1 /* $OpenBSD: ip6_output.c,v 1.269 2022/06/29 22:45:24 bluhm Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include "pf.h" 65 66 #include <sys/param.h> 67 #include <sys/malloc.h> 68 #include <sys/mbuf.h> 69 #include <sys/errno.h> 70 #include <sys/protosw.h> 71 #include <sys/socket.h> 72 #include <sys/socketvar.h> 73 #include <sys/proc.h> 74 #include <sys/systm.h> 75 76 #include <net/if.h> 77 #include <net/if_var.h> 78 #include <net/if_enc.h> 79 #include <net/route.h> 80 81 #include <netinet/in.h> 82 #include <netinet/ip.h> 83 #include <netinet/in_pcb.h> 84 #include <netinet/udp.h> 85 #include <netinet/tcp.h> 86 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp_timer.h> 89 #include <netinet/tcp_var.h> 90 #include <netinet/udp_var.h> 91 92 #include <netinet6/in6_var.h> 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/nd6.h> 97 98 #include <crypto/idgen.h> 99 100 #if NPF > 0 101 #include <net/pfvar.h> 102 #endif 103 104 #ifdef IPSEC 105 #include <netinet/ip_ipsp.h> 106 #include <netinet/ip_ah.h> 107 #include <netinet/ip_esp.h> 108 109 #ifdef ENCDEBUG 110 #define DPRINTF(fmt, args...) \ 111 do { \ 112 if (encdebug) \ 113 printf("%s: " fmt "\n", __func__, ## args); \ 114 } while (0) 115 #else 116 #define DPRINTF(fmt, args...) \ 117 do { } while (0) 118 #endif 119 #endif /* IPSEC */ 120 121 struct ip6_exthdrs { 122 struct mbuf *ip6e_ip6; 123 struct mbuf *ip6e_hbh; 124 struct mbuf *ip6e_dest1; 125 struct mbuf *ip6e_rthdr; 126 struct mbuf *ip6e_dest2; 127 }; 128 129 int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, int, int); 130 int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf *); 131 int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int, int, int); 132 int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *, unsigned int); 133 int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf *); 134 int ip6_copyexthdr(struct mbuf **, caddr_t, int); 135 int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 136 struct ip6_frag **); 137 int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 138 int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 139 int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *); 140 int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *); 141 static __inline u_int16_t __attribute__((__unused__)) 142 in6_cksum_phdr(const struct in6_addr *, const struct in6_addr *, 143 u_int32_t, u_int32_t); 144 void in6_delayed_cksum(struct mbuf *, u_int8_t); 145 146 int ip6_output_ipsec_pmtu_update(struct tdb *, struct route_in6 *, 147 struct in6_addr *, int, int, int); 148 149 /* Context for non-repeating IDs */ 150 struct idgen32_ctx ip6_id_ctx; 151 152 /* 153 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 154 * header (with pri, len, nxt, hlim, src, dst). 155 * This function may modify ver and hlim only. 156 * The mbuf chain containing the packet will be freed. 157 * The mbuf opt, if present, will not be freed. 158 * 159 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 160 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 161 * which is rt_mtu. 162 */ 163 int 164 ip6_output(struct mbuf *m, struct ip6_pktopts *opt, struct route_in6 *ro, 165 int flags, struct ip6_moptions *im6o, struct inpcb *inp) 166 { 167 struct ip6_hdr *ip6; 168 struct ifnet *ifp = NULL; 169 struct mbuf_list fml; 170 int hlen, tlen; 171 struct route_in6 ip6route; 172 struct rtentry *rt = NULL; 173 struct sockaddr_in6 *dst, dstsock; 174 int error = 0; 175 u_long mtu; 176 int dontfrag; 177 u_int16_t src_scope, dst_scope; 178 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 179 struct ip6_exthdrs exthdrs; 180 struct in6_addr finaldst; 181 struct route_in6 *ro_pmtu = NULL; 182 int hdrsplit = 0; 183 u_int8_t sproto = 0; 184 u_char nextproto; 185 #ifdef IPSEC 186 struct tdb *tdb = NULL; 187 #endif /* IPSEC */ 188 189 #ifdef IPSEC 190 if (inp && (inp->inp_flags & INP_IPV6) == 0) 191 panic("%s: IPv4 pcb is passed", __func__); 192 #endif /* IPSEC */ 193 194 ip6 = mtod(m, struct ip6_hdr *); 195 finaldst = ip6->ip6_dst; 196 197 #define MAKE_EXTHDR(hp, mp) \ 198 do { \ 199 if (hp) { \ 200 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 201 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 202 ((eh)->ip6e_len + 1) << 3); \ 203 if (error) \ 204 goto freehdrs; \ 205 } \ 206 } while (0) 207 208 bzero(&exthdrs, sizeof(exthdrs)); 209 210 if (opt) { 211 /* Hop-by-Hop options header */ 212 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 213 /* Destination options header(1st part) */ 214 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 215 /* Routing header */ 216 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 217 /* Destination options header(2nd part) */ 218 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 219 } 220 221 #ifdef IPSEC 222 if (ipsec_in_use || inp != NULL) { 223 error = ip6_output_ipsec_lookup(m, inp, &tdb); 224 if (error) { 225 /* 226 * -EINVAL is used to indicate that the packet should 227 * be silently dropped, typically because we've asked 228 * key management for an SA. 229 */ 230 if (error == -EINVAL) /* Should silently drop packet */ 231 error = 0; 232 233 goto freehdrs; 234 } 235 } 236 #endif /* IPSEC */ 237 238 /* 239 * Calculate the total length of the extension header chain. 240 * Keep the length of the unfragmentable part for fragmentation. 241 */ 242 optlen = 0; 243 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 244 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 245 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 246 unfragpartlen = optlen + sizeof(struct ip6_hdr); 247 /* NOTE: we don't add AH/ESP length here. do that later. */ 248 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 249 250 /* 251 * If we need IPsec, or there is at least one extension header, 252 * separate IP6 header from the payload. 253 */ 254 if ((sproto || optlen) && !hdrsplit) { 255 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 256 m = NULL; 257 goto freehdrs; 258 } 259 m = exthdrs.ip6e_ip6; 260 hdrsplit++; 261 } 262 263 /* adjust pointer */ 264 ip6 = mtod(m, struct ip6_hdr *); 265 266 /* adjust mbuf packet header length */ 267 m->m_pkthdr.len += optlen; 268 plen = m->m_pkthdr.len - sizeof(*ip6); 269 270 /* If this is a jumbo payload, insert a jumbo payload option. */ 271 if (plen > IPV6_MAXPACKET) { 272 if (!hdrsplit) { 273 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 274 m = NULL; 275 goto freehdrs; 276 } 277 m = exthdrs.ip6e_ip6; 278 hdrsplit++; 279 } 280 /* adjust pointer */ 281 ip6 = mtod(m, struct ip6_hdr *); 282 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 283 goto freehdrs; 284 ip6->ip6_plen = 0; 285 } else 286 ip6->ip6_plen = htons(plen); 287 288 /* 289 * Concatenate headers and fill in next header fields. 290 * Here we have, on "m" 291 * IPv6 payload 292 * and we insert headers accordingly. Finally, we should be getting: 293 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 294 * 295 * during the header composing process, "m" points to IPv6 header. 296 * "mprev" points to an extension header prior to esp. 297 */ 298 { 299 u_char *nexthdrp = &ip6->ip6_nxt; 300 struct mbuf *mprev = m; 301 302 /* 303 * we treat dest2 specially. this makes IPsec processing 304 * much easier. the goal here is to make mprev point the 305 * mbuf prior to dest2. 306 * 307 * result: IPv6 dest2 payload 308 * m and mprev will point to IPv6 header. 309 */ 310 if (exthdrs.ip6e_dest2) { 311 if (!hdrsplit) 312 panic("%s: assumption failed: hdr not split", 313 __func__); 314 exthdrs.ip6e_dest2->m_next = m->m_next; 315 m->m_next = exthdrs.ip6e_dest2; 316 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 317 ip6->ip6_nxt = IPPROTO_DSTOPTS; 318 } 319 320 #define MAKE_CHAIN(m, mp, p, i)\ 321 do {\ 322 if (m) {\ 323 if (!hdrsplit) \ 324 panic("assumption failed: hdr not split"); \ 325 *mtod((m), u_char *) = *(p);\ 326 *(p) = (i);\ 327 p = mtod((m), u_char *);\ 328 (m)->m_next = (mp)->m_next;\ 329 (mp)->m_next = (m);\ 330 (mp) = (m);\ 331 }\ 332 } while (0) 333 /* 334 * result: IPv6 hbh dest1 rthdr dest2 payload 335 * m will point to IPv6 header. mprev will point to the 336 * extension header prior to dest2 (rthdr in the above case). 337 */ 338 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 339 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 340 IPPROTO_DSTOPTS); 341 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 342 IPPROTO_ROUTING); 343 } 344 345 /* 346 * If there is a routing header, replace the destination address field 347 * with the first hop of the routing header. 348 */ 349 if (exthdrs.ip6e_rthdr) { 350 struct ip6_rthdr *rh; 351 struct ip6_rthdr0 *rh0; 352 struct in6_addr *addr; 353 354 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 355 struct ip6_rthdr *)); 356 switch (rh->ip6r_type) { 357 case IPV6_RTHDR_TYPE_0: 358 rh0 = (struct ip6_rthdr0 *)rh; 359 addr = (struct in6_addr *)(rh0 + 1); 360 ip6->ip6_dst = addr[0]; 361 bcopy(&addr[1], &addr[0], 362 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)); 363 addr[rh0->ip6r0_segleft - 1] = finaldst; 364 break; 365 default: /* is it possible? */ 366 error = EINVAL; 367 goto bad; 368 } 369 } 370 371 /* Source address validation */ 372 if (!(flags & IPV6_UNSPECSRC) && 373 IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 374 /* 375 * XXX: we can probably assume validation in the caller, but 376 * we explicitly check the address here for safety. 377 */ 378 error = EOPNOTSUPP; 379 ip6stat_inc(ip6s_badscope); 380 goto bad; 381 } 382 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 383 error = EOPNOTSUPP; 384 ip6stat_inc(ip6s_badscope); 385 goto bad; 386 } 387 388 ip6stat_inc(ip6s_localout); 389 390 /* 391 * Route packet. 392 */ 393 #if NPF > 0 394 reroute: 395 #endif 396 397 /* initialize cached route */ 398 if (ro == NULL) { 399 ro = &ip6route; 400 bzero((caddr_t)ro, sizeof(*ro)); 401 } 402 ro_pmtu = ro; 403 if (opt && opt->ip6po_rthdr) 404 ro = &opt->ip6po_route; 405 dst = &ro->ro_dst; 406 407 /* 408 * if specified, try to fill in the traffic class field. 409 * do not override if a non-zero value is already set. 410 * we check the diffserv field and the ecn field separately. 411 */ 412 if (opt && opt->ip6po_tclass >= 0) { 413 int mask = 0; 414 415 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 416 mask |= 0xfc; 417 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 418 mask |= 0x03; 419 if (mask != 0) 420 ip6->ip6_flow |= 421 htonl((opt->ip6po_tclass & mask) << 20); 422 } 423 424 /* fill in or override the hop limit field, if necessary. */ 425 if (opt && opt->ip6po_hlim != -1) 426 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 427 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 428 if (im6o != NULL) 429 ip6->ip6_hlim = im6o->im6o_hlim; 430 else 431 ip6->ip6_hlim = ip6_defmcasthlim; 432 } 433 434 #ifdef IPSEC 435 if (tdb != NULL) { 436 /* 437 * XXX what should we do if ip6_hlim == 0 and the 438 * packet gets tunneled? 439 */ 440 /* 441 * if we are source-routing, do not attempt to tunnel the 442 * packet just because ip6_dst is different from what tdb has. 443 * XXX 444 */ 445 error = ip6_output_ipsec_send(tdb, m, ro, 446 exthdrs.ip6e_rthdr ? 1 : 0, 0); 447 goto done; 448 } 449 #endif /* IPSEC */ 450 451 bzero(&dstsock, sizeof(dstsock)); 452 dstsock.sin6_family = AF_INET6; 453 dstsock.sin6_addr = ip6->ip6_dst; 454 dstsock.sin6_len = sizeof(dstsock); 455 ro->ro_tableid = m->m_pkthdr.ph_rtableid; 456 457 if (IN6_IS_ADDR_MULTICAST(&dstsock.sin6_addr)) { 458 struct in6_pktinfo *pi = NULL; 459 460 /* 461 * If the caller specify the outgoing interface 462 * explicitly, use it. 463 */ 464 if (opt != NULL && (pi = opt->ip6po_pktinfo) != NULL) 465 ifp = if_get(pi->ipi6_ifindex); 466 467 if (ifp == NULL && im6o != NULL) 468 ifp = if_get(im6o->im6o_ifidx); 469 } 470 471 if (ifp == NULL) { 472 rt = in6_selectroute(&dstsock, opt, ro, ro->ro_tableid); 473 if (rt == NULL) { 474 ip6stat_inc(ip6s_noroute); 475 error = EHOSTUNREACH; 476 goto bad; 477 } 478 if (ISSET(rt->rt_flags, RTF_LOCAL)) 479 ifp = if_get(rtable_loindex(m->m_pkthdr.ph_rtableid)); 480 else 481 ifp = if_get(rt->rt_ifidx); 482 /* 483 * We aren't using rtisvalid() here because the UP/DOWN state 484 * machine is broken with some Ethernet drivers like em(4). 485 * As a result we might try to use an invalid cached route 486 * entry while an interface is being detached. 487 */ 488 if (ifp == NULL) { 489 ip6stat_inc(ip6s_noroute); 490 error = EHOSTUNREACH; 491 goto bad; 492 } 493 } else { 494 *dst = dstsock; 495 } 496 497 if (rt && (rt->rt_flags & RTF_GATEWAY) && 498 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 499 dst = satosin6(rt->rt_gateway); 500 501 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 502 /* Unicast */ 503 504 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 505 } else { 506 /* Multicast */ 507 508 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 509 510 /* 511 * Confirm that the outgoing interface supports multicast. 512 */ 513 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 514 ip6stat_inc(ip6s_noroute); 515 error = ENETUNREACH; 516 goto bad; 517 } 518 519 if ((im6o == NULL || im6o->im6o_loop) && 520 in6_hasmulti(&ip6->ip6_dst, ifp)) { 521 /* 522 * If we belong to the destination multicast group 523 * on the outgoing interface, and the caller did not 524 * forbid loopback, loop back a copy. 525 * Can't defer TCP/UDP checksumming, do the 526 * computation now. 527 */ 528 in6_proto_cksum_out(m, NULL); 529 ip6_mloopback(ifp, m, dst); 530 } 531 #ifdef MROUTING 532 else { 533 /* 534 * If we are acting as a multicast router, perform 535 * multicast forwarding as if the packet had just 536 * arrived on the interface to which we are about 537 * to send. The multicast forwarding function 538 * recursively calls this function, using the 539 * IPV6_FORWARDING flag to prevent infinite recursion. 540 * 541 * Multicasts that are looped back by ip6_mloopback(), 542 * above, will be forwarded by the ip6_input() routine, 543 * if necessary. 544 */ 545 if (ip6_mforwarding && ip6_mrouter[ifp->if_rdomain] && 546 (flags & IPV6_FORWARDING) == 0) { 547 if (ip6_mforward(ip6, ifp, m) != 0) { 548 m_freem(m); 549 goto done; 550 } 551 } 552 } 553 #endif 554 /* 555 * Multicasts with a hoplimit of zero may be looped back, 556 * above, but must not be transmitted on a network. 557 * Also, multicasts addressed to the loopback interface 558 * are not sent -- the above call to ip6_mloopback() will 559 * loop back a copy if this host actually belongs to the 560 * destination group on the loopback interface. 561 */ 562 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 563 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 564 m_freem(m); 565 goto done; 566 } 567 } 568 569 /* 570 * If this packet is going through a loopback interface we won't 571 * be able to restore its scope ID using the interface index. 572 */ 573 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { 574 if (ifp->if_flags & IFF_LOOPBACK) 575 src_scope = ip6->ip6_src.s6_addr16[1]; 576 ip6->ip6_src.s6_addr16[1] = 0; 577 } 578 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { 579 if (ifp->if_flags & IFF_LOOPBACK) 580 dst_scope = ip6->ip6_dst.s6_addr16[1]; 581 ip6->ip6_dst.s6_addr16[1] = 0; 582 } 583 584 /* Determine path MTU. */ 585 if ((error = ip6_getpmtu(ro_pmtu->ro_rt, ifp, &mtu)) != 0) 586 goto bad; 587 588 /* 589 * The caller of this function may specify to use the minimum MTU 590 * in some cases. 591 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 592 * setting. The logic is a bit complicated; by default, unicast 593 * packets will follow path MTU while multicast packets will be sent at 594 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 595 * including unicast ones will be sent at the minimum MTU. Multicast 596 * packets will always be sent at the minimum MTU unless 597 * IP6PO_MINMTU_DISABLE is explicitly specified. 598 * See RFC 3542 for more details. 599 */ 600 if (mtu > IPV6_MMTU) { 601 if ((flags & IPV6_MINMTU)) 602 mtu = IPV6_MMTU; 603 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 604 mtu = IPV6_MMTU; 605 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && (opt == NULL || 606 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 607 mtu = IPV6_MMTU; 608 } 609 } 610 611 /* 612 * If the outgoing packet contains a hop-by-hop options header, 613 * it must be examined and processed even by the source node. 614 * (RFC 2460, section 4.) 615 */ 616 if (exthdrs.ip6e_hbh) { 617 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 618 u_int32_t rtalert; /* returned value is ignored */ 619 u_int32_t plen = 0; /* no more than 1 jumbo payload option! */ 620 621 m->m_pkthdr.ph_ifidx = ifp->if_index; 622 if (ip6_process_hopopts(&m, (u_int8_t *)(hbh + 1), 623 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 624 &rtalert, &plen) < 0) { 625 /* m was already freed at this point */ 626 error = EINVAL;/* better error? */ 627 goto done; 628 } 629 m->m_pkthdr.ph_ifidx = 0; 630 } 631 632 #if NPF > 0 633 if (pf_test(AF_INET6, PF_OUT, ifp, &m) != PF_PASS) { 634 error = EACCES; 635 m_freem(m); 636 goto done; 637 } 638 if (m == NULL) 639 goto done; 640 ip6 = mtod(m, struct ip6_hdr *); 641 if ((m->m_pkthdr.pf.flags & (PF_TAG_REROUTE | PF_TAG_GENERATED)) == 642 (PF_TAG_REROUTE | PF_TAG_GENERATED)) { 643 /* already rerun the route lookup, go on */ 644 m->m_pkthdr.pf.flags &= ~(PF_TAG_GENERATED | PF_TAG_REROUTE); 645 } else if (m->m_pkthdr.pf.flags & PF_TAG_REROUTE) { 646 /* tag as generated to skip over pf_test on rerun */ 647 m->m_pkthdr.pf.flags |= PF_TAG_GENERATED; 648 finaldst = ip6->ip6_dst; 649 ro = NULL; 650 if_put(ifp); /* drop reference since destination changed */ 651 ifp = NULL; 652 goto reroute; 653 } 654 #endif 655 656 /* 657 * If the packet is not going on the wire it can be destined 658 * to any local address. In this case do not clear its scopes 659 * to let ip6_input() find a matching local route. 660 */ 661 if (ifp->if_flags & IFF_LOOPBACK) { 662 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 663 ip6->ip6_src.s6_addr16[1] = src_scope; 664 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 665 ip6->ip6_dst.s6_addr16[1] = dst_scope; 666 } 667 668 in6_proto_cksum_out(m, ifp); 669 670 /* 671 * Send the packet to the outgoing interface. 672 * If necessary, do IPv6 fragmentation before sending. 673 * 674 * the logic here is rather complex: 675 * 1: normal case (dontfrag == 0) 676 * 1-a: send as is if tlen <= path mtu 677 * 1-b: fragment if tlen > path mtu 678 * 679 * 2: if user asks us not to fragment (dontfrag == 1) 680 * 2-a: send as is if tlen <= interface mtu 681 * 2-b: error if tlen > interface mtu 682 */ 683 tlen = m->m_pkthdr.len; 684 685 if (ISSET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT)) { 686 CLR(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT); 687 dontfrag = 1; 688 } else if (opt && ISSET(opt->ip6po_flags, IP6PO_DONTFRAG)) 689 dontfrag = 1; 690 else 691 dontfrag = 0; 692 if (dontfrag && tlen > ifp->if_mtu) { /* case 2-b */ 693 #ifdef IPSEC 694 if (ip_mtudisc) 695 ipsec_adjust_mtu(m, mtu); 696 #endif 697 error = EMSGSIZE; 698 goto bad; 699 } 700 701 /* 702 * transmit packet without fragmentation 703 */ 704 if (dontfrag || (tlen <= mtu)) { /* case 1-a and 2-a */ 705 error = ifp->if_output(ifp, m, sin6tosa(dst), ro->ro_rt); 706 goto done; 707 } 708 709 /* 710 * try to fragment the packet. case 1-b 711 */ 712 if (mtu < IPV6_MMTU) { 713 /* path MTU cannot be less than IPV6_MMTU */ 714 error = EMSGSIZE; 715 goto bad; 716 } else if (ip6->ip6_plen == 0) { 717 /* jumbo payload cannot be fragmented */ 718 error = EMSGSIZE; 719 goto bad; 720 } 721 722 /* 723 * Too large for the destination or interface; 724 * fragment if possible. 725 * Must be able to put at least 8 bytes per fragment. 726 */ 727 hlen = unfragpartlen; 728 if (mtu > IPV6_MAXPACKET) 729 mtu = IPV6_MAXPACKET; 730 731 /* 732 * Change the next header field of the last header in the 733 * unfragmentable part. 734 */ 735 if (exthdrs.ip6e_rthdr) { 736 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 737 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 738 } else if (exthdrs.ip6e_dest1) { 739 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 740 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 741 } else if (exthdrs.ip6e_hbh) { 742 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 743 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 744 } else { 745 nextproto = ip6->ip6_nxt; 746 ip6->ip6_nxt = IPPROTO_FRAGMENT; 747 } 748 749 error = ip6_fragment(m, &fml, hlen, nextproto, mtu); 750 if (error) 751 goto done; 752 753 while ((m = ml_dequeue(&fml)) != NULL) { 754 error = ifp->if_output(ifp, m, sin6tosa(dst), ro->ro_rt); 755 if (error) 756 break; 757 } 758 if (error) 759 ml_purge(&fml); 760 else 761 ip6stat_inc(ip6s_fragmented); 762 763 done: 764 if (ro == &ip6route && ro->ro_rt) { 765 rtfree(ro->ro_rt); 766 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 767 rtfree(ro_pmtu->ro_rt); 768 } 769 if_put(ifp); 770 #ifdef IPSEC 771 tdb_unref(tdb); 772 #endif /* IPSEC */ 773 return (error); 774 775 freehdrs: 776 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 777 m_freem(exthdrs.ip6e_dest1); 778 m_freem(exthdrs.ip6e_rthdr); 779 m_freem(exthdrs.ip6e_dest2); 780 /* FALLTHROUGH */ 781 bad: 782 m_freem(m); 783 goto done; 784 } 785 786 int 787 ip6_fragment(struct mbuf *m0, struct mbuf_list *fml, int hlen, 788 u_char nextproto, u_long mtu) 789 { 790 struct mbuf *m, *m_frgpart; 791 struct ip6_hdr *mhip6; 792 struct ip6_frag *ip6f; 793 u_int32_t id; 794 int tlen, len, off; 795 int error; 796 797 ml_init(fml); 798 799 tlen = m0->m_pkthdr.len; 800 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 801 if (len < 8) { 802 error = EMSGSIZE; 803 goto bad; 804 } 805 806 id = htonl(ip6_randomid()); 807 808 /* 809 * Loop through length of segment after first fragment, 810 * make new header and copy data of each part and link onto chain. 811 */ 812 for (off = hlen; off < tlen; off += len) { 813 struct mbuf *mlast; 814 815 MGETHDR(m, M_DONTWAIT, MT_HEADER); 816 if (m == NULL) { 817 error = ENOBUFS; 818 goto bad; 819 } 820 ml_enqueue(fml, m); 821 if ((error = m_dup_pkthdr(m, m0, M_DONTWAIT)) != 0) 822 goto bad; 823 m->m_data += max_linkhdr; 824 mhip6 = mtod(m, struct ip6_hdr *); 825 *mhip6 = *mtod(m0, struct ip6_hdr *); 826 m->m_len = sizeof(*mhip6); 827 if ((error = ip6_insertfraghdr(m0, m, hlen, &ip6f)) != 0) 828 goto bad; 829 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 830 if (off + len >= tlen) 831 len = tlen - off; 832 else 833 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 834 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 835 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 836 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) { 837 error = ENOBUFS; 838 goto bad; 839 } 840 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 841 ; 842 mlast->m_next = m_frgpart; 843 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 844 ip6f->ip6f_reserved = 0; 845 ip6f->ip6f_ident = id; 846 ip6f->ip6f_nxt = nextproto; 847 } 848 849 ip6stat_add(ip6s_ofragments, ml_len(fml)); 850 m_freem(m0); 851 return (0); 852 853 bad: 854 ip6stat_inc(ip6s_odropped); 855 ml_purge(fml); 856 m_freem(m0); 857 return (error); 858 } 859 860 int 861 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 862 { 863 struct mbuf *m; 864 865 if (hlen > MCLBYTES) 866 return (ENOBUFS); /* XXX */ 867 868 MGET(m, M_DONTWAIT, MT_DATA); 869 if (!m) 870 return (ENOBUFS); 871 872 if (hlen > MLEN) { 873 MCLGET(m, M_DONTWAIT); 874 if ((m->m_flags & M_EXT) == 0) { 875 m_free(m); 876 return (ENOBUFS); 877 } 878 } 879 m->m_len = hlen; 880 if (hdr) 881 memcpy(mtod(m, caddr_t), hdr, hlen); 882 883 *mp = m; 884 return (0); 885 } 886 887 /* 888 * Insert jumbo payload option. 889 */ 890 int 891 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 892 { 893 struct mbuf *mopt; 894 u_int8_t *optbuf; 895 u_int32_t v; 896 897 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 898 899 /* 900 * If there is no hop-by-hop options header, allocate new one. 901 * If there is one but it doesn't have enough space to store the 902 * jumbo payload option, allocate a cluster to store the whole options. 903 * Otherwise, use it to store the options. 904 */ 905 if (exthdrs->ip6e_hbh == 0) { 906 MGET(mopt, M_DONTWAIT, MT_DATA); 907 if (mopt == NULL) 908 return (ENOBUFS); 909 mopt->m_len = JUMBOOPTLEN; 910 optbuf = mtod(mopt, u_int8_t *); 911 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 912 exthdrs->ip6e_hbh = mopt; 913 } else { 914 struct ip6_hbh *hbh; 915 916 mopt = exthdrs->ip6e_hbh; 917 if (m_trailingspace(mopt) < JUMBOOPTLEN) { 918 /* 919 * XXX assumption: 920 * - exthdrs->ip6e_hbh is not referenced from places 921 * other than exthdrs. 922 * - exthdrs->ip6e_hbh is not an mbuf chain. 923 */ 924 int oldoptlen = mopt->m_len; 925 struct mbuf *n; 926 927 /* 928 * XXX: give up if the whole (new) hbh header does 929 * not fit even in an mbuf cluster. 930 */ 931 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 932 return (ENOBUFS); 933 934 /* 935 * As a consequence, we must always prepare a cluster 936 * at this point. 937 */ 938 MGET(n, M_DONTWAIT, MT_DATA); 939 if (n) { 940 MCLGET(n, M_DONTWAIT); 941 if ((n->m_flags & M_EXT) == 0) { 942 m_freem(n); 943 n = NULL; 944 } 945 } 946 if (!n) 947 return (ENOBUFS); 948 n->m_len = oldoptlen + JUMBOOPTLEN; 949 memcpy(mtod(n, caddr_t), mtod(mopt, caddr_t), 950 oldoptlen); 951 optbuf = mtod(n, u_int8_t *) + oldoptlen; 952 m_freem(mopt); 953 mopt = exthdrs->ip6e_hbh = n; 954 } else { 955 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 956 mopt->m_len += JUMBOOPTLEN; 957 } 958 optbuf[0] = IP6OPT_PADN; 959 optbuf[1] = 0; 960 961 /* 962 * Adjust the header length according to the pad and 963 * the jumbo payload option. 964 */ 965 hbh = mtod(mopt, struct ip6_hbh *); 966 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 967 } 968 969 /* fill in the option. */ 970 optbuf[2] = IP6OPT_JUMBO; 971 optbuf[3] = 4; 972 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 973 memcpy(&optbuf[4], &v, sizeof(u_int32_t)); 974 975 /* finally, adjust the packet header length */ 976 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 977 978 return (0); 979 #undef JUMBOOPTLEN 980 } 981 982 /* 983 * Insert fragment header and copy unfragmentable header portions. 984 */ 985 int 986 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 987 struct ip6_frag **frghdrp) 988 { 989 struct mbuf *n, *mlast; 990 991 if (hlen > sizeof(struct ip6_hdr)) { 992 n = m_copym(m0, sizeof(struct ip6_hdr), 993 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 994 if (n == NULL) 995 return (ENOBUFS); 996 m->m_next = n; 997 } else 998 n = m; 999 1000 /* Search for the last mbuf of unfragmentable part. */ 1001 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1002 ; 1003 1004 if ((mlast->m_flags & M_EXT) == 0 && 1005 m_trailingspace(mlast) >= sizeof(struct ip6_frag)) { 1006 /* use the trailing space of the last mbuf for fragment hdr */ 1007 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1008 mlast->m_len); 1009 mlast->m_len += sizeof(struct ip6_frag); 1010 m->m_pkthdr.len += sizeof(struct ip6_frag); 1011 } else { 1012 /* allocate a new mbuf for the fragment header */ 1013 struct mbuf *mfrg; 1014 1015 MGET(mfrg, M_DONTWAIT, MT_DATA); 1016 if (mfrg == NULL) 1017 return (ENOBUFS); 1018 mfrg->m_len = sizeof(struct ip6_frag); 1019 *frghdrp = mtod(mfrg, struct ip6_frag *); 1020 mlast->m_next = mfrg; 1021 } 1022 1023 return (0); 1024 } 1025 1026 int 1027 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup) 1028 { 1029 u_int32_t mtu = 0; 1030 int error = 0; 1031 1032 if (rt != NULL) { 1033 mtu = rt->rt_mtu; 1034 if (mtu == 0) 1035 mtu = ifp->if_mtu; 1036 else if (mtu < IPV6_MMTU) { 1037 /* RFC8021 IPv6 Atomic Fragments Considered Harmful */ 1038 mtu = IPV6_MMTU; 1039 } else if (mtu > ifp->if_mtu) { 1040 /* 1041 * The MTU on the route is larger than the MTU on 1042 * the interface! This shouldn't happen, unless the 1043 * MTU of the interface has been changed after the 1044 * interface was brought up. Change the MTU in the 1045 * route to match the interface MTU (as long as the 1046 * field isn't locked). 1047 */ 1048 mtu = ifp->if_mtu; 1049 if (!(rt->rt_locks & RTV_MTU)) 1050 rt->rt_mtu = mtu; 1051 } 1052 } else { 1053 mtu = ifp->if_mtu; 1054 } 1055 1056 *mtup = mtu; 1057 return (error); 1058 } 1059 1060 /* 1061 * IP6 socket option processing. 1062 */ 1063 int 1064 ip6_ctloutput(int op, struct socket *so, int level, int optname, 1065 struct mbuf *m) 1066 { 1067 int privileged, optdatalen, uproto; 1068 void *optdata; 1069 struct inpcb *inp = sotoinpcb(so); 1070 int error, optval; 1071 struct proc *p = curproc; /* For IPsec and rdomain */ 1072 u_int rtableid, rtid = 0; 1073 1074 error = optval = 0; 1075 1076 privileged = (inp->inp_socket->so_state & SS_PRIV); 1077 uproto = (int)so->so_proto->pr_protocol; 1078 1079 if (level != IPPROTO_IPV6) 1080 return (EINVAL); 1081 1082 rtableid = p->p_p->ps_rtableid; 1083 1084 switch (op) { 1085 case PRCO_SETOPT: 1086 switch (optname) { 1087 /* 1088 * Use of some Hop-by-Hop options or some 1089 * Destination options, might require special 1090 * privilege. That is, normal applications 1091 * (without special privilege) might be forbidden 1092 * from setting certain options in outgoing packets, 1093 * and might never see certain options in received 1094 * packets. [RFC 2292 Section 6] 1095 * KAME specific note: 1096 * KAME prevents non-privileged users from sending or 1097 * receiving ANY hbh/dst options in order to avoid 1098 * overhead of parsing options in the kernel. 1099 */ 1100 case IPV6_RECVHOPOPTS: 1101 case IPV6_RECVDSTOPTS: 1102 if (!privileged) { 1103 error = EPERM; 1104 break; 1105 } 1106 /* FALLTHROUGH */ 1107 case IPV6_UNICAST_HOPS: 1108 case IPV6_MINHOPCOUNT: 1109 case IPV6_HOPLIMIT: 1110 1111 case IPV6_RECVPKTINFO: 1112 case IPV6_RECVHOPLIMIT: 1113 case IPV6_RECVRTHDR: 1114 case IPV6_RECVPATHMTU: 1115 case IPV6_RECVTCLASS: 1116 case IPV6_V6ONLY: 1117 case IPV6_AUTOFLOWLABEL: 1118 case IPV6_RECVDSTPORT: 1119 if (m == NULL || m->m_len != sizeof(int)) { 1120 error = EINVAL; 1121 break; 1122 } 1123 optval = *mtod(m, int *); 1124 switch (optname) { 1125 1126 case IPV6_UNICAST_HOPS: 1127 if (optval < -1 || optval >= 256) 1128 error = EINVAL; 1129 else { 1130 /* -1 = kernel default */ 1131 inp->inp_hops = optval; 1132 } 1133 break; 1134 1135 case IPV6_MINHOPCOUNT: 1136 if (optval < 0 || optval > 255) 1137 error = EINVAL; 1138 else 1139 inp->inp_ip6_minhlim = optval; 1140 break; 1141 1142 #define OPTSET(bit) \ 1143 do { \ 1144 if (optval) \ 1145 inp->inp_flags |= (bit); \ 1146 else \ 1147 inp->inp_flags &= ~(bit); \ 1148 } while (/*CONSTCOND*/ 0) 1149 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1150 1151 case IPV6_RECVPKTINFO: 1152 OPTSET(IN6P_PKTINFO); 1153 break; 1154 1155 case IPV6_HOPLIMIT: 1156 { 1157 struct ip6_pktopts **optp; 1158 1159 optp = &inp->inp_outputopts6; 1160 error = ip6_pcbopt(IPV6_HOPLIMIT, 1161 (u_char *)&optval, sizeof(optval), optp, 1162 privileged, uproto); 1163 break; 1164 } 1165 1166 case IPV6_RECVHOPLIMIT: 1167 OPTSET(IN6P_HOPLIMIT); 1168 break; 1169 1170 case IPV6_RECVHOPOPTS: 1171 OPTSET(IN6P_HOPOPTS); 1172 break; 1173 1174 case IPV6_RECVDSTOPTS: 1175 OPTSET(IN6P_DSTOPTS); 1176 break; 1177 1178 case IPV6_RECVRTHDR: 1179 OPTSET(IN6P_RTHDR); 1180 break; 1181 1182 case IPV6_RECVPATHMTU: 1183 /* 1184 * We ignore this option for TCP 1185 * sockets. 1186 * (RFC3542 leaves this case 1187 * unspecified.) 1188 */ 1189 if (uproto != IPPROTO_TCP) 1190 OPTSET(IN6P_MTU); 1191 break; 1192 1193 case IPV6_V6ONLY: 1194 /* 1195 * make setsockopt(IPV6_V6ONLY) 1196 * available only prior to bind(2). 1197 * see ipng mailing list, Jun 22 2001. 1198 */ 1199 if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED( 1200 &inp->inp_laddr6)) { 1201 error = EINVAL; 1202 break; 1203 } 1204 /* No support for IPv4-mapped addresses. */ 1205 if (!optval) 1206 error = EINVAL; 1207 else 1208 error = 0; 1209 break; 1210 case IPV6_RECVTCLASS: 1211 OPTSET(IN6P_TCLASS); 1212 break; 1213 case IPV6_AUTOFLOWLABEL: 1214 OPTSET(IN6P_AUTOFLOWLABEL); 1215 break; 1216 1217 case IPV6_RECVDSTPORT: 1218 OPTSET(IN6P_RECVDSTPORT); 1219 break; 1220 } 1221 break; 1222 1223 case IPV6_TCLASS: 1224 case IPV6_DONTFRAG: 1225 case IPV6_USE_MIN_MTU: 1226 if (m == NULL || m->m_len != sizeof(optval)) { 1227 error = EINVAL; 1228 break; 1229 } 1230 optval = *mtod(m, int *); 1231 { 1232 struct ip6_pktopts **optp; 1233 optp = &inp->inp_outputopts6; 1234 error = ip6_pcbopt(optname, (u_char *)&optval, 1235 sizeof(optval), optp, privileged, uproto); 1236 break; 1237 } 1238 1239 case IPV6_PKTINFO: 1240 case IPV6_HOPOPTS: 1241 case IPV6_RTHDR: 1242 case IPV6_DSTOPTS: 1243 case IPV6_RTHDRDSTOPTS: 1244 { 1245 /* new advanced API (RFC3542) */ 1246 u_char *optbuf; 1247 int optbuflen; 1248 struct ip6_pktopts **optp; 1249 1250 if (m && m->m_next) { 1251 error = EINVAL; /* XXX */ 1252 break; 1253 } 1254 if (m) { 1255 optbuf = mtod(m, u_char *); 1256 optbuflen = m->m_len; 1257 } else { 1258 optbuf = NULL; 1259 optbuflen = 0; 1260 } 1261 optp = &inp->inp_outputopts6; 1262 error = ip6_pcbopt(optname, optbuf, optbuflen, optp, 1263 privileged, uproto); 1264 break; 1265 } 1266 #undef OPTSET 1267 1268 case IPV6_MULTICAST_IF: 1269 case IPV6_MULTICAST_HOPS: 1270 case IPV6_MULTICAST_LOOP: 1271 case IPV6_JOIN_GROUP: 1272 case IPV6_LEAVE_GROUP: 1273 error = ip6_setmoptions(optname, 1274 &inp->inp_moptions6, 1275 m, inp->inp_rtableid); 1276 break; 1277 1278 case IPV6_PORTRANGE: 1279 if (m == NULL || m->m_len != sizeof(int)) { 1280 error = EINVAL; 1281 break; 1282 } 1283 optval = *mtod(m, int *); 1284 1285 switch (optval) { 1286 case IPV6_PORTRANGE_DEFAULT: 1287 inp->inp_flags &= ~(IN6P_LOWPORT); 1288 inp->inp_flags &= ~(IN6P_HIGHPORT); 1289 break; 1290 1291 case IPV6_PORTRANGE_HIGH: 1292 inp->inp_flags &= ~(IN6P_LOWPORT); 1293 inp->inp_flags |= IN6P_HIGHPORT; 1294 break; 1295 1296 case IPV6_PORTRANGE_LOW: 1297 inp->inp_flags &= ~(IN6P_HIGHPORT); 1298 inp->inp_flags |= IN6P_LOWPORT; 1299 break; 1300 1301 default: 1302 error = EINVAL; 1303 break; 1304 } 1305 break; 1306 1307 case IPSEC6_OUTSA: 1308 error = EINVAL; 1309 break; 1310 1311 case IPV6_AUTH_LEVEL: 1312 case IPV6_ESP_TRANS_LEVEL: 1313 case IPV6_ESP_NETWORK_LEVEL: 1314 case IPV6_IPCOMP_LEVEL: 1315 #ifndef IPSEC 1316 error = EINVAL; 1317 #else 1318 if (m == NULL || m->m_len != sizeof(int)) { 1319 error = EINVAL; 1320 break; 1321 } 1322 optval = *mtod(m, int *); 1323 1324 if (optval < IPSEC_LEVEL_BYPASS || 1325 optval > IPSEC_LEVEL_UNIQUE) { 1326 error = EINVAL; 1327 break; 1328 } 1329 1330 switch (optname) { 1331 case IPV6_AUTH_LEVEL: 1332 if (optval < IPSEC_AUTH_LEVEL_DEFAULT && 1333 suser(p)) { 1334 error = EACCES; 1335 break; 1336 } 1337 inp->inp_seclevel[SL_AUTH] = optval; 1338 break; 1339 1340 case IPV6_ESP_TRANS_LEVEL: 1341 if (optval < IPSEC_ESP_TRANS_LEVEL_DEFAULT && 1342 suser(p)) { 1343 error = EACCES; 1344 break; 1345 } 1346 inp->inp_seclevel[SL_ESP_TRANS] = optval; 1347 break; 1348 1349 case IPV6_ESP_NETWORK_LEVEL: 1350 if (optval < IPSEC_ESP_NETWORK_LEVEL_DEFAULT && 1351 suser(p)) { 1352 error = EACCES; 1353 break; 1354 } 1355 inp->inp_seclevel[SL_ESP_NETWORK] = optval; 1356 break; 1357 1358 case IPV6_IPCOMP_LEVEL: 1359 if (optval < IPSEC_IPCOMP_LEVEL_DEFAULT && 1360 suser(p)) { 1361 error = EACCES; 1362 break; 1363 } 1364 inp->inp_seclevel[SL_IPCOMP] = optval; 1365 break; 1366 } 1367 #endif 1368 break; 1369 case SO_RTABLE: 1370 if (m == NULL || m->m_len < sizeof(u_int)) { 1371 error = EINVAL; 1372 break; 1373 } 1374 rtid = *mtod(m, u_int *); 1375 if (inp->inp_rtableid == rtid) 1376 break; 1377 /* needs privileges to switch when already set */ 1378 if (rtableid != rtid && rtableid != 0 && 1379 (error = suser(p)) != 0) 1380 break; 1381 /* table must exist */ 1382 if (!rtable_exists(rtid)) { 1383 error = EINVAL; 1384 break; 1385 } 1386 if (inp->inp_lport) { 1387 error = EBUSY; 1388 break; 1389 } 1390 inp->inp_rtableid = rtid; 1391 in_pcbrehash(inp); 1392 break; 1393 case IPV6_PIPEX: 1394 if (m != NULL && m->m_len == sizeof(int)) 1395 inp->inp_pipex = *mtod(m, int *); 1396 else 1397 error = EINVAL; 1398 break; 1399 1400 default: 1401 error = ENOPROTOOPT; 1402 break; 1403 } 1404 break; 1405 1406 case PRCO_GETOPT: 1407 switch (optname) { 1408 1409 case IPV6_RECVHOPOPTS: 1410 case IPV6_RECVDSTOPTS: 1411 case IPV6_UNICAST_HOPS: 1412 case IPV6_MINHOPCOUNT: 1413 case IPV6_RECVPKTINFO: 1414 case IPV6_RECVHOPLIMIT: 1415 case IPV6_RECVRTHDR: 1416 case IPV6_RECVPATHMTU: 1417 1418 case IPV6_V6ONLY: 1419 case IPV6_PORTRANGE: 1420 case IPV6_RECVTCLASS: 1421 case IPV6_AUTOFLOWLABEL: 1422 case IPV6_RECVDSTPORT: 1423 switch (optname) { 1424 1425 case IPV6_RECVHOPOPTS: 1426 optval = OPTBIT(IN6P_HOPOPTS); 1427 break; 1428 1429 case IPV6_RECVDSTOPTS: 1430 optval = OPTBIT(IN6P_DSTOPTS); 1431 break; 1432 1433 case IPV6_UNICAST_HOPS: 1434 optval = inp->inp_hops; 1435 break; 1436 1437 case IPV6_MINHOPCOUNT: 1438 optval = inp->inp_ip6_minhlim; 1439 break; 1440 1441 case IPV6_RECVPKTINFO: 1442 optval = OPTBIT(IN6P_PKTINFO); 1443 break; 1444 1445 case IPV6_RECVHOPLIMIT: 1446 optval = OPTBIT(IN6P_HOPLIMIT); 1447 break; 1448 1449 case IPV6_RECVRTHDR: 1450 optval = OPTBIT(IN6P_RTHDR); 1451 break; 1452 1453 case IPV6_RECVPATHMTU: 1454 optval = OPTBIT(IN6P_MTU); 1455 break; 1456 1457 case IPV6_V6ONLY: 1458 optval = 1; 1459 break; 1460 1461 case IPV6_PORTRANGE: 1462 { 1463 int flags; 1464 flags = inp->inp_flags; 1465 if (flags & IN6P_HIGHPORT) 1466 optval = IPV6_PORTRANGE_HIGH; 1467 else if (flags & IN6P_LOWPORT) 1468 optval = IPV6_PORTRANGE_LOW; 1469 else 1470 optval = 0; 1471 break; 1472 } 1473 case IPV6_RECVTCLASS: 1474 optval = OPTBIT(IN6P_TCLASS); 1475 break; 1476 1477 case IPV6_AUTOFLOWLABEL: 1478 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1479 break; 1480 1481 case IPV6_RECVDSTPORT: 1482 optval = OPTBIT(IN6P_RECVDSTPORT); 1483 break; 1484 } 1485 if (error) 1486 break; 1487 m->m_len = sizeof(int); 1488 *mtod(m, int *) = optval; 1489 break; 1490 1491 case IPV6_PATHMTU: 1492 { 1493 u_long pmtu = 0; 1494 struct ip6_mtuinfo mtuinfo; 1495 struct ifnet *ifp; 1496 struct rtentry *rt; 1497 1498 if (!(so->so_state & SS_ISCONNECTED)) 1499 return (ENOTCONN); 1500 1501 rt = in_pcbrtentry(inp); 1502 if (!rtisvalid(rt)) 1503 return (EHOSTUNREACH); 1504 1505 ifp = if_get(rt->rt_ifidx); 1506 if (ifp == NULL) 1507 return (EHOSTUNREACH); 1508 /* 1509 * XXX: we dot not consider the case of source 1510 * routing, or optional information to specify 1511 * the outgoing interface. 1512 */ 1513 error = ip6_getpmtu(rt, ifp, &pmtu); 1514 if_put(ifp); 1515 if (error) 1516 break; 1517 if (pmtu > IPV6_MAXPACKET) 1518 pmtu = IPV6_MAXPACKET; 1519 1520 bzero(&mtuinfo, sizeof(mtuinfo)); 1521 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1522 optdata = (void *)&mtuinfo; 1523 optdatalen = sizeof(mtuinfo); 1524 if (optdatalen > MCLBYTES) 1525 return (EMSGSIZE); /* XXX */ 1526 if (optdatalen > MLEN) 1527 MCLGET(m, M_WAIT); 1528 m->m_len = optdatalen; 1529 bcopy(optdata, mtod(m, void *), optdatalen); 1530 break; 1531 } 1532 1533 case IPV6_PKTINFO: 1534 case IPV6_HOPOPTS: 1535 case IPV6_RTHDR: 1536 case IPV6_DSTOPTS: 1537 case IPV6_RTHDRDSTOPTS: 1538 case IPV6_TCLASS: 1539 case IPV6_DONTFRAG: 1540 case IPV6_USE_MIN_MTU: 1541 error = ip6_getpcbopt(inp->inp_outputopts6, 1542 optname, m); 1543 break; 1544 1545 case IPV6_MULTICAST_IF: 1546 case IPV6_MULTICAST_HOPS: 1547 case IPV6_MULTICAST_LOOP: 1548 case IPV6_JOIN_GROUP: 1549 case IPV6_LEAVE_GROUP: 1550 error = ip6_getmoptions(optname, 1551 inp->inp_moptions6, m); 1552 break; 1553 1554 case IPSEC6_OUTSA: 1555 error = EINVAL; 1556 break; 1557 1558 case IPV6_AUTH_LEVEL: 1559 case IPV6_ESP_TRANS_LEVEL: 1560 case IPV6_ESP_NETWORK_LEVEL: 1561 case IPV6_IPCOMP_LEVEL: 1562 #ifndef IPSEC 1563 m->m_len = sizeof(int); 1564 *mtod(m, int *) = IPSEC_LEVEL_NONE; 1565 #else 1566 m->m_len = sizeof(int); 1567 switch (optname) { 1568 case IPV6_AUTH_LEVEL: 1569 optval = inp->inp_seclevel[SL_AUTH]; 1570 break; 1571 1572 case IPV6_ESP_TRANS_LEVEL: 1573 optval = 1574 inp->inp_seclevel[SL_ESP_TRANS]; 1575 break; 1576 1577 case IPV6_ESP_NETWORK_LEVEL: 1578 optval = 1579 inp->inp_seclevel[SL_ESP_NETWORK]; 1580 break; 1581 1582 case IPV6_IPCOMP_LEVEL: 1583 optval = inp->inp_seclevel[SL_IPCOMP]; 1584 break; 1585 } 1586 *mtod(m, int *) = optval; 1587 #endif 1588 break; 1589 case SO_RTABLE: 1590 m->m_len = sizeof(u_int); 1591 *mtod(m, u_int *) = inp->inp_rtableid; 1592 break; 1593 case IPV6_PIPEX: 1594 m->m_len = sizeof(int); 1595 *mtod(m, int *) = inp->inp_pipex; 1596 break; 1597 1598 default: 1599 error = ENOPROTOOPT; 1600 break; 1601 } 1602 break; 1603 } 1604 return (error); 1605 } 1606 1607 int 1608 ip6_raw_ctloutput(int op, struct socket *so, int level, int optname, 1609 struct mbuf *m) 1610 { 1611 int error = 0, optval; 1612 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1613 struct inpcb *inp = sotoinpcb(so); 1614 1615 if (level != IPPROTO_IPV6) 1616 return (EINVAL); 1617 1618 switch (optname) { 1619 case IPV6_CHECKSUM: 1620 /* 1621 * For ICMPv6 sockets, no modification allowed for checksum 1622 * offset, permit "no change" values to help existing apps. 1623 * 1624 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 1625 * for an ICMPv6 socket will fail." 1626 * The current behavior does not meet RFC3542. 1627 */ 1628 switch (op) { 1629 case PRCO_SETOPT: 1630 if (m == NULL || m->m_len != sizeof(int)) { 1631 error = EINVAL; 1632 break; 1633 } 1634 optval = *mtod(m, int *); 1635 if (optval < -1 || 1636 (optval > 0 && (optval % 2) != 0)) { 1637 /* 1638 * The API assumes non-negative even offset 1639 * values or -1 as a special value. 1640 */ 1641 error = EINVAL; 1642 } else if (so->so_proto->pr_protocol == 1643 IPPROTO_ICMPV6) { 1644 if (optval != icmp6off) 1645 error = EINVAL; 1646 } else 1647 inp->inp_cksum6 = optval; 1648 break; 1649 1650 case PRCO_GETOPT: 1651 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1652 optval = icmp6off; 1653 else 1654 optval = inp->inp_cksum6; 1655 1656 m->m_len = sizeof(int); 1657 *mtod(m, int *) = optval; 1658 break; 1659 1660 default: 1661 error = EINVAL; 1662 break; 1663 } 1664 break; 1665 1666 default: 1667 error = ENOPROTOOPT; 1668 break; 1669 } 1670 1671 return (error); 1672 } 1673 1674 /* 1675 * initialize ip6_pktopts. beware that there are non-zero default values in 1676 * the struct. 1677 */ 1678 void 1679 ip6_initpktopts(struct ip6_pktopts *opt) 1680 { 1681 bzero(opt, sizeof(*opt)); 1682 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 1683 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 1684 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 1685 } 1686 1687 int 1688 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 1689 int priv, int uproto) 1690 { 1691 struct ip6_pktopts *opt; 1692 1693 if (*pktopt == NULL) { 1694 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 1695 M_WAITOK); 1696 ip6_initpktopts(*pktopt); 1697 } 1698 opt = *pktopt; 1699 1700 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, uproto)); 1701 } 1702 1703 int 1704 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf *m) 1705 { 1706 void *optdata = NULL; 1707 int optdatalen = 0; 1708 struct ip6_ext *ip6e; 1709 int error = 0; 1710 struct in6_pktinfo null_pktinfo; 1711 int deftclass = 0, on; 1712 int defminmtu = IP6PO_MINMTU_MCASTONLY; 1713 1714 switch (optname) { 1715 case IPV6_PKTINFO: 1716 if (pktopt && pktopt->ip6po_pktinfo) 1717 optdata = (void *)pktopt->ip6po_pktinfo; 1718 else { 1719 /* XXX: we don't have to do this every time... */ 1720 bzero(&null_pktinfo, sizeof(null_pktinfo)); 1721 optdata = (void *)&null_pktinfo; 1722 } 1723 optdatalen = sizeof(struct in6_pktinfo); 1724 break; 1725 case IPV6_TCLASS: 1726 if (pktopt && pktopt->ip6po_tclass >= 0) 1727 optdata = (void *)&pktopt->ip6po_tclass; 1728 else 1729 optdata = (void *)&deftclass; 1730 optdatalen = sizeof(int); 1731 break; 1732 case IPV6_HOPOPTS: 1733 if (pktopt && pktopt->ip6po_hbh) { 1734 optdata = (void *)pktopt->ip6po_hbh; 1735 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 1736 optdatalen = (ip6e->ip6e_len + 1) << 3; 1737 } 1738 break; 1739 case IPV6_RTHDR: 1740 if (pktopt && pktopt->ip6po_rthdr) { 1741 optdata = (void *)pktopt->ip6po_rthdr; 1742 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 1743 optdatalen = (ip6e->ip6e_len + 1) << 3; 1744 } 1745 break; 1746 case IPV6_RTHDRDSTOPTS: 1747 if (pktopt && pktopt->ip6po_dest1) { 1748 optdata = (void *)pktopt->ip6po_dest1; 1749 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 1750 optdatalen = (ip6e->ip6e_len + 1) << 3; 1751 } 1752 break; 1753 case IPV6_DSTOPTS: 1754 if (pktopt && pktopt->ip6po_dest2) { 1755 optdata = (void *)pktopt->ip6po_dest2; 1756 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 1757 optdatalen = (ip6e->ip6e_len + 1) << 3; 1758 } 1759 break; 1760 case IPV6_USE_MIN_MTU: 1761 if (pktopt) 1762 optdata = (void *)&pktopt->ip6po_minmtu; 1763 else 1764 optdata = (void *)&defminmtu; 1765 optdatalen = sizeof(int); 1766 break; 1767 case IPV6_DONTFRAG: 1768 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 1769 on = 1; 1770 else 1771 on = 0; 1772 optdata = (void *)&on; 1773 optdatalen = sizeof(on); 1774 break; 1775 default: /* should not happen */ 1776 #ifdef DIAGNOSTIC 1777 panic("%s: unexpected option", __func__); 1778 #endif 1779 return (ENOPROTOOPT); 1780 } 1781 1782 if (optdatalen > MCLBYTES) 1783 return (EMSGSIZE); /* XXX */ 1784 if (optdatalen > MLEN) 1785 MCLGET(m, M_WAIT); 1786 m->m_len = optdatalen; 1787 if (optdatalen) 1788 bcopy(optdata, mtod(m, void *), optdatalen); 1789 1790 return (error); 1791 } 1792 1793 void 1794 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 1795 { 1796 if (optname == -1 || optname == IPV6_PKTINFO) { 1797 if (pktopt->ip6po_pktinfo) 1798 free(pktopt->ip6po_pktinfo, M_IP6OPT, 0); 1799 pktopt->ip6po_pktinfo = NULL; 1800 } 1801 if (optname == -1 || optname == IPV6_HOPLIMIT) 1802 pktopt->ip6po_hlim = -1; 1803 if (optname == -1 || optname == IPV6_TCLASS) 1804 pktopt->ip6po_tclass = -1; 1805 if (optname == -1 || optname == IPV6_HOPOPTS) { 1806 if (pktopt->ip6po_hbh) 1807 free(pktopt->ip6po_hbh, M_IP6OPT, 0); 1808 pktopt->ip6po_hbh = NULL; 1809 } 1810 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 1811 if (pktopt->ip6po_dest1) 1812 free(pktopt->ip6po_dest1, M_IP6OPT, 0); 1813 pktopt->ip6po_dest1 = NULL; 1814 } 1815 if (optname == -1 || optname == IPV6_RTHDR) { 1816 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 1817 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT, 0); 1818 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 1819 if (pktopt->ip6po_route.ro_rt) { 1820 rtfree(pktopt->ip6po_route.ro_rt); 1821 pktopt->ip6po_route.ro_rt = NULL; 1822 } 1823 } 1824 if (optname == -1 || optname == IPV6_DSTOPTS) { 1825 if (pktopt->ip6po_dest2) 1826 free(pktopt->ip6po_dest2, M_IP6OPT, 0); 1827 pktopt->ip6po_dest2 = NULL; 1828 } 1829 } 1830 1831 #define PKTOPT_EXTHDRCPY(type) \ 1832 do {\ 1833 if (src->type) {\ 1834 size_t hlen;\ 1835 hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 1836 dst->type = malloc(hlen, M_IP6OPT, M_NOWAIT);\ 1837 if (dst->type == NULL)\ 1838 goto bad;\ 1839 memcpy(dst->type, src->type, hlen);\ 1840 }\ 1841 } while (/*CONSTCOND*/ 0) 1842 1843 int 1844 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src) 1845 { 1846 dst->ip6po_hlim = src->ip6po_hlim; 1847 dst->ip6po_tclass = src->ip6po_tclass; 1848 dst->ip6po_flags = src->ip6po_flags; 1849 if (src->ip6po_pktinfo) { 1850 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 1851 M_IP6OPT, M_NOWAIT); 1852 if (dst->ip6po_pktinfo == NULL) 1853 goto bad; 1854 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 1855 } 1856 PKTOPT_EXTHDRCPY(ip6po_hbh); 1857 PKTOPT_EXTHDRCPY(ip6po_dest1); 1858 PKTOPT_EXTHDRCPY(ip6po_dest2); 1859 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 1860 return (0); 1861 1862 bad: 1863 ip6_clearpktopts(dst, -1); 1864 return (ENOBUFS); 1865 } 1866 #undef PKTOPT_EXTHDRCPY 1867 1868 void 1869 ip6_freepcbopts(struct ip6_pktopts *pktopt) 1870 { 1871 if (pktopt == NULL) 1872 return; 1873 1874 ip6_clearpktopts(pktopt, -1); 1875 1876 free(pktopt, M_IP6OPT, 0); 1877 } 1878 1879 /* 1880 * Set the IP6 multicast options in response to user setsockopt(). 1881 */ 1882 int 1883 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m, 1884 unsigned int rtableid) 1885 { 1886 int error = 0; 1887 u_int loop, ifindex; 1888 struct ipv6_mreq *mreq; 1889 struct ifnet *ifp; 1890 struct ip6_moptions *im6o = *im6op; 1891 struct in6_multi_mship *imm; 1892 struct proc *p = curproc; /* XXX */ 1893 1894 if (im6o == NULL) { 1895 /* 1896 * No multicast option buffer attached to the pcb; 1897 * allocate one and initialize to default values. 1898 */ 1899 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1900 if (im6o == NULL) 1901 return (ENOBUFS); 1902 *im6op = im6o; 1903 im6o->im6o_ifidx = 0; 1904 im6o->im6o_hlim = ip6_defmcasthlim; 1905 im6o->im6o_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1906 LIST_INIT(&im6o->im6o_memberships); 1907 } 1908 1909 switch (optname) { 1910 1911 case IPV6_MULTICAST_IF: 1912 /* 1913 * Select the interface for outgoing multicast packets. 1914 */ 1915 if (m == NULL || m->m_len != sizeof(u_int)) { 1916 error = EINVAL; 1917 break; 1918 } 1919 memcpy(&ifindex, mtod(m, u_int *), sizeof(ifindex)); 1920 if (ifindex != 0) { 1921 ifp = if_get(ifindex); 1922 if (ifp == NULL) { 1923 error = ENXIO; /* XXX EINVAL? */ 1924 break; 1925 } 1926 if (ifp->if_rdomain != rtable_l2(rtableid) || 1927 (ifp->if_flags & IFF_MULTICAST) == 0) { 1928 error = EADDRNOTAVAIL; 1929 if_put(ifp); 1930 break; 1931 } 1932 if_put(ifp); 1933 } 1934 im6o->im6o_ifidx = ifindex; 1935 break; 1936 1937 case IPV6_MULTICAST_HOPS: 1938 { 1939 /* 1940 * Set the IP6 hoplimit for outgoing multicast packets. 1941 */ 1942 int optval; 1943 if (m == NULL || m->m_len != sizeof(int)) { 1944 error = EINVAL; 1945 break; 1946 } 1947 memcpy(&optval, mtod(m, u_int *), sizeof(optval)); 1948 if (optval < -1 || optval >= 256) 1949 error = EINVAL; 1950 else if (optval == -1) 1951 im6o->im6o_hlim = ip6_defmcasthlim; 1952 else 1953 im6o->im6o_hlim = optval; 1954 break; 1955 } 1956 1957 case IPV6_MULTICAST_LOOP: 1958 /* 1959 * Set the loopback flag for outgoing multicast packets. 1960 * Must be zero or one. 1961 */ 1962 if (m == NULL || m->m_len != sizeof(u_int)) { 1963 error = EINVAL; 1964 break; 1965 } 1966 memcpy(&loop, mtod(m, u_int *), sizeof(loop)); 1967 if (loop > 1) { 1968 error = EINVAL; 1969 break; 1970 } 1971 im6o->im6o_loop = loop; 1972 break; 1973 1974 case IPV6_JOIN_GROUP: 1975 /* 1976 * Add a multicast group membership. 1977 * Group must be a valid IP6 multicast address. 1978 */ 1979 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1980 error = EINVAL; 1981 break; 1982 } 1983 mreq = mtod(m, struct ipv6_mreq *); 1984 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1985 /* 1986 * We use the unspecified address to specify to accept 1987 * all multicast addresses. Only super user is allowed 1988 * to do this. 1989 */ 1990 if (suser(p)) 1991 { 1992 error = EACCES; 1993 break; 1994 } 1995 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1996 error = EINVAL; 1997 break; 1998 } 1999 2000 /* 2001 * If no interface was explicitly specified, choose an 2002 * appropriate one according to the given multicast address. 2003 */ 2004 if (mreq->ipv6mr_interface == 0) { 2005 struct rtentry *rt; 2006 struct sockaddr_in6 dst; 2007 2008 memset(&dst, 0, sizeof(dst)); 2009 dst.sin6_len = sizeof(dst); 2010 dst.sin6_family = AF_INET6; 2011 dst.sin6_addr = mreq->ipv6mr_multiaddr; 2012 rt = rtalloc(sin6tosa(&dst), RT_RESOLVE, rtableid); 2013 if (rt == NULL) { 2014 error = EADDRNOTAVAIL; 2015 break; 2016 } 2017 ifp = if_get(rt->rt_ifidx); 2018 rtfree(rt); 2019 } else { 2020 /* 2021 * If the interface is specified, validate it. 2022 */ 2023 ifp = if_get(mreq->ipv6mr_interface); 2024 if (ifp == NULL) { 2025 error = ENXIO; /* XXX EINVAL? */ 2026 break; 2027 } 2028 } 2029 2030 /* 2031 * See if we found an interface, and confirm that it 2032 * supports multicast 2033 */ 2034 if (ifp == NULL || ifp->if_rdomain != rtable_l2(rtableid) || 2035 (ifp->if_flags & IFF_MULTICAST) == 0) { 2036 if_put(ifp); 2037 error = EADDRNOTAVAIL; 2038 break; 2039 } 2040 /* 2041 * Put interface index into the multicast address, 2042 * if the address has link/interface-local scope. 2043 */ 2044 if (IN6_IS_SCOPE_EMBED(&mreq->ipv6mr_multiaddr)) { 2045 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2046 htons(ifp->if_index); 2047 } 2048 /* 2049 * See if the membership already exists. 2050 */ 2051 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) 2052 if (imm->i6mm_maddr->in6m_ifidx == ifp->if_index && 2053 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2054 &mreq->ipv6mr_multiaddr)) 2055 break; 2056 if (imm != NULL) { 2057 if_put(ifp); 2058 error = EADDRINUSE; 2059 break; 2060 } 2061 /* 2062 * Everything looks good; add a new record to the multicast 2063 * address list for the given interface. 2064 */ 2065 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error); 2066 if_put(ifp); 2067 if (!imm) 2068 break; 2069 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2070 break; 2071 2072 case IPV6_LEAVE_GROUP: 2073 /* 2074 * Drop a multicast group membership. 2075 * Group must be a valid IP6 multicast address. 2076 */ 2077 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2078 error = EINVAL; 2079 break; 2080 } 2081 mreq = mtod(m, struct ipv6_mreq *); 2082 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2083 if (suser(p)) { 2084 error = EACCES; 2085 break; 2086 } 2087 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2088 error = EINVAL; 2089 break; 2090 } 2091 2092 /* 2093 * Put interface index into the multicast address, 2094 * if the address has link-local scope. 2095 */ 2096 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2097 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2098 htons(mreq->ipv6mr_interface); 2099 } 2100 2101 /* 2102 * If an interface address was specified, get a pointer 2103 * to its ifnet structure. 2104 */ 2105 if (mreq->ipv6mr_interface == 0) 2106 ifp = NULL; 2107 else { 2108 ifp = if_get(mreq->ipv6mr_interface); 2109 if (ifp == NULL) { 2110 error = ENXIO; /* XXX EINVAL? */ 2111 break; 2112 } 2113 } 2114 2115 /* 2116 * Find the membership in the membership list. 2117 */ 2118 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2119 if ((ifp == NULL || 2120 imm->i6mm_maddr->in6m_ifidx == ifp->if_index) && 2121 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2122 &mreq->ipv6mr_multiaddr)) 2123 break; 2124 } 2125 2126 if_put(ifp); 2127 2128 if (imm == NULL) { 2129 /* Unable to resolve interface */ 2130 error = EADDRNOTAVAIL; 2131 break; 2132 } 2133 /* 2134 * Give up the multicast address record to which the 2135 * membership points. 2136 */ 2137 LIST_REMOVE(imm, i6mm_chain); 2138 in6_leavegroup(imm); 2139 break; 2140 2141 default: 2142 error = EOPNOTSUPP; 2143 break; 2144 } 2145 2146 /* 2147 * If all options have default values, no need to keep the option 2148 * structure. 2149 */ 2150 if (im6o->im6o_ifidx == 0 && 2151 im6o->im6o_hlim == ip6_defmcasthlim && 2152 im6o->im6o_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2153 LIST_EMPTY(&im6o->im6o_memberships)) { 2154 free(*im6op, M_IPMOPTS, sizeof(**im6op)); 2155 *im6op = NULL; 2156 } 2157 2158 return (error); 2159 } 2160 2161 /* 2162 * Return the IP6 multicast options in response to user getsockopt(). 2163 */ 2164 int 2165 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf *m) 2166 { 2167 u_int *hlim, *loop, *ifindex; 2168 2169 switch (optname) { 2170 case IPV6_MULTICAST_IF: 2171 ifindex = mtod(m, u_int *); 2172 m->m_len = sizeof(u_int); 2173 if (im6o == NULL || im6o->im6o_ifidx == 0) 2174 *ifindex = 0; 2175 else 2176 *ifindex = im6o->im6o_ifidx; 2177 return (0); 2178 2179 case IPV6_MULTICAST_HOPS: 2180 hlim = mtod(m, u_int *); 2181 m->m_len = sizeof(u_int); 2182 if (im6o == NULL) 2183 *hlim = ip6_defmcasthlim; 2184 else 2185 *hlim = im6o->im6o_hlim; 2186 return (0); 2187 2188 case IPV6_MULTICAST_LOOP: 2189 loop = mtod(m, u_int *); 2190 m->m_len = sizeof(u_int); 2191 if (im6o == NULL) 2192 *loop = ip6_defmcasthlim; 2193 else 2194 *loop = im6o->im6o_loop; 2195 return (0); 2196 2197 default: 2198 return (EOPNOTSUPP); 2199 } 2200 } 2201 2202 /* 2203 * Discard the IP6 multicast options. 2204 */ 2205 void 2206 ip6_freemoptions(struct ip6_moptions *im6o) 2207 { 2208 struct in6_multi_mship *imm; 2209 2210 if (im6o == NULL) 2211 return; 2212 2213 while (!LIST_EMPTY(&im6o->im6o_memberships)) { 2214 imm = LIST_FIRST(&im6o->im6o_memberships); 2215 LIST_REMOVE(imm, i6mm_chain); 2216 in6_leavegroup(imm); 2217 } 2218 free(im6o, M_IPMOPTS, sizeof(*im6o)); 2219 } 2220 2221 /* 2222 * Set IPv6 outgoing packet options based on advanced API. 2223 */ 2224 int 2225 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2226 struct ip6_pktopts *stickyopt, int priv, int uproto) 2227 { 2228 u_int clen; 2229 struct cmsghdr *cm = 0; 2230 caddr_t cmsgs; 2231 int error; 2232 2233 if (control == NULL || opt == NULL) 2234 return (EINVAL); 2235 2236 ip6_initpktopts(opt); 2237 if (stickyopt) { 2238 int error; 2239 2240 /* 2241 * If stickyopt is provided, make a local copy of the options 2242 * for this particular packet, then override them by ancillary 2243 * objects. 2244 * XXX: copypktopts() does not copy the cached route to a next 2245 * hop (if any). This is not very good in terms of efficiency, 2246 * but we can allow this since this option should be rarely 2247 * used. 2248 */ 2249 if ((error = copypktopts(opt, stickyopt)) != 0) 2250 return (error); 2251 } 2252 2253 /* 2254 * XXX: Currently, we assume all the optional information is stored 2255 * in a single mbuf. 2256 */ 2257 if (control->m_next) 2258 return (EINVAL); 2259 2260 clen = control->m_len; 2261 cmsgs = mtod(control, caddr_t); 2262 do { 2263 if (clen < CMSG_LEN(0)) 2264 return (EINVAL); 2265 cm = (struct cmsghdr *)cmsgs; 2266 if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > clen || 2267 CMSG_ALIGN(cm->cmsg_len) > clen) 2268 return (EINVAL); 2269 if (cm->cmsg_level == IPPROTO_IPV6) { 2270 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2271 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, uproto); 2272 if (error) 2273 return (error); 2274 } 2275 2276 clen -= CMSG_ALIGN(cm->cmsg_len); 2277 cmsgs += CMSG_ALIGN(cm->cmsg_len); 2278 } while (clen); 2279 2280 return (0); 2281 } 2282 2283 /* 2284 * Set a particular packet option, as a sticky option or an ancillary data 2285 * item. "len" can be 0 only when it's a sticky option. 2286 */ 2287 int 2288 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2289 int priv, int sticky, int uproto) 2290 { 2291 int minmtupolicy; 2292 2293 switch (optname) { 2294 case IPV6_PKTINFO: 2295 { 2296 struct ifnet *ifp = NULL; 2297 struct in6_pktinfo *pktinfo; 2298 2299 if (len != sizeof(struct in6_pktinfo)) 2300 return (EINVAL); 2301 2302 pktinfo = (struct in6_pktinfo *)buf; 2303 2304 /* 2305 * An application can clear any sticky IPV6_PKTINFO option by 2306 * doing a "regular" setsockopt with ipi6_addr being 2307 * in6addr_any and ipi6_ifindex being zero. 2308 * [RFC 3542, Section 6] 2309 */ 2310 if (opt->ip6po_pktinfo && 2311 pktinfo->ipi6_ifindex == 0 && 2312 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2313 ip6_clearpktopts(opt, optname); 2314 break; 2315 } 2316 2317 if (uproto == IPPROTO_TCP && 2318 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2319 return (EINVAL); 2320 } 2321 2322 if (pktinfo->ipi6_ifindex) { 2323 ifp = if_get(pktinfo->ipi6_ifindex); 2324 if (ifp == NULL) 2325 return (ENXIO); 2326 if_put(ifp); 2327 } 2328 2329 /* 2330 * We store the address anyway, and let in6_selectsrc() 2331 * validate the specified address. This is because ipi6_addr 2332 * may not have enough information about its scope zone, and 2333 * we may need additional information (such as outgoing 2334 * interface or the scope zone of a destination address) to 2335 * disambiguate the scope. 2336 * XXX: the delay of the validation may confuse the 2337 * application when it is used as a sticky option. 2338 */ 2339 if (opt->ip6po_pktinfo == NULL) { 2340 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2341 M_IP6OPT, M_NOWAIT); 2342 if (opt->ip6po_pktinfo == NULL) 2343 return (ENOBUFS); 2344 } 2345 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2346 break; 2347 } 2348 2349 case IPV6_HOPLIMIT: 2350 { 2351 int *hlimp; 2352 2353 /* 2354 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2355 * to simplify the ordering among hoplimit options. 2356 */ 2357 if (sticky) 2358 return (ENOPROTOOPT); 2359 2360 if (len != sizeof(int)) 2361 return (EINVAL); 2362 hlimp = (int *)buf; 2363 if (*hlimp < -1 || *hlimp > 255) 2364 return (EINVAL); 2365 2366 opt->ip6po_hlim = *hlimp; 2367 break; 2368 } 2369 2370 case IPV6_TCLASS: 2371 { 2372 int tclass; 2373 2374 if (len != sizeof(int)) 2375 return (EINVAL); 2376 tclass = *(int *)buf; 2377 if (tclass < -1 || tclass > 255) 2378 return (EINVAL); 2379 2380 opt->ip6po_tclass = tclass; 2381 break; 2382 } 2383 case IPV6_HOPOPTS: 2384 { 2385 struct ip6_hbh *hbh; 2386 int hbhlen; 2387 2388 /* 2389 * XXX: We don't allow a non-privileged user to set ANY HbH 2390 * options, since per-option restriction has too much 2391 * overhead. 2392 */ 2393 if (!priv) 2394 return (EPERM); 2395 2396 if (len == 0) { 2397 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2398 break; /* just remove the option */ 2399 } 2400 2401 /* message length validation */ 2402 if (len < sizeof(struct ip6_hbh)) 2403 return (EINVAL); 2404 hbh = (struct ip6_hbh *)buf; 2405 hbhlen = (hbh->ip6h_len + 1) << 3; 2406 if (len != hbhlen) 2407 return (EINVAL); 2408 2409 /* turn off the previous option, then set the new option. */ 2410 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2411 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2412 if (opt->ip6po_hbh == NULL) 2413 return (ENOBUFS); 2414 memcpy(opt->ip6po_hbh, hbh, hbhlen); 2415 2416 break; 2417 } 2418 2419 case IPV6_DSTOPTS: 2420 case IPV6_RTHDRDSTOPTS: 2421 { 2422 struct ip6_dest *dest, **newdest = NULL; 2423 int destlen; 2424 2425 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */ 2426 return (EPERM); 2427 2428 if (len == 0) { 2429 ip6_clearpktopts(opt, optname); 2430 break; /* just remove the option */ 2431 } 2432 2433 /* message length validation */ 2434 if (len < sizeof(struct ip6_dest)) 2435 return (EINVAL); 2436 dest = (struct ip6_dest *)buf; 2437 destlen = (dest->ip6d_len + 1) << 3; 2438 if (len != destlen) 2439 return (EINVAL); 2440 /* 2441 * Determine the position that the destination options header 2442 * should be inserted; before or after the routing header. 2443 */ 2444 switch (optname) { 2445 case IPV6_RTHDRDSTOPTS: 2446 newdest = &opt->ip6po_dest1; 2447 break; 2448 case IPV6_DSTOPTS: 2449 newdest = &opt->ip6po_dest2; 2450 break; 2451 } 2452 2453 /* turn off the previous option, then set the new option. */ 2454 ip6_clearpktopts(opt, optname); 2455 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2456 if (*newdest == NULL) 2457 return (ENOBUFS); 2458 memcpy(*newdest, dest, destlen); 2459 2460 break; 2461 } 2462 2463 case IPV6_RTHDR: 2464 { 2465 struct ip6_rthdr *rth; 2466 int rthlen; 2467 2468 if (len == 0) { 2469 ip6_clearpktopts(opt, IPV6_RTHDR); 2470 break; /* just remove the option */ 2471 } 2472 2473 /* message length validation */ 2474 if (len < sizeof(struct ip6_rthdr)) 2475 return (EINVAL); 2476 rth = (struct ip6_rthdr *)buf; 2477 rthlen = (rth->ip6r_len + 1) << 3; 2478 if (len != rthlen) 2479 return (EINVAL); 2480 2481 switch (rth->ip6r_type) { 2482 case IPV6_RTHDR_TYPE_0: 2483 if (rth->ip6r_len == 0) /* must contain one addr */ 2484 return (EINVAL); 2485 if (rth->ip6r_len % 2) /* length must be even */ 2486 return (EINVAL); 2487 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2488 return (EINVAL); 2489 break; 2490 default: 2491 return (EINVAL); /* not supported */ 2492 } 2493 /* turn off the previous option */ 2494 ip6_clearpktopts(opt, IPV6_RTHDR); 2495 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2496 if (opt->ip6po_rthdr == NULL) 2497 return (ENOBUFS); 2498 memcpy(opt->ip6po_rthdr, rth, rthlen); 2499 break; 2500 } 2501 2502 case IPV6_USE_MIN_MTU: 2503 if (len != sizeof(int)) 2504 return (EINVAL); 2505 minmtupolicy = *(int *)buf; 2506 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2507 minmtupolicy != IP6PO_MINMTU_DISABLE && 2508 minmtupolicy != IP6PO_MINMTU_ALL) { 2509 return (EINVAL); 2510 } 2511 opt->ip6po_minmtu = minmtupolicy; 2512 break; 2513 2514 case IPV6_DONTFRAG: 2515 if (len != sizeof(int)) 2516 return (EINVAL); 2517 2518 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2519 /* 2520 * we ignore this option for TCP sockets. 2521 * (RFC3542 leaves this case unspecified.) 2522 */ 2523 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2524 } else 2525 opt->ip6po_flags |= IP6PO_DONTFRAG; 2526 break; 2527 2528 default: 2529 return (ENOPROTOOPT); 2530 } /* end of switch */ 2531 2532 return (0); 2533 } 2534 2535 /* 2536 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2537 * packet to the input queue of a specified interface. 2538 */ 2539 void 2540 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2541 { 2542 struct mbuf *copym; 2543 struct ip6_hdr *ip6; 2544 2545 /* 2546 * Duplicate the packet. 2547 */ 2548 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 2549 if (copym == NULL) 2550 return; 2551 2552 /* 2553 * Make sure to deep-copy IPv6 header portion in case the data 2554 * is in an mbuf cluster, so that we can safely override the IPv6 2555 * header portion later. 2556 */ 2557 if ((copym->m_flags & M_EXT) != 0 || 2558 copym->m_len < sizeof(struct ip6_hdr)) { 2559 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2560 if (copym == NULL) 2561 return; 2562 } 2563 2564 #ifdef DIAGNOSTIC 2565 if (copym->m_len < sizeof(*ip6)) { 2566 m_freem(copym); 2567 return; 2568 } 2569 #endif 2570 2571 ip6 = mtod(copym, struct ip6_hdr *); 2572 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 2573 ip6->ip6_src.s6_addr16[1] = 0; 2574 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 2575 ip6->ip6_dst.s6_addr16[1] = 0; 2576 2577 if_input_local(ifp, copym, dst->sin6_family); 2578 } 2579 2580 /* 2581 * Chop IPv6 header off from the payload. 2582 */ 2583 int 2584 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2585 { 2586 struct mbuf *mh; 2587 struct ip6_hdr *ip6; 2588 2589 ip6 = mtod(m, struct ip6_hdr *); 2590 if (m->m_len > sizeof(*ip6)) { 2591 MGET(mh, M_DONTWAIT, MT_HEADER); 2592 if (mh == NULL) { 2593 m_freem(m); 2594 return ENOBUFS; 2595 } 2596 M_MOVE_PKTHDR(mh, m); 2597 m_align(mh, sizeof(*ip6)); 2598 m->m_len -= sizeof(*ip6); 2599 m->m_data += sizeof(*ip6); 2600 mh->m_next = m; 2601 m = mh; 2602 m->m_len = sizeof(*ip6); 2603 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2604 } 2605 exthdrs->ip6e_ip6 = m; 2606 return 0; 2607 } 2608 2609 u_int32_t 2610 ip6_randomid(void) 2611 { 2612 return idgen32(&ip6_id_ctx); 2613 } 2614 2615 void 2616 ip6_randomid_init(void) 2617 { 2618 idgen32_init(&ip6_id_ctx); 2619 } 2620 2621 /* 2622 * Compute significant parts of the IPv6 checksum pseudo-header 2623 * for use in a delayed TCP/UDP checksum calculation. 2624 */ 2625 static __inline u_int16_t __attribute__((__unused__)) 2626 in6_cksum_phdr(const struct in6_addr *src, const struct in6_addr *dst, 2627 u_int32_t len, u_int32_t nxt) 2628 { 2629 u_int32_t sum = 0; 2630 const u_int16_t *w; 2631 2632 w = (const u_int16_t *) src; 2633 sum += w[0]; 2634 if (!IN6_IS_SCOPE_EMBED(src)) 2635 sum += w[1]; 2636 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 2637 sum += w[6]; sum += w[7]; 2638 2639 w = (const u_int16_t *) dst; 2640 sum += w[0]; 2641 if (!IN6_IS_SCOPE_EMBED(dst)) 2642 sum += w[1]; 2643 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 2644 sum += w[6]; sum += w[7]; 2645 2646 sum += (u_int16_t)(len >> 16) + (u_int16_t)(len /*& 0xffff*/); 2647 2648 sum += (u_int16_t)(nxt >> 16) + (u_int16_t)(nxt /*& 0xffff*/); 2649 2650 sum = (u_int16_t)(sum >> 16) + (u_int16_t)(sum /*& 0xffff*/); 2651 2652 if (sum > 0xffff) 2653 sum -= 0xffff; 2654 2655 return (sum); 2656 } 2657 2658 /* 2659 * Process a delayed payload checksum calculation. 2660 */ 2661 void 2662 in6_delayed_cksum(struct mbuf *m, u_int8_t nxt) 2663 { 2664 int nxtp, offset; 2665 u_int16_t csum; 2666 2667 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxtp); 2668 if (offset <= 0 || nxtp != nxt) 2669 /* If the desired next protocol isn't found, punt. */ 2670 return; 2671 csum = (u_int16_t)(in6_cksum(m, 0, offset, m->m_pkthdr.len - offset)); 2672 2673 switch (nxt) { 2674 case IPPROTO_TCP: 2675 offset += offsetof(struct tcphdr, th_sum); 2676 break; 2677 2678 case IPPROTO_UDP: 2679 offset += offsetof(struct udphdr, uh_sum); 2680 if (csum == 0) 2681 csum = 0xffff; 2682 break; 2683 2684 case IPPROTO_ICMPV6: 2685 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 2686 break; 2687 } 2688 2689 if ((offset + sizeof(u_int16_t)) > m->m_len) 2690 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 2691 else 2692 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 2693 } 2694 2695 void 2696 in6_proto_cksum_out(struct mbuf *m, struct ifnet *ifp) 2697 { 2698 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); 2699 2700 /* some hw and in6_delayed_cksum need the pseudo header cksum */ 2701 if (m->m_pkthdr.csum_flags & 2702 (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT|M_ICMP_CSUM_OUT)) { 2703 int nxt, offset; 2704 u_int16_t csum; 2705 2706 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt); 2707 csum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 2708 htonl(m->m_pkthdr.len - offset), htonl(nxt)); 2709 if (nxt == IPPROTO_TCP) 2710 offset += offsetof(struct tcphdr, th_sum); 2711 else if (nxt == IPPROTO_UDP) 2712 offset += offsetof(struct udphdr, uh_sum); 2713 else if (nxt == IPPROTO_ICMPV6) 2714 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 2715 if ((offset + sizeof(u_int16_t)) > m->m_len) 2716 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 2717 else 2718 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 2719 } 2720 2721 if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) { 2722 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_TCPv6) || 2723 ip6->ip6_nxt != IPPROTO_TCP || 2724 ifp->if_bridgeidx != 0) { 2725 tcpstat_inc(tcps_outswcsum); 2726 in6_delayed_cksum(m, IPPROTO_TCP); 2727 m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_OUT; /* Clear */ 2728 } 2729 } else if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) { 2730 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_UDPv6) || 2731 ip6->ip6_nxt != IPPROTO_UDP || 2732 ifp->if_bridgeidx != 0) { 2733 udpstat_inc(udps_outswcsum); 2734 in6_delayed_cksum(m, IPPROTO_UDP); 2735 m->m_pkthdr.csum_flags &= ~M_UDP_CSUM_OUT; /* Clear */ 2736 } 2737 } else if (m->m_pkthdr.csum_flags & M_ICMP_CSUM_OUT) { 2738 in6_delayed_cksum(m, IPPROTO_ICMPV6); 2739 m->m_pkthdr.csum_flags &= ~M_ICMP_CSUM_OUT; /* Clear */ 2740 } 2741 } 2742 2743 #ifdef IPSEC 2744 int 2745 ip6_output_ipsec_lookup(struct mbuf *m, struct inpcb *inp, struct tdb **tdbout) 2746 { 2747 struct tdb *tdb; 2748 struct m_tag *mtag; 2749 struct tdb_ident *tdbi; 2750 int error; 2751 2752 /* 2753 * Check if there was an outgoing SA bound to the flow 2754 * from a transport protocol. 2755 */ 2756 2757 /* Do we have any pending SAs to apply ? */ 2758 error = ipsp_spd_lookup(m, AF_INET6, sizeof(struct ip6_hdr), 2759 IPSP_DIRECTION_OUT, NULL, inp, &tdb, NULL); 2760 if (error || tdb == NULL) { 2761 *tdbout = NULL; 2762 return error; 2763 } 2764 /* Loop detection */ 2765 for (mtag = m_tag_first(m); mtag != NULL; mtag = m_tag_next(m, mtag)) { 2766 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE) 2767 continue; 2768 tdbi = (struct tdb_ident *)(mtag + 1); 2769 if (tdbi->spi == tdb->tdb_spi && 2770 tdbi->proto == tdb->tdb_sproto && 2771 tdbi->rdomain == tdb->tdb_rdomain && 2772 !memcmp(&tdbi->dst, &tdb->tdb_dst, 2773 sizeof(union sockaddr_union))) { 2774 /* no IPsec needed */ 2775 tdb_unref(tdb); 2776 *tdbout = NULL; 2777 return 0; 2778 } 2779 } 2780 *tdbout = tdb; 2781 return 0; 2782 } 2783 2784 int 2785 ip6_output_ipsec_pmtu_update(struct tdb *tdb, struct route_in6 *ro, 2786 struct in6_addr *dst, int ifidx, int rtableid, int transportmode) 2787 { 2788 struct rtentry *rt = NULL; 2789 int rt_mtucloned = 0; 2790 2791 /* Find a host route to store the mtu in */ 2792 if (ro != NULL) 2793 rt = ro->ro_rt; 2794 /* but don't add a PMTU route for transport mode SAs */ 2795 if (transportmode) 2796 rt = NULL; 2797 else if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0) { 2798 struct sockaddr_in6 sin6; 2799 int error; 2800 2801 memset(&sin6, 0, sizeof(sin6)); 2802 sin6.sin6_family = AF_INET6; 2803 sin6.sin6_len = sizeof(sin6); 2804 sin6.sin6_addr = *dst; 2805 sin6.sin6_scope_id = in6_addr2scopeid(ifidx, dst); 2806 error = in6_embedscope(dst, &sin6, NULL); 2807 if (error) { 2808 /* should be impossible */ 2809 return error; 2810 } 2811 rt = icmp6_mtudisc_clone(&sin6, rtableid, 1); 2812 rt_mtucloned = 1; 2813 } 2814 DPRINTF("spi %08x mtu %d rt %p cloned %d", 2815 ntohl(tdb->tdb_spi), tdb->tdb_mtu, rt, rt_mtucloned); 2816 if (rt != NULL) { 2817 rt->rt_mtu = tdb->tdb_mtu; 2818 if (ro != NULL && ro->ro_rt != NULL) { 2819 rtfree(ro->ro_rt); 2820 ro->ro_rt = rtalloc(sin6tosa(&ro->ro_dst), RT_RESOLVE, 2821 rtableid); 2822 } 2823 if (rt_mtucloned) 2824 rtfree(rt); 2825 } 2826 return 0; 2827 } 2828 2829 int 2830 ip6_output_ipsec_send(struct tdb *tdb, struct mbuf *m, struct route_in6 *ro, 2831 int tunalready, int fwd) 2832 { 2833 #if NPF > 0 2834 struct ifnet *encif; 2835 #endif 2836 struct ip6_hdr *ip6; 2837 struct in6_addr dst; 2838 int error, ifidx, rtableid; 2839 2840 #if NPF > 0 2841 /* 2842 * Packet filter 2843 */ 2844 if ((encif = enc_getif(tdb->tdb_rdomain, tdb->tdb_tap)) == NULL || 2845 pf_test(AF_INET6, fwd ? PF_FWD : PF_OUT, encif, &m) != PF_PASS) { 2846 m_freem(m); 2847 return EACCES; 2848 } 2849 if (m == NULL) 2850 return 0; 2851 /* 2852 * PF_TAG_REROUTE handling or not... 2853 * Packet is entering IPsec so the routing is 2854 * already overruled by the IPsec policy. 2855 * Until now the change was not reconsidered. 2856 * What's the behaviour? 2857 */ 2858 in6_proto_cksum_out(m, encif); 2859 #endif 2860 2861 /* Check if we are allowed to fragment */ 2862 ip6 = mtod(m, struct ip6_hdr *); 2863 dst = ip6->ip6_dst; 2864 ifidx = m->m_pkthdr.ph_ifidx; 2865 rtableid = m->m_pkthdr.ph_rtableid; 2866 if (ip_mtudisc && tdb->tdb_mtu && 2867 sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) > tdb->tdb_mtu && 2868 tdb->tdb_mtutimeout > gettime()) { 2869 int transportmode; 2870 2871 transportmode = (tdb->tdb_dst.sa.sa_family == AF_INET6) && 2872 (IN6_ARE_ADDR_EQUAL(&tdb->tdb_dst.sin6.sin6_addr, &dst)); 2873 error = ip6_output_ipsec_pmtu_update(tdb, ro, &dst, ifidx, 2874 rtableid, transportmode); 2875 if (error) { 2876 ipsecstat_inc(ipsec_odrops); 2877 tdbstat_inc(tdb, tdb_odrops); 2878 m_freem(m); 2879 return error; 2880 } 2881 ipsec_adjust_mtu(m, tdb->tdb_mtu); 2882 m_freem(m); 2883 return EMSGSIZE; 2884 } 2885 /* propagate don't fragment for v6-over-v6 */ 2886 if (ip_mtudisc) 2887 SET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT); 2888 2889 /* 2890 * Clear these -- they'll be set in the recursive invocation 2891 * as needed. 2892 */ 2893 m->m_flags &= ~(M_BCAST | M_MCAST); 2894 2895 /* Callee frees mbuf */ 2896 KERNEL_LOCK(); 2897 error = ipsp_process_packet(m, tdb, AF_INET6, tunalready); 2898 KERNEL_UNLOCK(); 2899 if (error) { 2900 ipsecstat_inc(ipsec_odrops); 2901 tdbstat_inc(tdb, tdb_odrops); 2902 } 2903 if (ip_mtudisc && error == EMSGSIZE) 2904 ip6_output_ipsec_pmtu_update(tdb, ro, &dst, ifidx, rtableid, 0); 2905 return error; 2906 } 2907 #endif /* IPSEC */ 2908