xref: /openbsd-src/sys/netinet/tcp_input.c (revision d874cce4b1d9fe6b41c9e4f2117a77d8a4a37b92)
1 /*	$OpenBSD: tcp_input.c,v 1.219 2008/06/14 22:15:30 jsing Exp $	*/
2 /*	$NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
33  *
34  * NRL grants permission for redistribution and use in source and binary
35  * forms, with or without modification, of the software and documentation
36  * created at NRL provided that the following conditions are met:
37  *
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgements:
45  * 	This product includes software developed by the University of
46  * 	California, Berkeley and its contributors.
47  * 	This product includes software developed at the Information
48  * 	Technology Division, US Naval Research Laboratory.
49  * 4. Neither the name of the NRL nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
54  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
56  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
57  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
58  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
59  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
60  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
61  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
62  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
63  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64  *
65  * The views and conclusions contained in the software and documentation
66  * are those of the authors and should not be interpreted as representing
67  * official policies, either expressed or implied, of the US Naval
68  * Research Laboratory (NRL).
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/mbuf.h>
74 #include <sys/protosw.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/kernel.h>
78 #include <sys/pool.h>
79 
80 #include <dev/rndvar.h>
81 
82 #include <net/if.h>
83 #include <net/route.h>
84 
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp.h>
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_seq.h>
93 #include <netinet/tcp_timer.h>
94 #include <netinet/tcp_var.h>
95 #include <netinet/tcpip.h>
96 #include <netinet/tcp_debug.h>
97 
98 #include "faith.h"
99 
100 struct	tcpiphdr tcp_saveti;
101 
102 int tcp_mss_adv(struct ifnet *, int);
103 
104 #ifdef INET6
105 #include <netinet6/in6_var.h>
106 #include <netinet6/nd6.h>
107 
108 struct  tcpipv6hdr tcp_saveti6;
109 
110 /* for the packet header length in the mbuf */
111 #define M_PH_LEN(m)      (((struct mbuf *)(m))->m_pkthdr.len)
112 #define M_V6_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip6_hdr))
113 #define M_V4_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip))
114 #endif /* INET6 */
115 
116 int	tcprexmtthresh = 3;
117 int	tcptv_keep_init = TCPTV_KEEP_INIT;
118 
119 extern u_long sb_max;
120 
121 int tcp_rst_ppslim = 100;		/* 100pps */
122 int tcp_rst_ppslim_count = 0;
123 struct timeval tcp_rst_ppslim_last;
124 
125 int tcp_ackdrop_ppslim = 100;		/* 100pps */
126 int tcp_ackdrop_ppslim_count = 0;
127 struct timeval tcp_ackdrop_ppslim_last;
128 
129 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
130 
131 /* for modulo comparisons of timestamps */
132 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
133 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
134 
135 /* for TCP SACK comparisons */
136 #define	SEQ_MIN(a,b)	(SEQ_LT(a,b) ? (a) : (b))
137 #define	SEQ_MAX(a,b)	(SEQ_GT(a,b) ? (a) : (b))
138 
139 /*
140  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
141  */
142 #ifdef INET6
143 #define ND6_HINT(tp) \
144 do { \
145 	if (tp && tp->t_inpcb && (tp->t_inpcb->inp_flags & INP_IPV6) && \
146 	    tp->t_inpcb->inp_route6.ro_rt) { \
147 		nd6_nud_hint(tp->t_inpcb->inp_route6.ro_rt, NULL, 0); \
148 	} \
149 } while (0)
150 #else
151 #define ND6_HINT(tp)
152 #endif
153 
154 #ifdef TCP_ECN
155 /*
156  * ECN (Explicit Congestion Notification) support based on RFC3168
157  * implementation note:
158  *   snd_last is used to track a recovery phase.
159  *   when cwnd is reduced, snd_last is set to snd_max.
160  *   while snd_last > snd_una, the sender is in a recovery phase and
161  *   its cwnd should not be reduced again.
162  *   snd_last follows snd_una when not in a recovery phase.
163  */
164 #endif
165 
166 /*
167  * Macro to compute ACK transmission behavior.  Delay the ACK unless
168  * we have already delayed an ACK (must send an ACK every two segments).
169  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
170  * option is enabled.
171  */
172 #define	TCP_SETUP_ACK(tp, tiflags) \
173 do { \
174 	if ((tp)->t_flags & TF_DELACK || \
175 	    (tcp_ack_on_push && (tiflags) & TH_PUSH)) \
176 		tp->t_flags |= TF_ACKNOW; \
177 	else \
178 		TCP_SET_DELACK(tp); \
179 } while (0)
180 
181 /*
182  * Insert segment ti into reassembly queue of tcp with
183  * control block tp.  Return TH_FIN if reassembly now includes
184  * a segment with FIN.  The macro form does the common case inline
185  * (segment is the next to be received on an established connection,
186  * and the queue is empty), avoiding linkage into and removal
187  * from the queue and repetition of various conversions.
188  * Set DELACK for segments received in order, but ack immediately
189  * when segments are out of order (so fast retransmit can work).
190  */
191 
192 int
193 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
194 {
195 	struct tcpqent *p, *q, *nq, *tiqe;
196 	struct socket *so = tp->t_inpcb->inp_socket;
197 	int flags;
198 
199 	/*
200 	 * Call with th==0 after become established to
201 	 * force pre-ESTABLISHED data up to user socket.
202 	 */
203 	if (th == 0)
204 		goto present;
205 
206 	/*
207 	 * Allocate a new queue entry, before we throw away any data.
208 	 * If we can't, just drop the packet.  XXX
209 	 */
210 	tiqe = pool_get(&tcpqe_pool, PR_NOWAIT);
211 	if (tiqe == NULL) {
212 		tiqe = TAILQ_LAST(&tp->t_segq, tcpqehead);
213 		if (tiqe != NULL && th->th_seq == tp->rcv_nxt) {
214 			/* Reuse last entry since new segment fills a hole */
215 			m_freem(tiqe->tcpqe_m);
216 			TAILQ_REMOVE(&tp->t_segq, tiqe, tcpqe_q);
217 		}
218 		if (tiqe == NULL || th->th_seq != tp->rcv_nxt) {
219 			/* Flush segment queue for this connection */
220 			tcp_freeq(tp);
221 			tcpstat.tcps_rcvmemdrop++;
222 			m_freem(m);
223 			return (0);
224 		}
225 	}
226 
227 	/*
228 	 * Find a segment which begins after this one does.
229 	 */
230 	for (p = NULL, q = TAILQ_FIRST(&tp->t_segq); q != NULL;
231 	    p = q, q = TAILQ_NEXT(q, tcpqe_q))
232 		if (SEQ_GT(q->tcpqe_tcp->th_seq, th->th_seq))
233 			break;
234 
235 	/*
236 	 * If there is a preceding segment, it may provide some of
237 	 * our data already.  If so, drop the data from the incoming
238 	 * segment.  If it provides all of our data, drop us.
239 	 */
240 	if (p != NULL) {
241 		struct tcphdr *phdr = p->tcpqe_tcp;
242 		int i;
243 
244 		/* conversion to int (in i) handles seq wraparound */
245 		i = phdr->th_seq + phdr->th_reseqlen - th->th_seq;
246 		if (i > 0) {
247 		        if (i >= *tlen) {
248 				tcpstat.tcps_rcvduppack++;
249 				tcpstat.tcps_rcvdupbyte += *tlen;
250 				m_freem(m);
251 				pool_put(&tcpqe_pool, tiqe);
252 				return (0);
253 			}
254 			m_adj(m, i);
255 			*tlen -= i;
256 			th->th_seq += i;
257 		}
258 	}
259 	tcpstat.tcps_rcvoopack++;
260 	tcpstat.tcps_rcvoobyte += *tlen;
261 
262 	/*
263 	 * While we overlap succeeding segments trim them or,
264 	 * if they are completely covered, dequeue them.
265 	 */
266 	for (; q != NULL; q = nq) {
267 		struct tcphdr *qhdr = q->tcpqe_tcp;
268 		int i = (th->th_seq + *tlen) - qhdr->th_seq;
269 
270 		if (i <= 0)
271 			break;
272 		if (i < qhdr->th_reseqlen) {
273 			qhdr->th_seq += i;
274 			qhdr->th_reseqlen -= i;
275 			m_adj(q->tcpqe_m, i);
276 			break;
277 		}
278 		nq = TAILQ_NEXT(q, tcpqe_q);
279 		m_freem(q->tcpqe_m);
280 		TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q);
281 		pool_put(&tcpqe_pool, q);
282 	}
283 
284 	/* Insert the new segment queue entry into place. */
285 	tiqe->tcpqe_m = m;
286 	th->th_reseqlen = *tlen;
287 	tiqe->tcpqe_tcp = th;
288 	if (p == NULL) {
289 		TAILQ_INSERT_HEAD(&tp->t_segq, tiqe, tcpqe_q);
290 	} else {
291 		TAILQ_INSERT_AFTER(&tp->t_segq, p, tiqe, tcpqe_q);
292 	}
293 
294 present:
295 	/*
296 	 * Present data to user, advancing rcv_nxt through
297 	 * completed sequence space.
298 	 */
299 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
300 		return (0);
301 	q = TAILQ_FIRST(&tp->t_segq);
302 	if (q == NULL || q->tcpqe_tcp->th_seq != tp->rcv_nxt)
303 		return (0);
304 	if (tp->t_state == TCPS_SYN_RECEIVED && q->tcpqe_tcp->th_reseqlen)
305 		return (0);
306 	do {
307 		tp->rcv_nxt += q->tcpqe_tcp->th_reseqlen;
308 		flags = q->tcpqe_tcp->th_flags & TH_FIN;
309 
310 		nq = TAILQ_NEXT(q, tcpqe_q);
311 		TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q);
312 		ND6_HINT(tp);
313 		if (so->so_state & SS_CANTRCVMORE)
314 			m_freem(q->tcpqe_m);
315 		else
316 			sbappendstream(&so->so_rcv, q->tcpqe_m);
317 		pool_put(&tcpqe_pool, q);
318 		q = nq;
319 	} while (q != NULL && q->tcpqe_tcp->th_seq == tp->rcv_nxt);
320 	sorwakeup(so);
321 	return (flags);
322 }
323 
324 #ifdef INET6
325 int
326 tcp6_input(struct mbuf **mp, int *offp, int proto)
327 {
328 	struct mbuf *m = *mp;
329 
330 #if NFAITH > 0
331 	if (m->m_pkthdr.rcvif) {
332 		if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
333 			/* XXX send icmp6 host/port unreach? */
334 			m_freem(m);
335 			return IPPROTO_DONE;
336 		}
337 	}
338 #endif
339 
340 	/*
341 	 * draft-itojun-ipv6-tcp-to-anycast
342 	 * better place to put this in?
343 	 */
344 	if (m->m_flags & M_ANYCAST6) {
345 		if (m->m_len >= sizeof(struct ip6_hdr)) {
346 			struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
347 			icmp6_error(m, ICMP6_DST_UNREACH,
348 				ICMP6_DST_UNREACH_ADDR,
349 				(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
350 		} else
351 			m_freem(m);
352 		return IPPROTO_DONE;
353 	}
354 
355 	tcp_input(m, *offp, proto);
356 	return IPPROTO_DONE;
357 }
358 #endif
359 
360 /*
361  * TCP input routine, follows pages 65-76 of the
362  * protocol specification dated September, 1981 very closely.
363  */
364 void
365 tcp_input(struct mbuf *m, ...)
366 {
367 	struct ip *ip;
368 	struct inpcb *inp;
369 	u_int8_t *optp = NULL;
370 	int optlen = 0;
371 	int tlen, off;
372 	struct tcpcb *tp = 0;
373 	int tiflags;
374 	struct socket *so = NULL;
375 	int todrop, acked, ourfinisacked, needoutput = 0;
376 	int hdroptlen = 0;
377 	short ostate = 0;
378 	tcp_seq iss, *reuse = NULL;
379 	u_long tiwin;
380 	struct tcp_opt_info opti;
381 	int iphlen;
382 	va_list ap;
383 	struct tcphdr *th;
384 #ifdef INET6
385 	struct ip6_hdr *ip6 = NULL;
386 #endif /* INET6 */
387 #ifdef IPSEC
388 	struct m_tag *mtag;
389 	struct tdb_ident *tdbi;
390 	struct tdb *tdb;
391 	int error, s;
392 #endif /* IPSEC */
393 	int af;
394 #ifdef TCP_ECN
395 	u_char iptos;
396 #endif
397 
398 	va_start(ap, m);
399 	iphlen = va_arg(ap, int);
400 	va_end(ap);
401 
402 	tcpstat.tcps_rcvtotal++;
403 
404 	opti.ts_present = 0;
405 	opti.maxseg = 0;
406 
407 	/*
408 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
409 	 * See below for AF specific multicast.
410 	 */
411 	if (m->m_flags & (M_BCAST|M_MCAST))
412 		goto drop;
413 
414 	/*
415 	 * Before we do ANYTHING, we have to figure out if it's TCP/IPv6 or
416 	 * TCP/IPv4.
417 	 */
418 	switch (mtod(m, struct ip *)->ip_v) {
419 #ifdef INET6
420 	case 6:
421 		af = AF_INET6;
422 		break;
423 #endif
424 	case 4:
425 		af = AF_INET;
426 		break;
427 	default:
428 		m_freem(m);
429 		return;	/*EAFNOSUPPORT*/
430 	}
431 
432 	/*
433 	 * Get IP and TCP header together in first mbuf.
434 	 * Note: IP leaves IP header in first mbuf.
435 	 */
436 	switch (af) {
437 	case AF_INET:
438 #ifdef DIAGNOSTIC
439 		if (iphlen < sizeof(struct ip)) {
440 			m_freem(m);
441 			return;
442 		}
443 #endif /* DIAGNOSTIC */
444 		break;
445 #ifdef INET6
446 	case AF_INET6:
447 #ifdef DIAGNOSTIC
448 		if (iphlen < sizeof(struct ip6_hdr)) {
449 			m_freem(m);
450 			return;
451 		}
452 #endif /* DIAGNOSTIC */
453 		break;
454 #endif
455 	default:
456 		m_freem(m);
457 		return;
458 	}
459 
460 	IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, sizeof(*th));
461 	if (!th) {
462 		tcpstat.tcps_rcvshort++;
463 		return;
464 	}
465 
466 	tlen = m->m_pkthdr.len - iphlen;
467 	ip = NULL;
468 #ifdef INET6
469 	ip6 = NULL;
470 #endif
471 	switch (af) {
472 	case AF_INET:
473 		ip = mtod(m, struct ip *);
474 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
475 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
476 			goto drop;
477 #ifdef TCP_ECN
478 		/* save ip_tos before clearing it for checksum */
479 		iptos = ip->ip_tos;
480 #endif
481 		/*
482 		 * Checksum extended TCP header and data.
483 		 */
484 		if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_OK) == 0) {
485 			if (m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_BAD) {
486 				tcpstat.tcps_inhwcsum++;
487 				tcpstat.tcps_rcvbadsum++;
488 				goto drop;
489 			}
490 			if (in4_cksum(m, IPPROTO_TCP, iphlen, tlen) != 0) {
491 				tcpstat.tcps_rcvbadsum++;
492 				goto drop;
493 			}
494 		} else {
495 			m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_IN_OK;
496 			tcpstat.tcps_inhwcsum++;
497 		}
498 		break;
499 #ifdef INET6
500 	case AF_INET6:
501 		ip6 = mtod(m, struct ip6_hdr *);
502 #ifdef TCP_ECN
503 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
504 #endif
505 
506 		/* Be proactive about malicious use of IPv4 mapped address */
507 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
508 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
509 			/* XXX stat */
510 			goto drop;
511 		}
512 
513 		/*
514 		 * Be proactive about unspecified IPv6 address in source.
515 		 * As we use all-zero to indicate unbounded/unconnected pcb,
516 		 * unspecified IPv6 address can be used to confuse us.
517 		 *
518 		 * Note that packets with unspecified IPv6 destination is
519 		 * already dropped in ip6_input.
520 		 */
521 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
522 			/* XXX stat */
523 			goto drop;
524 		}
525 
526 		/* Discard packets to multicast */
527 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
528 			/* XXX stat */
529 			goto drop;
530 		}
531 
532 		/*
533 		 * Checksum extended TCP header and data.
534 		 */
535 		if (in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr), tlen)) {
536 			tcpstat.tcps_rcvbadsum++;
537 			goto drop;
538 		}
539 		break;
540 #endif
541 	}
542 
543 	/*
544 	 * Check that TCP offset makes sense,
545 	 * pull out TCP options and adjust length.		XXX
546 	 */
547 	off = th->th_off << 2;
548 	if (off < sizeof(struct tcphdr) || off > tlen) {
549 		tcpstat.tcps_rcvbadoff++;
550 		goto drop;
551 	}
552 	tlen -= off;
553 	if (off > sizeof(struct tcphdr)) {
554 		IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, off);
555 		if (!th) {
556 			tcpstat.tcps_rcvshort++;
557 			return;
558 		}
559 		optlen = off - sizeof(struct tcphdr);
560 		optp = (u_int8_t *)(th + 1);
561 		/*
562 		 * Do quick retrieval of timestamp options ("options
563 		 * prediction?").  If timestamp is the only option and it's
564 		 * formatted as recommended in RFC 1323 appendix A, we
565 		 * quickly get the values now and not bother calling
566 		 * tcp_dooptions(), etc.
567 		 */
568 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
569 		     (optlen > TCPOLEN_TSTAMP_APPA &&
570 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
571 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
572 		     (th->th_flags & TH_SYN) == 0) {
573 			opti.ts_present = 1;
574 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
575 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
576 			optp = NULL;	/* we've parsed the options */
577 		}
578 	}
579 	tiflags = th->th_flags;
580 
581 	/*
582 	 * Convert TCP protocol specific fields to host format.
583 	 */
584 	NTOHL(th->th_seq);
585 	NTOHL(th->th_ack);
586 	NTOHS(th->th_win);
587 	NTOHS(th->th_urp);
588 
589 	/*
590 	 * Locate pcb for segment.
591 	 */
592 findpcb:
593 	switch (af) {
594 #ifdef INET6
595 	case AF_INET6:
596 		inp = in6_pcbhashlookup(&tcbtable, &ip6->ip6_src, th->th_sport,
597 		    &ip6->ip6_dst, th->th_dport);
598 		break;
599 #endif
600 	case AF_INET:
601 		inp = in_pcbhashlookup(&tcbtable, ip->ip_src, th->th_sport,
602 		    ip->ip_dst, th->th_dport);
603 		break;
604 	}
605 	if (inp == 0) {
606 		int	inpl_flags = 0;
607 		if (m->m_pkthdr.pf.flags & PF_TAG_TRANSLATE_LOCALHOST)
608 			inpl_flags = INPLOOKUP_WILDCARD;
609 		++tcpstat.tcps_pcbhashmiss;
610 		switch (af) {
611 #ifdef INET6
612 		case AF_INET6:
613 			inp = in6_pcblookup_listen(&tcbtable,
614 			    &ip6->ip6_dst, th->th_dport, inpl_flags, m);
615 			break;
616 #endif /* INET6 */
617 		case AF_INET:
618 			inp = in_pcblookup_listen(&tcbtable,
619 			    ip->ip_dst, th->th_dport, inpl_flags, m);
620 			break;
621 		}
622 		/*
623 		 * If the state is CLOSED (i.e., TCB does not exist) then
624 		 * all data in the incoming segment is discarded.
625 		 * If the TCB exists but is in CLOSED state, it is embryonic,
626 		 * but should either do a listen or a connect soon.
627 		 */
628 		if (inp == 0) {
629 			++tcpstat.tcps_noport;
630 			goto dropwithreset_ratelim;
631 		}
632 	}
633 
634 	/* Check the minimum TTL for socket. */
635 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl)
636 		goto drop;
637 
638 	tp = intotcpcb(inp);
639 	if (tp == 0)
640 		goto dropwithreset_ratelim;
641 	if (tp->t_state == TCPS_CLOSED)
642 		goto drop;
643 
644 	/* Unscale the window into a 32-bit value. */
645 	if ((tiflags & TH_SYN) == 0)
646 		tiwin = th->th_win << tp->snd_scale;
647 	else
648 		tiwin = th->th_win;
649 
650 	so = inp->inp_socket;
651 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
652 		union syn_cache_sa src;
653 		union syn_cache_sa dst;
654 
655 		bzero(&src, sizeof(src));
656 		bzero(&dst, sizeof(dst));
657 		switch (af) {
658 #ifdef INET
659 		case AF_INET:
660 			src.sin.sin_len = sizeof(struct sockaddr_in);
661 			src.sin.sin_family = AF_INET;
662 			src.sin.sin_addr = ip->ip_src;
663 			src.sin.sin_port = th->th_sport;
664 
665 			dst.sin.sin_len = sizeof(struct sockaddr_in);
666 			dst.sin.sin_family = AF_INET;
667 			dst.sin.sin_addr = ip->ip_dst;
668 			dst.sin.sin_port = th->th_dport;
669 			break;
670 #endif
671 #ifdef INET6
672 		case AF_INET6:
673 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
674 			src.sin6.sin6_family = AF_INET6;
675 			src.sin6.sin6_addr = ip6->ip6_src;
676 			src.sin6.sin6_port = th->th_sport;
677 
678 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
679 			dst.sin6.sin6_family = AF_INET6;
680 			dst.sin6.sin6_addr = ip6->ip6_dst;
681 			dst.sin6.sin6_port = th->th_dport;
682 			break;
683 #endif /* INET6 */
684 		default:
685 			goto badsyn;	/*sanity*/
686 		}
687 
688 		if (so->so_options & SO_DEBUG) {
689 			ostate = tp->t_state;
690 			switch (af) {
691 #ifdef INET6
692 			case AF_INET6:
693 				bcopy(ip6, &tcp_saveti6.ti6_i, sizeof(*ip6));
694 				bcopy(th, &tcp_saveti6.ti6_t, sizeof(*th));
695 				break;
696 #endif
697 			case AF_INET:
698 				bcopy(ip, &tcp_saveti.ti_i, sizeof(*ip));
699 				bcopy(th, &tcp_saveti.ti_t, sizeof(*th));
700 				break;
701 			}
702 		}
703 		if (so->so_options & SO_ACCEPTCONN) {
704 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
705 				if (tiflags & TH_RST) {
706 					syn_cache_reset(&src.sa, &dst.sa, th);
707 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
708 				    (TH_ACK|TH_SYN)) {
709 					/*
710 					 * Received a SYN,ACK.  This should
711 					 * never happen while we are in
712 					 * LISTEN.  Send an RST.
713 					 */
714 					goto badsyn;
715 				} else if (tiflags & TH_ACK) {
716 					so = syn_cache_get(&src.sa, &dst.sa,
717 						th, iphlen, tlen, so, m);
718 					if (so == NULL) {
719 						/*
720 						 * We don't have a SYN for
721 						 * this ACK; send an RST.
722 						 */
723 						goto badsyn;
724 					} else if (so ==
725 					    (struct socket *)(-1)) {
726 						/*
727 						 * We were unable to create
728 						 * the connection.  If the
729 						 * 3-way handshake was
730 						 * completed, and RST has
731 						 * been sent to the peer.
732 						 * Since the mbuf might be
733 						 * in use for the reply,
734 						 * do not free it.
735 						 */
736 						m = NULL;
737 					} else {
738 						/*
739 						 * We have created a
740 						 * full-blown connection.
741 						 */
742 						tp = NULL;
743 						inp = (struct inpcb *)so->so_pcb;
744 						tp = intotcpcb(inp);
745 						if (tp == NULL)
746 							goto badsyn;	/*XXX*/
747 
748 						/*
749 						 * Compute proper scaling
750 						 * value from buffer space
751 						 */
752 						tcp_rscale(tp, so->so_rcv.sb_hiwat);
753 						goto after_listen;
754 					}
755 				} else {
756 					/*
757 					 * None of RST, SYN or ACK was set.
758 					 * This is an invalid packet for a
759 					 * TCB in LISTEN state.  Send a RST.
760 					 */
761 					goto badsyn;
762 				}
763 			} else {
764 				/*
765 				 * Received a SYN.
766 				 */
767 #ifdef INET6
768 				/*
769 				 * If deprecated address is forbidden, we do
770 				 * not accept SYN to deprecated interface
771 				 * address to prevent any new inbound
772 				 * connection from getting established.
773 				 * When we do not accept SYN, we send a TCP
774 				 * RST, with deprecated source address (instead
775 				 * of dropping it).  We compromise it as it is
776 				 * much better for peer to send a RST, and
777 				 * RST will be the final packet for the
778 				 * exchange.
779 				 *
780 				 * If we do not forbid deprecated addresses, we
781 				 * accept the SYN packet.  RFC2462 does not
782 				 * suggest dropping SYN in this case.
783 				 * If we decipher RFC2462 5.5.4, it says like
784 				 * this:
785 				 * 1. use of deprecated addr with existing
786 				 *    communication is okay - "SHOULD continue
787 				 *    to be used"
788 				 * 2. use of it with new communication:
789 				 *   (2a) "SHOULD NOT be used if alternate
790 				 *        address with sufficient scope is
791 				 *        available"
792 				 *   (2b) nothing mentioned otherwise.
793 				 * Here we fall into (2b) case as we have no
794 				 * choice in our source address selection - we
795 				 * must obey the peer.
796 				 *
797 				 * The wording in RFC2462 is confusing, and
798 				 * there are multiple description text for
799 				 * deprecated address handling - worse, they
800 				 * are not exactly the same.  I believe 5.5.4
801 				 * is the best one, so we follow 5.5.4.
802 				 */
803 				if (ip6 && !ip6_use_deprecated) {
804 					struct in6_ifaddr *ia6;
805 
806 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
807 					    &ip6->ip6_dst)) &&
808 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
809 						tp = NULL;
810 						goto dropwithreset;
811 					}
812 				}
813 #endif
814 
815 				/*
816 				 * LISTEN socket received a SYN
817 				 * from itself?  This can't possibly
818 				 * be valid; drop the packet.
819 				 */
820 				if (th->th_dport == th->th_sport) {
821 					switch (af) {
822 #ifdef INET6
823 					case AF_INET6:
824 						if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
825 						    &ip6->ip6_dst)) {
826 							tcpstat.tcps_badsyn++;
827 							goto drop;
828 						}
829 						break;
830 #endif /* INET6 */
831 					case AF_INET:
832 						if (ip->ip_dst.s_addr == ip->ip_src.s_addr) {
833 							tcpstat.tcps_badsyn++;
834 							goto drop;
835 						}
836 						break;
837 					}
838 				}
839 
840 				/*
841 				 * SYN looks ok; create compressed TCP
842 				 * state for it.
843 				 */
844 				if (so->so_qlen <= so->so_qlimit &&
845 				    syn_cache_add(&src.sa, &dst.sa, th, iphlen,
846 				    so, m, optp, optlen, &opti, reuse))
847 					m = NULL;
848 			}
849 			goto drop;
850 		}
851 	}
852 
853 after_listen:
854 #ifdef DIAGNOSTIC
855 	/*
856 	 * Should not happen now that all embryonic connections
857 	 * are handled with compressed state.
858 	 */
859 	if (tp->t_state == TCPS_LISTEN)
860 		panic("tcp_input: TCPS_LISTEN");
861 #endif
862 
863 #ifdef IPSEC
864 	/* Find most recent IPsec tag */
865 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
866         s = splnet();
867 	if (mtag != NULL) {
868 		tdbi = (struct tdb_ident *)(mtag + 1);
869 	        tdb = gettdb(tdbi->spi, &tdbi->dst, tdbi->proto);
870 	} else
871 		tdb = NULL;
872 	ipsp_spd_lookup(m, af, iphlen, &error, IPSP_DIRECTION_IN,
873 	    tdb, inp);
874 	if (error) {
875 		splx(s);
876 		goto drop;
877 	}
878 
879 	/* Latch SA */
880 	if (inp->inp_tdb_in != tdb) {
881 		if (tdb) {
882 		        tdb_add_inp(tdb, inp, 1);
883 			if (inp->inp_ipo == NULL) {
884 				inp->inp_ipo = ipsec_add_policy(inp, af,
885 				    IPSP_DIRECTION_OUT);
886 				if (inp->inp_ipo == NULL) {
887 					splx(s);
888 					goto drop;
889 				}
890 			}
891 			if (inp->inp_ipo->ipo_dstid == NULL &&
892 			    tdb->tdb_srcid != NULL) {
893 				inp->inp_ipo->ipo_dstid = tdb->tdb_srcid;
894 				tdb->tdb_srcid->ref_count++;
895 			}
896 			if (inp->inp_ipsec_remotecred == NULL &&
897 			    tdb->tdb_remote_cred != NULL) {
898 				inp->inp_ipsec_remotecred =
899 				    tdb->tdb_remote_cred;
900 				tdb->tdb_remote_cred->ref_count++;
901 			}
902 			if (inp->inp_ipsec_remoteauth == NULL &&
903 			    tdb->tdb_remote_auth != NULL) {
904 				inp->inp_ipsec_remoteauth =
905 				    tdb->tdb_remote_auth;
906 				tdb->tdb_remote_auth->ref_count++;
907 			}
908 		} else { /* Just reset */
909 		        TAILQ_REMOVE(&inp->inp_tdb_in->tdb_inp_in, inp,
910 				     inp_tdb_in_next);
911 			inp->inp_tdb_in = NULL;
912 		}
913 	}
914         splx(s);
915 #endif /* IPSEC */
916 
917 	/*
918 	 * Segment received on connection.
919 	 * Reset idle time and keep-alive timer.
920 	 */
921 	tp->t_rcvtime = tcp_now;
922 	if (TCPS_HAVEESTABLISHED(tp->t_state))
923 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
924 
925 #ifdef TCP_SACK
926 	if (tp->sack_enable)
927 		tcp_del_sackholes(tp, th); /* Delete stale SACK holes */
928 #endif /* TCP_SACK */
929 
930 	/*
931 	 * Process options.
932 	 */
933 #ifdef TCP_SIGNATURE
934 	if (optp || (tp->t_flags & TF_SIGNATURE))
935 #else
936 	if (optp)
937 #endif
938 		if (tcp_dooptions(tp, optp, optlen, th, m, iphlen, &opti))
939 			goto drop;
940 
941 	if (opti.ts_present && opti.ts_ecr) {
942 		int rtt_test;
943 
944 		/* subtract out the tcp timestamp modulator */
945 		opti.ts_ecr -= tp->ts_modulate;
946 
947 		/* make sure ts_ecr is sensible */
948 		rtt_test = tcp_now - opti.ts_ecr;
949 		if (rtt_test < 0 || rtt_test > TCP_RTT_MAX)
950 			opti.ts_ecr = 0;
951 	}
952 
953 #ifdef TCP_ECN
954 	/* if congestion experienced, set ECE bit in subsequent packets. */
955 	if ((iptos & IPTOS_ECN_MASK) == IPTOS_ECN_CE) {
956 		tp->t_flags |= TF_RCVD_CE;
957 		tcpstat.tcps_ecn_rcvce++;
958 	}
959 #endif
960 	/*
961 	 * Header prediction: check for the two common cases
962 	 * of a uni-directional data xfer.  If the packet has
963 	 * no control flags, is in-sequence, the window didn't
964 	 * change and we're not retransmitting, it's a
965 	 * candidate.  If the length is zero and the ack moved
966 	 * forward, we're the sender side of the xfer.  Just
967 	 * free the data acked & wake any higher level process
968 	 * that was blocked waiting for space.  If the length
969 	 * is non-zero and the ack didn't move, we're the
970 	 * receiver side.  If we're getting packets in-order
971 	 * (the reassembly queue is empty), add the data to
972 	 * the socket buffer and note that we need a delayed ack.
973 	 */
974 	if (tp->t_state == TCPS_ESTABLISHED &&
975 #ifdef TCP_ECN
976 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK)) == TH_ACK &&
977 #else
978 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
979 #endif
980 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
981 	    th->th_seq == tp->rcv_nxt &&
982 	    tiwin && tiwin == tp->snd_wnd &&
983 	    tp->snd_nxt == tp->snd_max) {
984 
985 		/*
986 		 * If last ACK falls within this segment's sequence numbers,
987 		 *  record the timestamp.
988 		 * Fix from Braden, see Stevens p. 870
989 		 */
990 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
991 			tp->ts_recent_age = tcp_now;
992 			tp->ts_recent = opti.ts_val;
993 		}
994 
995 		if (tlen == 0) {
996 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
997 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
998 			    tp->snd_cwnd >= tp->snd_wnd &&
999 			    tp->t_dupacks == 0) {
1000 				/*
1001 				 * this is a pure ack for outstanding data.
1002 				 */
1003 				++tcpstat.tcps_predack;
1004 				if (opti.ts_present && opti.ts_ecr)
1005 					tcp_xmit_timer(tp, tcp_now - opti.ts_ecr);
1006 				else if (tp->t_rtttime &&
1007 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1008 					tcp_xmit_timer(tp,
1009 					    tcp_now - tp->t_rtttime);
1010 				acked = th->th_ack - tp->snd_una;
1011 				tcpstat.tcps_rcvackpack++;
1012 				tcpstat.tcps_rcvackbyte += acked;
1013 				ND6_HINT(tp);
1014 				sbdrop(&so->so_snd, acked);
1015 
1016 				/*
1017 				 * If we had a pending ICMP message that
1018 				 * referres to data that have just been
1019 				 * acknowledged, disregard the recorded ICMP
1020 				 * message.
1021 				 */
1022 				if ((tp->t_flags & TF_PMTUD_PEND) &&
1023 				    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
1024 					tp->t_flags &= ~TF_PMTUD_PEND;
1025 
1026 				/*
1027 				 * Keep track of the largest chunk of data
1028 				 * acknowledged since last PMTU update
1029 				 */
1030 				if (tp->t_pmtud_mss_acked < acked)
1031 					tp->t_pmtud_mss_acked = acked;
1032 
1033 				tp->snd_una = th->th_ack;
1034 #if defined(TCP_SACK) || defined(TCP_ECN)
1035 				/*
1036 				 * We want snd_last to track snd_una so
1037 				 * as to avoid sequence wraparound problems
1038 				 * for very large transfers.
1039 				 */
1040 #ifdef TCP_ECN
1041 				if (SEQ_GT(tp->snd_una, tp->snd_last))
1042 #endif
1043 				tp->snd_last = tp->snd_una;
1044 #endif /* TCP_SACK */
1045 #if defined(TCP_SACK) && defined(TCP_FACK)
1046 				tp->snd_fack = tp->snd_una;
1047 				tp->retran_data = 0;
1048 #endif /* TCP_FACK */
1049 				m_freem(m);
1050 
1051 				/*
1052 				 * If all outstanding data are acked, stop
1053 				 * retransmit timer, otherwise restart timer
1054 				 * using current (possibly backed-off) value.
1055 				 * If process is waiting for space,
1056 				 * wakeup/selwakeup/signal.  If data
1057 				 * are ready to send, let tcp_output
1058 				 * decide between more output or persist.
1059 				 */
1060 				if (tp->snd_una == tp->snd_max)
1061 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1062 				else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1063 					TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1064 
1065 				if (sb_notify(&so->so_snd))
1066 					sowwakeup(so);
1067 				if (so->so_snd.sb_cc)
1068 					(void) tcp_output(tp);
1069 				return;
1070 			}
1071 		} else if (th->th_ack == tp->snd_una &&
1072 		    TAILQ_EMPTY(&tp->t_segq) &&
1073 		    tlen <= sbspace(&so->so_rcv)) {
1074 			/*
1075 			 * This is a pure, in-sequence data packet
1076 			 * with nothing on the reassembly queue and
1077 			 * we have enough buffer space to take it.
1078 			 */
1079 #ifdef TCP_SACK
1080 			/* Clean receiver SACK report if present */
1081 			if (tp->sack_enable && tp->rcv_numsacks)
1082 				tcp_clean_sackreport(tp);
1083 #endif /* TCP_SACK */
1084 			++tcpstat.tcps_preddat;
1085 			tp->rcv_nxt += tlen;
1086 			tcpstat.tcps_rcvpack++;
1087 			tcpstat.tcps_rcvbyte += tlen;
1088 			ND6_HINT(tp);
1089 			/*
1090 			 * Drop TCP, IP headers and TCP options then add data
1091 			 * to socket buffer.
1092 			 */
1093 			if (so->so_state & SS_CANTRCVMORE)
1094 				m_freem(m);
1095 			else {
1096 				m_adj(m, iphlen + off);
1097 				sbappendstream(&so->so_rcv, m);
1098 			}
1099 			sorwakeup(so);
1100 			TCP_SETUP_ACK(tp, tiflags);
1101 			if (tp->t_flags & TF_ACKNOW)
1102 				(void) tcp_output(tp);
1103 			return;
1104 		}
1105 	}
1106 
1107 	/*
1108 	 * Compute mbuf offset to TCP data segment.
1109 	 */
1110 	hdroptlen = iphlen + off;
1111 
1112 	/*
1113 	 * Calculate amount of space in receive window,
1114 	 * and then do TCP input processing.
1115 	 * Receive window is amount of space in rcv queue,
1116 	 * but not less than advertised window.
1117 	 */
1118 	{ int win;
1119 
1120 	win = sbspace(&so->so_rcv);
1121 	if (win < 0)
1122 		win = 0;
1123 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1124 	}
1125 
1126 	switch (tp->t_state) {
1127 
1128 	/*
1129 	 * If the state is SYN_RECEIVED:
1130 	 * 	if seg contains SYN/ACK, send an RST.
1131 	 *	if seg contains an ACK, but not for our SYN/ACK, send an RST
1132 	 */
1133 
1134 	case TCPS_SYN_RECEIVED:
1135 		if (tiflags & TH_ACK) {
1136 			if (tiflags & TH_SYN) {
1137 				tcpstat.tcps_badsyn++;
1138 				goto dropwithreset;
1139 			}
1140 			if (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1141 			    SEQ_GT(th->th_ack, tp->snd_max))
1142 				goto dropwithreset;
1143 		}
1144 		break;
1145 
1146 	/*
1147 	 * If the state is SYN_SENT:
1148 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1149 	 *	if seg contains a RST, then drop the connection.
1150 	 *	if seg does not contain SYN, then drop it.
1151 	 * Otherwise this is an acceptable SYN segment
1152 	 *	initialize tp->rcv_nxt and tp->irs
1153 	 *	if seg contains ack then advance tp->snd_una
1154 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1155 	 *	arrange for segment to be acked (eventually)
1156 	 *	continue processing rest of data/controls, beginning with URG
1157 	 */
1158 	case TCPS_SYN_SENT:
1159 		if ((tiflags & TH_ACK) &&
1160 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1161 		     SEQ_GT(th->th_ack, tp->snd_max)))
1162 			goto dropwithreset;
1163 		if (tiflags & TH_RST) {
1164 #ifdef TCP_ECN
1165 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1166 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1167 				goto drop;
1168 #endif
1169 			if (tiflags & TH_ACK)
1170 				tp = tcp_drop(tp, ECONNREFUSED);
1171 			goto drop;
1172 		}
1173 		if ((tiflags & TH_SYN) == 0)
1174 			goto drop;
1175 		if (tiflags & TH_ACK) {
1176 			tp->snd_una = th->th_ack;
1177 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1178 				tp->snd_nxt = tp->snd_una;
1179 		}
1180 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
1181 		tp->irs = th->th_seq;
1182 		tcp_mss(tp, opti.maxseg);
1183 		/* Reset initial window to 1 segment for retransmit */
1184 		if (tp->t_rxtshift > 0)
1185 			tp->snd_cwnd = tp->t_maxseg;
1186 		tcp_rcvseqinit(tp);
1187 		tp->t_flags |= TF_ACKNOW;
1188 #ifdef TCP_SACK
1189                 /*
1190                  * If we've sent a SACK_PERMITTED option, and the peer
1191                  * also replied with one, then TF_SACK_PERMIT should have
1192                  * been set in tcp_dooptions().  If it was not, disable SACKs.
1193                  */
1194 		if (tp->sack_enable)
1195 			tp->sack_enable = tp->t_flags & TF_SACK_PERMIT;
1196 #endif
1197 #ifdef TCP_ECN
1198 		/*
1199 		 * if ECE is set but CWR is not set for SYN-ACK, or
1200 		 * both ECE and CWR are set for simultaneous open,
1201 		 * peer is ECN capable.
1202 		 */
1203 		if (tcp_do_ecn) {
1204 			if ((tiflags & (TH_ACK|TH_ECE|TH_CWR))
1205 			    == (TH_ACK|TH_ECE) ||
1206 			    (tiflags & (TH_ACK|TH_ECE|TH_CWR))
1207 			    == (TH_ECE|TH_CWR)) {
1208 				tp->t_flags |= TF_ECN_PERMIT;
1209 				tiflags &= ~(TH_ECE|TH_CWR);
1210 				tcpstat.tcps_ecn_accepts++;
1211 			}
1212 		}
1213 #endif
1214 
1215 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
1216 			tcpstat.tcps_connects++;
1217 			soisconnected(so);
1218 			tp->t_state = TCPS_ESTABLISHED;
1219 			TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1220 			/* Do window scaling on this connection? */
1221 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1222 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1223 				tp->snd_scale = tp->requested_s_scale;
1224 				tp->rcv_scale = tp->request_r_scale;
1225 			}
1226 			(void) tcp_reass(tp, (struct tcphdr *)0,
1227 				(struct mbuf *)0, &tlen);
1228 			/*
1229 			 * if we didn't have to retransmit the SYN,
1230 			 * use its rtt as our initial srtt & rtt var.
1231 			 */
1232 			if (tp->t_rtttime)
1233 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1234 			/*
1235 			 * Since new data was acked (the SYN), open the
1236 			 * congestion window by one MSS.  We do this
1237 			 * here, because we won't go through the normal
1238 			 * ACK processing below.  And since this is the
1239 			 * start of the connection, we know we are in
1240 			 * the exponential phase of slow-start.
1241 			 */
1242 			tp->snd_cwnd += tp->t_maxseg;
1243 		} else
1244 			tp->t_state = TCPS_SYN_RECEIVED;
1245 
1246 #if 0
1247 trimthenstep6:
1248 #endif
1249 		/*
1250 		 * Advance th->th_seq to correspond to first data byte.
1251 		 * If data, trim to stay within window,
1252 		 * dropping FIN if necessary.
1253 		 */
1254 		th->th_seq++;
1255 		if (tlen > tp->rcv_wnd) {
1256 			todrop = tlen - tp->rcv_wnd;
1257 			m_adj(m, -todrop);
1258 			tlen = tp->rcv_wnd;
1259 			tiflags &= ~TH_FIN;
1260 			tcpstat.tcps_rcvpackafterwin++;
1261 			tcpstat.tcps_rcvbyteafterwin += todrop;
1262 		}
1263 		tp->snd_wl1 = th->th_seq - 1;
1264 		tp->rcv_up = th->th_seq;
1265 		goto step6;
1266 	/*
1267 	 * If a new connection request is received while in TIME_WAIT,
1268 	 * drop the old connection and start over if the if the
1269 	 * timestamp or the sequence numbers are above the previous
1270 	 * ones.
1271 	 */
1272 	case TCPS_TIME_WAIT:
1273 		if (((tiflags & (TH_SYN|TH_ACK)) == TH_SYN) &&
1274 		    ((opti.ts_present &&
1275 		    TSTMP_LT(tp->ts_recent, opti.ts_val)) ||
1276 		    SEQ_GT(th->th_seq, tp->rcv_nxt))) {
1277 			/*
1278 			* Advance the iss by at least 32768, but
1279 			* clear the msb in order to make sure
1280 			* that SEG_LT(snd_nxt, iss).
1281 			*/
1282 			iss = tp->snd_nxt +
1283 			    ((arc4random() & 0x7fffffff) | 0x8000);
1284 			reuse = &iss;
1285 			tp = tcp_close(tp);
1286 			goto findpcb;
1287 		}
1288 	}
1289 
1290 	/*
1291 	 * States other than LISTEN or SYN_SENT.
1292 	 * First check timestamp, if present.
1293 	 * Then check that at least some bytes of segment are within
1294 	 * receive window.  If segment begins before rcv_nxt,
1295 	 * drop leading data (and SYN); if nothing left, just ack.
1296 	 *
1297 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1298 	 * and it's less than opti.ts_recent, drop it.
1299 	 */
1300 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1301 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1302 
1303 		/* Check to see if ts_recent is over 24 days old.  */
1304 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1305 			/*
1306 			 * Invalidate ts_recent.  If this segment updates
1307 			 * ts_recent, the age will be reset later and ts_recent
1308 			 * will get a valid value.  If it does not, setting
1309 			 * ts_recent to zero will at least satisfy the
1310 			 * requirement that zero be placed in the timestamp
1311 			 * echo reply when ts_recent isn't valid.  The
1312 			 * age isn't reset until we get a valid ts_recent
1313 			 * because we don't want out-of-order segments to be
1314 			 * dropped when ts_recent is old.
1315 			 */
1316 			tp->ts_recent = 0;
1317 		} else {
1318 			tcpstat.tcps_rcvduppack++;
1319 			tcpstat.tcps_rcvdupbyte += tlen;
1320 			tcpstat.tcps_pawsdrop++;
1321 			goto dropafterack;
1322 		}
1323 	}
1324 
1325 	todrop = tp->rcv_nxt - th->th_seq;
1326 	if (todrop > 0) {
1327 		if (tiflags & TH_SYN) {
1328 			tiflags &= ~TH_SYN;
1329 			th->th_seq++;
1330 			if (th->th_urp > 1)
1331 				th->th_urp--;
1332 			else
1333 				tiflags &= ~TH_URG;
1334 			todrop--;
1335 		}
1336 		if (todrop > tlen ||
1337 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1338 			/*
1339 			 * Any valid FIN must be to the left of the
1340 			 * window.  At this point, FIN must be a
1341 			 * duplicate or out-of-sequence, so drop it.
1342 			 */
1343 			tiflags &= ~TH_FIN;
1344 			/*
1345 			 * Send ACK to resynchronize, and drop any data,
1346 			 * but keep on processing for RST or ACK.
1347 			 */
1348 			tp->t_flags |= TF_ACKNOW;
1349 			tcpstat.tcps_rcvdupbyte += todrop = tlen;
1350 			tcpstat.tcps_rcvduppack++;
1351 		} else {
1352 			tcpstat.tcps_rcvpartduppack++;
1353 			tcpstat.tcps_rcvpartdupbyte += todrop;
1354 		}
1355 		hdroptlen += todrop;	/* drop from head afterwards */
1356 		th->th_seq += todrop;
1357 		tlen -= todrop;
1358 		if (th->th_urp > todrop)
1359 			th->th_urp -= todrop;
1360 		else {
1361 			tiflags &= ~TH_URG;
1362 			th->th_urp = 0;
1363 		}
1364 	}
1365 
1366 	/*
1367 	 * If new data are received on a connection after the
1368 	 * user processes are gone, then RST the other end.
1369 	 */
1370 	if ((so->so_state & SS_NOFDREF) &&
1371 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1372 		tp = tcp_close(tp);
1373 		tcpstat.tcps_rcvafterclose++;
1374 		goto dropwithreset;
1375 	}
1376 
1377 	/*
1378 	 * If segment ends after window, drop trailing data
1379 	 * (and PUSH and FIN); if nothing left, just ACK.
1380 	 */
1381 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1382 	if (todrop > 0) {
1383 		tcpstat.tcps_rcvpackafterwin++;
1384 		if (todrop >= tlen) {
1385 			tcpstat.tcps_rcvbyteafterwin += tlen;
1386 			/*
1387 			 * If window is closed can only take segments at
1388 			 * window edge, and have to drop data and PUSH from
1389 			 * incoming segments.  Continue processing, but
1390 			 * remember to ack.  Otherwise, drop segment
1391 			 * and ack.
1392 			 */
1393 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1394 				tp->t_flags |= TF_ACKNOW;
1395 				tcpstat.tcps_rcvwinprobe++;
1396 			} else
1397 				goto dropafterack;
1398 		} else
1399 			tcpstat.tcps_rcvbyteafterwin += todrop;
1400 		m_adj(m, -todrop);
1401 		tlen -= todrop;
1402 		tiflags &= ~(TH_PUSH|TH_FIN);
1403 	}
1404 
1405 	/*
1406 	 * If last ACK falls within this segment's sequence numbers,
1407 	 * record its timestamp if it's more recent.
1408 	 * Cf fix from Braden, see Stevens p. 870
1409 	 */
1410 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1411 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1412 		if (SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1413 		    ((tiflags & (TH_SYN|TH_FIN)) != 0)))
1414 			tp->ts_recent = opti.ts_val;
1415 		else
1416 			tp->ts_recent = 0;
1417 		tp->ts_recent_age = tcp_now;
1418 	}
1419 
1420 	/*
1421 	 * If the RST bit is set examine the state:
1422 	 *    SYN_RECEIVED STATE:
1423 	 *	If passive open, return to LISTEN state.
1424 	 *	If active open, inform user that connection was refused.
1425 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1426 	 *	Inform user that connection was reset, and close tcb.
1427 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1428 	 *	Close the tcb.
1429 	 */
1430 	if (tiflags & TH_RST) {
1431 		if (th->th_seq != tp->last_ack_sent &&
1432 		    th->th_seq != tp->rcv_nxt &&
1433 		    th->th_seq != (tp->rcv_nxt + 1))
1434 			goto drop;
1435 
1436 		switch (tp->t_state) {
1437 		case TCPS_SYN_RECEIVED:
1438 #ifdef TCP_ECN
1439 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1440 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1441 				goto drop;
1442 #endif
1443 			so->so_error = ECONNREFUSED;
1444 			goto close;
1445 
1446 		case TCPS_ESTABLISHED:
1447 		case TCPS_FIN_WAIT_1:
1448 		case TCPS_FIN_WAIT_2:
1449 		case TCPS_CLOSE_WAIT:
1450 			so->so_error = ECONNRESET;
1451 		close:
1452 			tp->t_state = TCPS_CLOSED;
1453 			tcpstat.tcps_drops++;
1454 			tp = tcp_close(tp);
1455 			goto drop;
1456 		case TCPS_CLOSING:
1457 		case TCPS_LAST_ACK:
1458 		case TCPS_TIME_WAIT:
1459 			tp = tcp_close(tp);
1460 			goto drop;
1461 		}
1462 	}
1463 
1464 	/*
1465 	 * If a SYN is in the window, then this is an
1466 	 * error and we ACK and drop the packet.
1467 	 */
1468 	if (tiflags & TH_SYN)
1469 		goto dropafterack_ratelim;
1470 
1471 	/*
1472 	 * If the ACK bit is off we drop the segment and return.
1473 	 */
1474 	if ((tiflags & TH_ACK) == 0) {
1475 		if (tp->t_flags & TF_ACKNOW)
1476 			goto dropafterack;
1477 		else
1478 			goto drop;
1479 	}
1480 
1481 	/*
1482 	 * Ack processing.
1483 	 */
1484 	switch (tp->t_state) {
1485 
1486 	/*
1487 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1488 	 * ESTABLISHED state and continue processing.
1489 	 * The ACK was checked above.
1490 	 */
1491 	case TCPS_SYN_RECEIVED:
1492 		tcpstat.tcps_connects++;
1493 		soisconnected(so);
1494 		tp->t_state = TCPS_ESTABLISHED;
1495 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1496 		/* Do window scaling? */
1497 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1498 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1499 			tp->snd_scale = tp->requested_s_scale;
1500 			tp->rcv_scale = tp->request_r_scale;
1501 			tiwin = th->th_win << tp->snd_scale;
1502 		}
1503 		(void) tcp_reass(tp, (struct tcphdr *)0, (struct mbuf *)0,
1504 				 &tlen);
1505 		tp->snd_wl1 = th->th_seq - 1;
1506 		/* fall into ... */
1507 
1508 	/*
1509 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1510 	 * ACKs.  If the ack is in the range
1511 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1512 	 * then advance tp->snd_una to th->th_ack and drop
1513 	 * data from the retransmission queue.  If this ACK reflects
1514 	 * more up to date window information we update our window information.
1515 	 */
1516 	case TCPS_ESTABLISHED:
1517 	case TCPS_FIN_WAIT_1:
1518 	case TCPS_FIN_WAIT_2:
1519 	case TCPS_CLOSE_WAIT:
1520 	case TCPS_CLOSING:
1521 	case TCPS_LAST_ACK:
1522 	case TCPS_TIME_WAIT:
1523 #ifdef TCP_ECN
1524 		/*
1525 		 * if we receive ECE and are not already in recovery phase,
1526 		 * reduce cwnd by half but don't slow-start.
1527 		 * advance snd_last to snd_max not to reduce cwnd again
1528 		 * until all outstanding packets are acked.
1529 		 */
1530 		if (tcp_do_ecn && (tiflags & TH_ECE)) {
1531 			if ((tp->t_flags & TF_ECN_PERMIT) &&
1532 			    SEQ_GEQ(tp->snd_una, tp->snd_last)) {
1533 				u_int win;
1534 
1535 				win = min(tp->snd_wnd, tp->snd_cwnd) / tp->t_maxseg;
1536 				if (win > 1) {
1537 					tp->snd_ssthresh = win / 2 * tp->t_maxseg;
1538 					tp->snd_cwnd = tp->snd_ssthresh;
1539 					tp->snd_last = tp->snd_max;
1540 					tp->t_flags |= TF_SEND_CWR;
1541 					tcpstat.tcps_cwr_ecn++;
1542 				}
1543 			}
1544 			tcpstat.tcps_ecn_rcvece++;
1545 		}
1546 		/*
1547 		 * if we receive CWR, we know that the peer has reduced
1548 		 * its congestion window.  stop sending ecn-echo.
1549 		 */
1550 		if ((tiflags & TH_CWR)) {
1551 			tp->t_flags &= ~TF_RCVD_CE;
1552 			tcpstat.tcps_ecn_rcvcwr++;
1553 		}
1554 #endif /* TCP_ECN */
1555 
1556 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1557 			/*
1558 			 * Duplicate/old ACK processing.
1559 			 * Increments t_dupacks:
1560 			 *	Pure duplicate (same seq/ack/window, no data)
1561 			 * Doesn't affect t_dupacks:
1562 			 *	Data packets.
1563 			 *	Normal window updates (window opens)
1564 			 * Resets t_dupacks:
1565 			 *	New data ACKed.
1566 			 *	Window shrinks
1567 			 *	Old ACK
1568 			 */
1569 			if (tlen) {
1570 				/* Drop very old ACKs unless th_seq matches */
1571 				if (th->th_seq != tp->rcv_nxt &&
1572 				   SEQ_LT(th->th_ack,
1573 				   tp->snd_una - tp->max_sndwnd)) {
1574 					tcpstat.tcps_rcvacktooold++;
1575 					goto drop;
1576 				}
1577 				break;
1578 			}
1579 			/*
1580 			 * If we get an old ACK, there is probably packet
1581 			 * reordering going on.  Be conservative and reset
1582 			 * t_dupacks so that we are less aggressive in
1583 			 * doing a fast retransmit.
1584 			 */
1585 			if (th->th_ack != tp->snd_una) {
1586 				tp->t_dupacks = 0;
1587 				break;
1588 			}
1589 			if (tiwin == tp->snd_wnd) {
1590 				tcpstat.tcps_rcvdupack++;
1591 				/*
1592 				 * If we have outstanding data (other than
1593 				 * a window probe), this is a completely
1594 				 * duplicate ack (ie, window info didn't
1595 				 * change), the ack is the biggest we've
1596 				 * seen and we've seen exactly our rexmt
1597 				 * threshold of them, assume a packet
1598 				 * has been dropped and retransmit it.
1599 				 * Kludge snd_nxt & the congestion
1600 				 * window so we send only this one
1601 				 * packet.
1602 				 *
1603 				 * We know we're losing at the current
1604 				 * window size so do congestion avoidance
1605 				 * (set ssthresh to half the current window
1606 				 * and pull our congestion window back to
1607 				 * the new ssthresh).
1608 				 *
1609 				 * Dup acks mean that packets have left the
1610 				 * network (they're now cached at the receiver)
1611 				 * so bump cwnd by the amount in the receiver
1612 				 * to keep a constant cwnd packets in the
1613 				 * network.
1614 				 */
1615 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0)
1616 					tp->t_dupacks = 0;
1617 #if defined(TCP_SACK) && defined(TCP_FACK)
1618 				/*
1619 				 * In FACK, can enter fast rec. if the receiver
1620 				 * reports a reass. queue longer than 3 segs.
1621 				 */
1622 				else if (++tp->t_dupacks == tcprexmtthresh ||
1623 				    ((SEQ_GT(tp->snd_fack, tcprexmtthresh *
1624 				    tp->t_maxseg + tp->snd_una)) &&
1625 				    SEQ_GT(tp->snd_una, tp->snd_last))) {
1626 #else
1627 				else if (++tp->t_dupacks == tcprexmtthresh) {
1628 #endif /* TCP_FACK */
1629 					tcp_seq onxt = tp->snd_nxt;
1630 					u_long win =
1631 					    ulmin(tp->snd_wnd, tp->snd_cwnd) /
1632 						2 / tp->t_maxseg;
1633 
1634 #if defined(TCP_SACK) || defined(TCP_ECN)
1635 					if (SEQ_LT(th->th_ack, tp->snd_last)){
1636 					    	/*
1637 						 * False fast retx after
1638 						 * timeout.  Do not cut window.
1639 						 */
1640 						tp->t_dupacks = 0;
1641 						goto drop;
1642 					}
1643 #endif
1644 					if (win < 2)
1645 						win = 2;
1646 					tp->snd_ssthresh = win * tp->t_maxseg;
1647 #ifdef TCP_SACK
1648 					tp->snd_last = tp->snd_max;
1649                     			if (tp->sack_enable) {
1650 						TCP_TIMER_DISARM(tp, TCPT_REXMT);
1651 						tp->t_rtttime = 0;
1652 #ifdef TCP_ECN
1653 						tp->t_flags |= TF_SEND_CWR;
1654 #endif
1655 						tcpstat.tcps_cwr_frecovery++;
1656 						tcpstat.tcps_sack_recovery_episode++;
1657 #if defined(TCP_SACK) && defined(TCP_FACK)
1658 						tp->t_dupacks = tcprexmtthresh;
1659 						(void) tcp_output(tp);
1660 						/*
1661 						 * During FR, snd_cwnd is held
1662 						 * constant for FACK.
1663 						 */
1664 						tp->snd_cwnd = tp->snd_ssthresh;
1665 #else
1666 						/*
1667 						 * tcp_output() will send
1668 						 * oldest SACK-eligible rtx.
1669 						 */
1670 						(void) tcp_output(tp);
1671 						tp->snd_cwnd = tp->snd_ssthresh+
1672 					           tp->t_maxseg * tp->t_dupacks;
1673 #endif /* TCP_FACK */
1674 						goto drop;
1675 					}
1676 #endif /* TCP_SACK */
1677 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1678 					tp->t_rtttime = 0;
1679 					tp->snd_nxt = th->th_ack;
1680 					tp->snd_cwnd = tp->t_maxseg;
1681 #ifdef TCP_ECN
1682 					tp->t_flags |= TF_SEND_CWR;
1683 #endif
1684 					tcpstat.tcps_cwr_frecovery++;
1685 					tcpstat.tcps_sndrexmitfast++;
1686 					(void) tcp_output(tp);
1687 
1688 					tp->snd_cwnd = tp->snd_ssthresh +
1689 					    tp->t_maxseg * tp->t_dupacks;
1690 					if (SEQ_GT(onxt, tp->snd_nxt))
1691 						tp->snd_nxt = onxt;
1692 					goto drop;
1693 				} else if (tp->t_dupacks > tcprexmtthresh) {
1694 #if defined(TCP_SACK) && defined(TCP_FACK)
1695 					/*
1696 					 * while (awnd < cwnd)
1697 					 *         sendsomething();
1698 					 */
1699 					if (tp->sack_enable) {
1700 						if (tp->snd_awnd < tp->snd_cwnd)
1701 							tcp_output(tp);
1702 						goto drop;
1703 					}
1704 #endif /* TCP_FACK */
1705 					tp->snd_cwnd += tp->t_maxseg;
1706 					(void) tcp_output(tp);
1707 					goto drop;
1708 				}
1709 			} else if (tiwin < tp->snd_wnd) {
1710 				/*
1711 				 * The window was retracted!  Previous dup
1712 				 * ACKs may have been due to packets arriving
1713 				 * after the shrunken window, not a missing
1714 				 * packet, so play it safe and reset t_dupacks
1715 				 */
1716 				tp->t_dupacks = 0;
1717 			}
1718 			break;
1719 		}
1720 		/*
1721 		 * If the congestion window was inflated to account
1722 		 * for the other side's cached packets, retract it.
1723 		 */
1724 #if defined(TCP_SACK)
1725 		if (tp->sack_enable) {
1726 			if (tp->t_dupacks >= tcprexmtthresh) {
1727 				/* Check for a partial ACK */
1728 				if (tcp_sack_partialack(tp, th)) {
1729 #if defined(TCP_SACK) && defined(TCP_FACK)
1730 					/* Force call to tcp_output */
1731 					if (tp->snd_awnd < tp->snd_cwnd)
1732 						needoutput = 1;
1733 #else
1734 					tp->snd_cwnd += tp->t_maxseg;
1735 					needoutput = 1;
1736 #endif /* TCP_FACK */
1737 				} else {
1738 					/* Out of fast recovery */
1739 					tp->snd_cwnd = tp->snd_ssthresh;
1740 					if (tcp_seq_subtract(tp->snd_max,
1741 					    th->th_ack) < tp->snd_ssthresh)
1742 						tp->snd_cwnd =
1743 						   tcp_seq_subtract(tp->snd_max,
1744 					           th->th_ack);
1745 					tp->t_dupacks = 0;
1746 #if defined(TCP_SACK) && defined(TCP_FACK)
1747 					if (SEQ_GT(th->th_ack, tp->snd_fack))
1748 						tp->snd_fack = th->th_ack;
1749 #endif /* TCP_FACK */
1750 				}
1751 			}
1752 		} else {
1753 			if (tp->t_dupacks >= tcprexmtthresh &&
1754 			    !tcp_newreno(tp, th)) {
1755 				/* Out of fast recovery */
1756 				tp->snd_cwnd = tp->snd_ssthresh;
1757 				if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
1758 			  	    tp->snd_ssthresh)
1759 					tp->snd_cwnd =
1760 					    tcp_seq_subtract(tp->snd_max,
1761 					    th->th_ack);
1762 				tp->t_dupacks = 0;
1763 			}
1764 		}
1765 		if (tp->t_dupacks < tcprexmtthresh)
1766 			tp->t_dupacks = 0;
1767 #else /* else no TCP_SACK */
1768 		if (tp->t_dupacks >= tcprexmtthresh &&
1769 		    tp->snd_cwnd > tp->snd_ssthresh)
1770 			tp->snd_cwnd = tp->snd_ssthresh;
1771 		tp->t_dupacks = 0;
1772 #endif
1773 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1774 			tcpstat.tcps_rcvacktoomuch++;
1775 			goto dropafterack_ratelim;
1776 		}
1777 		acked = th->th_ack - tp->snd_una;
1778 		tcpstat.tcps_rcvackpack++;
1779 		tcpstat.tcps_rcvackbyte += acked;
1780 
1781 		/*
1782 		 * If we have a timestamp reply, update smoothed
1783 		 * round trip time.  If no timestamp is present but
1784 		 * transmit timer is running and timed sequence
1785 		 * number was acked, update smoothed round trip time.
1786 		 * Since we now have an rtt measurement, cancel the
1787 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1788 		 * Recompute the initial retransmit timer.
1789 		 */
1790 		if (opti.ts_present && opti.ts_ecr)
1791 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr);
1792 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1793 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1794 
1795 		/*
1796 		 * If all outstanding data is acked, stop retransmit
1797 		 * timer and remember to restart (more output or persist).
1798 		 * If there is more data to be acked, restart retransmit
1799 		 * timer, using current (possibly backed-off) value.
1800 		 */
1801 		if (th->th_ack == tp->snd_max) {
1802 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1803 			needoutput = 1;
1804 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1805 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1806 		/*
1807 		 * When new data is acked, open the congestion window.
1808 		 * If the window gives us less than ssthresh packets
1809 		 * in flight, open exponentially (maxseg per packet).
1810 		 * Otherwise open linearly: maxseg per window
1811 		 * (maxseg^2 / cwnd per packet).
1812 		 */
1813 		{
1814 		u_int cw = tp->snd_cwnd;
1815 		u_int incr = tp->t_maxseg;
1816 
1817 		if (cw > tp->snd_ssthresh)
1818 			incr = incr * incr / cw;
1819 #if defined (TCP_SACK)
1820 		if (tp->t_dupacks < tcprexmtthresh)
1821 #endif
1822 		tp->snd_cwnd = ulmin(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1823 		}
1824 		ND6_HINT(tp);
1825 		if (acked > so->so_snd.sb_cc) {
1826 			tp->snd_wnd -= so->so_snd.sb_cc;
1827 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1828 			ourfinisacked = 1;
1829 		} else {
1830 			sbdrop(&so->so_snd, acked);
1831 			tp->snd_wnd -= acked;
1832 			ourfinisacked = 0;
1833 		}
1834 		if (sb_notify(&so->so_snd))
1835 			sowwakeup(so);
1836 
1837 		/*
1838 		 * If we had a pending ICMP message that referred to data
1839 		 * that have just been acknowledged, disregard the recorded
1840 		 * ICMP message.
1841 		 */
1842 		if ((tp->t_flags & TF_PMTUD_PEND) &&
1843 		    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
1844 			tp->t_flags &= ~TF_PMTUD_PEND;
1845 
1846 		/*
1847 		 * Keep track of the largest chunk of data acknowledged
1848 		 * since last PMTU update
1849 		 */
1850 		if (tp->t_pmtud_mss_acked < acked)
1851 			tp->t_pmtud_mss_acked = acked;
1852 
1853 		tp->snd_una = th->th_ack;
1854 #ifdef TCP_ECN
1855 		/* sync snd_last with snd_una */
1856 		if (SEQ_GT(tp->snd_una, tp->snd_last))
1857 			tp->snd_last = tp->snd_una;
1858 #endif
1859 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1860 			tp->snd_nxt = tp->snd_una;
1861 #if defined (TCP_SACK) && defined (TCP_FACK)
1862 		if (SEQ_GT(tp->snd_una, tp->snd_fack)) {
1863 			tp->snd_fack = tp->snd_una;
1864 			/* Update snd_awnd for partial ACK
1865 			 * without any SACK blocks.
1866 			 */
1867 			tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt,
1868 				tp->snd_fack) + tp->retran_data;
1869 		}
1870 #endif
1871 
1872 		switch (tp->t_state) {
1873 
1874 		/*
1875 		 * In FIN_WAIT_1 STATE in addition to the processing
1876 		 * for the ESTABLISHED state if our FIN is now acknowledged
1877 		 * then enter FIN_WAIT_2.
1878 		 */
1879 		case TCPS_FIN_WAIT_1:
1880 			if (ourfinisacked) {
1881 				/*
1882 				 * If we can't receive any more
1883 				 * data, then closing user can proceed.
1884 				 * Starting the timer is contrary to the
1885 				 * specification, but if we don't get a FIN
1886 				 * we'll hang forever.
1887 				 */
1888 				if (so->so_state & SS_CANTRCVMORE) {
1889 					soisdisconnected(so);
1890 					TCP_TIMER_ARM(tp, TCPT_2MSL, tcp_maxidle);
1891 				}
1892 				tp->t_state = TCPS_FIN_WAIT_2;
1893 			}
1894 			break;
1895 
1896 		/*
1897 		 * In CLOSING STATE in addition to the processing for
1898 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1899 		 * then enter the TIME-WAIT state, otherwise ignore
1900 		 * the segment.
1901 		 */
1902 		case TCPS_CLOSING:
1903 			if (ourfinisacked) {
1904 				tp->t_state = TCPS_TIME_WAIT;
1905 				tcp_canceltimers(tp);
1906 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1907 				soisdisconnected(so);
1908 			}
1909 			break;
1910 
1911 		/*
1912 		 * In LAST_ACK, we may still be waiting for data to drain
1913 		 * and/or to be acked, as well as for the ack of our FIN.
1914 		 * If our FIN is now acknowledged, delete the TCB,
1915 		 * enter the closed state and return.
1916 		 */
1917 		case TCPS_LAST_ACK:
1918 			if (ourfinisacked) {
1919 				tp = tcp_close(tp);
1920 				goto drop;
1921 			}
1922 			break;
1923 
1924 		/*
1925 		 * In TIME_WAIT state the only thing that should arrive
1926 		 * is a retransmission of the remote FIN.  Acknowledge
1927 		 * it and restart the finack timer.
1928 		 */
1929 		case TCPS_TIME_WAIT:
1930 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1931 			goto dropafterack;
1932 		}
1933 	}
1934 
1935 step6:
1936 	/*
1937 	 * Update window information.
1938 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1939 	 */
1940 	if ((tiflags & TH_ACK) &&
1941 	    (SEQ_LT(tp->snd_wl1, th->th_seq) || (tp->snd_wl1 == th->th_seq &&
1942 	    (SEQ_LT(tp->snd_wl2, th->th_ack) ||
1943 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
1944 		/* keep track of pure window updates */
1945 		if (tlen == 0 &&
1946 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1947 			tcpstat.tcps_rcvwinupd++;
1948 		tp->snd_wnd = tiwin;
1949 		tp->snd_wl1 = th->th_seq;
1950 		tp->snd_wl2 = th->th_ack;
1951 		if (tp->snd_wnd > tp->max_sndwnd)
1952 			tp->max_sndwnd = tp->snd_wnd;
1953 		needoutput = 1;
1954 	}
1955 
1956 	/*
1957 	 * Process segments with URG.
1958 	 */
1959 	if ((tiflags & TH_URG) && th->th_urp &&
1960 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1961 		/*
1962 		 * This is a kludge, but if we receive and accept
1963 		 * random urgent pointers, we'll crash in
1964 		 * soreceive.  It's hard to imagine someone
1965 		 * actually wanting to send this much urgent data.
1966 		 */
1967 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1968 			th->th_urp = 0;			/* XXX */
1969 			tiflags &= ~TH_URG;		/* XXX */
1970 			goto dodata;			/* XXX */
1971 		}
1972 		/*
1973 		 * If this segment advances the known urgent pointer,
1974 		 * then mark the data stream.  This should not happen
1975 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1976 		 * a FIN has been received from the remote side.
1977 		 * In these states we ignore the URG.
1978 		 *
1979 		 * According to RFC961 (Assigned Protocols),
1980 		 * the urgent pointer points to the last octet
1981 		 * of urgent data.  We continue, however,
1982 		 * to consider it to indicate the first octet
1983 		 * of data past the urgent section as the original
1984 		 * spec states (in one of two places).
1985 		 */
1986 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1987 			tp->rcv_up = th->th_seq + th->th_urp;
1988 			so->so_oobmark = so->so_rcv.sb_cc +
1989 			    (tp->rcv_up - tp->rcv_nxt) - 1;
1990 			if (so->so_oobmark == 0)
1991 				so->so_state |= SS_RCVATMARK;
1992 			sohasoutofband(so);
1993 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1994 		}
1995 		/*
1996 		 * Remove out of band data so doesn't get presented to user.
1997 		 * This can happen independent of advancing the URG pointer,
1998 		 * but if two URG's are pending at once, some out-of-band
1999 		 * data may creep in... ick.
2000 		 */
2001 		if (th->th_urp <= (u_int16_t) tlen
2002 #ifdef SO_OOBINLINE
2003 		     && (so->so_options & SO_OOBINLINE) == 0
2004 #endif
2005 		     )
2006 		        tcp_pulloutofband(so, th->th_urp, m, hdroptlen);
2007 	} else
2008 		/*
2009 		 * If no out of band data is expected,
2010 		 * pull receive urgent pointer along
2011 		 * with the receive window.
2012 		 */
2013 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2014 			tp->rcv_up = tp->rcv_nxt;
2015 dodata:							/* XXX */
2016 
2017 	/*
2018 	 * Process the segment text, merging it into the TCP sequencing queue,
2019 	 * and arranging for acknowledgment of receipt if necessary.
2020 	 * This process logically involves adjusting tp->rcv_wnd as data
2021 	 * is presented to the user (this happens in tcp_usrreq.c,
2022 	 * case PRU_RCVD).  If a FIN has already been received on this
2023 	 * connection then we just ignore the text.
2024 	 */
2025 	if ((tlen || (tiflags & TH_FIN)) &&
2026 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2027 #ifdef TCP_SACK
2028 		tcp_seq laststart = th->th_seq;
2029 		tcp_seq lastend = th->th_seq + tlen;
2030 #endif
2031 		if (th->th_seq == tp->rcv_nxt && TAILQ_EMPTY(&tp->t_segq) &&
2032 		    tp->t_state == TCPS_ESTABLISHED) {
2033 			TCP_SETUP_ACK(tp, tiflags);
2034 			tp->rcv_nxt += tlen;
2035 			tiflags = th->th_flags & TH_FIN;
2036 			tcpstat.tcps_rcvpack++;
2037 			tcpstat.tcps_rcvbyte += tlen;
2038 			ND6_HINT(tp);
2039 			if (so->so_state & SS_CANTRCVMORE)
2040 				m_freem(m);
2041 			else {
2042 				m_adj(m, hdroptlen);
2043 				sbappendstream(&so->so_rcv, m);
2044 			}
2045 			sorwakeup(so);
2046 		} else {
2047 			m_adj(m, hdroptlen);
2048 			tiflags = tcp_reass(tp, th, m, &tlen);
2049 			tp->t_flags |= TF_ACKNOW;
2050 		}
2051 #ifdef TCP_SACK
2052 		if (tp->sack_enable)
2053 			tcp_update_sack_list(tp, laststart, lastend);
2054 #endif
2055 
2056 		/*
2057 		 * variable len never referenced again in modern BSD,
2058 		 * so why bother computing it ??
2059 		 */
2060 #if 0
2061 		/*
2062 		 * Note the amount of data that peer has sent into
2063 		 * our window, in order to estimate the sender's
2064 		 * buffer size.
2065 		 */
2066 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2067 #endif /* 0 */
2068 	} else {
2069 		m_freem(m);
2070 		tiflags &= ~TH_FIN;
2071 	}
2072 
2073 	/*
2074 	 * If FIN is received ACK the FIN and let the user know
2075 	 * that the connection is closing.  Ignore a FIN received before
2076 	 * the connection is fully established.
2077 	 */
2078 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2079 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2080 			socantrcvmore(so);
2081 			tp->t_flags |= TF_ACKNOW;
2082 			tp->rcv_nxt++;
2083 		}
2084 		switch (tp->t_state) {
2085 
2086 		/*
2087 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2088 		 */
2089 		case TCPS_ESTABLISHED:
2090 			tp->t_state = TCPS_CLOSE_WAIT;
2091 			break;
2092 
2093 		/*
2094 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2095 		 * enter the CLOSING state.
2096 		 */
2097 		case TCPS_FIN_WAIT_1:
2098 			tp->t_state = TCPS_CLOSING;
2099 			break;
2100 
2101 		/*
2102 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2103 		 * starting the time-wait timer, turning off the other
2104 		 * standard timers.
2105 		 */
2106 		case TCPS_FIN_WAIT_2:
2107 			tp->t_state = TCPS_TIME_WAIT;
2108 			tcp_canceltimers(tp);
2109 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2110 			soisdisconnected(so);
2111 			break;
2112 
2113 		/*
2114 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2115 		 */
2116 		case TCPS_TIME_WAIT:
2117 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2118 			break;
2119 		}
2120 	}
2121 	if (so->so_options & SO_DEBUG) {
2122 		switch (tp->pf) {
2123 #ifdef INET6
2124 		case PF_INET6:
2125 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti6,
2126 			    0, tlen);
2127 			break;
2128 #endif /* INET6 */
2129 		case PF_INET:
2130 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti,
2131 			    0, tlen);
2132 			break;
2133 		}
2134 	}
2135 
2136 	/*
2137 	 * Return any desired output.
2138 	 */
2139 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2140 		(void) tcp_output(tp);
2141 	}
2142 	return;
2143 
2144 badsyn:
2145 	/*
2146 	 * Received a bad SYN.  Increment counters and dropwithreset.
2147 	 */
2148 	tcpstat.tcps_badsyn++;
2149 	tp = NULL;
2150 	goto dropwithreset;
2151 
2152 dropafterack_ratelim:
2153 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2154 	    tcp_ackdrop_ppslim) == 0) {
2155 		/* XXX stat */
2156 		goto drop;
2157 	}
2158 	/* ...fall into dropafterack... */
2159 
2160 dropafterack:
2161 	/*
2162 	 * Generate an ACK dropping incoming segment if it occupies
2163 	 * sequence space, where the ACK reflects our state.
2164 	 */
2165 	if (tiflags & TH_RST)
2166 		goto drop;
2167 	m_freem(m);
2168 	tp->t_flags |= TF_ACKNOW;
2169 	(void) tcp_output(tp);
2170 	return;
2171 
2172 dropwithreset_ratelim:
2173 	/*
2174 	 * We may want to rate-limit RSTs in certain situations,
2175 	 * particularly if we are sending an RST in response to
2176 	 * an attempt to connect to or otherwise communicate with
2177 	 * a port for which we have no socket.
2178 	 */
2179 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2180 	    tcp_rst_ppslim) == 0) {
2181 		/* XXX stat */
2182 		goto drop;
2183 	}
2184 	/* ...fall into dropwithreset... */
2185 
2186 dropwithreset:
2187 	/*
2188 	 * Generate a RST, dropping incoming segment.
2189 	 * Make ACK acceptable to originator of segment.
2190 	 * Don't bother to respond to RST.
2191 	 */
2192 	if (tiflags & TH_RST)
2193 		goto drop;
2194 	if (tiflags & TH_ACK) {
2195 		tcp_respond(tp, mtod(m, caddr_t), th, (tcp_seq)0, th->th_ack,
2196 		    TH_RST);
2197 	} else {
2198 		if (tiflags & TH_SYN)
2199 			tlen++;
2200 		tcp_respond(tp, mtod(m, caddr_t), th, th->th_seq + tlen,
2201 		    (tcp_seq)0, TH_RST|TH_ACK);
2202 	}
2203 	m_freem(m);
2204 	return;
2205 
2206 drop:
2207 	/*
2208 	 * Drop space held by incoming segment and return.
2209 	 */
2210 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
2211 		switch (tp->pf) {
2212 #ifdef INET6
2213 		case PF_INET6:
2214 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti6,
2215 			    0, tlen);
2216 			break;
2217 #endif /* INET6 */
2218 		case PF_INET:
2219 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti,
2220 			    0, tlen);
2221 			break;
2222 		}
2223 	}
2224 
2225 	m_freem(m);
2226 	return;
2227 }
2228 
2229 int
2230 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2231     struct mbuf *m, int iphlen, struct tcp_opt_info *oi)
2232 {
2233 	u_int16_t mss = 0;
2234 	int opt, optlen;
2235 #ifdef TCP_SIGNATURE
2236 	caddr_t sigp = NULL;
2237 	struct tdb *tdb = NULL;
2238 #endif /* TCP_SIGNATURE */
2239 
2240 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2241 		opt = cp[0];
2242 		if (opt == TCPOPT_EOL)
2243 			break;
2244 		if (opt == TCPOPT_NOP)
2245 			optlen = 1;
2246 		else {
2247 			if (cnt < 2)
2248 				break;
2249 			optlen = cp[1];
2250 			if (optlen < 2 || optlen > cnt)
2251 				break;
2252 		}
2253 		switch (opt) {
2254 
2255 		default:
2256 			continue;
2257 
2258 		case TCPOPT_MAXSEG:
2259 			if (optlen != TCPOLEN_MAXSEG)
2260 				continue;
2261 			if (!(th->th_flags & TH_SYN))
2262 				continue;
2263 			if (TCPS_HAVERCVDSYN(tp->t_state))
2264 				continue;
2265 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
2266 			NTOHS(mss);
2267 			oi->maxseg = mss;
2268 			break;
2269 
2270 		case TCPOPT_WINDOW:
2271 			if (optlen != TCPOLEN_WINDOW)
2272 				continue;
2273 			if (!(th->th_flags & TH_SYN))
2274 				continue;
2275 			if (TCPS_HAVERCVDSYN(tp->t_state))
2276 				continue;
2277 			tp->t_flags |= TF_RCVD_SCALE;
2278 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2279 			break;
2280 
2281 		case TCPOPT_TIMESTAMP:
2282 			if (optlen != TCPOLEN_TIMESTAMP)
2283 				continue;
2284 			oi->ts_present = 1;
2285 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2286 			NTOHL(oi->ts_val);
2287 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2288 			NTOHL(oi->ts_ecr);
2289 
2290 			if (!(th->th_flags & TH_SYN))
2291 				continue;
2292 			if (TCPS_HAVERCVDSYN(tp->t_state))
2293 				continue;
2294 			/*
2295 			 * A timestamp received in a SYN makes
2296 			 * it ok to send timestamp requests and replies.
2297 			 */
2298 			tp->t_flags |= TF_RCVD_TSTMP;
2299 			tp->ts_recent = oi->ts_val;
2300 			tp->ts_recent_age = tcp_now;
2301 			break;
2302 
2303 #ifdef TCP_SACK
2304 		case TCPOPT_SACK_PERMITTED:
2305 			if (!tp->sack_enable || optlen!=TCPOLEN_SACK_PERMITTED)
2306 				continue;
2307 			if (!(th->th_flags & TH_SYN))
2308 				continue;
2309 			if (TCPS_HAVERCVDSYN(tp->t_state))
2310 				continue;
2311 			/* MUST only be set on SYN */
2312 			tp->t_flags |= TF_SACK_PERMIT;
2313 			break;
2314 		case TCPOPT_SACK:
2315 			tcp_sack_option(tp, th, cp, optlen);
2316 			break;
2317 #endif
2318 #ifdef TCP_SIGNATURE
2319 		case TCPOPT_SIGNATURE:
2320 			if (optlen != TCPOLEN_SIGNATURE)
2321 				continue;
2322 
2323 			if (sigp && bcmp(sigp, cp + 2, 16))
2324 				return (-1);
2325 
2326 			sigp = cp + 2;
2327 			break;
2328 #endif /* TCP_SIGNATURE */
2329 		}
2330 	}
2331 
2332 #ifdef TCP_SIGNATURE
2333 	if (tp->t_flags & TF_SIGNATURE) {
2334 		union sockaddr_union src, dst;
2335 
2336 		memset(&src, 0, sizeof(union sockaddr_union));
2337 		memset(&dst, 0, sizeof(union sockaddr_union));
2338 
2339 		switch (tp->pf) {
2340 		case 0:
2341 #ifdef INET
2342 		case AF_INET:
2343 			src.sa.sa_len = sizeof(struct sockaddr_in);
2344 			src.sa.sa_family = AF_INET;
2345 			src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
2346 			dst.sa.sa_len = sizeof(struct sockaddr_in);
2347 			dst.sa.sa_family = AF_INET;
2348 			dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
2349 			break;
2350 #endif
2351 #ifdef INET6
2352 		case AF_INET6:
2353 			src.sa.sa_len = sizeof(struct sockaddr_in6);
2354 			src.sa.sa_family = AF_INET6;
2355 			src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
2356 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
2357 			dst.sa.sa_family = AF_INET6;
2358 			dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
2359 			break;
2360 #endif /* INET6 */
2361 		}
2362 
2363 		tdb = gettdbbysrcdst(0, &src, &dst, IPPROTO_TCP);
2364 
2365 		/*
2366 		 * We don't have an SA for this peer, so we turn off
2367 		 * TF_SIGNATURE on the listen socket
2368 		 */
2369 		if (tdb == NULL && tp->t_state == TCPS_LISTEN)
2370 			tp->t_flags &= ~TF_SIGNATURE;
2371 
2372 	}
2373 
2374 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2375 		tcpstat.tcps_rcvbadsig++;
2376 		return (-1);
2377 	}
2378 
2379 	if (sigp) {
2380 		char sig[16];
2381 
2382 		if (tdb == NULL) {
2383 			tcpstat.tcps_rcvbadsig++;
2384 			return (-1);
2385 		}
2386 
2387 		if (tcp_signature(tdb, tp->pf, m, th, iphlen, 1, sig) < 0)
2388 			return (-1);
2389 
2390 		if (bcmp(sig, sigp, 16)) {
2391 			tcpstat.tcps_rcvbadsig++;
2392 			return (-1);
2393 		}
2394 
2395 		tcpstat.tcps_rcvgoodsig++;
2396 	}
2397 #endif /* TCP_SIGNATURE */
2398 
2399 	return (0);
2400 }
2401 
2402 #if defined(TCP_SACK)
2403 u_long
2404 tcp_seq_subtract(u_long a, u_long b)
2405 {
2406 	return ((long)(a - b));
2407 }
2408 #endif
2409 
2410 
2411 #ifdef TCP_SACK
2412 /*
2413  * This function is called upon receipt of new valid data (while not in header
2414  * prediction mode), and it updates the ordered list of sacks.
2415  */
2416 void
2417 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_laststart,
2418     tcp_seq rcv_lastend)
2419 {
2420 	/*
2421 	 * First reported block MUST be the most recent one.  Subsequent
2422 	 * blocks SHOULD be in the order in which they arrived at the
2423 	 * receiver.  These two conditions make the implementation fully
2424 	 * compliant with RFC 2018.
2425 	 */
2426 	int i, j = 0, count = 0, lastpos = -1;
2427 	struct sackblk sack, firstsack, temp[MAX_SACK_BLKS];
2428 
2429 	/* First clean up current list of sacks */
2430 	for (i = 0; i < tp->rcv_numsacks; i++) {
2431 		sack = tp->sackblks[i];
2432 		if (sack.start == 0 && sack.end == 0) {
2433 			count++; /* count = number of blocks to be discarded */
2434 			continue;
2435 		}
2436 		if (SEQ_LEQ(sack.end, tp->rcv_nxt)) {
2437 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2438 			count++;
2439 		} else {
2440 			temp[j].start = tp->sackblks[i].start;
2441 			temp[j++].end = tp->sackblks[i].end;
2442 		}
2443 	}
2444 	tp->rcv_numsacks -= count;
2445 	if (tp->rcv_numsacks == 0) { /* no sack blocks currently (fast path) */
2446 		tcp_clean_sackreport(tp);
2447 		if (SEQ_LT(tp->rcv_nxt, rcv_laststart)) {
2448 			/* ==> need first sack block */
2449 			tp->sackblks[0].start = rcv_laststart;
2450 			tp->sackblks[0].end = rcv_lastend;
2451 			tp->rcv_numsacks = 1;
2452 		}
2453 		return;
2454 	}
2455 	/* Otherwise, sack blocks are already present. */
2456 	for (i = 0; i < tp->rcv_numsacks; i++)
2457 		tp->sackblks[i] = temp[i]; /* first copy back sack list */
2458 	if (SEQ_GEQ(tp->rcv_nxt, rcv_lastend))
2459 		return;     /* sack list remains unchanged */
2460 	/*
2461 	 * From here, segment just received should be (part of) the 1st sack.
2462 	 * Go through list, possibly coalescing sack block entries.
2463 	 */
2464 	firstsack.start = rcv_laststart;
2465 	firstsack.end = rcv_lastend;
2466 	for (i = 0; i < tp->rcv_numsacks; i++) {
2467 		sack = tp->sackblks[i];
2468 		if (SEQ_LT(sack.end, firstsack.start) ||
2469 		    SEQ_GT(sack.start, firstsack.end))
2470 			continue; /* no overlap */
2471 		if (sack.start == firstsack.start && sack.end == firstsack.end){
2472 			/*
2473 			 * identical block; delete it here since we will
2474 			 * move it to the front of the list.
2475 			 */
2476 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2477 			lastpos = i;    /* last posn with a zero entry */
2478 			continue;
2479 		}
2480 		if (SEQ_LEQ(sack.start, firstsack.start))
2481 			firstsack.start = sack.start; /* merge blocks */
2482 		if (SEQ_GEQ(sack.end, firstsack.end))
2483 			firstsack.end = sack.end;     /* merge blocks */
2484 		tp->sackblks[i].start = tp->sackblks[i].end = 0;
2485 		lastpos = i;    /* last posn with a zero entry */
2486 	}
2487 	if (lastpos != -1) {    /* at least one merge */
2488 		for (i = 0, j = 1; i < tp->rcv_numsacks; i++) {
2489 			sack = tp->sackblks[i];
2490 			if (sack.start == 0 && sack.end == 0)
2491 				continue;
2492 			temp[j++] = sack;
2493 		}
2494 		tp->rcv_numsacks = j; /* including first blk (added later) */
2495 		for (i = 1; i < tp->rcv_numsacks; i++) /* now copy back */
2496 			tp->sackblks[i] = temp[i];
2497 	} else {        /* no merges -- shift sacks by 1 */
2498 		if (tp->rcv_numsacks < MAX_SACK_BLKS)
2499 			tp->rcv_numsacks++;
2500 		for (i = tp->rcv_numsacks-1; i > 0; i--)
2501 			tp->sackblks[i] = tp->sackblks[i-1];
2502 	}
2503 	tp->sackblks[0] = firstsack;
2504 	return;
2505 }
2506 
2507 /*
2508  * Process the TCP SACK option.  tp->snd_holes is an ordered list
2509  * of holes (oldest to newest, in terms of the sequence space).
2510  */
2511 void
2512 tcp_sack_option(struct tcpcb *tp, struct tcphdr *th, u_char *cp, int optlen)
2513 {
2514 	int tmp_olen;
2515 	u_char *tmp_cp;
2516 	struct sackhole *cur, *p, *temp;
2517 
2518 	if (!tp->sack_enable)
2519 		return;
2520 	/* SACK without ACK doesn't make sense. */
2521 	if ((th->th_flags & TH_ACK) == 0)
2522 	       return;
2523 	/* Make sure the ACK on this segment is in [snd_una, snd_max]. */
2524 	if (SEQ_LT(th->th_ack, tp->snd_una) ||
2525 	    SEQ_GT(th->th_ack, tp->snd_max))
2526 		return;
2527 	/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2528 	if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2529 		return;
2530 	/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2531 	tmp_cp = cp + 2;
2532 	tmp_olen = optlen - 2;
2533 	tcpstat.tcps_sack_rcv_opts++;
2534 	if (tp->snd_numholes < 0)
2535 		tp->snd_numholes = 0;
2536 	if (tp->t_maxseg == 0)
2537 		panic("tcp_sack_option"); /* Should never happen */
2538 	while (tmp_olen > 0) {
2539 		struct sackblk sack;
2540 
2541 		bcopy(tmp_cp, (char *) &(sack.start), sizeof(tcp_seq));
2542 		NTOHL(sack.start);
2543 		bcopy(tmp_cp + sizeof(tcp_seq),
2544 		    (char *) &(sack.end), sizeof(tcp_seq));
2545 		NTOHL(sack.end);
2546 		tmp_olen -= TCPOLEN_SACK;
2547 		tmp_cp += TCPOLEN_SACK;
2548 		if (SEQ_LEQ(sack.end, sack.start))
2549 			continue; /* bad SACK fields */
2550 		if (SEQ_LEQ(sack.end, tp->snd_una))
2551 			continue; /* old block */
2552 #if defined(TCP_SACK) && defined(TCP_FACK)
2553 		/* Updates snd_fack.  */
2554 		if (SEQ_GT(sack.end, tp->snd_fack))
2555 			tp->snd_fack = sack.end;
2556 #endif /* TCP_FACK */
2557 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
2558 			if (SEQ_LT(sack.start, th->th_ack))
2559 				continue;
2560 		}
2561 		if (SEQ_GT(sack.end, tp->snd_max))
2562 			continue;
2563 		if (tp->snd_holes == NULL) { /* first hole */
2564 			tp->snd_holes = (struct sackhole *)
2565 			    pool_get(&sackhl_pool, PR_NOWAIT);
2566 			if (tp->snd_holes == NULL) {
2567 				/* ENOBUFS, so ignore SACKed block for now*/
2568 				goto done;
2569 			}
2570 			cur = tp->snd_holes;
2571 			cur->start = th->th_ack;
2572 			cur->end = sack.start;
2573 			cur->rxmit = cur->start;
2574 			cur->next = NULL;
2575 			tp->snd_numholes = 1;
2576 			tp->rcv_lastsack = sack.end;
2577 			/*
2578 			 * dups is at least one.  If more data has been
2579 			 * SACKed, it can be greater than one.
2580 			 */
2581 			cur->dups = min(tcprexmtthresh,
2582 			    ((sack.end - cur->end)/tp->t_maxseg));
2583 			if (cur->dups < 1)
2584 				cur->dups = 1;
2585 			continue; /* with next sack block */
2586 		}
2587 		/* Go thru list of holes:  p = previous,  cur = current */
2588 		p = cur = tp->snd_holes;
2589 		while (cur) {
2590 			if (SEQ_LEQ(sack.end, cur->start))
2591 				/* SACKs data before the current hole */
2592 				break; /* no use going through more holes */
2593 			if (SEQ_GEQ(sack.start, cur->end)) {
2594 				/* SACKs data beyond the current hole */
2595 				cur->dups++;
2596 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2597 				    tcprexmtthresh)
2598 					cur->dups = tcprexmtthresh;
2599 				p = cur;
2600 				cur = cur->next;
2601 				continue;
2602 			}
2603 			if (SEQ_LEQ(sack.start, cur->start)) {
2604 				/* Data acks at least the beginning of hole */
2605 #if defined(TCP_SACK) && defined(TCP_FACK)
2606 				if (SEQ_GT(sack.end, cur->rxmit))
2607 					tp->retran_data -=
2608 				    	    tcp_seq_subtract(cur->rxmit,
2609 					    cur->start);
2610 				else
2611 					tp->retran_data -=
2612 					    tcp_seq_subtract(sack.end,
2613 					    cur->start);
2614 #endif /* TCP_FACK */
2615 				if (SEQ_GEQ(sack.end, cur->end)) {
2616 					/* Acks entire hole, so delete hole */
2617 					if (p != cur) {
2618 						p->next = cur->next;
2619 						pool_put(&sackhl_pool, cur);
2620 						cur = p->next;
2621 					} else {
2622 						cur = cur->next;
2623 						pool_put(&sackhl_pool, p);
2624 						p = cur;
2625 						tp->snd_holes = p;
2626 					}
2627 					tp->snd_numholes--;
2628 					continue;
2629 				}
2630 				/* otherwise, move start of hole forward */
2631 				cur->start = sack.end;
2632 				cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
2633 				p = cur;
2634 				cur = cur->next;
2635 				continue;
2636 			}
2637 			/* move end of hole backward */
2638 			if (SEQ_GEQ(sack.end, cur->end)) {
2639 #if defined(TCP_SACK) && defined(TCP_FACK)
2640 				if (SEQ_GT(cur->rxmit, sack.start))
2641 					tp->retran_data -=
2642 					    tcp_seq_subtract(cur->rxmit,
2643 					    sack.start);
2644 #endif /* TCP_FACK */
2645 				cur->end = sack.start;
2646 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
2647 				cur->dups++;
2648 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2649 				    tcprexmtthresh)
2650 					cur->dups = tcprexmtthresh;
2651 				p = cur;
2652 				cur = cur->next;
2653 				continue;
2654 			}
2655 			if (SEQ_LT(cur->start, sack.start) &&
2656 			    SEQ_GT(cur->end, sack.end)) {
2657 				/*
2658 				 * ACKs some data in middle of a hole; need to
2659 				 * split current hole
2660 				 */
2661 				temp = (struct sackhole *)
2662 				    pool_get(&sackhl_pool, PR_NOWAIT);
2663 				if (temp == NULL)
2664 					goto done; /* ENOBUFS */
2665 #if defined(TCP_SACK) && defined(TCP_FACK)
2666 				if (SEQ_GT(cur->rxmit, sack.end))
2667 					tp->retran_data -=
2668 					    tcp_seq_subtract(sack.end,
2669 					    sack.start);
2670 				else if (SEQ_GT(cur->rxmit, sack.start))
2671 					tp->retran_data -=
2672 					    tcp_seq_subtract(cur->rxmit,
2673 					    sack.start);
2674 #endif /* TCP_FACK */
2675 				temp->next = cur->next;
2676 				temp->start = sack.end;
2677 				temp->end = cur->end;
2678 				temp->dups = cur->dups;
2679 				temp->rxmit = SEQ_MAX(cur->rxmit, temp->start);
2680 				cur->end = sack.start;
2681 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
2682 				cur->dups++;
2683 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2684 					tcprexmtthresh)
2685 					cur->dups = tcprexmtthresh;
2686 				cur->next = temp;
2687 				p = temp;
2688 				cur = p->next;
2689 				tp->snd_numholes++;
2690 			}
2691 		}
2692 		/* At this point, p points to the last hole on the list */
2693 		if (SEQ_LT(tp->rcv_lastsack, sack.start)) {
2694 			/*
2695 			 * Need to append new hole at end.
2696 			 * Last hole is p (and it's not NULL).
2697 			 */
2698 			temp = (struct sackhole *)
2699 			    pool_get(&sackhl_pool, PR_NOWAIT);
2700 			if (temp == NULL)
2701 				goto done; /* ENOBUFS */
2702 			temp->start = tp->rcv_lastsack;
2703 			temp->end = sack.start;
2704 			temp->dups = min(tcprexmtthresh,
2705 			    ((sack.end - sack.start)/tp->t_maxseg));
2706 			if (temp->dups < 1)
2707 				temp->dups = 1;
2708 			temp->rxmit = temp->start;
2709 			temp->next = 0;
2710 			p->next = temp;
2711 			tp->rcv_lastsack = sack.end;
2712 			tp->snd_numholes++;
2713 		}
2714 	}
2715 done:
2716 #if defined(TCP_SACK) && defined(TCP_FACK)
2717 	/*
2718 	 * Update retran_data and snd_awnd.  Go through the list of
2719 	 * holes.   Increment retran_data by (hole->rxmit - hole->start).
2720 	 */
2721 	tp->retran_data = 0;
2722 	cur = tp->snd_holes;
2723 	while (cur) {
2724 		tp->retran_data += cur->rxmit - cur->start;
2725 		cur = cur->next;
2726 	}
2727 	tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt, tp->snd_fack) +
2728 	    tp->retran_data;
2729 #endif /* TCP_FACK */
2730 
2731 	return;
2732 }
2733 
2734 /*
2735  * Delete stale (i.e, cumulatively ack'd) holes.  Hole is deleted only if
2736  * it is completely acked; otherwise, tcp_sack_option(), called from
2737  * tcp_dooptions(), will fix up the hole.
2738  */
2739 void
2740 tcp_del_sackholes(struct tcpcb *tp, struct tcphdr *th)
2741 {
2742 	if (tp->sack_enable && tp->t_state != TCPS_LISTEN) {
2743 		/* max because this could be an older ack just arrived */
2744 		tcp_seq lastack = SEQ_GT(th->th_ack, tp->snd_una) ?
2745 			th->th_ack : tp->snd_una;
2746 		struct sackhole *cur = tp->snd_holes;
2747 		struct sackhole *prev;
2748 		while (cur)
2749 			if (SEQ_LEQ(cur->end, lastack)) {
2750 				prev = cur;
2751 				cur = cur->next;
2752 				pool_put(&sackhl_pool, prev);
2753 				tp->snd_numholes--;
2754 			} else if (SEQ_LT(cur->start, lastack)) {
2755 				cur->start = lastack;
2756 				if (SEQ_LT(cur->rxmit, cur->start))
2757 					cur->rxmit = cur->start;
2758 				break;
2759 			} else
2760 				break;
2761 		tp->snd_holes = cur;
2762 	}
2763 }
2764 
2765 /*
2766  * Delete all receiver-side SACK information.
2767  */
2768 void
2769 tcp_clean_sackreport(struct tcpcb *tp)
2770 {
2771 	int i;
2772 
2773 	tp->rcv_numsacks = 0;
2774 	for (i = 0; i < MAX_SACK_BLKS; i++)
2775 		tp->sackblks[i].start = tp->sackblks[i].end=0;
2776 
2777 }
2778 
2779 /*
2780  * Checks for partial ack.  If partial ack arrives, turn off retransmission
2781  * timer, deflate the window, do not clear tp->t_dupacks, and return 1.
2782  * If the ack advances at least to tp->snd_last, return 0.
2783  */
2784 int
2785 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
2786 {
2787 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
2788 		/* Turn off retx. timer (will start again next segment) */
2789 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2790 		tp->t_rtttime = 0;
2791 #ifndef TCP_FACK
2792 		/*
2793 		 * Partial window deflation.  This statement relies on the
2794 		 * fact that tp->snd_una has not been updated yet.  In FACK
2795 		 * hold snd_cwnd constant during fast recovery.
2796 		 */
2797 		if (tp->snd_cwnd > (th->th_ack - tp->snd_una)) {
2798 			tp->snd_cwnd -= th->th_ack - tp->snd_una;
2799 			tp->snd_cwnd += tp->t_maxseg;
2800 		} else
2801 			tp->snd_cwnd = tp->t_maxseg;
2802 #endif
2803 		return (1);
2804 	}
2805 	return (0);
2806 }
2807 #endif /* TCP_SACK */
2808 
2809 /*
2810  * Pull out of band byte out of a segment so
2811  * it doesn't appear in the user's data queue.
2812  * It is still reflected in the segment length for
2813  * sequencing purposes.
2814  */
2815 void
2816 tcp_pulloutofband(struct socket *so, u_int urgent, struct mbuf *m, int off)
2817 {
2818         int cnt = off + urgent - 1;
2819 
2820 	while (cnt >= 0) {
2821 		if (m->m_len > cnt) {
2822 			char *cp = mtod(m, caddr_t) + cnt;
2823 			struct tcpcb *tp = sototcpcb(so);
2824 
2825 			tp->t_iobc = *cp;
2826 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2827 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2828 			m->m_len--;
2829 			return;
2830 		}
2831 		cnt -= m->m_len;
2832 		m = m->m_next;
2833 		if (m == 0)
2834 			break;
2835 	}
2836 	panic("tcp_pulloutofband");
2837 }
2838 
2839 /*
2840  * Collect new round-trip time estimate
2841  * and update averages and current timeout.
2842  */
2843 void
2844 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2845 {
2846 	short delta;
2847 	short rttmin;
2848 
2849 	if (rtt < 0)
2850 		rtt = 0;
2851 	else if (rtt > TCP_RTT_MAX)
2852 		rtt = TCP_RTT_MAX;
2853 
2854 	tcpstat.tcps_rttupdated++;
2855 	if (tp->t_srtt != 0) {
2856 		/*
2857 		 * delta is fixed point with 2 (TCP_RTT_BASE_SHIFT) bits
2858 		 * after the binary point (scaled by 4), whereas
2859 		 * srtt is stored as fixed point with 5 bits after the
2860 		 * binary point (i.e., scaled by 32).  The following magic
2861 		 * is equivalent to the smoothing algorithm in rfc793 with
2862 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2863 		 * point).
2864 		 */
2865 		delta = (rtt << TCP_RTT_BASE_SHIFT) -
2866 		    (tp->t_srtt >> TCP_RTT_SHIFT);
2867 		if ((tp->t_srtt += delta) <= 0)
2868 			tp->t_srtt = 1 << TCP_RTT_BASE_SHIFT;
2869 		/*
2870 		 * We accumulate a smoothed rtt variance (actually, a
2871 		 * smoothed mean difference), then set the retransmit
2872 		 * timer to smoothed rtt + 4 times the smoothed variance.
2873 		 * rttvar is stored as fixed point with 4 bits after the
2874 		 * binary point (scaled by 16).  The following is
2875 		 * equivalent to rfc793 smoothing with an alpha of .75
2876 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2877 		 * rfc793's wired-in beta.
2878 		 */
2879 		if (delta < 0)
2880 			delta = -delta;
2881 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2882 		if ((tp->t_rttvar += delta) <= 0)
2883 			tp->t_rttvar = 1 << TCP_RTT_BASE_SHIFT;
2884 	} else {
2885 		/*
2886 		 * No rtt measurement yet - use the unsmoothed rtt.
2887 		 * Set the variance to half the rtt (so our first
2888 		 * retransmit happens at 3*rtt).
2889 		 */
2890 		tp->t_srtt = (rtt + 1) << (TCP_RTT_SHIFT + TCP_RTT_BASE_SHIFT);
2891 		tp->t_rttvar = (rtt + 1) <<
2892 		    (TCP_RTTVAR_SHIFT + TCP_RTT_BASE_SHIFT - 1);
2893 	}
2894 	tp->t_rtttime = 0;
2895 	tp->t_rxtshift = 0;
2896 
2897 	/*
2898 	 * the retransmit should happen at rtt + 4 * rttvar.
2899 	 * Because of the way we do the smoothing, srtt and rttvar
2900 	 * will each average +1/2 tick of bias.  When we compute
2901 	 * the retransmit timer, we want 1/2 tick of rounding and
2902 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2903 	 * firing of the timer.  The bias will give us exactly the
2904 	 * 1.5 tick we need.  But, because the bias is
2905 	 * statistical, we have to test that we don't drop below
2906 	 * the minimum feasible timer (which is 2 ticks).
2907 	 */
2908 	rttmin = min(max(rtt + 2, tp->t_rttmin), TCPTV_REXMTMAX);
2909 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2910 
2911 	/*
2912 	 * We received an ack for a packet that wasn't retransmitted;
2913 	 * it is probably safe to discard any error indications we've
2914 	 * received recently.  This isn't quite right, but close enough
2915 	 * for now (a route might have failed after we sent a segment,
2916 	 * and the return path might not be symmetrical).
2917 	 */
2918 	tp->t_softerror = 0;
2919 }
2920 
2921 /*
2922  * Determine a reasonable value for maxseg size.
2923  * If the route is known, check route for mtu.
2924  * If none, use an mss that can be handled on the outgoing
2925  * interface without forcing IP to fragment; if bigger than
2926  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2927  * to utilize large mbufs.  If no route is found, route has no mtu,
2928  * or the destination isn't local, use a default, hopefully conservative
2929  * size (usually 512 or the default IP max size, but no more than the mtu
2930  * of the interface), as we can't discover anything about intervening
2931  * gateways or networks.  We also initialize the congestion/slow start
2932  * window to be a single segment if the destination isn't local.
2933  * While looking at the routing entry, we also initialize other path-dependent
2934  * parameters from pre-set or cached values in the routing entry.
2935  *
2936  * Also take into account the space needed for options that we
2937  * send regularly.  Make maxseg shorter by that amount to assure
2938  * that we can send maxseg amount of data even when the options
2939  * are present.  Store the upper limit of the length of options plus
2940  * data in maxopd.
2941  *
2942  * NOTE: offer == -1 indicates that the maxseg size changed due to
2943  * Path MTU discovery.
2944  */
2945 int
2946 tcp_mss(struct tcpcb *tp, int offer)
2947 {
2948 	struct rtentry *rt;
2949 	struct ifnet *ifp;
2950 	int mss, mssopt;
2951 	int iphlen;
2952 	struct inpcb *inp;
2953 
2954 	inp = tp->t_inpcb;
2955 
2956 	mssopt = mss = tcp_mssdflt;
2957 
2958 	rt = in_pcbrtentry(inp);
2959 
2960 	if (rt == NULL)
2961 		goto out;
2962 
2963 	ifp = rt->rt_ifp;
2964 
2965 	switch (tp->pf) {
2966 #ifdef INET6
2967 	case AF_INET6:
2968 		iphlen = sizeof(struct ip6_hdr);
2969 		break;
2970 #endif
2971 	case AF_INET:
2972 		iphlen = sizeof(struct ip);
2973 		break;
2974 	default:
2975 		/* the family does not support path MTU discovery */
2976 		goto out;
2977 	}
2978 
2979 #ifdef RTV_MTU
2980 	/*
2981 	 * if there's an mtu associated with the route and we support
2982 	 * path MTU discovery for the underlying protocol family, use it.
2983 	 */
2984 	if (rt->rt_rmx.rmx_mtu) {
2985 		/*
2986 		 * One may wish to lower MSS to take into account options,
2987 		 * especially security-related options.
2988 		 */
2989 		if (tp->pf == AF_INET6 && rt->rt_rmx.rmx_mtu < IPV6_MMTU) {
2990 			/*
2991 			 * RFC2460 section 5, last paragraph: if path MTU is
2992 			 * smaller than 1280, use 1280 as packet size and
2993 			 * attach fragment header.
2994 			 */
2995 			mss = IPV6_MMTU - iphlen - sizeof(struct ip6_frag) -
2996 			    sizeof(struct tcphdr);
2997 		} else
2998 			mss = rt->rt_rmx.rmx_mtu - iphlen - sizeof(struct tcphdr);
2999 	} else
3000 #endif /* RTV_MTU */
3001 	if (!ifp)
3002 		/*
3003 		 * ifp may be null and rmx_mtu may be zero in certain
3004 		 * v6 cases (e.g., if ND wasn't able to resolve the
3005 		 * destination host.
3006 		 */
3007 		goto out;
3008 	else if (ifp->if_flags & IFF_LOOPBACK)
3009 		mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3010 	else if (tp->pf == AF_INET) {
3011 		if (ip_mtudisc)
3012 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3013 		else if (inp && in_localaddr(inp->inp_faddr))
3014 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3015 	}
3016 #ifdef INET6
3017 	else if (tp->pf == AF_INET6) {
3018 		/*
3019 		 * for IPv6, path MTU discovery is always turned on,
3020 		 * or the node must use packet size <= 1280.
3021 		 */
3022 		mss = IN6_LINKMTU(ifp) - iphlen - sizeof(struct tcphdr);
3023 	}
3024 #endif /* INET6 */
3025 
3026 	/* Calculate the value that we offer in TCPOPT_MAXSEG */
3027 	if (offer != -1) {
3028 #ifndef INET6
3029 		mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3030 #else
3031 		if (tp->pf == AF_INET6)
3032 			mssopt = IN6_LINKMTU(ifp) - iphlen -
3033 			    sizeof(struct tcphdr);
3034 		else
3035 			mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3036 #endif
3037 
3038 		mssopt = max(tcp_mssdflt, mssopt);
3039 	}
3040 
3041  out:
3042 	/*
3043 	 * The current mss, t_maxseg, is initialized to the default value.
3044 	 * If we compute a smaller value, reduce the current mss.
3045 	 * If we compute a larger value, return it for use in sending
3046 	 * a max seg size option, but don't store it for use
3047 	 * unless we received an offer at least that large from peer.
3048 	 *
3049 	 * However, do not accept offers lower than the minimum of
3050 	 * the interface MTU and 216.
3051 	 */
3052 	if (offer > 0)
3053 		tp->t_peermss = offer;
3054 	if (tp->t_peermss)
3055 		mss = min(mss, max(tp->t_peermss, 216));
3056 
3057 	/* sanity - at least max opt. space */
3058 	mss = max(mss, 64);
3059 
3060 	/*
3061 	 * maxopd stores the maximum length of data AND options
3062 	 * in a segment; maxseg is the amount of data in a normal
3063 	 * segment.  We need to store this value (maxopd) apart
3064 	 * from maxseg, because now every segment carries options
3065 	 * and thus we normally have somewhat less data in segments.
3066 	 */
3067 	tp->t_maxopd = mss;
3068 
3069 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3070 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
3071 		mss -= TCPOLEN_TSTAMP_APPA;
3072 #ifdef TCP_SIGNATURE
3073 	if (tp->t_flags & TF_SIGNATURE)
3074 		mss -= TCPOLEN_SIGLEN;
3075 #endif
3076 
3077 	if (offer == -1) {
3078 		/* mss changed due to Path MTU discovery */
3079 		tp->t_flags &= ~TF_PMTUD_PEND;
3080 		tp->t_pmtud_mtu_sent = 0;
3081 		tp->t_pmtud_mss_acked = 0;
3082 		if (mss < tp->t_maxseg) {
3083 			/*
3084 			 * Follow suggestion in RFC 2414 to reduce the
3085 			 * congestion window by the ratio of the old
3086 			 * segment size to the new segment size.
3087 			 */
3088 			tp->snd_cwnd = ulmax((tp->snd_cwnd / tp->t_maxseg) *
3089 					     mss, mss);
3090 		}
3091 	} else if (tcp_do_rfc3390) {
3092 		/* increase initial window  */
3093 		tp->snd_cwnd = ulmin(4 * mss, ulmax(2 * mss, 4380));
3094 	} else
3095 		tp->snd_cwnd = mss;
3096 
3097 	tp->t_maxseg = mss;
3098 
3099 	return (offer != -1 ? mssopt : mss);
3100 }
3101 
3102 u_int
3103 tcp_hdrsz(struct tcpcb *tp)
3104 {
3105 	u_int hlen;
3106 
3107 	switch (tp->pf) {
3108 #ifdef INET6
3109 	case AF_INET6:
3110 		hlen = sizeof(struct ip6_hdr);
3111 		break;
3112 #endif
3113 	case AF_INET:
3114 		hlen = sizeof(struct ip);
3115 		break;
3116 	default:
3117 		hlen = 0;
3118 		break;
3119 	}
3120 	hlen += sizeof(struct tcphdr);
3121 
3122 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3123 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
3124 		hlen += TCPOLEN_TSTAMP_APPA;
3125 #ifdef TCP_SIGNATURE
3126 	if (tp->t_flags & TF_SIGNATURE)
3127 		hlen += TCPOLEN_SIGLEN;
3128 #endif
3129 	return (hlen);
3130 }
3131 
3132 /*
3133  * Set connection variables based on the effective MSS.
3134  * We are passed the TCPCB for the actual connection.  If we
3135  * are the server, we are called by the compressed state engine
3136  * when the 3-way handshake is complete.  If we are the client,
3137  * we are called when we receive the SYN,ACK from the server.
3138  *
3139  * NOTE: The t_maxseg value must be initialized in the TCPCB
3140  * before this routine is called!
3141  */
3142 void
3143 tcp_mss_update(struct tcpcb *tp)
3144 {
3145 	int mss;
3146 	u_long bufsize;
3147 	struct rtentry *rt;
3148 	struct socket *so;
3149 
3150 	so = tp->t_inpcb->inp_socket;
3151 	mss = tp->t_maxseg;
3152 
3153 	rt = in_pcbrtentry(tp->t_inpcb);
3154 
3155 	if (rt == NULL)
3156 		return;
3157 
3158 	bufsize = so->so_snd.sb_hiwat;
3159 	if (bufsize < mss) {
3160 		mss = bufsize;
3161 		/* Update t_maxseg and t_maxopd */
3162 		tcp_mss(tp, mss);
3163 	} else {
3164 		bufsize = roundup(bufsize, mss);
3165 		if (bufsize > sb_max)
3166 			bufsize = sb_max;
3167 		(void)sbreserve(&so->so_snd, bufsize);
3168 	}
3169 
3170 	bufsize = so->so_rcv.sb_hiwat;
3171 	if (bufsize > mss) {
3172 		bufsize = roundup(bufsize, mss);
3173 		if (bufsize > sb_max)
3174 			bufsize = sb_max;
3175 		(void)sbreserve(&so->so_rcv, bufsize);
3176 	}
3177 
3178 }
3179 
3180 #if defined (TCP_SACK)
3181 /*
3182  * Checks for partial ack.  If partial ack arrives, force the retransmission
3183  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
3184  * 1.  By setting snd_nxt to ti_ack, this forces retransmission timer to
3185  * be started again.  If the ack advances at least to tp->snd_last, return 0.
3186  */
3187 int
3188 tcp_newreno(struct tcpcb *tp, struct tcphdr *th)
3189 {
3190 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
3191 		/*
3192 		 * snd_una has not been updated and the socket send buffer
3193 		 * not yet drained of the acked data, so we have to leave
3194 		 * snd_una as it was to get the correct data offset in
3195 		 * tcp_output().
3196 		 */
3197 		tcp_seq onxt = tp->snd_nxt;
3198 		u_long  ocwnd = tp->snd_cwnd;
3199 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
3200 		tp->t_rtttime = 0;
3201 		tp->snd_nxt = th->th_ack;
3202 		/*
3203 		 * Set snd_cwnd to one segment beyond acknowledged offset
3204 		 * (tp->snd_una not yet updated when this function is called)
3205 		 */
3206 		tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3207 		(void) tcp_output(tp);
3208 		tp->snd_cwnd = ocwnd;
3209 		if (SEQ_GT(onxt, tp->snd_nxt))
3210 			tp->snd_nxt = onxt;
3211 		/*
3212 		 * Partial window deflation.  Relies on fact that tp->snd_una
3213 		 * not updated yet.
3214 		 */
3215 		if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3216 			tp->snd_cwnd -= th->th_ack - tp->snd_una;
3217 		else
3218 			tp->snd_cwnd = 0;
3219 		tp->snd_cwnd += tp->t_maxseg;
3220 
3221 		return 1;
3222 	}
3223 	return 0;
3224 }
3225 #endif /* TCP_SACK */
3226 
3227 int
3228 tcp_mss_adv(struct ifnet *ifp, int af)
3229 {
3230 	int mss = 0;
3231 	int iphlen;
3232 
3233 	switch (af) {
3234 	case AF_INET:
3235 		if (ifp != NULL)
3236 			mss = ifp->if_mtu;
3237 		iphlen = sizeof(struct ip);
3238 		break;
3239 #ifdef INET6
3240 	case AF_INET6:
3241 		if (ifp != NULL)
3242 			mss = IN6_LINKMTU(ifp);
3243 		iphlen = sizeof(struct ip6_hdr);
3244 		break;
3245 #endif
3246 	}
3247 	mss = mss - iphlen - sizeof(struct tcphdr);
3248 	return (max(mss, tcp_mssdflt));
3249 }
3250 
3251 /*
3252  * TCP compressed state engine.  Currently used to hold compressed
3253  * state for SYN_RECEIVED.
3254  */
3255 
3256 u_long	syn_cache_count;
3257 u_int32_t syn_hash1, syn_hash2;
3258 
3259 #define SYN_HASH(sa, sp, dp) \
3260 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3261 				     ((u_int32_t)(sp)))^syn_hash2)))
3262 #ifndef INET6
3263 #define	SYN_HASHALL(hash, src, dst) \
3264 do {									\
3265 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
3266 		((struct sockaddr_in *)(src))->sin_port,		\
3267 		((struct sockaddr_in *)(dst))->sin_port);		\
3268 } while (/*CONSTCOND*/ 0)
3269 #else
3270 #define SYN_HASH6(sa, sp, dp) \
3271 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3272 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3273 	 & 0x7fffffff)
3274 
3275 #define SYN_HASHALL(hash, src, dst) \
3276 do {									\
3277 	switch ((src)->sa_family) {					\
3278 	case AF_INET:							\
3279 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3280 			((struct sockaddr_in *)(src))->sin_port,	\
3281 			((struct sockaddr_in *)(dst))->sin_port);	\
3282 		break;							\
3283 	case AF_INET6:							\
3284 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3285 			((struct sockaddr_in6 *)(src))->sin6_port,	\
3286 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
3287 		break;							\
3288 	default:							\
3289 		hash = 0;						\
3290 	}								\
3291 } while (/*CONSTCOND*/0)
3292 #endif /* INET6 */
3293 
3294 #define	SYN_CACHE_RM(sc)						\
3295 do {									\
3296 	(sc)->sc_flags |= SCF_DEAD;					\
3297 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
3298 	    (sc), sc_bucketq);						\
3299 	(sc)->sc_tp = NULL;						\
3300 	LIST_REMOVE((sc), sc_tpq);					\
3301 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
3302 	timeout_del(&(sc)->sc_timer);					\
3303 	syn_cache_count--;						\
3304 } while (/*CONSTCOND*/0)
3305 
3306 #define	SYN_CACHE_PUT(sc)						\
3307 do {									\
3308 	if ((sc)->sc_ipopts)						\
3309 		(void) m_free((sc)->sc_ipopts);				\
3310 	if ((sc)->sc_route4.ro_rt != NULL)				\
3311 		RTFREE((sc)->sc_route4.ro_rt);				\
3312 	timeout_set(&(sc)->sc_timer, syn_cache_reaper, (sc));		\
3313 	timeout_add(&(sc)->sc_timer, 0);				\
3314 } while (/*CONSTCOND*/0)
3315 
3316 struct pool syn_cache_pool;
3317 
3318 /*
3319  * We don't estimate RTT with SYNs, so each packet starts with the default
3320  * RTT and each timer step has a fixed timeout value.
3321  */
3322 #define	SYN_CACHE_TIMER_ARM(sc)						\
3323 do {									\
3324 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3325 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3326 	    TCPTV_REXMTMAX);						\
3327 	if (!timeout_initialized(&(sc)->sc_timer))			\
3328 		timeout_set(&(sc)->sc_timer, syn_cache_timer, (sc));	\
3329 	timeout_add(&(sc)->sc_timer, (sc)->sc_rxtcur * (hz / PR_SLOWHZ)); \
3330 } while (/*CONSTCOND*/0)
3331 
3332 #define	SYN_CACHE_TIMESTAMP(sc)	tcp_now + (sc)->sc_modulate
3333 
3334 void
3335 syn_cache_init()
3336 {
3337 	int i;
3338 
3339 	/* Initialize the hash buckets. */
3340 	for (i = 0; i < tcp_syn_cache_size; i++)
3341 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3342 
3343 	/* Initialize the syn cache pool. */
3344 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3345 	    "synpl", NULL);
3346 }
3347 
3348 void
3349 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3350 {
3351 	struct syn_cache_head *scp;
3352 	struct syn_cache *sc2;
3353 	int s;
3354 
3355 	/*
3356 	 * If there are no entries in the hash table, reinitialize
3357 	 * the hash secrets.
3358 	 */
3359 	if (syn_cache_count == 0) {
3360 		syn_hash1 = arc4random();
3361 		syn_hash2 = arc4random();
3362 	}
3363 
3364 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3365 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3366 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3367 
3368 	/*
3369 	 * Make sure that we don't overflow the per-bucket
3370 	 * limit or the total cache size limit.
3371 	 */
3372 	s = splsoftnet();
3373 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3374 		tcpstat.tcps_sc_bucketoverflow++;
3375 		/*
3376 		 * The bucket is full.  Toss the oldest element in the
3377 		 * bucket.  This will be the first entry in the bucket.
3378 		 */
3379 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3380 #ifdef DIAGNOSTIC
3381 		/*
3382 		 * This should never happen; we should always find an
3383 		 * entry in our bucket.
3384 		 */
3385 		if (sc2 == NULL)
3386 			panic("syn_cache_insert: bucketoverflow: impossible");
3387 #endif
3388 		SYN_CACHE_RM(sc2);
3389 		SYN_CACHE_PUT(sc2);
3390 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3391 		struct syn_cache_head *scp2, *sce;
3392 
3393 		tcpstat.tcps_sc_overflowed++;
3394 		/*
3395 		 * The cache is full.  Toss the oldest entry in the
3396 		 * first non-empty bucket we can find.
3397 		 *
3398 		 * XXX We would really like to toss the oldest
3399 		 * entry in the cache, but we hope that this
3400 		 * condition doesn't happen very often.
3401 		 */
3402 		scp2 = scp;
3403 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3404 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3405 			for (++scp2; scp2 != scp; scp2++) {
3406 				if (scp2 >= sce)
3407 					scp2 = &tcp_syn_cache[0];
3408 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3409 					break;
3410 			}
3411 #ifdef DIAGNOSTIC
3412 			/*
3413 			 * This should never happen; we should always find a
3414 			 * non-empty bucket.
3415 			 */
3416 			if (scp2 == scp)
3417 				panic("syn_cache_insert: cacheoverflow: "
3418 				    "impossible");
3419 #endif
3420 		}
3421 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3422 		SYN_CACHE_RM(sc2);
3423 		SYN_CACHE_PUT(sc2);
3424 	}
3425 
3426 	/*
3427 	 * Initialize the entry's timer.
3428 	 */
3429 	sc->sc_rxttot = 0;
3430 	sc->sc_rxtshift = 0;
3431 	SYN_CACHE_TIMER_ARM(sc);
3432 
3433 	/* Link it from tcpcb entry */
3434 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3435 
3436 	/* Put it into the bucket. */
3437 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3438 	scp->sch_length++;
3439 	syn_cache_count++;
3440 
3441 	tcpstat.tcps_sc_added++;
3442 	splx(s);
3443 }
3444 
3445 /*
3446  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3447  * If we have retransmitted an entry the maximum number of times, expire
3448  * that entry.
3449  */
3450 void
3451 syn_cache_timer(void *arg)
3452 {
3453 	struct syn_cache *sc = arg;
3454 	int s;
3455 
3456 	s = splsoftnet();
3457 	if (sc->sc_flags & SCF_DEAD) {
3458 		splx(s);
3459 		return;
3460 	}
3461 
3462 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3463 		/* Drop it -- too many retransmissions. */
3464 		goto dropit;
3465 	}
3466 
3467 	/*
3468 	 * Compute the total amount of time this entry has
3469 	 * been on a queue.  If this entry has been on longer
3470 	 * than the keep alive timer would allow, expire it.
3471 	 */
3472 	sc->sc_rxttot += sc->sc_rxtcur;
3473 	if (sc->sc_rxttot >= tcptv_keep_init)
3474 		goto dropit;
3475 
3476 	tcpstat.tcps_sc_retransmitted++;
3477 	(void) syn_cache_respond(sc, NULL);
3478 
3479 	/* Advance the timer back-off. */
3480 	sc->sc_rxtshift++;
3481 	SYN_CACHE_TIMER_ARM(sc);
3482 
3483 	splx(s);
3484 	return;
3485 
3486  dropit:
3487 	tcpstat.tcps_sc_timed_out++;
3488 	SYN_CACHE_RM(sc);
3489 	SYN_CACHE_PUT(sc);
3490 	splx(s);
3491 }
3492 
3493 void
3494 syn_cache_reaper(void *arg)
3495 {
3496 	struct syn_cache *sc = arg;
3497 	int s;
3498 
3499 	s = splsoftnet();
3500 	pool_put(&syn_cache_pool, (sc));
3501 	splx(s);
3502 	return;
3503 }
3504 
3505 /*
3506  * Remove syn cache created by the specified tcb entry,
3507  * because this does not make sense to keep them
3508  * (if there's no tcb entry, syn cache entry will never be used)
3509  */
3510 void
3511 syn_cache_cleanup(struct tcpcb *tp)
3512 {
3513 	struct syn_cache *sc, *nsc;
3514 	int s;
3515 
3516 	s = splsoftnet();
3517 
3518 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3519 		nsc = LIST_NEXT(sc, sc_tpq);
3520 
3521 #ifdef DIAGNOSTIC
3522 		if (sc->sc_tp != tp)
3523 			panic("invalid sc_tp in syn_cache_cleanup");
3524 #endif
3525 		SYN_CACHE_RM(sc);
3526 		SYN_CACHE_PUT(sc);
3527 	}
3528 	/* just for safety */
3529 	LIST_INIT(&tp->t_sc);
3530 
3531 	splx(s);
3532 }
3533 
3534 /*
3535  * Find an entry in the syn cache.
3536  */
3537 struct syn_cache *
3538 syn_cache_lookup(struct sockaddr *src, struct sockaddr *dst,
3539     struct syn_cache_head **headp)
3540 {
3541 	struct syn_cache *sc;
3542 	struct syn_cache_head *scp;
3543 	u_int32_t hash;
3544 	int s;
3545 
3546 	SYN_HASHALL(hash, src, dst);
3547 
3548 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3549 	*headp = scp;
3550 	s = splsoftnet();
3551 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3552 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3553 		if (sc->sc_hash != hash)
3554 			continue;
3555 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3556 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3557 			splx(s);
3558 			return (sc);
3559 		}
3560 	}
3561 	splx(s);
3562 	return (NULL);
3563 }
3564 
3565 /*
3566  * This function gets called when we receive an ACK for a
3567  * socket in the LISTEN state.  We look up the connection
3568  * in the syn cache, and if its there, we pull it out of
3569  * the cache and turn it into a full-blown connection in
3570  * the SYN-RECEIVED state.
3571  *
3572  * The return values may not be immediately obvious, and their effects
3573  * can be subtle, so here they are:
3574  *
3575  *	NULL	SYN was not found in cache; caller should drop the
3576  *		packet and send an RST.
3577  *
3578  *	-1	We were unable to create the new connection, and are
3579  *		aborting it.  An ACK,RST is being sent to the peer
3580  *		(unless we got screwey sequence numbners; see below),
3581  *		because the 3-way handshake has been completed.  Caller
3582  *		should not free the mbuf, since we may be using it.  If
3583  *		we are not, we will free it.
3584  *
3585  *	Otherwise, the return value is a pointer to the new socket
3586  *	associated with the connection.
3587  */
3588 struct socket *
3589 syn_cache_get(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3590     u_int hlen, u_int tlen, struct socket *so, struct mbuf *m)
3591 {
3592 	struct syn_cache *sc;
3593 	struct syn_cache_head *scp;
3594 	struct inpcb *inp = NULL;
3595 	struct tcpcb *tp = 0;
3596 	struct mbuf *am;
3597 	int s;
3598 	struct socket *oso;
3599 
3600 	s = splsoftnet();
3601 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3602 		splx(s);
3603 		return (NULL);
3604 	}
3605 
3606 	/*
3607 	 * Verify the sequence and ack numbers.  Try getting the correct
3608 	 * response again.
3609 	 */
3610 	if ((th->th_ack != sc->sc_iss + 1) ||
3611 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3612 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3613 		(void) syn_cache_respond(sc, m);
3614 		splx(s);
3615 		return ((struct socket *)(-1));
3616 	}
3617 
3618 	/* Remove this cache entry */
3619 	SYN_CACHE_RM(sc);
3620 	splx(s);
3621 
3622 	/*
3623 	 * Ok, create the full blown connection, and set things up
3624 	 * as they would have been set up if we had created the
3625 	 * connection when the SYN arrived.  If we can't create
3626 	 * the connection, abort it.
3627 	 */
3628 	oso = so;
3629 	so = sonewconn(so, SS_ISCONNECTED);
3630 	if (so == NULL)
3631 		goto resetandabort;
3632 
3633 	inp = sotoinpcb(oso);
3634 #ifdef IPSEC
3635 	/*
3636 	 * We need to copy the required security levels
3637 	 * from the old pcb. Ditto for any other
3638 	 * IPsec-related information.
3639 	 */
3640 	{
3641 	  struct inpcb *newinp = (struct inpcb *)so->so_pcb;
3642 	  bcopy(inp->inp_seclevel, newinp->inp_seclevel,
3643 		sizeof(inp->inp_seclevel));
3644 	  newinp->inp_secrequire = inp->inp_secrequire;
3645 	  if (inp->inp_ipo != NULL) {
3646 		  newinp->inp_ipo = inp->inp_ipo;
3647 		  inp->inp_ipo->ipo_ref_count++;
3648 	  }
3649 	  if (inp->inp_ipsec_remotecred != NULL) {
3650 		  newinp->inp_ipsec_remotecred = inp->inp_ipsec_remotecred;
3651 		  inp->inp_ipsec_remotecred->ref_count++;
3652 	  }
3653 	  if (inp->inp_ipsec_remoteauth != NULL) {
3654 		  newinp->inp_ipsec_remoteauth
3655 		      = inp->inp_ipsec_remoteauth;
3656 		  inp->inp_ipsec_remoteauth->ref_count++;
3657 	  }
3658 	}
3659 #endif /* IPSEC */
3660 #ifdef INET6
3661 	/*
3662 	 * inp still has the OLD in_pcb stuff, set the
3663 	 * v6-related flags on the new guy, too.
3664 	 */
3665 	{
3666 	  int flags = inp->inp_flags;
3667 	  struct inpcb *oldinpcb = inp;
3668 
3669 	  inp = (struct inpcb *)so->so_pcb;
3670 	  inp->inp_flags |= (flags & INP_IPV6);
3671 	  if ((inp->inp_flags & INP_IPV6) != 0) {
3672 	    inp->inp_ipv6.ip6_hlim =
3673 	      oldinpcb->inp_ipv6.ip6_hlim;
3674 	  }
3675 	}
3676 #else /* INET6 */
3677 	inp = (struct inpcb *)so->so_pcb;
3678 #endif /* INET6 */
3679 
3680 	inp->inp_lport = th->th_dport;
3681 	switch (src->sa_family) {
3682 #ifdef INET6
3683 	case AF_INET6:
3684 		inp->inp_laddr6 = ((struct sockaddr_in6 *)dst)->sin6_addr;
3685 		break;
3686 #endif /* INET6 */
3687 	case AF_INET:
3688 
3689 		inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3690 		inp->inp_options = ip_srcroute();
3691 		if (inp->inp_options == NULL) {
3692 			inp->inp_options = sc->sc_ipopts;
3693 			sc->sc_ipopts = NULL;
3694 		}
3695 		break;
3696 	}
3697 	in_pcbrehash(inp);
3698 
3699 	/*
3700 	 * Give the new socket our cached route reference.
3701 	 */
3702 	if (src->sa_family == AF_INET)
3703 		inp->inp_route = sc->sc_route4;         /* struct assignment */
3704 #ifdef INET6
3705 	else
3706 		inp->inp_route6 = sc->sc_route6;
3707 #endif
3708 	sc->sc_route4.ro_rt = NULL;
3709 
3710 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3711 	if (am == NULL)
3712 		goto resetandabort;
3713 	am->m_len = src->sa_len;
3714 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3715 
3716 	switch (src->sa_family) {
3717 	case AF_INET:
3718 		/* drop IPv4 packet to AF_INET6 socket */
3719 		if (inp->inp_flags & INP_IPV6) {
3720 			(void) m_free(am);
3721 			goto resetandabort;
3722 		}
3723 		if (in_pcbconnect(inp, am)) {
3724 			(void) m_free(am);
3725 			goto resetandabort;
3726 		}
3727 		break;
3728 #ifdef INET6
3729 	case AF_INET6:
3730 		if (in6_pcbconnect(inp, am)) {
3731 			(void) m_free(am);
3732 			goto resetandabort;
3733 		}
3734 		break;
3735 #endif
3736 	}
3737 	(void) m_free(am);
3738 
3739 	tp = intotcpcb(inp);
3740 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3741 	if (sc->sc_request_r_scale != 15) {
3742 		tp->requested_s_scale = sc->sc_requested_s_scale;
3743 		tp->request_r_scale = sc->sc_request_r_scale;
3744 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3745 	}
3746 	if (sc->sc_flags & SCF_TIMESTAMP)
3747 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3748 
3749 	tp->t_template = tcp_template(tp);
3750 	if (tp->t_template == 0) {
3751 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3752 		so = NULL;
3753 		m_freem(m);
3754 		goto abort;
3755 	}
3756 #ifdef TCP_SACK
3757 	tp->sack_enable = sc->sc_flags & SCF_SACK_PERMIT;
3758 #endif
3759 
3760 	tp->ts_modulate = sc->sc_modulate;
3761 	tp->iss = sc->sc_iss;
3762 	tp->irs = sc->sc_irs;
3763 	tcp_sendseqinit(tp);
3764 #if defined (TCP_SACK) || defined(TCP_ECN)
3765 	tp->snd_last = tp->snd_una;
3766 #endif /* TCP_SACK */
3767 #if defined(TCP_SACK) && defined(TCP_FACK)
3768 	tp->snd_fack = tp->snd_una;
3769 	tp->retran_data = 0;
3770 	tp->snd_awnd = 0;
3771 #endif /* TCP_FACK */
3772 #ifdef TCP_ECN
3773 	if (sc->sc_flags & SCF_ECN_PERMIT) {
3774 		tp->t_flags |= TF_ECN_PERMIT;
3775 		tcpstat.tcps_ecn_accepts++;
3776 	}
3777 #endif
3778 #ifdef TCP_SACK
3779 	if (sc->sc_flags & SCF_SACK_PERMIT)
3780 		tp->t_flags |= TF_SACK_PERMIT;
3781 #endif
3782 #ifdef TCP_SIGNATURE
3783 	if (sc->sc_flags & SCF_SIGNATURE)
3784 		tp->t_flags |= TF_SIGNATURE;
3785 #endif
3786 	tcp_rcvseqinit(tp);
3787 	tp->t_state = TCPS_SYN_RECEIVED;
3788 	tp->t_rcvtime = tcp_now;
3789 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcptv_keep_init);
3790 	tcpstat.tcps_accepts++;
3791 
3792 	tcp_mss(tp, sc->sc_peermaxseg);	 /* sets t_maxseg */
3793 	if (sc->sc_peermaxseg)
3794 		tcp_mss_update(tp);
3795 	/* Reset initial window to 1 segment for retransmit */
3796 	if (sc->sc_rxtshift > 0)
3797 		tp->snd_cwnd = tp->t_maxseg;
3798 	tp->snd_wl1 = sc->sc_irs;
3799 	tp->rcv_up = sc->sc_irs + 1;
3800 
3801 	/*
3802 	 * This is what whould have happened in tcp_output() when
3803 	 * the SYN,ACK was sent.
3804 	 */
3805 	tp->snd_up = tp->snd_una;
3806 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3807 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3808 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3809 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3810 	tp->last_ack_sent = tp->rcv_nxt;
3811 
3812 	tcpstat.tcps_sc_completed++;
3813 	SYN_CACHE_PUT(sc);
3814 	return (so);
3815 
3816 resetandabort:
3817 	tcp_respond(NULL, mtod(m, caddr_t), th, (tcp_seq)0, th->th_ack, TH_RST);
3818 	m_freem(m);
3819 abort:
3820 	if (so != NULL)
3821 		(void) soabort(so);
3822 	SYN_CACHE_PUT(sc);
3823 	tcpstat.tcps_sc_aborted++;
3824 	return ((struct socket *)(-1));
3825 }
3826 
3827 /*
3828  * This function is called when we get a RST for a
3829  * non-existent connection, so that we can see if the
3830  * connection is in the syn cache.  If it is, zap it.
3831  */
3832 
3833 void
3834 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3835 {
3836 	struct syn_cache *sc;
3837 	struct syn_cache_head *scp;
3838 	int s = splsoftnet();
3839 
3840 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3841 		splx(s);
3842 		return;
3843 	}
3844 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3845 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3846 		splx(s);
3847 		return;
3848 	}
3849 	SYN_CACHE_RM(sc);
3850 	splx(s);
3851 	tcpstat.tcps_sc_reset++;
3852 	SYN_CACHE_PUT(sc);
3853 }
3854 
3855 void
3856 syn_cache_unreach(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3857 {
3858 	struct syn_cache *sc;
3859 	struct syn_cache_head *scp;
3860 	int s;
3861 
3862 	s = splsoftnet();
3863 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3864 		splx(s);
3865 		return;
3866 	}
3867 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3868 	if (ntohl (th->th_seq) != sc->sc_iss) {
3869 		splx(s);
3870 		return;
3871 	}
3872 
3873 	/*
3874 	 * If we've retransmitted 3 times and this is our second error,
3875 	 * we remove the entry.  Otherwise, we allow it to continue on.
3876 	 * This prevents us from incorrectly nuking an entry during a
3877 	 * spurious network outage.
3878 	 *
3879 	 * See tcp_notify().
3880 	 */
3881 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3882 		sc->sc_flags |= SCF_UNREACH;
3883 		splx(s);
3884 		return;
3885 	}
3886 
3887 	SYN_CACHE_RM(sc);
3888 	splx(s);
3889 	tcpstat.tcps_sc_unreach++;
3890 	SYN_CACHE_PUT(sc);
3891 }
3892 
3893 /*
3894  * Given a LISTEN socket and an inbound SYN request, add
3895  * this to the syn cache, and send back a segment:
3896  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3897  * to the source.
3898  *
3899  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3900  * Doing so would require that we hold onto the data and deliver it
3901  * to the application.  However, if we are the target of a SYN-flood
3902  * DoS attack, an attacker could send data which would eventually
3903  * consume all available buffer space if it were ACKed.  By not ACKing
3904  * the data, we avoid this DoS scenario.
3905  */
3906 
3907 int
3908 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3909     u_int iphlen, struct socket *so, struct mbuf *m, u_char *optp, int optlen,
3910     struct tcp_opt_info *oi, tcp_seq *issp)
3911 {
3912 	struct tcpcb tb, *tp;
3913 	long win;
3914 	struct syn_cache *sc;
3915 	struct syn_cache_head *scp;
3916 	struct mbuf *ipopts;
3917 
3918 	tp = sototcpcb(so);
3919 
3920 	/*
3921 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3922 	 *
3923 	 * Note this check is performed in tcp_input() very early on.
3924 	 */
3925 
3926 	/*
3927 	 * Initialize some local state.
3928 	 */
3929 	win = sbspace(&so->so_rcv);
3930 	if (win > TCP_MAXWIN)
3931 		win = TCP_MAXWIN;
3932 
3933 #ifdef TCP_SIGNATURE
3934 	if (optp || (tp->t_flags & TF_SIGNATURE)) {
3935 #else
3936 	if (optp) {
3937 #endif
3938 		tb.pf = tp->pf;
3939 #ifdef TCP_SACK
3940 		tb.sack_enable = tp->sack_enable;
3941 #endif
3942 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3943 #ifdef TCP_SIGNATURE
3944 		if (tp->t_flags & TF_SIGNATURE)
3945 			tb.t_flags |= TF_SIGNATURE;
3946 #endif
3947 		tb.t_state = TCPS_LISTEN;
3948 		if (tcp_dooptions(&tb, optp, optlen, th, m, iphlen, oi))
3949 			return (0);
3950 	} else
3951 		tb.t_flags = 0;
3952 
3953 	switch (src->sa_family) {
3954 #ifdef INET
3955 	case AF_INET:
3956 		/*
3957 		 * Remember the IP options, if any.
3958 		 */
3959 		ipopts = ip_srcroute();
3960 		break;
3961 #endif
3962 	default:
3963 		ipopts = NULL;
3964 	}
3965 
3966 	/*
3967 	 * See if we already have an entry for this connection.
3968 	 * If we do, resend the SYN,ACK.  We do not count this
3969 	 * as a retransmission (XXX though maybe we should).
3970 	 */
3971 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3972 		tcpstat.tcps_sc_dupesyn++;
3973 		if (ipopts) {
3974 			/*
3975 			 * If we were remembering a previous source route,
3976 			 * forget it and use the new one we've been given.
3977 			 */
3978 			if (sc->sc_ipopts)
3979 				(void) m_free(sc->sc_ipopts);
3980 			sc->sc_ipopts = ipopts;
3981 		}
3982 		sc->sc_timestamp = tb.ts_recent;
3983 		if (syn_cache_respond(sc, m) == 0) {
3984 			tcpstat.tcps_sndacks++;
3985 			tcpstat.tcps_sndtotal++;
3986 		}
3987 		return (1);
3988 	}
3989 
3990 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3991 	if (sc == NULL) {
3992 		if (ipopts)
3993 			(void) m_free(ipopts);
3994 		return (0);
3995 	}
3996 
3997 	/*
3998 	 * Fill in the cache, and put the necessary IP and TCP
3999 	 * options into the reply.
4000 	 */
4001 	bzero(sc, sizeof(struct syn_cache));
4002 	bzero(&sc->sc_timer, sizeof(sc->sc_timer));
4003 	bcopy(src, &sc->sc_src, src->sa_len);
4004 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4005 	sc->sc_flags = 0;
4006 	sc->sc_ipopts = ipopts;
4007 	sc->sc_irs = th->th_seq;
4008 
4009 	sc->sc_iss = issp ? *issp : arc4random();
4010 	sc->sc_peermaxseg = oi->maxseg;
4011 	sc->sc_ourmaxseg = tcp_mss_adv(m->m_flags & M_PKTHDR ?
4012 	    m->m_pkthdr.rcvif : NULL, sc->sc_src.sa.sa_family);
4013 	sc->sc_win = win;
4014 	sc->sc_timestamp = tb.ts_recent;
4015 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4016 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP)) {
4017 		sc->sc_flags |= SCF_TIMESTAMP;
4018 		sc->sc_modulate = arc4random();
4019 	}
4020 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4021 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4022 		sc->sc_requested_s_scale = tb.requested_s_scale;
4023 		sc->sc_request_r_scale = 0;
4024 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4025 		    TCP_MAXWIN << sc->sc_request_r_scale <
4026 		    so->so_rcv.sb_hiwat)
4027 			sc->sc_request_r_scale++;
4028 	} else {
4029 		sc->sc_requested_s_scale = 15;
4030 		sc->sc_request_r_scale = 15;
4031 	}
4032 #ifdef TCP_ECN
4033 	/*
4034 	 * if both ECE and CWR flag bits are set, peer is ECN capable.
4035 	 */
4036 	if (tcp_do_ecn &&
4037 	    (th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR))
4038 		sc->sc_flags |= SCF_ECN_PERMIT;
4039 #endif
4040 #ifdef TCP_SACK
4041 	/*
4042 	 * Set SCF_SACK_PERMIT if peer did send a SACK_PERMITTED option
4043 	 * (i.e., if tcp_dooptions() did set TF_SACK_PERMIT).
4044 	 */
4045 	if (tb.sack_enable && (tb.t_flags & TF_SACK_PERMIT))
4046 		sc->sc_flags |= SCF_SACK_PERMIT;
4047 #endif
4048 #ifdef TCP_SIGNATURE
4049 	if (tb.t_flags & TF_SIGNATURE)
4050 		sc->sc_flags |= SCF_SIGNATURE;
4051 #endif
4052 	sc->sc_tp = tp;
4053 	if (syn_cache_respond(sc, m) == 0) {
4054 		syn_cache_insert(sc, tp);
4055 		tcpstat.tcps_sndacks++;
4056 		tcpstat.tcps_sndtotal++;
4057 	} else {
4058 		SYN_CACHE_PUT(sc);
4059 		tcpstat.tcps_sc_dropped++;
4060 	}
4061 	return (1);
4062 }
4063 
4064 int
4065 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4066 {
4067 	struct route *ro;
4068 	u_int8_t *optp;
4069 	int optlen, error;
4070 	u_int16_t tlen;
4071 	struct ip *ip = NULL;
4072 #ifdef INET6
4073 	struct ip6_hdr *ip6 = NULL;
4074 #endif
4075 	struct tcphdr *th;
4076 	u_int hlen;
4077 	struct inpcb *inp;
4078 
4079 	switch (sc->sc_src.sa.sa_family) {
4080 	case AF_INET:
4081 		hlen = sizeof(struct ip);
4082 		ro = &sc->sc_route4;
4083 		break;
4084 #ifdef INET6
4085 	case AF_INET6:
4086 		hlen = sizeof(struct ip6_hdr);
4087 		ro = (struct route *)&sc->sc_route6;
4088 		break;
4089 #endif
4090 	default:
4091 		if (m)
4092 			m_freem(m);
4093 		return (EAFNOSUPPORT);
4094 	}
4095 
4096 	/* Compute the size of the TCP options. */
4097 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4098 #ifdef TCP_SACK
4099 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? 4 : 0) +
4100 #endif
4101 #ifdef TCP_SIGNATURE
4102 	    ((sc->sc_flags & SCF_SIGNATURE) ? TCPOLEN_SIGLEN : 0) +
4103 #endif
4104 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4105 
4106 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4107 
4108 	/*
4109 	 * Create the IP+TCP header from scratch.
4110 	 */
4111 	if (m)
4112 		m_freem(m);
4113 #ifdef DIAGNOSTIC
4114 	if (max_linkhdr + tlen > MCLBYTES)
4115 		return (ENOBUFS);
4116 #endif
4117 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4118 	if (m && max_linkhdr + tlen > MHLEN) {
4119 		MCLGET(m, M_DONTWAIT);
4120 		if ((m->m_flags & M_EXT) == 0) {
4121 			m_freem(m);
4122 			m = NULL;
4123 		}
4124 	}
4125 	if (m == NULL)
4126 		return (ENOBUFS);
4127 
4128 	/* Fixup the mbuf. */
4129 	m->m_data += max_linkhdr;
4130 	m->m_len = m->m_pkthdr.len = tlen;
4131 	m->m_pkthdr.rcvif = NULL;
4132 	memset(mtod(m, u_char *), 0, tlen);
4133 
4134 	switch (sc->sc_src.sa.sa_family) {
4135 	case AF_INET:
4136 		ip = mtod(m, struct ip *);
4137 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4138 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4139 		ip->ip_p = IPPROTO_TCP;
4140 		th = (struct tcphdr *)(ip + 1);
4141 		th->th_dport = sc->sc_src.sin.sin_port;
4142 		th->th_sport = sc->sc_dst.sin.sin_port;
4143 		break;
4144 #ifdef INET6
4145 	case AF_INET6:
4146 		ip6 = mtod(m, struct ip6_hdr *);
4147 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4148 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4149 		ip6->ip6_nxt = IPPROTO_TCP;
4150 		/* ip6_plen will be updated in ip6_output() */
4151 		th = (struct tcphdr *)(ip6 + 1);
4152 		th->th_dport = sc->sc_src.sin6.sin6_port;
4153 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4154 		break;
4155 #endif
4156 	default:
4157 		th = NULL;
4158 	}
4159 
4160 	th->th_seq = htonl(sc->sc_iss);
4161 	th->th_ack = htonl(sc->sc_irs + 1);
4162 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4163 	th->th_flags = TH_SYN|TH_ACK;
4164 #ifdef TCP_ECN
4165 	/* Set ECE for SYN-ACK if peer supports ECN. */
4166 	if (tcp_do_ecn && (sc->sc_flags & SCF_ECN_PERMIT))
4167 		th->th_flags |= TH_ECE;
4168 #endif
4169 	th->th_win = htons(sc->sc_win);
4170 	/* th_sum already 0 */
4171 	/* th_urp already 0 */
4172 
4173 	/* Tack on the TCP options. */
4174 	optp = (u_int8_t *)(th + 1);
4175 	*optp++ = TCPOPT_MAXSEG;
4176 	*optp++ = 4;
4177 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4178 	*optp++ = sc->sc_ourmaxseg & 0xff;
4179 
4180 #ifdef TCP_SACK
4181 	/* Include SACK_PERMIT_HDR option if peer has already done so. */
4182 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4183 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMIT_HDR);
4184 		optp += 4;
4185 	}
4186 #endif
4187 
4188 	if (sc->sc_request_r_scale != 15) {
4189 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4190 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4191 		    sc->sc_request_r_scale);
4192 		optp += 4;
4193 	}
4194 
4195 	if (sc->sc_flags & SCF_TIMESTAMP) {
4196 		u_int32_t *lp = (u_int32_t *)(optp);
4197 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4198 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4199 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4200 		*lp   = htonl(sc->sc_timestamp);
4201 		optp += TCPOLEN_TSTAMP_APPA;
4202 	}
4203 
4204 #ifdef TCP_SIGNATURE
4205 	if (sc->sc_flags & SCF_SIGNATURE) {
4206 		union sockaddr_union src, dst;
4207 		struct tdb *tdb;
4208 
4209 		bzero(&src, sizeof(union sockaddr_union));
4210 		bzero(&dst, sizeof(union sockaddr_union));
4211 		src.sa.sa_len = sc->sc_src.sa.sa_len;
4212 		src.sa.sa_family = sc->sc_src.sa.sa_family;
4213 		dst.sa.sa_len = sc->sc_dst.sa.sa_len;
4214 		dst.sa.sa_family = sc->sc_dst.sa.sa_family;
4215 
4216 		switch (sc->sc_src.sa.sa_family) {
4217 		case 0:	/*default to PF_INET*/
4218 #ifdef INET
4219 		case AF_INET:
4220 			src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
4221 			dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
4222 			break;
4223 #endif /* INET */
4224 #ifdef INET6
4225 		case AF_INET6:
4226 			src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
4227 			dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
4228 			break;
4229 #endif /* INET6 */
4230 		}
4231 
4232 		tdb = gettdbbysrcdst(0, &src, &dst, IPPROTO_TCP);
4233 		if (tdb == NULL) {
4234 			if (m)
4235 				m_freem(m);
4236 			return (EPERM);
4237 		}
4238 
4239 		/* Send signature option */
4240 		*(optp++) = TCPOPT_SIGNATURE;
4241 		*(optp++) = TCPOLEN_SIGNATURE;
4242 
4243 		if (tcp_signature(tdb, sc->sc_src.sa.sa_family, m, th,
4244 		    hlen, 0, optp) < 0) {
4245 			if (m)
4246 				m_freem(m);
4247 			return (EINVAL);
4248 		}
4249 		optp += 16;
4250 
4251 		/* Pad options list to the next 32 bit boundary and
4252 		 * terminate it.
4253 		 */
4254 		*optp++ = TCPOPT_NOP;
4255 		*optp++ = TCPOPT_EOL;
4256 	}
4257 #endif /* TCP_SIGNATURE */
4258 
4259 	/* Compute the packet's checksum. */
4260 	switch (sc->sc_src.sa.sa_family) {
4261 	case AF_INET:
4262 		ip->ip_len = htons(tlen - hlen);
4263 		th->th_sum = 0;
4264 		th->th_sum = in_cksum(m, tlen);
4265 		break;
4266 #ifdef INET6
4267 	case AF_INET6:
4268 		ip6->ip6_plen = htons(tlen - hlen);
4269 		th->th_sum = 0;
4270 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4271 		break;
4272 #endif
4273 	}
4274 
4275 	/* use IPsec policy and ttl from listening socket, on SYN ACK */
4276 	inp = sc->sc_tp ? sc->sc_tp->t_inpcb : NULL;
4277 
4278 	/*
4279 	 * Fill in some straggling IP bits.  Note the stack expects
4280 	 * ip_len to be in host order, for convenience.
4281 	 */
4282 	switch (sc->sc_src.sa.sa_family) {
4283 #ifdef INET
4284 	case AF_INET:
4285 		ip->ip_len = htons(tlen);
4286 		ip->ip_ttl = inp ? inp->inp_ip.ip_ttl : ip_defttl;
4287 		/* XXX tos? */
4288 		break;
4289 #endif
4290 #ifdef INET6
4291 	case AF_INET6:
4292 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4293 		ip6->ip6_vfc |= IPV6_VERSION;
4294 		ip6->ip6_plen = htons(tlen - hlen);
4295 		/* ip6_hlim will be initialized afterwards */
4296 		/* leave flowlabel = 0, it is legal and require no state mgmt */
4297 		break;
4298 #endif
4299 	}
4300 
4301 	switch (sc->sc_src.sa.sa_family) {
4302 #ifdef INET
4303 	case AF_INET:
4304 		error = ip_output(m, sc->sc_ipopts, ro,
4305 		    (ip_mtudisc ? IP_MTUDISC : 0),
4306 		    (struct ip_moptions *)NULL, inp);
4307 		break;
4308 #endif
4309 #ifdef INET6
4310 	case AF_INET6:
4311 		ip6->ip6_hlim = in6_selecthlim(NULL,
4312 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4313 
4314 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4315 			(struct ip6_moptions *)0, NULL, NULL);
4316 		break;
4317 #endif
4318 	default:
4319 		error = EAFNOSUPPORT;
4320 		break;
4321 	}
4322 	return (error);
4323 }
4324