xref: /openbsd-src/sys/netinet/tcp_subr.c (revision 91f110e064cd7c194e59e019b83bb7496c1c84d4)
1 /*	$OpenBSD: tcp_subr.c,v 1.125 2013/10/24 11:31:43 mpi Exp $	*/
2 /*	$NetBSD: tcp_subr.c,v 1.22 1996/02/13 23:44:00 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
33  *
34  * NRL grants permission for redistribution and use in source and binary
35  * forms, with or without modification, of the software and documentation
36  * created at NRL provided that the following conditions are met:
37  *
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgements:
45  * 	This product includes software developed by the University of
46  * 	California, Berkeley and its contributors.
47  * 	This product includes software developed at the Information
48  * 	Technology Division, US Naval Research Laboratory.
49  * 4. Neither the name of the NRL nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
54  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
56  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
57  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
58  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
59  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
60  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
61  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
62  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
63  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64  *
65  * The views and conclusions contained in the software and documentation
66  * are those of the authors and should not be interpreted as representing
67  * official policies, either expressed or implied, of the US Naval
68  * Research Laboratory (NRL).
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/mbuf.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/timeout.h>
77 #include <sys/protosw.h>
78 #include <sys/kernel.h>
79 #include <sys/pool.h>
80 
81 #include <net/route.h>
82 #include <net/if.h>
83 
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/in_pcb.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/ip_icmp.h>
90 #include <netinet/tcp.h>
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_seq.h>
93 #include <netinet/tcp_timer.h>
94 #include <netinet/tcp_var.h>
95 #include <netinet/tcpip.h>
96 #include <dev/rndvar.h>
97 
98 #ifdef INET6
99 #include <netinet6/ip6protosw.h>
100 #endif /* INET6 */
101 
102 #include <crypto/md5.h>
103 
104 /* patchable/settable parameters for tcp */
105 int	tcp_mssdflt = TCP_MSS;
106 int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
107 
108 /* values controllable via sysctl */
109 int	tcp_do_rfc1323 = 1;
110 #ifdef TCP_SACK
111 int	tcp_do_sack = 1;	/* RFC 2018 selective ACKs */
112 #endif
113 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
114 #ifdef TCP_ECN
115 int	tcp_do_ecn = 0;		/* RFC3168 ECN enabled/disabled? */
116 #endif
117 int	tcp_do_rfc3390 = 2;	/* Increase TCP's Initial Window to 10*mss */
118 
119 u_int32_t	tcp_now = 1;
120 
121 #ifndef TCBHASHSIZE
122 #define	TCBHASHSIZE	128
123 #endif
124 int	tcbhashsize = TCBHASHSIZE;
125 
126 /* syn hash parameters */
127 #define	TCP_SYN_HASH_SIZE	293
128 #define	TCP_SYN_BUCKET_SIZE	35
129 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
130 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
131 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
132 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
133 
134 int tcp_reass_limit = NMBCLUSTERS / 2; /* hardlimit for tcpqe_pool */
135 #ifdef TCP_SACK
136 int tcp_sackhole_limit = 32*1024; /* hardlimit for sackhl_pool */
137 #endif
138 
139 struct pool tcpcb_pool;
140 struct pool tcpqe_pool;
141 #ifdef TCP_SACK
142 struct pool sackhl_pool;
143 #endif
144 
145 struct tcpstat tcpstat;		/* tcp statistics */
146 tcp_seq  tcp_iss;
147 
148 /*
149  * Tcp initialization
150  */
151 void
152 tcp_init()
153 {
154 	tcp_iss = 1;		/* wrong */
155 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
156 	    NULL);
157 	pool_init(&tcpqe_pool, sizeof(struct tcpqent), 0, 0, 0, "tcpqepl",
158 	    NULL);
159 	pool_sethardlimit(&tcpqe_pool, tcp_reass_limit, NULL, 0);
160 #ifdef TCP_SACK
161 	pool_init(&sackhl_pool, sizeof(struct sackhole), 0, 0, 0, "sackhlpl",
162 	    NULL);
163 	pool_sethardlimit(&sackhl_pool, tcp_sackhole_limit, NULL, 0);
164 #endif /* TCP_SACK */
165 	in_pcbinit(&tcbtable, tcbhashsize);
166 
167 #ifdef INET6
168 	/*
169 	 * Since sizeof(struct ip6_hdr) > sizeof(struct ip), we
170 	 * do max length checks/computations only on the former.
171 	 */
172 	if (max_protohdr < (sizeof(struct ip6_hdr) + sizeof(struct tcphdr)))
173 		max_protohdr = (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
174 	if ((max_linkhdr + sizeof(struct ip6_hdr) + sizeof(struct tcphdr)) >
175 	    MHLEN)
176 		panic("tcp_init");
177 
178 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
179 #endif /* INET6 */
180 
181 	/* Initialize the compressed state engine. */
182 	syn_cache_init();
183 
184 	/* Initialize timer state. */
185 	tcp_timer_init();
186 }
187 
188 /*
189  * Create template to be used to send tcp packets on a connection.
190  * Call after host entry created, allocates an mbuf and fills
191  * in a skeletal tcp/ip header, minimizing the amount of work
192  * necessary when the connection is used.
193  *
194  * To support IPv6 in addition to IPv4 and considering that the sizes of
195  * the IPv4 and IPv6 headers are not the same, we now use a separate pointer
196  * for the TCP header.  Also, we made the former tcpiphdr header pointer
197  * into just an IP overlay pointer, with casting as appropriate for v6. rja
198  */
199 struct mbuf *
200 tcp_template(tp)
201 	struct tcpcb *tp;
202 {
203 	struct inpcb *inp = tp->t_inpcb;
204 	struct mbuf *m;
205 	struct tcphdr *th;
206 
207 	if ((m = tp->t_template) == 0) {
208 		m = m_get(M_DONTWAIT, MT_HEADER);
209 		if (m == NULL)
210 			return (0);
211 
212 		switch (tp->pf) {
213 		case 0:	/*default to PF_INET*/
214 #ifdef INET
215 		case AF_INET:
216 			m->m_len = sizeof(struct ip);
217 			break;
218 #endif /* INET */
219 #ifdef INET6
220 		case AF_INET6:
221 			m->m_len = sizeof(struct ip6_hdr);
222 			break;
223 #endif /* INET6 */
224 		}
225 		m->m_len += sizeof (struct tcphdr);
226 
227 		/*
228 		 * The link header, network header, TCP header, and TCP options
229 		 * all must fit in this mbuf. For now, assume the worst case of
230 		 * TCP options size. Eventually, compute this from tp flags.
231 		 */
232 		if (m->m_len + MAX_TCPOPTLEN + max_linkhdr >= MHLEN) {
233 			MCLGET(m, M_DONTWAIT);
234 			if ((m->m_flags & M_EXT) == 0) {
235 				m_free(m);
236 				return (0);
237 			}
238 		}
239 	}
240 
241 	switch(tp->pf) {
242 #ifdef INET
243 	case AF_INET:
244 		{
245 			struct ipovly *ipovly;
246 
247 			ipovly = mtod(m, struct ipovly *);
248 
249 			bzero(ipovly->ih_x1, sizeof ipovly->ih_x1);
250 			ipovly->ih_pr = IPPROTO_TCP;
251 			ipovly->ih_len = htons(sizeof (struct tcphdr));
252 			ipovly->ih_src = inp->inp_laddr;
253 			ipovly->ih_dst = inp->inp_faddr;
254 
255 			th = (struct tcphdr *)(mtod(m, caddr_t) +
256 				sizeof(struct ip));
257 		}
258 		break;
259 #endif /* INET */
260 #ifdef INET6
261 	case AF_INET6:
262 		{
263 			struct ip6_hdr *ip6;
264 
265 			ip6 = mtod(m, struct ip6_hdr *);
266 
267 			ip6->ip6_src = inp->inp_laddr6;
268 			ip6->ip6_dst = inp->inp_faddr6;
269 			ip6->ip6_flow = htonl(0x60000000) |
270 			    (inp->inp_flowinfo & IPV6_FLOWLABEL_MASK);
271 
272 			ip6->ip6_nxt = IPPROTO_TCP;
273 			ip6->ip6_plen = htons(sizeof(struct tcphdr)); /*XXX*/
274 			ip6->ip6_hlim = in6_selecthlim(inp, NULL);	/*XXX*/
275 
276 			th = (struct tcphdr *)(mtod(m, caddr_t) +
277 				sizeof(struct ip6_hdr));
278 		}
279 		break;
280 #endif /* INET6 */
281 	}
282 
283 	th->th_sport = inp->inp_lport;
284 	th->th_dport = inp->inp_fport;
285 	th->th_seq = 0;
286 	th->th_ack = 0;
287 	th->th_x2  = 0;
288 	th->th_off = 5;
289 	th->th_flags = 0;
290 	th->th_win = 0;
291 	th->th_urp = 0;
292 	th->th_sum = 0;
293 	return (m);
294 }
295 
296 /*
297  * Send a single message to the TCP at address specified by
298  * the given TCP/IP header.  If m == 0, then we make a copy
299  * of the tcpiphdr at ti and send directly to the addressed host.
300  * This is used to force keep alive messages out using the TCP
301  * template for a connection tp->t_template.  If flags are given
302  * then we send a message back to the TCP which originated the
303  * segment ti, and discard the mbuf containing it and any other
304  * attached mbufs.
305  *
306  * In any case the ack and sequence number of the transmitted
307  * segment are as specified by the parameters.
308  */
309 #ifdef INET6
310 /* This function looks hairy, because it was so IPv4-dependent. */
311 #endif /* INET6 */
312 void
313 tcp_respond(struct tcpcb *tp, caddr_t template, struct tcphdr *th0,
314     tcp_seq ack, tcp_seq seq, int flags, u_int rtableid)
315 {
316 	int tlen;
317 	int win = 0;
318 	struct mbuf *m = 0;
319 	struct route *ro = 0;
320 	struct tcphdr *th;
321 	struct ip *ip;
322 	struct ipovly *ih;
323 #ifdef INET6
324 	struct ip6_hdr *ip6;
325 #endif
326 	int af;		/* af on wire */
327 
328 	if (tp) {
329 		win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
330 		/*
331 		 * If this is called with an unconnected
332 		 * socket/tp/pcb (tp->pf is 0), we lose.
333 		 */
334 		af = tp->pf;
335 
336 		/*
337 		 * The route/route6 distinction is meaningless
338 		 * unless you're allocating space or passing parameters.
339 		 */
340 		ro = &tp->t_inpcb->inp_route;
341 	} else
342 		af = (((struct ip *)template)->ip_v == 6) ? AF_INET6 : AF_INET;
343 
344 	m = m_gethdr(M_DONTWAIT, MT_HEADER);
345 	if (m == NULL)
346 		return;
347 	m->m_data += max_linkhdr;
348 	tlen = 0;
349 
350 #define xchg(a,b,type) do { type t; t=a; a=b; b=t; } while (0)
351 	switch (af) {
352 #ifdef INET6
353 	case AF_INET6:
354 		ip6 = mtod(m, struct ip6_hdr *);
355 		th = (struct tcphdr *)(ip6 + 1);
356 		tlen = sizeof(*ip6) + sizeof(*th);
357 		if (th0) {
358 			bcopy(template, ip6, sizeof(*ip6));
359 			bcopy(th0, th, sizeof(*th));
360 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
361 		} else {
362 			bcopy(template, ip6, tlen);
363 		}
364 		break;
365 #endif /* INET6 */
366 	case AF_INET:
367 		ip = mtod(m, struct ip *);
368 		th = (struct tcphdr *)(ip + 1);
369 		tlen = sizeof(*ip) + sizeof(*th);
370 		if (th0) {
371 			bcopy(template, ip, sizeof(*ip));
372 			bcopy(th0, th, sizeof(*th));
373 			xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, u_int32_t);
374 		} else {
375 			bcopy(template, ip, tlen);
376 		}
377 		break;
378 	}
379 	if (th0)
380 		xchg(th->th_dport, th->th_sport, u_int16_t);
381 	else
382 		flags = TH_ACK;
383 #undef xchg
384 
385 	m->m_len = tlen;
386 	m->m_pkthdr.len = tlen;
387 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
388 	th->th_seq = htonl(seq);
389 	th->th_ack = htonl(ack);
390 	th->th_x2 = 0;
391 	th->th_off = sizeof (struct tcphdr) >> 2;
392 	th->th_flags = flags;
393 	if (tp)
394 		win >>= tp->rcv_scale;
395 	if (win > TCP_MAXWIN)
396 		win = TCP_MAXWIN;
397 	th->th_win = htons((u_int16_t)win);
398 	th->th_urp = 0;
399 
400 	/* force routing domain */
401 	if (tp)
402 		m->m_pkthdr.rdomain = tp->t_inpcb->inp_rtableid;
403 	else
404 		m->m_pkthdr.rdomain = rtableid;
405 
406 	switch (af) {
407 #ifdef INET6
408 	case AF_INET6:
409 		ip6->ip6_flow = htonl(0x60000000);
410 		ip6->ip6_nxt  = IPPROTO_TCP;
411 		ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL, NULL);	/*XXX*/
412 		ip6->ip6_plen = tlen - sizeof(struct ip6_hdr);
413 		th->th_sum = 0;
414 		th->th_sum = in6_cksum(m, IPPROTO_TCP,
415 		   sizeof(struct ip6_hdr), ip6->ip6_plen);
416 		HTONS(ip6->ip6_plen);
417 		ip6_output(m, tp ? tp->t_inpcb->inp_outputopts6 : NULL,
418 		    (struct route_in6 *)ro, 0, NULL, NULL,
419 		    tp ? tp->t_inpcb : NULL);
420 		break;
421 #endif /* INET6 */
422 	case AF_INET:
423 		ih = (struct ipovly *)ip;
424 		bzero(ih->ih_x1, sizeof ih->ih_x1);
425 		ih->ih_len = htons((u_short)tlen - sizeof(struct ip));
426 
427 		/*
428 		 * There's no point deferring to hardware checksum processing
429 		 * here, as we only send a minimal TCP packet whose checksum
430 		 * we need to compute in any case.
431 		 */
432 		th->th_sum = 0;
433 		th->th_sum = in_cksum(m, tlen);
434 		ip->ip_len = htons(tlen);
435 		ip->ip_ttl = ip_defttl;
436 		ip_output(m, (void *)NULL, ro, ip_mtudisc ? IP_MTUDISC : 0,
437 			(void *)NULL, tp ? tp->t_inpcb : (void *)NULL);
438 	}
439 }
440 
441 /*
442  * Create a new TCP control block, making an
443  * empty reassembly queue and hooking it to the argument
444  * protocol control block.
445  */
446 struct tcpcb *
447 tcp_newtcpcb(struct inpcb *inp)
448 {
449 	struct tcpcb *tp;
450 	int i;
451 
452 	tp = pool_get(&tcpcb_pool, PR_NOWAIT|PR_ZERO);
453 	if (tp == NULL)
454 		return (NULL);
455 	TAILQ_INIT(&tp->t_segq);
456 	tp->t_maxseg = tcp_mssdflt;
457 	tp->t_maxopd = 0;
458 
459 	TCP_INIT_DELACK(tp);
460 	for (i = 0; i < TCPT_NTIMERS; i++)
461 		TCP_TIMER_INIT(tp, i);
462 	timeout_set(&tp->t_reap_to, tcp_reaper, tp);
463 
464 #ifdef TCP_SACK
465 	tp->sack_enable = tcp_do_sack;
466 #endif
467 	tp->t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
468 	tp->t_inpcb = inp;
469 	/*
470 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
471 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
472 	 * reasonable initial retransmit time.
473 	 */
474 	tp->t_srtt = TCPTV_SRTTBASE;
475 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ <<
476 	    (TCP_RTTVAR_SHIFT + TCP_RTT_BASE_SHIFT - 1);
477 	tp->t_rttmin = TCPTV_MIN;
478 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
479 	    TCPTV_MIN, TCPTV_REXMTMAX);
480 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
481 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
482 
483 	tp->t_pmtud_mtu_sent = 0;
484 	tp->t_pmtud_mss_acked = 0;
485 
486 #ifdef INET6
487 	/* we disallow IPv4 mapped address completely. */
488 	if ((inp->inp_flags & INP_IPV6) == 0)
489 		tp->pf = PF_INET;
490 	else
491 		tp->pf = PF_INET6;
492 #else
493 	tp->pf = PF_INET;
494 #endif
495 
496 #ifdef INET6
497 	if (inp->inp_flags & INP_IPV6)
498 		inp->inp_ipv6.ip6_hlim = ip6_defhlim;
499 	else
500 #endif /* INET6 */
501 		inp->inp_ip.ip_ttl = ip_defttl;
502 
503 	inp->inp_ppcb = (caddr_t)tp;
504 	return (tp);
505 }
506 
507 /*
508  * Drop a TCP connection, reporting
509  * the specified error.  If connection is synchronized,
510  * then send a RST to peer.
511  */
512 struct tcpcb *
513 tcp_drop(tp, errno)
514 	struct tcpcb *tp;
515 	int errno;
516 {
517 	struct socket *so = tp->t_inpcb->inp_socket;
518 
519 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
520 		tp->t_state = TCPS_CLOSED;
521 		(void) tcp_output(tp);
522 		tcpstat.tcps_drops++;
523 	} else
524 		tcpstat.tcps_conndrops++;
525 	if (errno == ETIMEDOUT && tp->t_softerror)
526 		errno = tp->t_softerror;
527 	so->so_error = errno;
528 	return (tcp_close(tp));
529 }
530 
531 /*
532  * Close a TCP control block:
533  *	discard all space held by the tcp
534  *	discard internet protocol block
535  *	wake up any sleepers
536  */
537 struct tcpcb *
538 tcp_close(struct tcpcb *tp)
539 {
540 	struct inpcb *inp = tp->t_inpcb;
541 	struct socket *so = inp->inp_socket;
542 #ifdef TCP_SACK
543 	struct sackhole *p, *q;
544 #endif
545 
546 	/* free the reassembly queue, if any */
547 	tcp_freeq(tp);
548 
549 	tcp_canceltimers(tp);
550 	TCP_CLEAR_DELACK(tp);
551 	syn_cache_cleanup(tp);
552 
553 #ifdef TCP_SACK
554 	/* Free SACK holes. */
555 	q = p = tp->snd_holes;
556 	while (p != 0) {
557 		q = p->next;
558 		pool_put(&sackhl_pool, p);
559 		p = q;
560 	}
561 #endif
562 	if (tp->t_template)
563 		(void) m_free(tp->t_template);
564 
565 	tp->t_flags |= TF_DEAD;
566 	timeout_add(&tp->t_reap_to, 0);
567 
568 	inp->inp_ppcb = 0;
569 	soisdisconnected(so);
570 	in_pcbdetach(inp);
571 	return (NULL);
572 }
573 
574 void
575 tcp_reaper(void *arg)
576 {
577 	struct tcpcb *tp = arg;
578 	int s;
579 
580 	s = splsoftnet();
581 	pool_put(&tcpcb_pool, tp);
582 	splx(s);
583 	tcpstat.tcps_closed++;
584 }
585 
586 int
587 tcp_freeq(struct tcpcb *tp)
588 {
589 	struct tcpqent *qe;
590 	int rv = 0;
591 
592 	while ((qe = TAILQ_FIRST(&tp->t_segq)) != NULL) {
593 		TAILQ_REMOVE(&tp->t_segq, qe, tcpqe_q);
594 		m_freem(qe->tcpqe_m);
595 		pool_put(&tcpqe_pool, qe);
596 		rv = 1;
597 	}
598 	return (rv);
599 }
600 
601 /*
602  * Compute proper scaling value for receiver window from buffer space
603  */
604 
605 void
606 tcp_rscale(struct tcpcb *tp, u_long hiwat)
607 {
608 	tp->request_r_scale = 0;
609 	while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
610 	       TCP_MAXWIN << tp->request_r_scale < hiwat)
611 		tp->request_r_scale++;
612 }
613 
614 /*
615  * Notify a tcp user of an asynchronous error;
616  * store error as soft error, but wake up user
617  * (for now, won't do anything until can select for soft error).
618  */
619 void
620 tcp_notify(inp, error)
621 	struct inpcb *inp;
622 	int error;
623 {
624 	struct tcpcb *tp = intotcpcb(inp);
625 	struct socket *so = inp->inp_socket;
626 
627 	/*
628 	 * Ignore some errors if we are hooked up.
629 	 * If connection hasn't completed, has retransmitted several times,
630 	 * and receives a second error, give up now.  This is better
631 	 * than waiting a long time to establish a connection that
632 	 * can never complete.
633 	 */
634 	if (tp->t_state == TCPS_ESTABLISHED &&
635 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
636 	      error == EHOSTDOWN)) {
637 		return;
638 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
639 	    tp->t_rxtshift > 3 && tp->t_softerror)
640 		so->so_error = error;
641 	else
642 		tp->t_softerror = error;
643 	wakeup((caddr_t) &so->so_timeo);
644 	sorwakeup(so);
645 	sowwakeup(so);
646 }
647 
648 #ifdef INET6
649 void
650 tcp6_ctlinput(int cmd, struct sockaddr *sa, u_int rdomain, void *d)
651 {
652 	struct tcphdr th;
653 	struct tcpcb *tp;
654 	void (*notify)(struct inpcb *, int) = tcp_notify;
655 	struct ip6_hdr *ip6;
656 	const struct sockaddr_in6 *sa6_src = NULL;
657 	struct sockaddr_in6 *sa6 = satosin6(sa);
658 	struct inpcb *inp;
659 	struct mbuf *m;
660 	tcp_seq seq;
661 	int off;
662 	struct {
663 		u_int16_t th_sport;
664 		u_int16_t th_dport;
665 		u_int32_t th_seq;
666 	} *thp;
667 
668 	if (sa->sa_family != AF_INET6 ||
669 	    sa->sa_len != sizeof(struct sockaddr_in6) ||
670 	    IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
671 	    IN6_IS_ADDR_V4MAPPED(&sa6->sin6_addr))
672 		return;
673 	if ((unsigned)cmd >= PRC_NCMDS)
674 		return;
675 	else if (cmd == PRC_QUENCH) {
676 		/*
677 		 * Don't honor ICMP Source Quench messages meant for
678 		 * TCP connections.
679 		 */
680 		/* XXX there's no PRC_QUENCH in IPv6 */
681 		return;
682 	} else if (PRC_IS_REDIRECT(cmd))
683 		notify = in_rtchange, d = NULL;
684 	else if (cmd == PRC_MSGSIZE)
685 		; /* special code is present, see below */
686 	else if (cmd == PRC_HOSTDEAD)
687 		d = NULL;
688 	else if (inet6ctlerrmap[cmd] == 0)
689 		return;
690 
691 	/* if the parameter is from icmp6, decode it. */
692 	if (d != NULL) {
693 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
694 		m = ip6cp->ip6c_m;
695 		ip6 = ip6cp->ip6c_ip6;
696 		off = ip6cp->ip6c_off;
697 		sa6_src = ip6cp->ip6c_src;
698 	} else {
699 		m = NULL;
700 		ip6 = NULL;
701 		sa6_src = &sa6_any;
702 	}
703 
704 	if (ip6) {
705 		/*
706 		 * XXX: We assume that when ip6 is non NULL,
707 		 * M and OFF are valid.
708 		 */
709 
710 		/* check if we can safely examine src and dst ports */
711 		if (m->m_pkthdr.len < off + sizeof(*thp))
712 			return;
713 
714 		bzero(&th, sizeof(th));
715 #ifdef DIAGNOSTIC
716 		if (sizeof(*thp) > sizeof(th))
717 			panic("assumption failed in tcp6_ctlinput");
718 #endif
719 		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
720 
721 		/*
722 		 * Check to see if we have a valid TCP connection
723 		 * corresponding to the address in the ICMPv6 message
724 		 * payload.
725 		 */
726 		inp = in6_pcbhashlookup(&tcbtable, &sa6->sin6_addr,
727 		    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
728 		    th.th_sport, rdomain);
729 		if (cmd == PRC_MSGSIZE) {
730 			/*
731 			 * Depending on the value of "valid" and routing table
732 			 * size (mtudisc_{hi,lo}wat), we will:
733 			 * - recalcurate the new MTU and create the
734 			 *   corresponding routing entry, or
735 			 * - ignore the MTU change notification.
736 			 */
737 			icmp6_mtudisc_update((struct ip6ctlparam *)d, inp != NULL);
738 			return;
739 		}
740 		if (inp) {
741 			seq = ntohl(th.th_seq);
742 			if (inp->inp_socket &&
743 			    (tp = intotcpcb(inp)) &&
744 			    SEQ_GEQ(seq, tp->snd_una) &&
745 			    SEQ_LT(seq, tp->snd_max))
746 				notify(inp, inet6ctlerrmap[cmd]);
747 		} else if (syn_cache_count &&
748 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
749 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
750 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
751 			syn_cache_unreach((struct sockaddr *)sa6_src,
752 			    sa, &th, rdomain);
753 	} else {
754 		(void) in6_pcbnotify(&tcbtable, sa6, 0,
755 		    sa6_src, 0, rdomain, cmd, NULL, notify);
756 	}
757 }
758 #endif
759 
760 void *
761 tcp_ctlinput(int cmd, struct sockaddr *sa, u_int rdomain, void *v)
762 {
763 	struct ip *ip = v;
764 	struct tcphdr *th;
765 	struct tcpcb *tp;
766 	struct inpcb *inp;
767 	struct in_addr faddr;
768 	tcp_seq seq;
769 	u_int mtu;
770 	void (*notify)(struct inpcb *, int) = tcp_notify;
771 	int errno;
772 
773 	if (sa->sa_family != AF_INET)
774 		return NULL;
775 	faddr = satosin(sa)->sin_addr;
776 	if (faddr.s_addr == INADDR_ANY)
777 		return NULL;
778 
779 	if ((unsigned)cmd >= PRC_NCMDS)
780 		return NULL;
781 	errno = inetctlerrmap[cmd];
782 	if (cmd == PRC_QUENCH)
783 		/*
784 		 * Don't honor ICMP Source Quench messages meant for
785 		 * TCP connections.
786 		 */
787 		return NULL;
788 	else if (PRC_IS_REDIRECT(cmd))
789 		notify = in_rtchange, ip = 0;
790 	else if (cmd == PRC_MSGSIZE && ip_mtudisc && ip) {
791 		/*
792 		 * Verify that the packet in the icmp payload refers
793 		 * to an existing TCP connection.
794 		 */
795 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
796 		seq = ntohl(th->th_seq);
797 		inp = in_pcbhashlookup(&tcbtable,
798 		    ip->ip_dst, th->th_dport, ip->ip_src, th->th_sport,
799 		    rdomain);
800 		if (inp && (tp = intotcpcb(inp)) &&
801 		    SEQ_GEQ(seq, tp->snd_una) &&
802 		    SEQ_LT(seq, tp->snd_max)) {
803 			struct icmp *icp;
804 			icp = (struct icmp *)((caddr_t)ip -
805 					      offsetof(struct icmp, icmp_ip));
806 
807 			/*
808 			 * If the ICMP message advertises a Next-Hop MTU
809 			 * equal or larger than the maximum packet size we have
810 			 * ever sent, drop the message.
811 			 */
812 			mtu = (u_int)ntohs(icp->icmp_nextmtu);
813 			if (mtu >= tp->t_pmtud_mtu_sent)
814 				return NULL;
815 			if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
816 				/*
817 				 * Calculate new MTU, and create corresponding
818 				 * route (traditional PMTUD).
819 				 */
820 				tp->t_flags &= ~TF_PMTUD_PEND;
821 				icmp_mtudisc(icp, inp->inp_rtableid);
822 			} else {
823 				/*
824 				 * Record the information got in the ICMP
825 				 * message; act on it later.
826 				 * If we had already recorded an ICMP message,
827 				 * replace the old one only if the new message
828 				 * refers to an older TCP segment
829 				 */
830 				if (tp->t_flags & TF_PMTUD_PEND) {
831 					if (SEQ_LT(tp->t_pmtud_th_seq, seq))
832 						return NULL;
833 				} else
834 					tp->t_flags |= TF_PMTUD_PEND;
835 				tp->t_pmtud_th_seq = seq;
836 				tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
837 				tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
838 				tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
839 				return NULL;
840 			}
841 		} else {
842 			/* ignore if we don't have a matching connection */
843 			return NULL;
844 		}
845 		notify = tcp_mtudisc, ip = 0;
846 	} else if (cmd == PRC_MTUINC)
847 		notify = tcp_mtudisc_increase, ip = 0;
848 	else if (cmd == PRC_HOSTDEAD)
849 		ip = 0;
850 	else if (errno == 0)
851 		return NULL;
852 
853 	if (ip) {
854 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
855 		inp = in_pcbhashlookup(&tcbtable,
856 		    ip->ip_dst, th->th_dport, ip->ip_src, th->th_sport,
857 		    rdomain);
858 		if (inp) {
859 			seq = ntohl(th->th_seq);
860 			if (inp->inp_socket &&
861 			    (tp = intotcpcb(inp)) &&
862 			    SEQ_GEQ(seq, tp->snd_una) &&
863 			    SEQ_LT(seq, tp->snd_max))
864 				notify(inp, errno);
865 		} else if (syn_cache_count &&
866 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
867 		     inetctlerrmap[cmd] == ENETUNREACH ||
868 		     inetctlerrmap[cmd] == EHOSTDOWN)) {
869 			struct sockaddr_in sin;
870 
871 			bzero(&sin, sizeof(sin));
872 			sin.sin_len = sizeof(sin);
873 			sin.sin_family = AF_INET;
874 			sin.sin_port = th->th_sport;
875 			sin.sin_addr = ip->ip_src;
876 			syn_cache_unreach((struct sockaddr *)&sin,
877 			    sa, th, rdomain);
878 		}
879 	} else
880 		in_pcbnotifyall(&tcbtable, sa, rdomain, errno, notify);
881 
882 	return NULL;
883 }
884 
885 
886 #ifdef INET6
887 /*
888  * Path MTU Discovery handlers.
889  */
890 void
891 tcp6_mtudisc_callback(sin6, rdomain)
892 	struct sockaddr_in6 *sin6;
893 	u_int rdomain;
894 {
895 	(void) in6_pcbnotify(&tcbtable, sin6, 0,
896 	    &sa6_any, 0, rdomain, PRC_MSGSIZE, NULL, tcp_mtudisc);
897 }
898 #endif /* INET6 */
899 
900 /*
901  * On receipt of path MTU corrections, flush old route and replace it
902  * with the new one.  Retransmit all unacknowledged packets, to ensure
903  * that all packets will be received.
904  */
905 void
906 tcp_mtudisc(inp, errno)
907 	struct inpcb *inp;
908 	int errno;
909 {
910 	struct tcpcb *tp = intotcpcb(inp);
911 	struct rtentry *rt = in_pcbrtentry(inp);
912 	int change = 0;
913 
914 	if (tp != 0) {
915 		int orig_maxseg = tp->t_maxseg;
916 		if (rt != 0) {
917 			/*
918 			 * If this was not a host route, remove and realloc.
919 			 */
920 			if ((rt->rt_flags & RTF_HOST) == 0) {
921 				in_rtchange(inp, errno);
922 				if ((rt = in_pcbrtentry(inp)) == 0)
923 					return;
924 			}
925 			if (orig_maxseg != tp->t_maxseg ||
926 			    (rt->rt_rmx.rmx_locks & RTV_MTU))
927 				change = 1;
928 		}
929 		tcp_mss(tp, -1);
930 
931 		/*
932 		 * Resend unacknowledged packets
933 		 */
934 		tp->snd_nxt = tp->snd_una;
935 		if (change || errno > 0)
936 			tcp_output(tp);
937 	}
938 }
939 
940 void
941 tcp_mtudisc_increase(inp, errno)
942 	struct inpcb *inp;
943 	int errno;
944 {
945 	struct tcpcb *tp = intotcpcb(inp);
946 	struct rtentry *rt = in_pcbrtentry(inp);
947 
948 	if (tp != 0 && rt != 0) {
949 		/*
950 		 * If this was a host route, remove and realloc.
951 		 */
952 		if (rt->rt_flags & RTF_HOST)
953 			in_rtchange(inp, errno);
954 
955 		/* also takes care of congestion window */
956 		tcp_mss(tp, -1);
957 	}
958 }
959 
960 #define TCP_ISS_CONN_INC 4096
961 int tcp_secret_init;
962 u_char tcp_secret[16];
963 MD5_CTX tcp_secret_ctx;
964 
965 void
966 tcp_set_iss_tsm(struct tcpcb *tp)
967 {
968 	MD5_CTX ctx;
969 	u_int32_t digest[4];
970 
971 	if (tcp_secret_init == 0) {
972 		arc4random_buf(tcp_secret, sizeof(tcp_secret));
973 		MD5Init(&tcp_secret_ctx);
974 		MD5Update(&tcp_secret_ctx, tcp_secret, sizeof(tcp_secret));
975 		tcp_secret_init = 1;
976 	}
977 	ctx = tcp_secret_ctx;
978 	MD5Update(&ctx, (char *)&tp->t_inpcb->inp_lport, sizeof(u_short));
979 	MD5Update(&ctx, (char *)&tp->t_inpcb->inp_fport, sizeof(u_short));
980 	if (tp->pf == AF_INET6) {
981 		MD5Update(&ctx, (char *)&tp->t_inpcb->inp_laddr6,
982 		    sizeof(struct in6_addr));
983 		MD5Update(&ctx, (char *)&tp->t_inpcb->inp_faddr6,
984 		    sizeof(struct in6_addr));
985 	} else {
986 		MD5Update(&ctx, (char *)&tp->t_inpcb->inp_laddr,
987 		    sizeof(struct in_addr));
988 		MD5Update(&ctx, (char *)&tp->t_inpcb->inp_faddr,
989 		    sizeof(struct in_addr));
990 	}
991 	MD5Final((u_char *)digest, &ctx);
992 	tcp_iss += TCP_ISS_CONN_INC;
993 	tp->iss = digest[0] + tcp_iss;
994 	tp->ts_modulate = digest[1];
995 }
996 
997 #ifdef TCP_SIGNATURE
998 int
999 tcp_signature_tdb_attach()
1000 {
1001 	return (0);
1002 }
1003 
1004 int
1005 tcp_signature_tdb_init(tdbp, xsp, ii)
1006 	struct tdb *tdbp;
1007 	struct xformsw *xsp;
1008 	struct ipsecinit *ii;
1009 {
1010 	if ((ii->ii_authkeylen < 1) || (ii->ii_authkeylen > 80))
1011 		return (EINVAL);
1012 
1013 	tdbp->tdb_amxkey = malloc(ii->ii_authkeylen, M_XDATA, M_NOWAIT);
1014 	if (tdbp->tdb_amxkey == NULL)
1015 		return (ENOMEM);
1016 	bcopy(ii->ii_authkey, tdbp->tdb_amxkey, ii->ii_authkeylen);
1017 	tdbp->tdb_amxkeylen = ii->ii_authkeylen;
1018 
1019 	return (0);
1020 }
1021 
1022 int
1023 tcp_signature_tdb_zeroize(tdbp)
1024 	struct tdb *tdbp;
1025 {
1026 	if (tdbp->tdb_amxkey) {
1027 		explicit_bzero(tdbp->tdb_amxkey, tdbp->tdb_amxkeylen);
1028 		free(tdbp->tdb_amxkey, M_XDATA);
1029 		tdbp->tdb_amxkey = NULL;
1030 	}
1031 
1032 	return (0);
1033 }
1034 
1035 int
1036 tcp_signature_tdb_input(m, tdbp, skip, protoff)
1037 	struct mbuf *m;
1038 	struct tdb *tdbp;
1039 	int skip, protoff;
1040 {
1041 	return (0);
1042 }
1043 
1044 int
1045 tcp_signature_tdb_output(m, tdbp, mp, skip, protoff)
1046 	struct mbuf *m;
1047 	struct tdb *tdbp;
1048 	struct mbuf **mp;
1049 	int skip, protoff;
1050 {
1051 	return (EINVAL);
1052 }
1053 
1054 int
1055 tcp_signature_apply(fstate, data, len)
1056 	caddr_t fstate;
1057 	caddr_t data;
1058 	unsigned int len;
1059 {
1060 	MD5Update((MD5_CTX *)fstate, (char *)data, len);
1061 	return 0;
1062 }
1063 
1064 int
1065 tcp_signature(struct tdb *tdb, int af, struct mbuf *m, struct tcphdr *th,
1066     int iphlen, int doswap, char *sig)
1067 {
1068 	MD5_CTX ctx;
1069 	int len;
1070 	struct tcphdr th0;
1071 
1072 	MD5Init(&ctx);
1073 
1074 	switch(af) {
1075 	case 0:
1076 #ifdef INET
1077 	case AF_INET: {
1078 		struct ippseudo ippseudo;
1079 		struct ip *ip;
1080 
1081 		ip = mtod(m, struct ip *);
1082 
1083 		ippseudo.ippseudo_src = ip->ip_src;
1084 		ippseudo.ippseudo_dst = ip->ip_dst;
1085 		ippseudo.ippseudo_pad = 0;
1086 		ippseudo.ippseudo_p = IPPROTO_TCP;
1087 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - iphlen);
1088 
1089 		MD5Update(&ctx, (char *)&ippseudo,
1090 		    sizeof(struct ippseudo));
1091 		break;
1092 		}
1093 #endif
1094 #ifdef INET6
1095 	case AF_INET6: {
1096 		struct ip6_hdr_pseudo ip6pseudo;
1097 		struct ip6_hdr *ip6;
1098 
1099 		ip6 = mtod(m, struct ip6_hdr *);
1100 		bzero(&ip6pseudo, sizeof(ip6pseudo));
1101 		ip6pseudo.ip6ph_src = ip6->ip6_src;
1102 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
1103 		in6_clearscope(&ip6pseudo.ip6ph_src);
1104 		in6_clearscope(&ip6pseudo.ip6ph_dst);
1105 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
1106 		ip6pseudo.ip6ph_len = htonl(m->m_pkthdr.len - iphlen);
1107 
1108 		MD5Update(&ctx, (char *)&ip6pseudo,
1109 		    sizeof(ip6pseudo));
1110 		break;
1111 		}
1112 #endif
1113 	}
1114 
1115 	th0 = *th;
1116 	th0.th_sum = 0;
1117 
1118 	if (doswap) {
1119 		HTONL(th0.th_seq);
1120 		HTONL(th0.th_ack);
1121 		HTONS(th0.th_win);
1122 		HTONS(th0.th_urp);
1123 	}
1124 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
1125 
1126 	len = m->m_pkthdr.len - iphlen - th->th_off * sizeof(uint32_t);
1127 
1128 	if (len > 0 &&
1129 	    m_apply(m, iphlen + th->th_off * sizeof(uint32_t), len,
1130 	    tcp_signature_apply, (caddr_t)&ctx))
1131 		return (-1);
1132 
1133 	MD5Update(&ctx, tdb->tdb_amxkey, tdb->tdb_amxkeylen);
1134 	MD5Final(sig, &ctx);
1135 
1136 	return (0);
1137 }
1138 #endif /* TCP_SIGNATURE */
1139