1 /* $OpenBSD: ip6_output.c,v 1.258 2021/07/08 15:13:14 bluhm Exp $ */ 2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1988, 1990, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 62 */ 63 64 #include "pf.h" 65 66 #include <sys/param.h> 67 #include <sys/malloc.h> 68 #include <sys/mbuf.h> 69 #include <sys/errno.h> 70 #include <sys/protosw.h> 71 #include <sys/socket.h> 72 #include <sys/socketvar.h> 73 #include <sys/proc.h> 74 #include <sys/systm.h> 75 76 #include <net/if.h> 77 #include <net/if_var.h> 78 #include <net/if_enc.h> 79 #include <net/route.h> 80 81 #include <netinet/in.h> 82 #include <netinet/ip.h> 83 #include <netinet/in_pcb.h> 84 #include <netinet/udp.h> 85 #include <netinet/tcp.h> 86 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp_timer.h> 89 #include <netinet/tcp_var.h> 90 #include <netinet/udp_var.h> 91 92 #include <netinet6/in6_var.h> 93 #include <netinet/ip6.h> 94 #include <netinet/icmp6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/nd6.h> 97 #include <netinet6/ip6protosw.h> 98 99 #include <crypto/idgen.h> 100 101 #if NPF > 0 102 #include <net/pfvar.h> 103 #endif 104 105 #ifdef IPSEC 106 #include <netinet/ip_ipsp.h> 107 #include <netinet/ip_ah.h> 108 #include <netinet/ip_esp.h> 109 110 #ifdef ENCDEBUG 111 #define DPRINTF(fmt, args...) \ 112 do { \ 113 if (encdebug) \ 114 printf("%s: " fmt "\n", __func__, ## args); \ 115 } while (0) 116 #else 117 #define DPRINTF(fmt, args...) \ 118 do { } while (0) 119 #endif 120 #endif /* IPSEC */ 121 122 struct ip6_exthdrs { 123 struct mbuf *ip6e_ip6; 124 struct mbuf *ip6e_hbh; 125 struct mbuf *ip6e_dest1; 126 struct mbuf *ip6e_rthdr; 127 struct mbuf *ip6e_dest2; 128 }; 129 130 int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, int, int); 131 int ip6_getpcbopt(struct ip6_pktopts *, int, struct mbuf *); 132 int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, int, int, int); 133 int ip6_setmoptions(int, struct ip6_moptions **, struct mbuf *, unsigned int); 134 int ip6_getmoptions(int, struct ip6_moptions *, struct mbuf *); 135 int ip6_copyexthdr(struct mbuf **, caddr_t, int); 136 int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 137 struct ip6_frag **); 138 int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 139 int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 140 int ip6_getpmtu(struct rtentry *, struct ifnet *, u_long *); 141 int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *); 142 static __inline u_int16_t __attribute__((__unused__)) 143 in6_cksum_phdr(const struct in6_addr *, const struct in6_addr *, 144 u_int32_t, u_int32_t); 145 void in6_delayed_cksum(struct mbuf *, u_int8_t); 146 147 /* Context for non-repeating IDs */ 148 struct idgen32_ctx ip6_id_ctx; 149 150 /* 151 * IP6 output. The packet in mbuf chain m contains a skeletal IP6 152 * header (with pri, len, nxt, hlim, src, dst). 153 * This function may modify ver and hlim only. 154 * The mbuf chain containing the packet will be freed. 155 * The mbuf opt, if present, will not be freed. 156 * 157 * type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and 158 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one, 159 * which is rt_mtu. 160 */ 161 int 162 ip6_output(struct mbuf *m, struct ip6_pktopts *opt, struct route_in6 *ro, 163 int flags, struct ip6_moptions *im6o, struct inpcb *inp) 164 { 165 struct ip6_hdr *ip6; 166 struct ifnet *ifp = NULL; 167 struct mbuf_list fml; 168 int hlen, tlen; 169 struct route_in6 ip6route; 170 struct rtentry *rt = NULL; 171 struct sockaddr_in6 *dst, dstsock; 172 int error = 0; 173 u_long mtu; 174 int dontfrag; 175 u_int16_t src_scope, dst_scope; 176 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0; 177 struct ip6_exthdrs exthdrs; 178 struct in6_addr finaldst; 179 struct route_in6 *ro_pmtu = NULL; 180 int hdrsplit = 0; 181 u_int8_t sproto = 0; 182 u_char nextproto; 183 #ifdef IPSEC 184 struct tdb *tdb = NULL; 185 #endif /* IPSEC */ 186 187 #ifdef IPSEC 188 if (inp && (inp->inp_flags & INP_IPV6) == 0) 189 panic("%s: IPv4 pcb is passed", __func__); 190 #endif /* IPSEC */ 191 192 ip6 = mtod(m, struct ip6_hdr *); 193 finaldst = ip6->ip6_dst; 194 195 #define MAKE_EXTHDR(hp, mp) \ 196 do { \ 197 if (hp) { \ 198 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 199 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 200 ((eh)->ip6e_len + 1) << 3); \ 201 if (error) \ 202 goto freehdrs; \ 203 } \ 204 } while (0) 205 206 bzero(&exthdrs, sizeof(exthdrs)); 207 208 if (opt) { 209 /* Hop-by-Hop options header */ 210 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh); 211 /* Destination options header(1st part) */ 212 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1); 213 /* Routing header */ 214 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr); 215 /* Destination options header(2nd part) */ 216 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2); 217 } 218 219 #ifdef IPSEC 220 if (ipsec_in_use || inp) { 221 tdb = ip6_output_ipsec_lookup(m, &error, inp); 222 if (error != 0) { 223 /* 224 * -EINVAL is used to indicate that the packet should 225 * be silently dropped, typically because we've asked 226 * key management for an SA. 227 */ 228 if (error == -EINVAL) /* Should silently drop packet */ 229 error = 0; 230 231 goto freehdrs; 232 } 233 } 234 #endif /* IPSEC */ 235 236 /* 237 * Calculate the total length of the extension header chain. 238 * Keep the length of the unfragmentable part for fragmentation. 239 */ 240 optlen = 0; 241 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len; 242 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len; 243 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len; 244 unfragpartlen = optlen + sizeof(struct ip6_hdr); 245 /* NOTE: we don't add AH/ESP length here. do that later. */ 246 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len; 247 248 /* 249 * If we need IPsec, or there is at least one extension header, 250 * separate IP6 header from the payload. 251 */ 252 if ((sproto || optlen) && !hdrsplit) { 253 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 254 m = NULL; 255 goto freehdrs; 256 } 257 m = exthdrs.ip6e_ip6; 258 hdrsplit++; 259 } 260 261 /* adjust pointer */ 262 ip6 = mtod(m, struct ip6_hdr *); 263 264 /* adjust mbuf packet header length */ 265 m->m_pkthdr.len += optlen; 266 plen = m->m_pkthdr.len - sizeof(*ip6); 267 268 /* If this is a jumbo payload, insert a jumbo payload option. */ 269 if (plen > IPV6_MAXPACKET) { 270 if (!hdrsplit) { 271 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 272 m = NULL; 273 goto freehdrs; 274 } 275 m = exthdrs.ip6e_ip6; 276 hdrsplit++; 277 } 278 /* adjust pointer */ 279 ip6 = mtod(m, struct ip6_hdr *); 280 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 281 goto freehdrs; 282 ip6->ip6_plen = 0; 283 } else 284 ip6->ip6_plen = htons(plen); 285 286 /* 287 * Concatenate headers and fill in next header fields. 288 * Here we have, on "m" 289 * IPv6 payload 290 * and we insert headers accordingly. Finally, we should be getting: 291 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload] 292 * 293 * during the header composing process, "m" points to IPv6 header. 294 * "mprev" points to an extension header prior to esp. 295 */ 296 { 297 u_char *nexthdrp = &ip6->ip6_nxt; 298 struct mbuf *mprev = m; 299 300 /* 301 * we treat dest2 specially. this makes IPsec processing 302 * much easier. the goal here is to make mprev point the 303 * mbuf prior to dest2. 304 * 305 * result: IPv6 dest2 payload 306 * m and mprev will point to IPv6 header. 307 */ 308 if (exthdrs.ip6e_dest2) { 309 if (!hdrsplit) 310 panic("%s: assumption failed: hdr not split", 311 __func__); 312 exthdrs.ip6e_dest2->m_next = m->m_next; 313 m->m_next = exthdrs.ip6e_dest2; 314 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 315 ip6->ip6_nxt = IPPROTO_DSTOPTS; 316 } 317 318 #define MAKE_CHAIN(m, mp, p, i)\ 319 do {\ 320 if (m) {\ 321 if (!hdrsplit) \ 322 panic("assumption failed: hdr not split"); \ 323 *mtod((m), u_char *) = *(p);\ 324 *(p) = (i);\ 325 p = mtod((m), u_char *);\ 326 (m)->m_next = (mp)->m_next;\ 327 (mp)->m_next = (m);\ 328 (mp) = (m);\ 329 }\ 330 } while (0) 331 /* 332 * result: IPv6 hbh dest1 rthdr dest2 payload 333 * m will point to IPv6 header. mprev will point to the 334 * extension header prior to dest2 (rthdr in the above case). 335 */ 336 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 337 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 338 IPPROTO_DSTOPTS); 339 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 340 IPPROTO_ROUTING); 341 } 342 343 /* 344 * If there is a routing header, replace the destination address field 345 * with the first hop of the routing header. 346 */ 347 if (exthdrs.ip6e_rthdr) { 348 struct ip6_rthdr *rh; 349 struct ip6_rthdr0 *rh0; 350 struct in6_addr *addr; 351 352 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr, 353 struct ip6_rthdr *)); 354 switch (rh->ip6r_type) { 355 case IPV6_RTHDR_TYPE_0: 356 rh0 = (struct ip6_rthdr0 *)rh; 357 addr = (struct in6_addr *)(rh0 + 1); 358 ip6->ip6_dst = addr[0]; 359 bcopy(&addr[1], &addr[0], 360 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)); 361 addr[rh0->ip6r0_segleft - 1] = finaldst; 362 break; 363 default: /* is it possible? */ 364 error = EINVAL; 365 goto bad; 366 } 367 } 368 369 /* Source address validation */ 370 if (!(flags & IPV6_UNSPECSRC) && 371 IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) { 372 /* 373 * XXX: we can probably assume validation in the caller, but 374 * we explicitly check the address here for safety. 375 */ 376 error = EOPNOTSUPP; 377 ip6stat_inc(ip6s_badscope); 378 goto bad; 379 } 380 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 381 error = EOPNOTSUPP; 382 ip6stat_inc(ip6s_badscope); 383 goto bad; 384 } 385 386 ip6stat_inc(ip6s_localout); 387 388 /* 389 * Route packet. 390 */ 391 #if NPF > 0 392 reroute: 393 #endif 394 395 /* initialize cached route */ 396 if (ro == NULL) { 397 ro = &ip6route; 398 bzero((caddr_t)ro, sizeof(*ro)); 399 } 400 ro_pmtu = ro; 401 if (opt && opt->ip6po_rthdr) 402 ro = &opt->ip6po_route; 403 dst = &ro->ro_dst; 404 405 /* 406 * if specified, try to fill in the traffic class field. 407 * do not override if a non-zero value is already set. 408 * we check the diffserv field and the ecn field separately. 409 */ 410 if (opt && opt->ip6po_tclass >= 0) { 411 int mask = 0; 412 413 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 414 mask |= 0xfc; 415 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 416 mask |= 0x03; 417 if (mask != 0) 418 ip6->ip6_flow |= 419 htonl((opt->ip6po_tclass & mask) << 20); 420 } 421 422 /* fill in or override the hop limit field, if necessary. */ 423 if (opt && opt->ip6po_hlim != -1) 424 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 425 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 426 if (im6o != NULL) 427 ip6->ip6_hlim = im6o->im6o_hlim; 428 else 429 ip6->ip6_hlim = ip6_defmcasthlim; 430 } 431 432 #ifdef IPSEC 433 if (tdb) { 434 /* 435 * XXX what should we do if ip6_hlim == 0 and the 436 * packet gets tunneled? 437 */ 438 /* 439 * if we are source-routing, do not attempt to tunnel the 440 * packet just because ip6_dst is different from what tdb has. 441 * XXX 442 */ 443 error = ip6_output_ipsec_send(tdb, m, ro, 444 exthdrs.ip6e_rthdr ? 1 : 0, 0); 445 goto done; 446 } 447 #endif /* IPSEC */ 448 449 bzero(&dstsock, sizeof(dstsock)); 450 dstsock.sin6_family = AF_INET6; 451 dstsock.sin6_addr = ip6->ip6_dst; 452 dstsock.sin6_len = sizeof(dstsock); 453 ro->ro_tableid = m->m_pkthdr.ph_rtableid; 454 455 if (IN6_IS_ADDR_MULTICAST(&dstsock.sin6_addr)) { 456 struct in6_pktinfo *pi = NULL; 457 458 /* 459 * If the caller specify the outgoing interface 460 * explicitly, use it. 461 */ 462 if (opt != NULL && (pi = opt->ip6po_pktinfo) != NULL) 463 ifp = if_get(pi->ipi6_ifindex); 464 465 if (ifp == NULL && im6o != NULL) 466 ifp = if_get(im6o->im6o_ifidx); 467 } 468 469 if (ifp == NULL) { 470 rt = in6_selectroute(&dstsock, opt, ro, ro->ro_tableid); 471 if (rt == NULL) { 472 ip6stat_inc(ip6s_noroute); 473 error = EHOSTUNREACH; 474 goto bad; 475 } 476 if (ISSET(rt->rt_flags, RTF_LOCAL)) 477 ifp = if_get(rtable_loindex(m->m_pkthdr.ph_rtableid)); 478 else 479 ifp = if_get(rt->rt_ifidx); 480 /* 481 * We aren't using rtisvalid() here because the UP/DOWN state 482 * machine is broken with some Ethernet drivers like em(4). 483 * As a result we might try to use an invalid cached route 484 * entry while an interface is being detached. 485 */ 486 if (ifp == NULL) { 487 ip6stat_inc(ip6s_noroute); 488 error = EHOSTUNREACH; 489 goto bad; 490 } 491 } else { 492 *dst = dstsock; 493 } 494 495 if (rt && (rt->rt_flags & RTF_GATEWAY) && 496 !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) 497 dst = satosin6(rt->rt_gateway); 498 499 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 500 /* Unicast */ 501 502 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */ 503 } else { 504 /* Multicast */ 505 506 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 507 508 /* 509 * Confirm that the outgoing interface supports multicast. 510 */ 511 if ((ifp->if_flags & IFF_MULTICAST) == 0) { 512 ip6stat_inc(ip6s_noroute); 513 error = ENETUNREACH; 514 goto bad; 515 } 516 517 if ((im6o == NULL || im6o->im6o_loop) && 518 in6_hasmulti(&ip6->ip6_dst, ifp)) { 519 /* 520 * If we belong to the destination multicast group 521 * on the outgoing interface, and the caller did not 522 * forbid loopback, loop back a copy. 523 * Can't defer TCP/UDP checksumming, do the 524 * computation now. 525 */ 526 in6_proto_cksum_out(m, NULL); 527 ip6_mloopback(ifp, m, dst); 528 } 529 #ifdef MROUTING 530 else { 531 /* 532 * If we are acting as a multicast router, perform 533 * multicast forwarding as if the packet had just 534 * arrived on the interface to which we are about 535 * to send. The multicast forwarding function 536 * recursively calls this function, using the 537 * IPV6_FORWARDING flag to prevent infinite recursion. 538 * 539 * Multicasts that are looped back by ip6_mloopback(), 540 * above, will be forwarded by the ip6_input() routine, 541 * if necessary. 542 */ 543 if (ip6_mforwarding && ip6_mrouter[ifp->if_rdomain] && 544 (flags & IPV6_FORWARDING) == 0) { 545 if (ip6_mforward(ip6, ifp, m) != 0) { 546 m_freem(m); 547 goto done; 548 } 549 } 550 } 551 #endif 552 /* 553 * Multicasts with a hoplimit of zero may be looped back, 554 * above, but must not be transmitted on a network. 555 * Also, multicasts addressed to the loopback interface 556 * are not sent -- the above call to ip6_mloopback() will 557 * loop back a copy if this host actually belongs to the 558 * destination group on the loopback interface. 559 */ 560 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 561 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 562 m_freem(m); 563 goto done; 564 } 565 } 566 567 /* 568 * If this packet is going through a loopback interface we won't 569 * be able to restore its scope ID using the interface index. 570 */ 571 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) { 572 if (ifp->if_flags & IFF_LOOPBACK) 573 src_scope = ip6->ip6_src.s6_addr16[1]; 574 ip6->ip6_src.s6_addr16[1] = 0; 575 } 576 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) { 577 if (ifp->if_flags & IFF_LOOPBACK) 578 dst_scope = ip6->ip6_dst.s6_addr16[1]; 579 ip6->ip6_dst.s6_addr16[1] = 0; 580 } 581 582 /* Determine path MTU. */ 583 if ((error = ip6_getpmtu(ro_pmtu->ro_rt, ifp, &mtu)) != 0) 584 goto bad; 585 586 /* 587 * The caller of this function may specify to use the minimum MTU 588 * in some cases. 589 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 590 * setting. The logic is a bit complicated; by default, unicast 591 * packets will follow path MTU while multicast packets will be sent at 592 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 593 * including unicast ones will be sent at the minimum MTU. Multicast 594 * packets will always be sent at the minimum MTU unless 595 * IP6PO_MINMTU_DISABLE is explicitly specified. 596 * See RFC 3542 for more details. 597 */ 598 if (mtu > IPV6_MMTU) { 599 if ((flags & IPV6_MINMTU)) 600 mtu = IPV6_MMTU; 601 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 602 mtu = IPV6_MMTU; 603 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && (opt == NULL || 604 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 605 mtu = IPV6_MMTU; 606 } 607 } 608 609 /* 610 * If the outgoing packet contains a hop-by-hop options header, 611 * it must be examined and processed even by the source node. 612 * (RFC 2460, section 4.) 613 */ 614 if (exthdrs.ip6e_hbh) { 615 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 616 u_int32_t rtalert; /* returned value is ignored */ 617 u_int32_t plen = 0; /* no more than 1 jumbo payload option! */ 618 619 m->m_pkthdr.ph_ifidx = ifp->if_index; 620 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 621 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 622 &rtalert, &plen) < 0) { 623 /* m was already freed at this point */ 624 error = EINVAL;/* better error? */ 625 goto done; 626 } 627 m->m_pkthdr.ph_ifidx = 0; 628 } 629 630 #if NPF > 0 631 if (pf_test(AF_INET6, PF_OUT, ifp, &m) != PF_PASS) { 632 error = EACCES; 633 m_freem(m); 634 goto done; 635 } 636 if (m == NULL) 637 goto done; 638 ip6 = mtod(m, struct ip6_hdr *); 639 if ((m->m_pkthdr.pf.flags & (PF_TAG_REROUTE | PF_TAG_GENERATED)) == 640 (PF_TAG_REROUTE | PF_TAG_GENERATED)) { 641 /* already rerun the route lookup, go on */ 642 m->m_pkthdr.pf.flags &= ~(PF_TAG_GENERATED | PF_TAG_REROUTE); 643 } else if (m->m_pkthdr.pf.flags & PF_TAG_REROUTE) { 644 /* tag as generated to skip over pf_test on rerun */ 645 m->m_pkthdr.pf.flags |= PF_TAG_GENERATED; 646 finaldst = ip6->ip6_dst; 647 ro = NULL; 648 if_put(ifp); /* drop reference since destination changed */ 649 ifp = NULL; 650 goto reroute; 651 } 652 #endif 653 654 /* 655 * If the packet is not going on the wire it can be destinated 656 * to any local address. In this case do not clear its scopes 657 * to let ip6_input() find a matching local route. 658 */ 659 if (ifp->if_flags & IFF_LOOPBACK) { 660 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 661 ip6->ip6_src.s6_addr16[1] = src_scope; 662 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 663 ip6->ip6_dst.s6_addr16[1] = dst_scope; 664 } 665 666 in6_proto_cksum_out(m, ifp); 667 668 /* 669 * Send the packet to the outgoing interface. 670 * If necessary, do IPv6 fragmentation before sending. 671 * 672 * the logic here is rather complex: 673 * 1: normal case (dontfrag == 0) 674 * 1-a: send as is if tlen <= path mtu 675 * 1-b: fragment if tlen > path mtu 676 * 677 * 2: if user asks us not to fragment (dontfrag == 1) 678 * 2-a: send as is if tlen <= interface mtu 679 * 2-b: error if tlen > interface mtu 680 */ 681 tlen = m->m_pkthdr.len; 682 683 if (ISSET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT)) { 684 CLR(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT); 685 dontfrag = 1; 686 } else if (opt && ISSET(opt->ip6po_flags, IP6PO_DONTFRAG)) 687 dontfrag = 1; 688 else 689 dontfrag = 0; 690 if (dontfrag && tlen > ifp->if_mtu) { /* case 2-b */ 691 #ifdef IPSEC 692 if (ip_mtudisc) 693 ipsec_adjust_mtu(m, mtu); 694 #endif 695 error = EMSGSIZE; 696 goto bad; 697 } 698 699 /* 700 * transmit packet without fragmentation 701 */ 702 if (dontfrag || (tlen <= mtu)) { /* case 1-a and 2-a */ 703 error = ifp->if_output(ifp, m, sin6tosa(dst), ro->ro_rt); 704 goto done; 705 } 706 707 /* 708 * try to fragment the packet. case 1-b 709 */ 710 if (mtu < IPV6_MMTU) { 711 /* path MTU cannot be less than IPV6_MMTU */ 712 error = EMSGSIZE; 713 goto bad; 714 } else if (ip6->ip6_plen == 0) { 715 /* jumbo payload cannot be fragmented */ 716 error = EMSGSIZE; 717 goto bad; 718 } 719 720 /* 721 * Too large for the destination or interface; 722 * fragment if possible. 723 * Must be able to put at least 8 bytes per fragment. 724 */ 725 hlen = unfragpartlen; 726 if (mtu > IPV6_MAXPACKET) 727 mtu = IPV6_MAXPACKET; 728 729 /* 730 * Change the next header field of the last header in the 731 * unfragmentable part. 732 */ 733 if (exthdrs.ip6e_rthdr) { 734 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 735 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 736 } else if (exthdrs.ip6e_dest1) { 737 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 738 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 739 } else if (exthdrs.ip6e_hbh) { 740 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 741 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 742 } else { 743 nextproto = ip6->ip6_nxt; 744 ip6->ip6_nxt = IPPROTO_FRAGMENT; 745 } 746 747 error = ip6_fragment(m, &fml, hlen, nextproto, mtu); 748 if (error) 749 goto done; 750 751 while ((m = ml_dequeue(&fml)) != NULL) { 752 error = ifp->if_output(ifp, m, sin6tosa(dst), ro->ro_rt); 753 if (error) 754 break; 755 } 756 if (error) 757 ml_purge(&fml); 758 else 759 ip6stat_inc(ip6s_fragmented); 760 761 done: 762 if_put(ifp); 763 if (ro == &ip6route && ro->ro_rt) { 764 rtfree(ro->ro_rt); 765 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) { 766 rtfree(ro_pmtu->ro_rt); 767 } 768 return (error); 769 770 freehdrs: 771 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */ 772 m_freem(exthdrs.ip6e_dest1); 773 m_freem(exthdrs.ip6e_rthdr); 774 m_freem(exthdrs.ip6e_dest2); 775 /* FALLTHROUGH */ 776 bad: 777 m_freem(m); 778 goto done; 779 } 780 781 int 782 ip6_fragment(struct mbuf *m0, struct mbuf_list *fml, int hlen, 783 u_char nextproto, u_long mtu) 784 { 785 struct mbuf *m, *m_frgpart; 786 struct ip6_hdr *mhip6; 787 struct ip6_frag *ip6f; 788 u_int32_t id; 789 int tlen, len, off; 790 int error; 791 792 ml_init(fml); 793 794 tlen = m0->m_pkthdr.len; 795 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7; 796 if (len < 8) { 797 error = EMSGSIZE; 798 goto bad; 799 } 800 801 id = htonl(ip6_randomid()); 802 803 /* 804 * Loop through length of segment after first fragment, 805 * make new header and copy data of each part and link onto chain. 806 */ 807 for (off = hlen; off < tlen; off += len) { 808 struct mbuf *mlast; 809 810 MGETHDR(m, M_DONTWAIT, MT_HEADER); 811 if (m == NULL) { 812 error = ENOBUFS; 813 goto bad; 814 } 815 ml_enqueue(fml, m); 816 if ((error = m_dup_pkthdr(m, m0, M_DONTWAIT)) != 0) 817 goto bad; 818 m->m_data += max_linkhdr; 819 mhip6 = mtod(m, struct ip6_hdr *); 820 *mhip6 = *mtod(m0, struct ip6_hdr *); 821 m->m_len = sizeof(*mhip6); 822 if ((error = ip6_insertfraghdr(m0, m, hlen, &ip6f)) != 0) 823 goto bad; 824 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7)); 825 if (off + len >= tlen) 826 len = tlen - off; 827 else 828 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 829 mhip6->ip6_plen = htons((u_int16_t)(len + hlen + 830 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 831 if ((m_frgpart = m_copym(m0, off, len, M_DONTWAIT)) == NULL) { 832 error = ENOBUFS; 833 goto bad; 834 } 835 for (mlast = m; mlast->m_next; mlast = mlast->m_next) 836 ; 837 mlast->m_next = m_frgpart; 838 m->m_pkthdr.len = len + hlen + sizeof(*ip6f); 839 ip6f->ip6f_reserved = 0; 840 ip6f->ip6f_ident = id; 841 ip6f->ip6f_nxt = nextproto; 842 } 843 844 ip6stat_add(ip6s_ofragments, ml_len(fml)); 845 m_freem(m0); 846 return (0); 847 848 bad: 849 ip6stat_inc(ip6s_odropped); 850 ml_purge(fml); 851 m_freem(m0); 852 return (error); 853 } 854 855 int 856 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 857 { 858 struct mbuf *m; 859 860 if (hlen > MCLBYTES) 861 return (ENOBUFS); /* XXX */ 862 863 MGET(m, M_DONTWAIT, MT_DATA); 864 if (!m) 865 return (ENOBUFS); 866 867 if (hlen > MLEN) { 868 MCLGET(m, M_DONTWAIT); 869 if ((m->m_flags & M_EXT) == 0) { 870 m_free(m); 871 return (ENOBUFS); 872 } 873 } 874 m->m_len = hlen; 875 if (hdr) 876 memcpy(mtod(m, caddr_t), hdr, hlen); 877 878 *mp = m; 879 return (0); 880 } 881 882 /* 883 * Insert jumbo payload option. 884 */ 885 int 886 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 887 { 888 struct mbuf *mopt; 889 u_int8_t *optbuf; 890 u_int32_t v; 891 892 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 893 894 /* 895 * If there is no hop-by-hop options header, allocate new one. 896 * If there is one but it doesn't have enough space to store the 897 * jumbo payload option, allocate a cluster to store the whole options. 898 * Otherwise, use it to store the options. 899 */ 900 if (exthdrs->ip6e_hbh == 0) { 901 MGET(mopt, M_DONTWAIT, MT_DATA); 902 if (mopt == NULL) 903 return (ENOBUFS); 904 mopt->m_len = JUMBOOPTLEN; 905 optbuf = mtod(mopt, u_int8_t *); 906 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 907 exthdrs->ip6e_hbh = mopt; 908 } else { 909 struct ip6_hbh *hbh; 910 911 mopt = exthdrs->ip6e_hbh; 912 if (m_trailingspace(mopt) < JUMBOOPTLEN) { 913 /* 914 * XXX assumption: 915 * - exthdrs->ip6e_hbh is not referenced from places 916 * other than exthdrs. 917 * - exthdrs->ip6e_hbh is not an mbuf chain. 918 */ 919 int oldoptlen = mopt->m_len; 920 struct mbuf *n; 921 922 /* 923 * XXX: give up if the whole (new) hbh header does 924 * not fit even in an mbuf cluster. 925 */ 926 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 927 return (ENOBUFS); 928 929 /* 930 * As a consequence, we must always prepare a cluster 931 * at this point. 932 */ 933 MGET(n, M_DONTWAIT, MT_DATA); 934 if (n) { 935 MCLGET(n, M_DONTWAIT); 936 if ((n->m_flags & M_EXT) == 0) { 937 m_freem(n); 938 n = NULL; 939 } 940 } 941 if (!n) 942 return (ENOBUFS); 943 n->m_len = oldoptlen + JUMBOOPTLEN; 944 memcpy(mtod(n, caddr_t), mtod(mopt, caddr_t), 945 oldoptlen); 946 optbuf = mtod(n, u_int8_t *) + oldoptlen; 947 m_freem(mopt); 948 mopt = exthdrs->ip6e_hbh = n; 949 } else { 950 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len; 951 mopt->m_len += JUMBOOPTLEN; 952 } 953 optbuf[0] = IP6OPT_PADN; 954 optbuf[1] = 0; 955 956 /* 957 * Adjust the header length according to the pad and 958 * the jumbo payload option. 959 */ 960 hbh = mtod(mopt, struct ip6_hbh *); 961 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 962 } 963 964 /* fill in the option. */ 965 optbuf[2] = IP6OPT_JUMBO; 966 optbuf[3] = 4; 967 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 968 memcpy(&optbuf[4], &v, sizeof(u_int32_t)); 969 970 /* finally, adjust the packet header length */ 971 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 972 973 return (0); 974 #undef JUMBOOPTLEN 975 } 976 977 /* 978 * Insert fragment header and copy unfragmentable header portions. 979 */ 980 int 981 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 982 struct ip6_frag **frghdrp) 983 { 984 struct mbuf *n, *mlast; 985 986 if (hlen > sizeof(struct ip6_hdr)) { 987 n = m_copym(m0, sizeof(struct ip6_hdr), 988 hlen - sizeof(struct ip6_hdr), M_DONTWAIT); 989 if (n == NULL) 990 return (ENOBUFS); 991 m->m_next = n; 992 } else 993 n = m; 994 995 /* Search for the last mbuf of unfragmentable part. */ 996 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 997 ; 998 999 if ((mlast->m_flags & M_EXT) == 0 && 1000 m_trailingspace(mlast) >= sizeof(struct ip6_frag)) { 1001 /* use the trailing space of the last mbuf for fragment hdr */ 1002 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1003 mlast->m_len); 1004 mlast->m_len += sizeof(struct ip6_frag); 1005 m->m_pkthdr.len += sizeof(struct ip6_frag); 1006 } else { 1007 /* allocate a new mbuf for the fragment header */ 1008 struct mbuf *mfrg; 1009 1010 MGET(mfrg, M_DONTWAIT, MT_DATA); 1011 if (mfrg == NULL) 1012 return (ENOBUFS); 1013 mfrg->m_len = sizeof(struct ip6_frag); 1014 *frghdrp = mtod(mfrg, struct ip6_frag *); 1015 mlast->m_next = mfrg; 1016 } 1017 1018 return (0); 1019 } 1020 1021 int 1022 ip6_getpmtu(struct rtentry *rt, struct ifnet *ifp, u_long *mtup) 1023 { 1024 u_int32_t mtu = 0; 1025 int error = 0; 1026 1027 if (rt != NULL) { 1028 mtu = rt->rt_mtu; 1029 if (mtu == 0) 1030 mtu = ifp->if_mtu; 1031 else if (mtu < IPV6_MMTU) { 1032 /* RFC8021 IPv6 Atomic Fragments Considered Harmful */ 1033 mtu = IPV6_MMTU; 1034 } else if (mtu > ifp->if_mtu) { 1035 /* 1036 * The MTU on the route is larger than the MTU on 1037 * the interface! This shouldn't happen, unless the 1038 * MTU of the interface has been changed after the 1039 * interface was brought up. Change the MTU in the 1040 * route to match the interface MTU (as long as the 1041 * field isn't locked). 1042 */ 1043 mtu = ifp->if_mtu; 1044 if (!(rt->rt_locks & RTV_MTU)) 1045 rt->rt_mtu = mtu; 1046 } 1047 } else { 1048 mtu = ifp->if_mtu; 1049 } 1050 1051 *mtup = mtu; 1052 return (error); 1053 } 1054 1055 /* 1056 * IP6 socket option processing. 1057 */ 1058 int 1059 ip6_ctloutput(int op, struct socket *so, int level, int optname, 1060 struct mbuf *m) 1061 { 1062 int privileged, optdatalen, uproto; 1063 void *optdata; 1064 struct inpcb *inp = sotoinpcb(so); 1065 int error, optval; 1066 struct proc *p = curproc; /* For IPsec and rdomain */ 1067 u_int rtableid, rtid = 0; 1068 1069 error = optval = 0; 1070 1071 privileged = (inp->inp_socket->so_state & SS_PRIV); 1072 uproto = (int)so->so_proto->pr_protocol; 1073 1074 if (level != IPPROTO_IPV6) 1075 return (EINVAL); 1076 1077 rtableid = p->p_p->ps_rtableid; 1078 1079 switch (op) { 1080 case PRCO_SETOPT: 1081 switch (optname) { 1082 /* 1083 * Use of some Hop-by-Hop options or some 1084 * Destination options, might require special 1085 * privilege. That is, normal applications 1086 * (without special privilege) might be forbidden 1087 * from setting certain options in outgoing packets, 1088 * and might never see certain options in received 1089 * packets. [RFC 2292 Section 6] 1090 * KAME specific note: 1091 * KAME prevents non-privileged users from sending or 1092 * receiving ANY hbh/dst options in order to avoid 1093 * overhead of parsing options in the kernel. 1094 */ 1095 case IPV6_RECVHOPOPTS: 1096 case IPV6_RECVDSTOPTS: 1097 if (!privileged) { 1098 error = EPERM; 1099 break; 1100 } 1101 /* FALLTHROUGH */ 1102 case IPV6_UNICAST_HOPS: 1103 case IPV6_MINHOPCOUNT: 1104 case IPV6_HOPLIMIT: 1105 1106 case IPV6_RECVPKTINFO: 1107 case IPV6_RECVHOPLIMIT: 1108 case IPV6_RECVRTHDR: 1109 case IPV6_RECVPATHMTU: 1110 case IPV6_RECVTCLASS: 1111 case IPV6_V6ONLY: 1112 case IPV6_AUTOFLOWLABEL: 1113 case IPV6_RECVDSTPORT: 1114 if (m == NULL || m->m_len != sizeof(int)) { 1115 error = EINVAL; 1116 break; 1117 } 1118 optval = *mtod(m, int *); 1119 switch (optname) { 1120 1121 case IPV6_UNICAST_HOPS: 1122 if (optval < -1 || optval >= 256) 1123 error = EINVAL; 1124 else { 1125 /* -1 = kernel default */ 1126 inp->inp_hops = optval; 1127 } 1128 break; 1129 1130 case IPV6_MINHOPCOUNT: 1131 if (optval < 0 || optval > 255) 1132 error = EINVAL; 1133 else 1134 inp->inp_ip6_minhlim = optval; 1135 break; 1136 1137 #define OPTSET(bit) \ 1138 do { \ 1139 if (optval) \ 1140 inp->inp_flags |= (bit); \ 1141 else \ 1142 inp->inp_flags &= ~(bit); \ 1143 } while (/*CONSTCOND*/ 0) 1144 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1145 1146 case IPV6_RECVPKTINFO: 1147 OPTSET(IN6P_PKTINFO); 1148 break; 1149 1150 case IPV6_HOPLIMIT: 1151 { 1152 struct ip6_pktopts **optp; 1153 1154 optp = &inp->inp_outputopts6; 1155 error = ip6_pcbopt(IPV6_HOPLIMIT, 1156 (u_char *)&optval, sizeof(optval), optp, 1157 privileged, uproto); 1158 break; 1159 } 1160 1161 case IPV6_RECVHOPLIMIT: 1162 OPTSET(IN6P_HOPLIMIT); 1163 break; 1164 1165 case IPV6_RECVHOPOPTS: 1166 OPTSET(IN6P_HOPOPTS); 1167 break; 1168 1169 case IPV6_RECVDSTOPTS: 1170 OPTSET(IN6P_DSTOPTS); 1171 break; 1172 1173 case IPV6_RECVRTHDR: 1174 OPTSET(IN6P_RTHDR); 1175 break; 1176 1177 case IPV6_RECVPATHMTU: 1178 /* 1179 * We ignore this option for TCP 1180 * sockets. 1181 * (RFC3542 leaves this case 1182 * unspecified.) 1183 */ 1184 if (uproto != IPPROTO_TCP) 1185 OPTSET(IN6P_MTU); 1186 break; 1187 1188 case IPV6_V6ONLY: 1189 /* 1190 * make setsockopt(IPV6_V6ONLY) 1191 * available only prior to bind(2). 1192 * see ipng mailing list, Jun 22 2001. 1193 */ 1194 if (inp->inp_lport || !IN6_IS_ADDR_UNSPECIFIED( 1195 &inp->inp_laddr6)) { 1196 error = EINVAL; 1197 break; 1198 } 1199 /* No support for IPv4-mapped addresses. */ 1200 if (!optval) 1201 error = EINVAL; 1202 else 1203 error = 0; 1204 break; 1205 case IPV6_RECVTCLASS: 1206 OPTSET(IN6P_TCLASS); 1207 break; 1208 case IPV6_AUTOFLOWLABEL: 1209 OPTSET(IN6P_AUTOFLOWLABEL); 1210 break; 1211 1212 case IPV6_RECVDSTPORT: 1213 OPTSET(IN6P_RECVDSTPORT); 1214 break; 1215 } 1216 break; 1217 1218 case IPV6_TCLASS: 1219 case IPV6_DONTFRAG: 1220 case IPV6_USE_MIN_MTU: 1221 if (m == NULL || m->m_len != sizeof(optval)) { 1222 error = EINVAL; 1223 break; 1224 } 1225 optval = *mtod(m, int *); 1226 { 1227 struct ip6_pktopts **optp; 1228 optp = &inp->inp_outputopts6; 1229 error = ip6_pcbopt(optname, (u_char *)&optval, 1230 sizeof(optval), optp, privileged, uproto); 1231 break; 1232 } 1233 1234 case IPV6_PKTINFO: 1235 case IPV6_HOPOPTS: 1236 case IPV6_RTHDR: 1237 case IPV6_DSTOPTS: 1238 case IPV6_RTHDRDSTOPTS: 1239 { 1240 /* new advanced API (RFC3542) */ 1241 u_char *optbuf; 1242 int optbuflen; 1243 struct ip6_pktopts **optp; 1244 1245 if (m && m->m_next) { 1246 error = EINVAL; /* XXX */ 1247 break; 1248 } 1249 if (m) { 1250 optbuf = mtod(m, u_char *); 1251 optbuflen = m->m_len; 1252 } else { 1253 optbuf = NULL; 1254 optbuflen = 0; 1255 } 1256 optp = &inp->inp_outputopts6; 1257 error = ip6_pcbopt(optname, optbuf, optbuflen, optp, 1258 privileged, uproto); 1259 break; 1260 } 1261 #undef OPTSET 1262 1263 case IPV6_MULTICAST_IF: 1264 case IPV6_MULTICAST_HOPS: 1265 case IPV6_MULTICAST_LOOP: 1266 case IPV6_JOIN_GROUP: 1267 case IPV6_LEAVE_GROUP: 1268 error = ip6_setmoptions(optname, 1269 &inp->inp_moptions6, 1270 m, inp->inp_rtableid); 1271 break; 1272 1273 case IPV6_PORTRANGE: 1274 if (m == NULL || m->m_len != sizeof(int)) { 1275 error = EINVAL; 1276 break; 1277 } 1278 optval = *mtod(m, int *); 1279 1280 switch (optval) { 1281 case IPV6_PORTRANGE_DEFAULT: 1282 inp->inp_flags &= ~(IN6P_LOWPORT); 1283 inp->inp_flags &= ~(IN6P_HIGHPORT); 1284 break; 1285 1286 case IPV6_PORTRANGE_HIGH: 1287 inp->inp_flags &= ~(IN6P_LOWPORT); 1288 inp->inp_flags |= IN6P_HIGHPORT; 1289 break; 1290 1291 case IPV6_PORTRANGE_LOW: 1292 inp->inp_flags &= ~(IN6P_HIGHPORT); 1293 inp->inp_flags |= IN6P_LOWPORT; 1294 break; 1295 1296 default: 1297 error = EINVAL; 1298 break; 1299 } 1300 break; 1301 1302 case IPSEC6_OUTSA: 1303 error = EINVAL; 1304 break; 1305 1306 case IPV6_AUTH_LEVEL: 1307 case IPV6_ESP_TRANS_LEVEL: 1308 case IPV6_ESP_NETWORK_LEVEL: 1309 case IPV6_IPCOMP_LEVEL: 1310 #ifndef IPSEC 1311 error = EINVAL; 1312 #else 1313 if (m == NULL || m->m_len != sizeof(int)) { 1314 error = EINVAL; 1315 break; 1316 } 1317 optval = *mtod(m, int *); 1318 1319 if (optval < IPSEC_LEVEL_BYPASS || 1320 optval > IPSEC_LEVEL_UNIQUE) { 1321 error = EINVAL; 1322 break; 1323 } 1324 1325 switch (optname) { 1326 case IPV6_AUTH_LEVEL: 1327 if (optval < IPSEC_AUTH_LEVEL_DEFAULT && 1328 suser(p)) { 1329 error = EACCES; 1330 break; 1331 } 1332 inp->inp_seclevel[SL_AUTH] = optval; 1333 break; 1334 1335 case IPV6_ESP_TRANS_LEVEL: 1336 if (optval < IPSEC_ESP_TRANS_LEVEL_DEFAULT && 1337 suser(p)) { 1338 error = EACCES; 1339 break; 1340 } 1341 inp->inp_seclevel[SL_ESP_TRANS] = optval; 1342 break; 1343 1344 case IPV6_ESP_NETWORK_LEVEL: 1345 if (optval < IPSEC_ESP_NETWORK_LEVEL_DEFAULT && 1346 suser(p)) { 1347 error = EACCES; 1348 break; 1349 } 1350 inp->inp_seclevel[SL_ESP_NETWORK] = optval; 1351 break; 1352 1353 case IPV6_IPCOMP_LEVEL: 1354 if (optval < IPSEC_IPCOMP_LEVEL_DEFAULT && 1355 suser(p)) { 1356 error = EACCES; 1357 break; 1358 } 1359 inp->inp_seclevel[SL_IPCOMP] = optval; 1360 break; 1361 } 1362 #endif 1363 break; 1364 case SO_RTABLE: 1365 if (m == NULL || m->m_len < sizeof(u_int)) { 1366 error = EINVAL; 1367 break; 1368 } 1369 rtid = *mtod(m, u_int *); 1370 if (inp->inp_rtableid == rtid) 1371 break; 1372 /* needs privileges to switch when already set */ 1373 if (rtableid != rtid && rtableid != 0 && 1374 (error = suser(p)) != 0) 1375 break; 1376 /* table must exist */ 1377 if (!rtable_exists(rtid)) { 1378 error = EINVAL; 1379 break; 1380 } 1381 if (inp->inp_lport) { 1382 error = EBUSY; 1383 break; 1384 } 1385 inp->inp_rtableid = rtid; 1386 in_pcbrehash(inp); 1387 break; 1388 case IPV6_PIPEX: 1389 if (m != NULL && m->m_len == sizeof(int)) 1390 inp->inp_pipex = *mtod(m, int *); 1391 else 1392 error = EINVAL; 1393 break; 1394 1395 default: 1396 error = ENOPROTOOPT; 1397 break; 1398 } 1399 break; 1400 1401 case PRCO_GETOPT: 1402 switch (optname) { 1403 1404 case IPV6_RECVHOPOPTS: 1405 case IPV6_RECVDSTOPTS: 1406 case IPV6_UNICAST_HOPS: 1407 case IPV6_MINHOPCOUNT: 1408 case IPV6_RECVPKTINFO: 1409 case IPV6_RECVHOPLIMIT: 1410 case IPV6_RECVRTHDR: 1411 case IPV6_RECVPATHMTU: 1412 1413 case IPV6_V6ONLY: 1414 case IPV6_PORTRANGE: 1415 case IPV6_RECVTCLASS: 1416 case IPV6_AUTOFLOWLABEL: 1417 case IPV6_RECVDSTPORT: 1418 switch (optname) { 1419 1420 case IPV6_RECVHOPOPTS: 1421 optval = OPTBIT(IN6P_HOPOPTS); 1422 break; 1423 1424 case IPV6_RECVDSTOPTS: 1425 optval = OPTBIT(IN6P_DSTOPTS); 1426 break; 1427 1428 case IPV6_UNICAST_HOPS: 1429 optval = inp->inp_hops; 1430 break; 1431 1432 case IPV6_MINHOPCOUNT: 1433 optval = inp->inp_ip6_minhlim; 1434 break; 1435 1436 case IPV6_RECVPKTINFO: 1437 optval = OPTBIT(IN6P_PKTINFO); 1438 break; 1439 1440 case IPV6_RECVHOPLIMIT: 1441 optval = OPTBIT(IN6P_HOPLIMIT); 1442 break; 1443 1444 case IPV6_RECVRTHDR: 1445 optval = OPTBIT(IN6P_RTHDR); 1446 break; 1447 1448 case IPV6_RECVPATHMTU: 1449 optval = OPTBIT(IN6P_MTU); 1450 break; 1451 1452 case IPV6_V6ONLY: 1453 optval = 1; 1454 break; 1455 1456 case IPV6_PORTRANGE: 1457 { 1458 int flags; 1459 flags = inp->inp_flags; 1460 if (flags & IN6P_HIGHPORT) 1461 optval = IPV6_PORTRANGE_HIGH; 1462 else if (flags & IN6P_LOWPORT) 1463 optval = IPV6_PORTRANGE_LOW; 1464 else 1465 optval = 0; 1466 break; 1467 } 1468 case IPV6_RECVTCLASS: 1469 optval = OPTBIT(IN6P_TCLASS); 1470 break; 1471 1472 case IPV6_AUTOFLOWLABEL: 1473 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 1474 break; 1475 1476 case IPV6_RECVDSTPORT: 1477 optval = OPTBIT(IN6P_RECVDSTPORT); 1478 break; 1479 } 1480 if (error) 1481 break; 1482 m->m_len = sizeof(int); 1483 *mtod(m, int *) = optval; 1484 break; 1485 1486 case IPV6_PATHMTU: 1487 { 1488 u_long pmtu = 0; 1489 struct ip6_mtuinfo mtuinfo; 1490 struct ifnet *ifp; 1491 struct rtentry *rt; 1492 1493 if (!(so->so_state & SS_ISCONNECTED)) 1494 return (ENOTCONN); 1495 1496 rt = in_pcbrtentry(inp); 1497 if (!rtisvalid(rt)) 1498 return (EHOSTUNREACH); 1499 1500 ifp = if_get(rt->rt_ifidx); 1501 if (ifp == NULL) 1502 return (EHOSTUNREACH); 1503 /* 1504 * XXX: we dot not consider the case of source 1505 * routing, or optional information to specify 1506 * the outgoing interface. 1507 */ 1508 error = ip6_getpmtu(rt, ifp, &pmtu); 1509 if_put(ifp); 1510 if (error) 1511 break; 1512 if (pmtu > IPV6_MAXPACKET) 1513 pmtu = IPV6_MAXPACKET; 1514 1515 bzero(&mtuinfo, sizeof(mtuinfo)); 1516 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 1517 optdata = (void *)&mtuinfo; 1518 optdatalen = sizeof(mtuinfo); 1519 if (optdatalen > MCLBYTES) 1520 return (EMSGSIZE); /* XXX */ 1521 if (optdatalen > MLEN) 1522 MCLGET(m, M_WAIT); 1523 m->m_len = optdatalen; 1524 bcopy(optdata, mtod(m, void *), optdatalen); 1525 break; 1526 } 1527 1528 case IPV6_PKTINFO: 1529 case IPV6_HOPOPTS: 1530 case IPV6_RTHDR: 1531 case IPV6_DSTOPTS: 1532 case IPV6_RTHDRDSTOPTS: 1533 case IPV6_TCLASS: 1534 case IPV6_DONTFRAG: 1535 case IPV6_USE_MIN_MTU: 1536 error = ip6_getpcbopt(inp->inp_outputopts6, 1537 optname, m); 1538 break; 1539 1540 case IPV6_MULTICAST_IF: 1541 case IPV6_MULTICAST_HOPS: 1542 case IPV6_MULTICAST_LOOP: 1543 case IPV6_JOIN_GROUP: 1544 case IPV6_LEAVE_GROUP: 1545 error = ip6_getmoptions(optname, 1546 inp->inp_moptions6, m); 1547 break; 1548 1549 case IPSEC6_OUTSA: 1550 error = EINVAL; 1551 break; 1552 1553 case IPV6_AUTH_LEVEL: 1554 case IPV6_ESP_TRANS_LEVEL: 1555 case IPV6_ESP_NETWORK_LEVEL: 1556 case IPV6_IPCOMP_LEVEL: 1557 #ifndef IPSEC 1558 m->m_len = sizeof(int); 1559 *mtod(m, int *) = IPSEC_LEVEL_NONE; 1560 #else 1561 m->m_len = sizeof(int); 1562 switch (optname) { 1563 case IPV6_AUTH_LEVEL: 1564 optval = inp->inp_seclevel[SL_AUTH]; 1565 break; 1566 1567 case IPV6_ESP_TRANS_LEVEL: 1568 optval = 1569 inp->inp_seclevel[SL_ESP_TRANS]; 1570 break; 1571 1572 case IPV6_ESP_NETWORK_LEVEL: 1573 optval = 1574 inp->inp_seclevel[SL_ESP_NETWORK]; 1575 break; 1576 1577 case IPV6_IPCOMP_LEVEL: 1578 optval = inp->inp_seclevel[SL_IPCOMP]; 1579 break; 1580 } 1581 *mtod(m, int *) = optval; 1582 #endif 1583 break; 1584 case SO_RTABLE: 1585 m->m_len = sizeof(u_int); 1586 *mtod(m, u_int *) = inp->inp_rtableid; 1587 break; 1588 case IPV6_PIPEX: 1589 m->m_len = sizeof(int); 1590 *mtod(m, int *) = inp->inp_pipex; 1591 break; 1592 1593 default: 1594 error = ENOPROTOOPT; 1595 break; 1596 } 1597 break; 1598 } 1599 return (error); 1600 } 1601 1602 int 1603 ip6_raw_ctloutput(int op, struct socket *so, int level, int optname, 1604 struct mbuf *m) 1605 { 1606 int error = 0, optval; 1607 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 1608 struct inpcb *inp = sotoinpcb(so); 1609 1610 if (level != IPPROTO_IPV6) 1611 return (EINVAL); 1612 1613 switch (optname) { 1614 case IPV6_CHECKSUM: 1615 /* 1616 * For ICMPv6 sockets, no modification allowed for checksum 1617 * offset, permit "no change" values to help existing apps. 1618 * 1619 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 1620 * for an ICMPv6 socket will fail." 1621 * The current behavior does not meet RFC3542. 1622 */ 1623 switch (op) { 1624 case PRCO_SETOPT: 1625 if (m == NULL || m->m_len != sizeof(int)) { 1626 error = EINVAL; 1627 break; 1628 } 1629 optval = *mtod(m, int *); 1630 if (optval < -1 || 1631 (optval > 0 && (optval % 2) != 0)) { 1632 /* 1633 * The API assumes non-negative even offset 1634 * values or -1 as a special value. 1635 */ 1636 error = EINVAL; 1637 } else if (so->so_proto->pr_protocol == 1638 IPPROTO_ICMPV6) { 1639 if (optval != icmp6off) 1640 error = EINVAL; 1641 } else 1642 inp->inp_cksum6 = optval; 1643 break; 1644 1645 case PRCO_GETOPT: 1646 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 1647 optval = icmp6off; 1648 else 1649 optval = inp->inp_cksum6; 1650 1651 m->m_len = sizeof(int); 1652 *mtod(m, int *) = optval; 1653 break; 1654 1655 default: 1656 error = EINVAL; 1657 break; 1658 } 1659 break; 1660 1661 default: 1662 error = ENOPROTOOPT; 1663 break; 1664 } 1665 1666 return (error); 1667 } 1668 1669 /* 1670 * initialize ip6_pktopts. beware that there are non-zero default values in 1671 * the struct. 1672 */ 1673 void 1674 ip6_initpktopts(struct ip6_pktopts *opt) 1675 { 1676 bzero(opt, sizeof(*opt)); 1677 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 1678 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 1679 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 1680 } 1681 1682 int 1683 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 1684 int priv, int uproto) 1685 { 1686 struct ip6_pktopts *opt; 1687 1688 if (*pktopt == NULL) { 1689 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 1690 M_WAITOK); 1691 ip6_initpktopts(*pktopt); 1692 } 1693 opt = *pktopt; 1694 1695 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, uproto)); 1696 } 1697 1698 int 1699 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf *m) 1700 { 1701 void *optdata = NULL; 1702 int optdatalen = 0; 1703 struct ip6_ext *ip6e; 1704 int error = 0; 1705 struct in6_pktinfo null_pktinfo; 1706 int deftclass = 0, on; 1707 int defminmtu = IP6PO_MINMTU_MCASTONLY; 1708 1709 switch (optname) { 1710 case IPV6_PKTINFO: 1711 if (pktopt && pktopt->ip6po_pktinfo) 1712 optdata = (void *)pktopt->ip6po_pktinfo; 1713 else { 1714 /* XXX: we don't have to do this every time... */ 1715 bzero(&null_pktinfo, sizeof(null_pktinfo)); 1716 optdata = (void *)&null_pktinfo; 1717 } 1718 optdatalen = sizeof(struct in6_pktinfo); 1719 break; 1720 case IPV6_TCLASS: 1721 if (pktopt && pktopt->ip6po_tclass >= 0) 1722 optdata = (void *)&pktopt->ip6po_tclass; 1723 else 1724 optdata = (void *)&deftclass; 1725 optdatalen = sizeof(int); 1726 break; 1727 case IPV6_HOPOPTS: 1728 if (pktopt && pktopt->ip6po_hbh) { 1729 optdata = (void *)pktopt->ip6po_hbh; 1730 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh; 1731 optdatalen = (ip6e->ip6e_len + 1) << 3; 1732 } 1733 break; 1734 case IPV6_RTHDR: 1735 if (pktopt && pktopt->ip6po_rthdr) { 1736 optdata = (void *)pktopt->ip6po_rthdr; 1737 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr; 1738 optdatalen = (ip6e->ip6e_len + 1) << 3; 1739 } 1740 break; 1741 case IPV6_RTHDRDSTOPTS: 1742 if (pktopt && pktopt->ip6po_dest1) { 1743 optdata = (void *)pktopt->ip6po_dest1; 1744 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1; 1745 optdatalen = (ip6e->ip6e_len + 1) << 3; 1746 } 1747 break; 1748 case IPV6_DSTOPTS: 1749 if (pktopt && pktopt->ip6po_dest2) { 1750 optdata = (void *)pktopt->ip6po_dest2; 1751 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2; 1752 optdatalen = (ip6e->ip6e_len + 1) << 3; 1753 } 1754 break; 1755 case IPV6_USE_MIN_MTU: 1756 if (pktopt) 1757 optdata = (void *)&pktopt->ip6po_minmtu; 1758 else 1759 optdata = (void *)&defminmtu; 1760 optdatalen = sizeof(int); 1761 break; 1762 case IPV6_DONTFRAG: 1763 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 1764 on = 1; 1765 else 1766 on = 0; 1767 optdata = (void *)&on; 1768 optdatalen = sizeof(on); 1769 break; 1770 default: /* should not happen */ 1771 #ifdef DIAGNOSTIC 1772 panic("%s: unexpected option", __func__); 1773 #endif 1774 return (ENOPROTOOPT); 1775 } 1776 1777 if (optdatalen > MCLBYTES) 1778 return (EMSGSIZE); /* XXX */ 1779 if (optdatalen > MLEN) 1780 MCLGET(m, M_WAIT); 1781 m->m_len = optdatalen; 1782 if (optdatalen) 1783 bcopy(optdata, mtod(m, void *), optdatalen); 1784 1785 return (error); 1786 } 1787 1788 void 1789 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 1790 { 1791 if (optname == -1 || optname == IPV6_PKTINFO) { 1792 if (pktopt->ip6po_pktinfo) 1793 free(pktopt->ip6po_pktinfo, M_IP6OPT, 0); 1794 pktopt->ip6po_pktinfo = NULL; 1795 } 1796 if (optname == -1 || optname == IPV6_HOPLIMIT) 1797 pktopt->ip6po_hlim = -1; 1798 if (optname == -1 || optname == IPV6_TCLASS) 1799 pktopt->ip6po_tclass = -1; 1800 if (optname == -1 || optname == IPV6_HOPOPTS) { 1801 if (pktopt->ip6po_hbh) 1802 free(pktopt->ip6po_hbh, M_IP6OPT, 0); 1803 pktopt->ip6po_hbh = NULL; 1804 } 1805 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 1806 if (pktopt->ip6po_dest1) 1807 free(pktopt->ip6po_dest1, M_IP6OPT, 0); 1808 pktopt->ip6po_dest1 = NULL; 1809 } 1810 if (optname == -1 || optname == IPV6_RTHDR) { 1811 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 1812 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT, 0); 1813 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 1814 if (pktopt->ip6po_route.ro_rt) { 1815 rtfree(pktopt->ip6po_route.ro_rt); 1816 pktopt->ip6po_route.ro_rt = NULL; 1817 } 1818 } 1819 if (optname == -1 || optname == IPV6_DSTOPTS) { 1820 if (pktopt->ip6po_dest2) 1821 free(pktopt->ip6po_dest2, M_IP6OPT, 0); 1822 pktopt->ip6po_dest2 = NULL; 1823 } 1824 } 1825 1826 #define PKTOPT_EXTHDRCPY(type) \ 1827 do {\ 1828 if (src->type) {\ 1829 size_t hlen;\ 1830 hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 1831 dst->type = malloc(hlen, M_IP6OPT, M_NOWAIT);\ 1832 if (dst->type == NULL)\ 1833 goto bad;\ 1834 memcpy(dst->type, src->type, hlen);\ 1835 }\ 1836 } while (/*CONSTCOND*/ 0) 1837 1838 int 1839 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src) 1840 { 1841 dst->ip6po_hlim = src->ip6po_hlim; 1842 dst->ip6po_tclass = src->ip6po_tclass; 1843 dst->ip6po_flags = src->ip6po_flags; 1844 if (src->ip6po_pktinfo) { 1845 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 1846 M_IP6OPT, M_NOWAIT); 1847 if (dst->ip6po_pktinfo == NULL) 1848 goto bad; 1849 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 1850 } 1851 PKTOPT_EXTHDRCPY(ip6po_hbh); 1852 PKTOPT_EXTHDRCPY(ip6po_dest1); 1853 PKTOPT_EXTHDRCPY(ip6po_dest2); 1854 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 1855 return (0); 1856 1857 bad: 1858 ip6_clearpktopts(dst, -1); 1859 return (ENOBUFS); 1860 } 1861 #undef PKTOPT_EXTHDRCPY 1862 1863 void 1864 ip6_freepcbopts(struct ip6_pktopts *pktopt) 1865 { 1866 if (pktopt == NULL) 1867 return; 1868 1869 ip6_clearpktopts(pktopt, -1); 1870 1871 free(pktopt, M_IP6OPT, 0); 1872 } 1873 1874 /* 1875 * Set the IP6 multicast options in response to user setsockopt(). 1876 */ 1877 int 1878 ip6_setmoptions(int optname, struct ip6_moptions **im6op, struct mbuf *m, 1879 unsigned int rtableid) 1880 { 1881 int error = 0; 1882 u_int loop, ifindex; 1883 struct ipv6_mreq *mreq; 1884 struct ifnet *ifp; 1885 struct ip6_moptions *im6o = *im6op; 1886 struct in6_multi_mship *imm; 1887 struct proc *p = curproc; /* XXX */ 1888 1889 if (im6o == NULL) { 1890 /* 1891 * No multicast option buffer attached to the pcb; 1892 * allocate one and initialize to default values. 1893 */ 1894 im6o = malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK); 1895 if (im6o == NULL) 1896 return (ENOBUFS); 1897 *im6op = im6o; 1898 im6o->im6o_ifidx = 0; 1899 im6o->im6o_hlim = ip6_defmcasthlim; 1900 im6o->im6o_loop = IPV6_DEFAULT_MULTICAST_LOOP; 1901 LIST_INIT(&im6o->im6o_memberships); 1902 } 1903 1904 switch (optname) { 1905 1906 case IPV6_MULTICAST_IF: 1907 /* 1908 * Select the interface for outgoing multicast packets. 1909 */ 1910 if (m == NULL || m->m_len != sizeof(u_int)) { 1911 error = EINVAL; 1912 break; 1913 } 1914 memcpy(&ifindex, mtod(m, u_int *), sizeof(ifindex)); 1915 if (ifindex != 0) { 1916 ifp = if_get(ifindex); 1917 if (ifp == NULL) { 1918 error = ENXIO; /* XXX EINVAL? */ 1919 break; 1920 } 1921 if (ifp->if_rdomain != rtable_l2(rtableid) || 1922 (ifp->if_flags & IFF_MULTICAST) == 0) { 1923 error = EADDRNOTAVAIL; 1924 if_put(ifp); 1925 break; 1926 } 1927 if_put(ifp); 1928 } 1929 im6o->im6o_ifidx = ifindex; 1930 break; 1931 1932 case IPV6_MULTICAST_HOPS: 1933 { 1934 /* 1935 * Set the IP6 hoplimit for outgoing multicast packets. 1936 */ 1937 int optval; 1938 if (m == NULL || m->m_len != sizeof(int)) { 1939 error = EINVAL; 1940 break; 1941 } 1942 memcpy(&optval, mtod(m, u_int *), sizeof(optval)); 1943 if (optval < -1 || optval >= 256) 1944 error = EINVAL; 1945 else if (optval == -1) 1946 im6o->im6o_hlim = ip6_defmcasthlim; 1947 else 1948 im6o->im6o_hlim = optval; 1949 break; 1950 } 1951 1952 case IPV6_MULTICAST_LOOP: 1953 /* 1954 * Set the loopback flag for outgoing multicast packets. 1955 * Must be zero or one. 1956 */ 1957 if (m == NULL || m->m_len != sizeof(u_int)) { 1958 error = EINVAL; 1959 break; 1960 } 1961 memcpy(&loop, mtod(m, u_int *), sizeof(loop)); 1962 if (loop > 1) { 1963 error = EINVAL; 1964 break; 1965 } 1966 im6o->im6o_loop = loop; 1967 break; 1968 1969 case IPV6_JOIN_GROUP: 1970 /* 1971 * Add a multicast group membership. 1972 * Group must be a valid IP6 multicast address. 1973 */ 1974 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 1975 error = EINVAL; 1976 break; 1977 } 1978 mreq = mtod(m, struct ipv6_mreq *); 1979 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 1980 /* 1981 * We use the unspecified address to specify to accept 1982 * all multicast addresses. Only super user is allowed 1983 * to do this. 1984 */ 1985 if (suser(p)) 1986 { 1987 error = EACCES; 1988 break; 1989 } 1990 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 1991 error = EINVAL; 1992 break; 1993 } 1994 1995 /* 1996 * If no interface was explicitly specified, choose an 1997 * appropriate one according to the given multicast address. 1998 */ 1999 if (mreq->ipv6mr_interface == 0) { 2000 struct rtentry *rt; 2001 struct sockaddr_in6 dst; 2002 2003 memset(&dst, 0, sizeof(dst)); 2004 dst.sin6_len = sizeof(dst); 2005 dst.sin6_family = AF_INET6; 2006 dst.sin6_addr = mreq->ipv6mr_multiaddr; 2007 rt = rtalloc(sin6tosa(&dst), RT_RESOLVE, rtableid); 2008 if (rt == NULL) { 2009 error = EADDRNOTAVAIL; 2010 break; 2011 } 2012 ifp = if_get(rt->rt_ifidx); 2013 rtfree(rt); 2014 } else { 2015 /* 2016 * If the interface is specified, validate it. 2017 */ 2018 ifp = if_get(mreq->ipv6mr_interface); 2019 if (ifp == NULL) { 2020 error = ENXIO; /* XXX EINVAL? */ 2021 break; 2022 } 2023 } 2024 2025 /* 2026 * See if we found an interface, and confirm that it 2027 * supports multicast 2028 */ 2029 if (ifp == NULL || ifp->if_rdomain != rtable_l2(rtableid) || 2030 (ifp->if_flags & IFF_MULTICAST) == 0) { 2031 if_put(ifp); 2032 error = EADDRNOTAVAIL; 2033 break; 2034 } 2035 /* 2036 * Put interface index into the multicast address, 2037 * if the address has link/interface-local scope. 2038 */ 2039 if (IN6_IS_SCOPE_EMBED(&mreq->ipv6mr_multiaddr)) { 2040 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2041 htons(ifp->if_index); 2042 } 2043 /* 2044 * See if the membership already exists. 2045 */ 2046 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) 2047 if (imm->i6mm_maddr->in6m_ifidx == ifp->if_index && 2048 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2049 &mreq->ipv6mr_multiaddr)) 2050 break; 2051 if (imm != NULL) { 2052 if_put(ifp); 2053 error = EADDRINUSE; 2054 break; 2055 } 2056 /* 2057 * Everything looks good; add a new record to the multicast 2058 * address list for the given interface. 2059 */ 2060 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error); 2061 if_put(ifp); 2062 if (!imm) 2063 break; 2064 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain); 2065 break; 2066 2067 case IPV6_LEAVE_GROUP: 2068 /* 2069 * Drop a multicast group membership. 2070 * Group must be a valid IP6 multicast address. 2071 */ 2072 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) { 2073 error = EINVAL; 2074 break; 2075 } 2076 mreq = mtod(m, struct ipv6_mreq *); 2077 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) { 2078 if (suser(p)) { 2079 error = EACCES; 2080 break; 2081 } 2082 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) { 2083 error = EINVAL; 2084 break; 2085 } 2086 2087 /* 2088 * Put interface index into the multicast address, 2089 * if the address has link-local scope. 2090 */ 2091 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) { 2092 mreq->ipv6mr_multiaddr.s6_addr16[1] = 2093 htons(mreq->ipv6mr_interface); 2094 } 2095 2096 /* 2097 * If an interface address was specified, get a pointer 2098 * to its ifnet structure. 2099 */ 2100 if (mreq->ipv6mr_interface == 0) 2101 ifp = NULL; 2102 else { 2103 ifp = if_get(mreq->ipv6mr_interface); 2104 if (ifp == NULL) { 2105 error = ENXIO; /* XXX EINVAL? */ 2106 break; 2107 } 2108 } 2109 2110 /* 2111 * Find the membership in the membership list. 2112 */ 2113 LIST_FOREACH(imm, &im6o->im6o_memberships, i6mm_chain) { 2114 if ((ifp == NULL || 2115 imm->i6mm_maddr->in6m_ifidx == ifp->if_index) && 2116 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr, 2117 &mreq->ipv6mr_multiaddr)) 2118 break; 2119 } 2120 2121 if_put(ifp); 2122 2123 if (imm == NULL) { 2124 /* Unable to resolve interface */ 2125 error = EADDRNOTAVAIL; 2126 break; 2127 } 2128 /* 2129 * Give up the multicast address record to which the 2130 * membership points. 2131 */ 2132 LIST_REMOVE(imm, i6mm_chain); 2133 in6_leavegroup(imm); 2134 break; 2135 2136 default: 2137 error = EOPNOTSUPP; 2138 break; 2139 } 2140 2141 /* 2142 * If all options have default values, no need to keep the option 2143 * structure. 2144 */ 2145 if (im6o->im6o_ifidx == 0 && 2146 im6o->im6o_hlim == ip6_defmcasthlim && 2147 im6o->im6o_loop == IPV6_DEFAULT_MULTICAST_LOOP && 2148 LIST_EMPTY(&im6o->im6o_memberships)) { 2149 free(*im6op, M_IPMOPTS, sizeof(**im6op)); 2150 *im6op = NULL; 2151 } 2152 2153 return (error); 2154 } 2155 2156 /* 2157 * Return the IP6 multicast options in response to user getsockopt(). 2158 */ 2159 int 2160 ip6_getmoptions(int optname, struct ip6_moptions *im6o, struct mbuf *m) 2161 { 2162 u_int *hlim, *loop, *ifindex; 2163 2164 switch (optname) { 2165 case IPV6_MULTICAST_IF: 2166 ifindex = mtod(m, u_int *); 2167 m->m_len = sizeof(u_int); 2168 if (im6o == NULL || im6o->im6o_ifidx == 0) 2169 *ifindex = 0; 2170 else 2171 *ifindex = im6o->im6o_ifidx; 2172 return (0); 2173 2174 case IPV6_MULTICAST_HOPS: 2175 hlim = mtod(m, u_int *); 2176 m->m_len = sizeof(u_int); 2177 if (im6o == NULL) 2178 *hlim = ip6_defmcasthlim; 2179 else 2180 *hlim = im6o->im6o_hlim; 2181 return (0); 2182 2183 case IPV6_MULTICAST_LOOP: 2184 loop = mtod(m, u_int *); 2185 m->m_len = sizeof(u_int); 2186 if (im6o == NULL) 2187 *loop = ip6_defmcasthlim; 2188 else 2189 *loop = im6o->im6o_loop; 2190 return (0); 2191 2192 default: 2193 return (EOPNOTSUPP); 2194 } 2195 } 2196 2197 /* 2198 * Discard the IP6 multicast options. 2199 */ 2200 void 2201 ip6_freemoptions(struct ip6_moptions *im6o) 2202 { 2203 struct in6_multi_mship *imm; 2204 2205 if (im6o == NULL) 2206 return; 2207 2208 while (!LIST_EMPTY(&im6o->im6o_memberships)) { 2209 imm = LIST_FIRST(&im6o->im6o_memberships); 2210 LIST_REMOVE(imm, i6mm_chain); 2211 in6_leavegroup(imm); 2212 } 2213 free(im6o, M_IPMOPTS, sizeof(*im6o)); 2214 } 2215 2216 /* 2217 * Set IPv6 outgoing packet options based on advanced API. 2218 */ 2219 int 2220 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2221 struct ip6_pktopts *stickyopt, int priv, int uproto) 2222 { 2223 u_int clen; 2224 struct cmsghdr *cm = 0; 2225 caddr_t cmsgs; 2226 int error; 2227 2228 if (control == NULL || opt == NULL) 2229 return (EINVAL); 2230 2231 ip6_initpktopts(opt); 2232 if (stickyopt) { 2233 int error; 2234 2235 /* 2236 * If stickyopt is provided, make a local copy of the options 2237 * for this particular packet, then override them by ancillary 2238 * objects. 2239 * XXX: copypktopts() does not copy the cached route to a next 2240 * hop (if any). This is not very good in terms of efficiency, 2241 * but we can allow this since this option should be rarely 2242 * used. 2243 */ 2244 if ((error = copypktopts(opt, stickyopt)) != 0) 2245 return (error); 2246 } 2247 2248 /* 2249 * XXX: Currently, we assume all the optional information is stored 2250 * in a single mbuf. 2251 */ 2252 if (control->m_next) 2253 return (EINVAL); 2254 2255 clen = control->m_len; 2256 cmsgs = mtod(control, caddr_t); 2257 do { 2258 if (clen < CMSG_LEN(0)) 2259 return (EINVAL); 2260 cm = (struct cmsghdr *)cmsgs; 2261 if (cm->cmsg_len < CMSG_LEN(0) || cm->cmsg_len > clen || 2262 CMSG_ALIGN(cm->cmsg_len) > clen) 2263 return (EINVAL); 2264 if (cm->cmsg_level == IPPROTO_IPV6) { 2265 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2266 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, uproto); 2267 if (error) 2268 return (error); 2269 } 2270 2271 clen -= CMSG_ALIGN(cm->cmsg_len); 2272 cmsgs += CMSG_ALIGN(cm->cmsg_len); 2273 } while (clen); 2274 2275 return (0); 2276 } 2277 2278 /* 2279 * Set a particular packet option, as a sticky option or an ancillary data 2280 * item. "len" can be 0 only when it's a sticky option. 2281 */ 2282 int 2283 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2284 int priv, int sticky, int uproto) 2285 { 2286 int minmtupolicy; 2287 2288 switch (optname) { 2289 case IPV6_PKTINFO: 2290 { 2291 struct ifnet *ifp = NULL; 2292 struct in6_pktinfo *pktinfo; 2293 2294 if (len != sizeof(struct in6_pktinfo)) 2295 return (EINVAL); 2296 2297 pktinfo = (struct in6_pktinfo *)buf; 2298 2299 /* 2300 * An application can clear any sticky IPV6_PKTINFO option by 2301 * doing a "regular" setsockopt with ipi6_addr being 2302 * in6addr_any and ipi6_ifindex being zero. 2303 * [RFC 3542, Section 6] 2304 */ 2305 if (opt->ip6po_pktinfo && 2306 pktinfo->ipi6_ifindex == 0 && 2307 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2308 ip6_clearpktopts(opt, optname); 2309 break; 2310 } 2311 2312 if (uproto == IPPROTO_TCP && 2313 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2314 return (EINVAL); 2315 } 2316 2317 if (pktinfo->ipi6_ifindex) { 2318 ifp = if_get(pktinfo->ipi6_ifindex); 2319 if (ifp == NULL) 2320 return (ENXIO); 2321 if_put(ifp); 2322 } 2323 2324 /* 2325 * We store the address anyway, and let in6_selectsrc() 2326 * validate the specified address. This is because ipi6_addr 2327 * may not have enough information about its scope zone, and 2328 * we may need additional information (such as outgoing 2329 * interface or the scope zone of a destination address) to 2330 * disambiguate the scope. 2331 * XXX: the delay of the validation may confuse the 2332 * application when it is used as a sticky option. 2333 */ 2334 if (opt->ip6po_pktinfo == NULL) { 2335 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2336 M_IP6OPT, M_NOWAIT); 2337 if (opt->ip6po_pktinfo == NULL) 2338 return (ENOBUFS); 2339 } 2340 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2341 break; 2342 } 2343 2344 case IPV6_HOPLIMIT: 2345 { 2346 int *hlimp; 2347 2348 /* 2349 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2350 * to simplify the ordering among hoplimit options. 2351 */ 2352 if (sticky) 2353 return (ENOPROTOOPT); 2354 2355 if (len != sizeof(int)) 2356 return (EINVAL); 2357 hlimp = (int *)buf; 2358 if (*hlimp < -1 || *hlimp > 255) 2359 return (EINVAL); 2360 2361 opt->ip6po_hlim = *hlimp; 2362 break; 2363 } 2364 2365 case IPV6_TCLASS: 2366 { 2367 int tclass; 2368 2369 if (len != sizeof(int)) 2370 return (EINVAL); 2371 tclass = *(int *)buf; 2372 if (tclass < -1 || tclass > 255) 2373 return (EINVAL); 2374 2375 opt->ip6po_tclass = tclass; 2376 break; 2377 } 2378 case IPV6_HOPOPTS: 2379 { 2380 struct ip6_hbh *hbh; 2381 int hbhlen; 2382 2383 /* 2384 * XXX: We don't allow a non-privileged user to set ANY HbH 2385 * options, since per-option restriction has too much 2386 * overhead. 2387 */ 2388 if (!priv) 2389 return (EPERM); 2390 2391 if (len == 0) { 2392 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2393 break; /* just remove the option */ 2394 } 2395 2396 /* message length validation */ 2397 if (len < sizeof(struct ip6_hbh)) 2398 return (EINVAL); 2399 hbh = (struct ip6_hbh *)buf; 2400 hbhlen = (hbh->ip6h_len + 1) << 3; 2401 if (len != hbhlen) 2402 return (EINVAL); 2403 2404 /* turn off the previous option, then set the new option. */ 2405 ip6_clearpktopts(opt, IPV6_HOPOPTS); 2406 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 2407 if (opt->ip6po_hbh == NULL) 2408 return (ENOBUFS); 2409 memcpy(opt->ip6po_hbh, hbh, hbhlen); 2410 2411 break; 2412 } 2413 2414 case IPV6_DSTOPTS: 2415 case IPV6_RTHDRDSTOPTS: 2416 { 2417 struct ip6_dest *dest, **newdest = NULL; 2418 int destlen; 2419 2420 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */ 2421 return (EPERM); 2422 2423 if (len == 0) { 2424 ip6_clearpktopts(opt, optname); 2425 break; /* just remove the option */ 2426 } 2427 2428 /* message length validation */ 2429 if (len < sizeof(struct ip6_dest)) 2430 return (EINVAL); 2431 dest = (struct ip6_dest *)buf; 2432 destlen = (dest->ip6d_len + 1) << 3; 2433 if (len != destlen) 2434 return (EINVAL); 2435 /* 2436 * Determine the position that the destination options header 2437 * should be inserted; before or after the routing header. 2438 */ 2439 switch (optname) { 2440 case IPV6_RTHDRDSTOPTS: 2441 newdest = &opt->ip6po_dest1; 2442 break; 2443 case IPV6_DSTOPTS: 2444 newdest = &opt->ip6po_dest2; 2445 break; 2446 } 2447 2448 /* turn off the previous option, then set the new option. */ 2449 ip6_clearpktopts(opt, optname); 2450 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 2451 if (*newdest == NULL) 2452 return (ENOBUFS); 2453 memcpy(*newdest, dest, destlen); 2454 2455 break; 2456 } 2457 2458 case IPV6_RTHDR: 2459 { 2460 struct ip6_rthdr *rth; 2461 int rthlen; 2462 2463 if (len == 0) { 2464 ip6_clearpktopts(opt, IPV6_RTHDR); 2465 break; /* just remove the option */ 2466 } 2467 2468 /* message length validation */ 2469 if (len < sizeof(struct ip6_rthdr)) 2470 return (EINVAL); 2471 rth = (struct ip6_rthdr *)buf; 2472 rthlen = (rth->ip6r_len + 1) << 3; 2473 if (len != rthlen) 2474 return (EINVAL); 2475 2476 switch (rth->ip6r_type) { 2477 case IPV6_RTHDR_TYPE_0: 2478 if (rth->ip6r_len == 0) /* must contain one addr */ 2479 return (EINVAL); 2480 if (rth->ip6r_len % 2) /* length must be even */ 2481 return (EINVAL); 2482 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 2483 return (EINVAL); 2484 break; 2485 default: 2486 return (EINVAL); /* not supported */ 2487 } 2488 /* turn off the previous option */ 2489 ip6_clearpktopts(opt, IPV6_RTHDR); 2490 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 2491 if (opt->ip6po_rthdr == NULL) 2492 return (ENOBUFS); 2493 memcpy(opt->ip6po_rthdr, rth, rthlen); 2494 break; 2495 } 2496 2497 case IPV6_USE_MIN_MTU: 2498 if (len != sizeof(int)) 2499 return (EINVAL); 2500 minmtupolicy = *(int *)buf; 2501 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 2502 minmtupolicy != IP6PO_MINMTU_DISABLE && 2503 minmtupolicy != IP6PO_MINMTU_ALL) { 2504 return (EINVAL); 2505 } 2506 opt->ip6po_minmtu = minmtupolicy; 2507 break; 2508 2509 case IPV6_DONTFRAG: 2510 if (len != sizeof(int)) 2511 return (EINVAL); 2512 2513 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 2514 /* 2515 * we ignore this option for TCP sockets. 2516 * (RFC3542 leaves this case unspecified.) 2517 */ 2518 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 2519 } else 2520 opt->ip6po_flags |= IP6PO_DONTFRAG; 2521 break; 2522 2523 default: 2524 return (ENOPROTOOPT); 2525 } /* end of switch */ 2526 2527 return (0); 2528 } 2529 2530 /* 2531 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 2532 * packet to the input queue of a specified interface. 2533 */ 2534 void 2535 ip6_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in6 *dst) 2536 { 2537 struct mbuf *copym; 2538 struct ip6_hdr *ip6; 2539 2540 /* 2541 * Duplicate the packet. 2542 */ 2543 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 2544 if (copym == NULL) 2545 return; 2546 2547 /* 2548 * Make sure to deep-copy IPv6 header portion in case the data 2549 * is in an mbuf cluster, so that we can safely override the IPv6 2550 * header portion later. 2551 */ 2552 if ((copym->m_flags & M_EXT) != 0 || 2553 copym->m_len < sizeof(struct ip6_hdr)) { 2554 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 2555 if (copym == NULL) 2556 return; 2557 } 2558 2559 #ifdef DIAGNOSTIC 2560 if (copym->m_len < sizeof(*ip6)) { 2561 m_freem(copym); 2562 return; 2563 } 2564 #endif 2565 2566 ip6 = mtod(copym, struct ip6_hdr *); 2567 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) 2568 ip6->ip6_src.s6_addr16[1] = 0; 2569 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) 2570 ip6->ip6_dst.s6_addr16[1] = 0; 2571 2572 if_input_local(ifp, copym, dst->sin6_family); 2573 } 2574 2575 /* 2576 * Chop IPv6 header off from the payload. 2577 */ 2578 int 2579 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 2580 { 2581 struct mbuf *mh; 2582 struct ip6_hdr *ip6; 2583 2584 ip6 = mtod(m, struct ip6_hdr *); 2585 if (m->m_len > sizeof(*ip6)) { 2586 MGET(mh, M_DONTWAIT, MT_HEADER); 2587 if (mh == NULL) { 2588 m_freem(m); 2589 return ENOBUFS; 2590 } 2591 M_MOVE_PKTHDR(mh, m); 2592 m_align(mh, sizeof(*ip6)); 2593 m->m_len -= sizeof(*ip6); 2594 m->m_data += sizeof(*ip6); 2595 mh->m_next = m; 2596 m = mh; 2597 m->m_len = sizeof(*ip6); 2598 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 2599 } 2600 exthdrs->ip6e_ip6 = m; 2601 return 0; 2602 } 2603 2604 u_int32_t 2605 ip6_randomid(void) 2606 { 2607 return idgen32(&ip6_id_ctx); 2608 } 2609 2610 void 2611 ip6_randomid_init(void) 2612 { 2613 idgen32_init(&ip6_id_ctx); 2614 } 2615 2616 /* 2617 * Compute significant parts of the IPv6 checksum pseudo-header 2618 * for use in a delayed TCP/UDP checksum calculation. 2619 */ 2620 static __inline u_int16_t __attribute__((__unused__)) 2621 in6_cksum_phdr(const struct in6_addr *src, const struct in6_addr *dst, 2622 u_int32_t len, u_int32_t nxt) 2623 { 2624 u_int32_t sum = 0; 2625 const u_int16_t *w; 2626 2627 w = (const u_int16_t *) src; 2628 sum += w[0]; 2629 if (!IN6_IS_SCOPE_EMBED(src)) 2630 sum += w[1]; 2631 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 2632 sum += w[6]; sum += w[7]; 2633 2634 w = (const u_int16_t *) dst; 2635 sum += w[0]; 2636 if (!IN6_IS_SCOPE_EMBED(dst)) 2637 sum += w[1]; 2638 sum += w[2]; sum += w[3]; sum += w[4]; sum += w[5]; 2639 sum += w[6]; sum += w[7]; 2640 2641 sum += (u_int16_t)(len >> 16) + (u_int16_t)(len /*& 0xffff*/); 2642 2643 sum += (u_int16_t)(nxt >> 16) + (u_int16_t)(nxt /*& 0xffff*/); 2644 2645 sum = (u_int16_t)(sum >> 16) + (u_int16_t)(sum /*& 0xffff*/); 2646 2647 if (sum > 0xffff) 2648 sum -= 0xffff; 2649 2650 return (sum); 2651 } 2652 2653 /* 2654 * Process a delayed payload checksum calculation. 2655 */ 2656 void 2657 in6_delayed_cksum(struct mbuf *m, u_int8_t nxt) 2658 { 2659 int nxtp, offset; 2660 u_int16_t csum; 2661 2662 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxtp); 2663 if (offset <= 0 || nxtp != nxt) 2664 /* If the desired next protocol isn't found, punt. */ 2665 return; 2666 csum = (u_int16_t)(in6_cksum(m, 0, offset, m->m_pkthdr.len - offset)); 2667 2668 switch (nxt) { 2669 case IPPROTO_TCP: 2670 offset += offsetof(struct tcphdr, th_sum); 2671 break; 2672 2673 case IPPROTO_UDP: 2674 offset += offsetof(struct udphdr, uh_sum); 2675 if (csum == 0) 2676 csum = 0xffff; 2677 break; 2678 2679 case IPPROTO_ICMPV6: 2680 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 2681 break; 2682 } 2683 2684 if ((offset + sizeof(u_int16_t)) > m->m_len) 2685 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 2686 else 2687 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 2688 } 2689 2690 void 2691 in6_proto_cksum_out(struct mbuf *m, struct ifnet *ifp) 2692 { 2693 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); 2694 2695 /* some hw and in6_delayed_cksum need the pseudo header cksum */ 2696 if (m->m_pkthdr.csum_flags & 2697 (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT|M_ICMP_CSUM_OUT)) { 2698 int nxt, offset; 2699 u_int16_t csum; 2700 2701 offset = ip6_lasthdr(m, 0, IPPROTO_IPV6, &nxt); 2702 csum = in6_cksum_phdr(&ip6->ip6_src, &ip6->ip6_dst, 2703 htonl(m->m_pkthdr.len - offset), htonl(nxt)); 2704 if (nxt == IPPROTO_TCP) 2705 offset += offsetof(struct tcphdr, th_sum); 2706 else if (nxt == IPPROTO_UDP) 2707 offset += offsetof(struct udphdr, uh_sum); 2708 else if (nxt == IPPROTO_ICMPV6) 2709 offset += offsetof(struct icmp6_hdr, icmp6_cksum); 2710 if ((offset + sizeof(u_int16_t)) > m->m_len) 2711 m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT); 2712 else 2713 *(u_int16_t *)(mtod(m, caddr_t) + offset) = csum; 2714 } 2715 2716 if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) { 2717 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_TCPv6) || 2718 ip6->ip6_nxt != IPPROTO_TCP || 2719 ifp->if_bridgeidx != 0) { 2720 tcpstat_inc(tcps_outswcsum); 2721 in6_delayed_cksum(m, IPPROTO_TCP); 2722 m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_OUT; /* Clear */ 2723 } 2724 } else if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) { 2725 if (!ifp || !(ifp->if_capabilities & IFCAP_CSUM_UDPv6) || 2726 ip6->ip6_nxt != IPPROTO_UDP || 2727 ifp->if_bridgeidx != 0) { 2728 udpstat_inc(udps_outswcsum); 2729 in6_delayed_cksum(m, IPPROTO_UDP); 2730 m->m_pkthdr.csum_flags &= ~M_UDP_CSUM_OUT; /* Clear */ 2731 } 2732 } else if (m->m_pkthdr.csum_flags & M_ICMP_CSUM_OUT) { 2733 in6_delayed_cksum(m, IPPROTO_ICMPV6); 2734 m->m_pkthdr.csum_flags &= ~M_ICMP_CSUM_OUT; /* Clear */ 2735 } 2736 } 2737 2738 #ifdef IPSEC 2739 struct tdb * 2740 ip6_output_ipsec_lookup(struct mbuf *m, int *error, struct inpcb *inp) 2741 { 2742 struct tdb *tdb; 2743 struct m_tag *mtag; 2744 struct tdb_ident *tdbi; 2745 2746 /* 2747 * Check if there was an outgoing SA bound to the flow 2748 * from a transport protocol. 2749 */ 2750 2751 /* Do we have any pending SAs to apply ? */ 2752 tdb = ipsp_spd_lookup(m, AF_INET6, sizeof(struct ip6_hdr), 2753 error, IPSP_DIRECTION_OUT, NULL, inp, 0); 2754 2755 if (tdb == NULL) 2756 return NULL; 2757 /* Loop detection */ 2758 for (mtag = m_tag_first(m); mtag != NULL; mtag = m_tag_next(m, mtag)) { 2759 if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE) 2760 continue; 2761 tdbi = (struct tdb_ident *)(mtag + 1); 2762 if (tdbi->spi == tdb->tdb_spi && 2763 tdbi->proto == tdb->tdb_sproto && 2764 tdbi->rdomain == tdb->tdb_rdomain && 2765 !memcmp(&tdbi->dst, &tdb->tdb_dst, 2766 sizeof(union sockaddr_union))) { 2767 /* no IPsec needed */ 2768 return NULL; 2769 } 2770 } 2771 return tdb; 2772 } 2773 2774 int 2775 ip6_output_ipsec_send(struct tdb *tdb, struct mbuf *m, struct route_in6 *ro, 2776 int tunalready, int fwd) 2777 { 2778 #if NPF > 0 2779 struct ifnet *encif; 2780 #endif 2781 struct ip6_hdr *ip6; 2782 int error; 2783 2784 #if NPF > 0 2785 /* 2786 * Packet filter 2787 */ 2788 if ((encif = enc_getif(tdb->tdb_rdomain, tdb->tdb_tap)) == NULL || 2789 pf_test(AF_INET6, fwd ? PF_FWD : PF_OUT, encif, &m) != PF_PASS) { 2790 m_freem(m); 2791 return EACCES; 2792 } 2793 if (m == NULL) 2794 return 0; 2795 /* 2796 * PF_TAG_REROUTE handling or not... 2797 * Packet is entering IPsec so the routing is 2798 * already overruled by the IPsec policy. 2799 * Until now the change was not reconsidered. 2800 * What's the behaviour? 2801 */ 2802 in6_proto_cksum_out(m, encif); 2803 #endif 2804 2805 /* Check if we are allowed to fragment */ 2806 ip6 = mtod(m, struct ip6_hdr *); 2807 if (ip_mtudisc && tdb->tdb_mtu && 2808 sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) > tdb->tdb_mtu && 2809 tdb->tdb_mtutimeout > gettime()) { 2810 struct rtentry *rt = NULL; 2811 int rt_mtucloned = 0; 2812 int transportmode = 0; 2813 2814 transportmode = (tdb->tdb_dst.sa.sa_family == AF_INET6) && 2815 (IN6_ARE_ADDR_EQUAL(&tdb->tdb_dst.sin6.sin6_addr, 2816 &ip6->ip6_dst)); 2817 2818 /* Find a host route to store the mtu in */ 2819 if (ro != NULL) 2820 rt = ro->ro_rt; 2821 /* but don't add a PMTU route for transport mode SAs */ 2822 if (transportmode) 2823 rt = NULL; 2824 else if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0) { 2825 struct sockaddr_in6 sin6; 2826 2827 memset(&sin6, 0, sizeof(sin6)); 2828 sin6.sin6_family = AF_INET6; 2829 sin6.sin6_len = sizeof(sin6); 2830 sin6.sin6_addr = ip6->ip6_dst; 2831 sin6.sin6_scope_id = 2832 in6_addr2scopeid(m->m_pkthdr.ph_ifidx, 2833 &ip6->ip6_dst); 2834 error = in6_embedscope(&ip6->ip6_dst, &sin6, NULL); 2835 if (error) { 2836 /* should be impossible */ 2837 ipsecstat_inc(ipsec_odrops); 2838 m_freem(m); 2839 return error; 2840 } 2841 rt = icmp6_mtudisc_clone(&sin6, 2842 m->m_pkthdr.ph_rtableid, 1); 2843 rt_mtucloned = 1; 2844 } 2845 DPRINTF("spi %08x mtu %d rt %p cloned %d", 2846 ntohl(tdb->tdb_spi), tdb->tdb_mtu, rt, rt_mtucloned); 2847 if (rt != NULL) { 2848 rt->rt_mtu = tdb->tdb_mtu; 2849 if (ro != NULL && ro->ro_rt != NULL) { 2850 rtfree(ro->ro_rt); 2851 ro->ro_rt = rtalloc(sin6tosa(&ro->ro_dst), 2852 RT_RESOLVE, m->m_pkthdr.ph_rtableid); 2853 } 2854 if (rt_mtucloned) 2855 rtfree(rt); 2856 } 2857 ipsec_adjust_mtu(m, tdb->tdb_mtu); 2858 m_freem(m); 2859 return EMSGSIZE; 2860 } 2861 /* propagate don't fragment for v6-over-v6 */ 2862 if (ip_mtudisc) 2863 SET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT); 2864 2865 /* 2866 * Clear these -- they'll be set in the recursive invocation 2867 * as needed. 2868 */ 2869 m->m_flags &= ~(M_BCAST | M_MCAST); 2870 2871 /* Callee frees mbuf */ 2872 error = ipsp_process_packet(m, tdb, AF_INET6, tunalready); 2873 if (error) { 2874 ipsecstat_inc(ipsec_odrops); 2875 tdb->tdb_odrops++; 2876 } 2877 return error; 2878 } 2879 #endif /* IPSEC */ 2880