt(). 2012 */ 2013 static int 2014 ip6_getmoptions(optname, im6o, mp) 2015 int optname; 2016 struct ip6_moptions *im6o; 2017 struct mbuf **mp; 2018 { 2019 u_int *hlim, *loop, *ifindex; 2020 2021 *mp = m_get(M_WAIT, MT_SOOPTS); 2022 2023 switch (optname) { 2024 2025 case IPV6_MULTICAST_IF: 2026 ifindex = mtod(*mp, u_int *); 2027 (*mp)->m_len = sizeof(u_int); 2028 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL) 2029 *ifindex = 0; 2030 else 2031 *ifindex = im6o->im6o_multicast_ifp->if_index; 2032 return(0); 2033 2034 case IPV6_MULTICAST_HOPS: 2035 hlim = mtod(*mp, u_int *); 2036 (*mp)->m_len = sizeof(u_int); 2037 if (im6o == NULL) 2038 *hlim = ip6_defmcasthlim; 2039 else 2040 *hlim = im6o->im6o_multicast_hlim; 2041 return(0); 2042 2043 case IPV6_MULTICAST_LOOP: 2044 loop = mtod(*mp, u_int *); 2045 (*mp)->m_len = sizeof(u_int); 2046 if (im6o == NULL) 2047 *loop = ip6_defmcasthlim; 2048 else 2049 *loop = im6o->im6o_multicast_loop; 2050 return(0); 2051 2052 default: 2053 return(EOPNOTSUPP); 2054 } 2055 } 2056 2057 /* 2058 * Discard the IP6 multicast options. 2059 */ 2060 void 2061 ip6_freemoptions(im6o) 2062 struct ip6_moptions *im6o; 2063 { 2064 struct in6_multi_mship *imm; 2065 2066 if (im6o == NULL) 2067 return; 2068 2069 while ((imm = im6o->im6o_memberships.lh_first) != NULL) { 2070 LIST_REMOVE(imm, i6mm_chain); 2071 if (imm->i6mm_maddr) 2072 in6_delmulti(imm->i6mm_maddr); 2073 free(imm, M_IPMADDR); 2074 } 2075 free(im6o, M_IPMOPTS); 2076 } 2077 2078 /* 2079 * Set IPv6 outgoing packet options based on advanced API. 2080 */ 2081 int 2082 ip6_setpktoptions(control, opt, priv) 2083 struct mbuf *control; 2084 struct ip6_pktopts *opt; 2085 int priv; 2086 { 2087 struct cmsghdr *cm = 0; 2088 2089 if (control == 0 || opt == 0) 2090 return(EINVAL); 2091 2092 bzero(opt, sizeof(*opt)); 2093 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */ 2094 2095 /* 2096 * XXX: Currently, we assume all the optional information is stored 2097 * in a single mbuf. 2098 */ 2099 if (control->m_next) 2100 return(EINVAL); 2101 2102 opt->ip6po_m = control; 2103 2104 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2105 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2106 cm = mtod(control, struct cmsghdr *); 2107 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2108 return(EINVAL); 2109 if (cm->cmsg_level != IPPROTO_IPV6) 2110 continue; 2111 2112 switch(cm->cmsg_type) { 2113 case IPV6_PKTINFO: 2114 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo))) 2115 return(EINVAL); 2116 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 2117 if (opt->ip6po_pktinfo->ipi6_ifindex && 2118 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr)) 2119 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] = 2120 htons(opt->ip6po_pktinfo->ipi6_ifindex); 2121 2122 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index 2123 || opt->ip6po_pktinfo->ipi6_ifindex < 0) { 2124 return(ENXIO); 2125 } 2126 2127 /* 2128 * Check if the requested source address is indeed a 2129 * unicast address assigned to the node, and can be 2130 * used as the packet's source address. 2131 */ 2132 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) { 2133 struct ifaddr *ia; 2134 struct in6_ifaddr *ia6; 2135 struct sockaddr_in6 sin6; 2136 2137 bzero(&sin6, sizeof(sin6)); 2138 sin6.sin6_len = sizeof(sin6); 2139 sin6.sin6_family = AF_INET6; 2140 sin6.sin6_addr = 2141 opt->ip6po_pktinfo->ipi6_addr; 2142 ia = ifa_ifwithaddr(sin6tosa(&sin6)); 2143 if (ia == NULL || 2144 (opt->ip6po_pktinfo->ipi6_ifindex && 2145 (ia->ifa_ifp->if_index != 2146 opt->ip6po_pktinfo->ipi6_ifindex))) { 2147 return(EADDRNOTAVAIL); 2148 } 2149 ia6 = (struct in6_ifaddr *)ia; 2150 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) { 2151 return(EADDRNOTAVAIL); 2152 } 2153 2154 /* 2155 * Check if the requested source address is 2156 * indeed a unicast address assigned to the 2157 * node. 2158 */ 2159 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr)) 2160 return(EADDRNOTAVAIL); 2161 } 2162 break; 2163 2164 case IPV6_HOPLIMIT: 2165 if (cm->cmsg_len != CMSG_LEN(sizeof(int))) 2166 return(EINVAL); 2167 2168 opt->ip6po_hlim = *(int *)CMSG_DATA(cm); 2169 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255) 2170 return(EINVAL); 2171 break; 2172 2173 case IPV6_NEXTHOP: 2174 if (!priv) 2175 return(EPERM); 2176 2177 if (cm->cmsg_len < sizeof(u_char) || 2178 /* check if cmsg_len is large enough for sa_len */ 2179 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm))) 2180 return(EINVAL); 2181 2182 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm); 2183 2184 break; 2185 2186 case IPV6_HOPOPTS: 2187 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh))) 2188 return(EINVAL); 2189 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm); 2190 if (cm->cmsg_len != 2191 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3)) 2192 return(EINVAL); 2193 break; 2194 2195 case IPV6_DSTOPTS: 2196 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest))) 2197 return(EINVAL); 2198 2199 /* 2200 * If there is no routing header yet, the destination 2201 * options header should be put on the 1st part. 2202 * Otherwise, the header should be on the 2nd part. 2203 * (See RFC 2460, section 4.1) 2204 */ 2205 if (opt->ip6po_rthdr == NULL) { 2206 opt->ip6po_dest1 = 2207 (struct ip6_dest *)CMSG_DATA(cm); 2208 if (cm->cmsg_len != 2209 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) 2210 << 3)) 2211 return(EINVAL); 2212 } 2213 else { 2214 opt->ip6po_dest2 = 2215 (struct ip6_dest *)CMSG_DATA(cm); 2216 if (cm->cmsg_len != 2217 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) 2218 << 3)) 2219 return(EINVAL); 2220 } 2221 break; 2222 2223 case IPV6_RTHDR: 2224 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr))) 2225 return(EINVAL); 2226 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm); 2227 if (cm->cmsg_len != 2228 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3)) 2229 return(EINVAL); 2230 switch(opt->ip6po_rthdr->ip6r_type) { 2231 case IPV6_RTHDR_TYPE_0: 2232 if (opt->ip6po_rthdr->ip6r_segleft == 0) 2233 return(EINVAL); 2234 break; 2235 default: 2236 return(EINVAL); 2237 } 2238 break; 2239 2240 default: 2241 return(ENOPROTOOPT); 2242 } 2243 } 2244 2245 return(0); 2246 } 2247 2248 /* 2249 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2250 * packet to the input queue of a specified interface. Note that this 2251 * calls the output routine of the loopback "driver", but with an interface 2252 * pointer that might NOT be lo0ifp -- easier than replicating that code here. 2253 */ 2254 void 2255 ip6_mloopback(ifp, m, dst) 2256 struct ifnet *ifp; 2257 struct mbuf *m; 2258 struct sockaddr_in6 *dst; 2259 { 2260 struct mbuf *copym; 2261 struct ip6_hdr *ip6; 2262 2263 copym = m_copy(m, 0, M_COPYALL); 2264 if (copym == NULL) 2265 return; 2266 2267 /* 2268 * Make sure to deep-copy IPv6 header portion in case the data 2269 * is in an mbuf cluster, so that we can safely override the IPv6 2270 * header portion later. 2271 */ 2272 if ((copym->m_flags & M_EXT) != 0 || 2273 copym->m_len < sizeof(struct ip6_hdr)) { 2274 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2275 if (copym == NULL) 2276 return; 2277 } 2278 2279 #ifdef DIAGNOSTIC 2280 if (copym->m_len < sizeof(*ip6)) { 2281 m_freem(copym); 2282 return; 2283 } 2284 #endif 2285 2286 ip6 = mtod(copym, struct ip6_hdr *); 2287 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) 2288 ip6->ip6_src.s6_addr16[1] = 0; 2289 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst)) 2290 ip6->ip6_dst.s6_addr16[1] = 0; 2291 2292 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL); 2293 } 2294 2295 /* 2296 * Chop IPv6 header off from the payload. 2297 */ 2298 static int 2299 ip6_splithdr(m, exthdrs) 2300 struct mbuf *m; 2301 struct ip6_exthdrs *exthdrs; 2302 { 2303 struct mbuf *mh; 2304 struct ip6_hdr *ip6; 2305 2306 ip6 = mtod(m, struct ip6_hdr *); 2307 if (m->m_len > sizeof(*ip6)) { 2308 MGETHDR(mh, M_DONTWAIT, MT_HEADER); 2309 if (mh == 0) { 2310 m_freem(m); 2311 return ENOBUFS; 2312 } 2313 M_MOVE_PKTHDR(mh, m); 2314 MH_ALIGN(mh, sizeof(*ip6)); 2315 m->m_len -= sizeof(*ip6); 2316 m->m_data += sizeof(*ip6); 2317 mh->m_next = m; 2318 m = mh; 2319 m->m_len = sizeof(*ip6); 2320 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2321 } 2322 exthdrs->ip6e_ip6 = m; 2323 return 0; 2324 } 2325 2326 /* 2327 * Compute IPv6 extension header length. 2328 */ 2329 # define in6pcb inpcb 2330 # define in6p_outputopts inp_outputopts6 2331 int 2332 ip6_optlen(in6p) 2333 struct in6pcb *in6p; 2334 { 2335 int len; 2336 2337 if (!in6p->in6p_outputopts) 2338 return 0; 2339 2340 len = 0; 2341 #define elen(x) \ 2342 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 2343 2344 len += elen(in6p->in6p_outputopts->ip6po_hbh); 2345 len += elen(in6p->in6p_outputopts->ip6po_dest1); 2346 len += elen(in6p->in6p_outputopts->ip6po_rthdr); 2347 len += elen(in6p->in6p_outputopts->ip6po_dest2); 2348 return len; 2349 #undef elen 2350 } 2351 # undef in6pcb 2352 # undef in6p_outputopts 2353