xref: /openbsd-src/sys/netinet6/ip6_id.c (revision a28daedfc357b214be5c701aa8ba8adb29a7f1c2)
1 /*	$OpenBSD: ip6_id.c,v 1.7 2008/06/09 22:47:42 djm Exp $	*/
2 /*	$NetBSD: ip6_id.c,v 1.7 2003/09/13 21:32:59 itojun Exp $	*/
3 /*	$KAME: ip6_id.c,v 1.8 2003/09/06 13:41:06 itojun Exp $	*/
4 
5 /*
6  * Copyright (C) 2003 WIDE Project.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Neither the name of the project nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright 1998 Niels Provos <provos@citi.umich.edu>
36  * All rights reserved.
37  *
38  * Theo de Raadt <deraadt@openbsd.org> came up with the idea of using
39  * such a mathematical system to generate more random (yet non-repeating)
40  * ids to solve the resolver/named problem.  But Niels designed the
41  * actual system based on the constraints.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
56  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
57  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
61  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  */
63 
64 /*
65  * seed = random (bits - 1) bit
66  * n = prime, g0 = generator to n,
67  * j = random so that gcd(j,n-1) == 1
68  * g = g0^j mod n will be a generator again.
69  *
70  * X[0] = random seed.
71  * X[n] = a*X[n-1]+b mod m is a Linear Congruential Generator
72  * with a = 7^(even random) mod m,
73  *      b = random with gcd(b,m) == 1
74  *      m = constant and a maximal period of m-1.
75  *
76  * The transaction id is determined by:
77  * id[n] = seed xor (g^X[n] mod n)
78  *
79  * Effectivly the id is restricted to the lower (bits - 1) bits, thus
80  * yielding two different cycles by toggling the msb on and off.
81  * This avoids reuse issues caused by reseeding.
82  */
83 
84 #include <sys/types.h>
85 #include <sys/param.h>
86 #include <sys/kernel.h>
87 #include <sys/socket.h>
88 
89 #include <net/if.h>
90 #include <netinet/in.h>
91 #include <netinet/ip6.h>
92 #include <netinet6/ip6_var.h>
93 
94 #include <dev/rndvar.h>
95 
96 struct randomtab {
97 	const int	ru_bits; /* resulting bits */
98 	const long	ru_out;	/* Time after wich will be reseeded */
99 	const u_int32_t ru_max;	/* Uniq cycle, avoid blackjack prediction */
100 	const u_int32_t ru_gen;	/* Starting generator */
101 	const u_int32_t ru_n;	/* ru_n: prime, ru_n - 1: product of pfacts[] */
102 	const u_int32_t ru_agen; /* determine ru_a as ru_agen^(2*rand) */
103 	const u_int32_t ru_m;	/* ru_m = 2^x*3^y */
104 	const u_int32_t pfacts[4];	/* factors of ru_n */
105 
106 	u_int32_t ru_counter;
107 	u_int32_t ru_msb;
108 
109 	u_int32_t ru_x;
110 	u_int32_t ru_seed, ru_seed2;
111 	u_int32_t ru_a, ru_b;
112 	u_int32_t ru_g;
113 	long ru_reseed;
114 };
115 
116 static struct randomtab randomtab_20 = {
117 	20,			/* resulting bits */
118 	180,			/* Time after wich will be reseeded */
119 	200000,			/* Uniq cycle, avoid blackjack prediction */
120 	2,			/* Starting generator */
121 	524269,			/* RU_N-1 = 2^2*3^2*14563 */
122 	7,			/* determine ru_a as RU_AGEN^(2*rand) */
123 	279936,			/* RU_M = 2^7*3^7 - don't change */
124 	{ 2, 3, 14563, 0 },	/* factors of ru_n */
125 };
126 
127 static u_int32_t pmod(u_int32_t, u_int32_t, u_int32_t);
128 static void initid(struct randomtab *);
129 static u_int32_t randomid(struct randomtab *);
130 
131 /*
132  * Do a fast modular exponation, returned value will be in the range
133  * of 0 - (mod-1)
134  */
135 
136 static u_int32_t
137 pmod(u_int32_t gen, u_int32_t expo, u_int32_t mod)
138 {
139 	u_int64_t s, t, u;
140 
141 	s = 1;
142 	t = gen;
143 	u = expo;
144 
145 	while (u) {
146 		if (u & 1)
147 			s = (s * t) % mod;
148 		u >>= 1;
149 		t = (t * t) % mod;
150 	}
151 	return (s);
152 }
153 
154 /*
155  * Initializes the seed and chooses a suitable generator. Also toggles
156  * the msb flag. The msb flag is used to generate two distinct
157  * cycles of random numbers and thus avoiding reuse of ids.
158  *
159  * This function is called from id_randomid() when needed, an
160  * application does not have to worry about it.
161  */
162 static void
163 initid(struct randomtab *p)
164 {
165 	u_int32_t j, i;
166 	int noprime = 1;
167 
168 	p->ru_x = arc4random_uniform(p->ru_m);
169 
170 	/* (bits - 1) bits of random seed */
171 	p->ru_seed = arc4random() & (~0U >> (32 - p->ru_bits + 1));
172 	p->ru_seed2 = arc4random() & (~0U >> (32 - p->ru_bits + 1));
173 
174 	/* Determine the LCG we use */
175 	p->ru_b = (arc4random() & (~0U >> (32 - p->ru_bits))) | 1;
176 	p->ru_a = pmod(p->ru_agen,
177 	    (arc4random() & (~0U >> (32 - p->ru_bits))) & (~1U), p->ru_m);
178 	while (p->ru_b % 3 == 0)
179 		p->ru_b += 2;
180 
181 	j = arc4random_uniform(p->ru_n);
182 
183 	/*
184 	 * Do a fast gcd(j, RU_N - 1), so we can find a j with
185 	 * gcd(j, RU_N - 1) == 1, giving a new generator for
186 	 * RU_GEN^j mod RU_N
187 	 */
188 	while (noprime) {
189 		for (i = 0; p->pfacts[i] > 0; i++)
190 			if (j % p->pfacts[i] == 0)
191 				break;
192 
193 		if (p->pfacts[i] == 0)
194 			noprime = 0;
195 		else
196 			j = (j + 1) % p->ru_n;
197 	}
198 
199 	p->ru_g = pmod(p->ru_gen, j, p->ru_n);
200 	p->ru_counter = 0;
201 
202 	p->ru_reseed = time_second + p->ru_out;
203 	p->ru_msb = p->ru_msb ? 0 : (1U << (p->ru_bits - 1));
204 }
205 
206 static u_int32_t
207 randomid(struct randomtab *p)
208 {
209 	int i, n;
210 
211 	if (p->ru_counter >= p->ru_max || time_second > p->ru_reseed)
212 		initid(p);
213 
214 	/* Skip a random number of ids */
215 	n = arc4random() & 0x3;
216 	if (p->ru_counter + n >= p->ru_max)
217 		initid(p);
218 
219 	for (i = 0; i <= n; i++) {
220 		/* Linear Congruential Generator */
221 		p->ru_x = (u_int32_t)((u_int64_t)p->ru_a * p->ru_x + p->ru_b) % p->ru_m;
222 	}
223 
224 	p->ru_counter += i;
225 
226 	return (p->ru_seed ^ pmod(p->ru_g, p->ru_seed2 + p->ru_x, p->ru_n)) |
227 	    p->ru_msb;
228 }
229 
230 u_int32_t
231 ip6_randomflowlabel(void)
232 {
233 	return randomid(&randomtab_20) & 0xfffff;
234 }
235 
236