xref: /openbsd-src/sys/netinet/tcp_input.c (revision cd1eb269cafb12c415be1749cd4a4b5422710415)
1 /*	$OpenBSD: tcp_input.c,v 1.232 2010/03/11 00:24:58 sthen Exp $	*/
2 /*	$NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
33  *
34  * NRL grants permission for redistribution and use in source and binary
35  * forms, with or without modification, of the software and documentation
36  * created at NRL provided that the following conditions are met:
37  *
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgements:
45  * 	This product includes software developed by the University of
46  * 	California, Berkeley and its contributors.
47  * 	This product includes software developed at the Information
48  * 	Technology Division, US Naval Research Laboratory.
49  * 4. Neither the name of the NRL nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
54  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
56  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
57  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
58  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
59  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
60  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
61  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
62  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
63  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64  *
65  * The views and conclusions contained in the software and documentation
66  * are those of the authors and should not be interpreted as representing
67  * official policies, either expressed or implied, of the US Naval
68  * Research Laboratory (NRL).
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/mbuf.h>
74 #include <sys/protosw.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/kernel.h>
78 #include <sys/pool.h>
79 
80 #include <dev/rndvar.h>
81 
82 #include <net/if.h>
83 #include <net/route.h>
84 
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp.h>
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_seq.h>
93 #include <netinet/tcp_timer.h>
94 #include <netinet/tcp_var.h>
95 #include <netinet/tcpip.h>
96 #include <netinet/tcp_debug.h>
97 
98 #include "faith.h"
99 #if NFAITH > 0
100 #include <net/if_types.h>
101 #endif
102 
103 #include "pf.h"
104 #if NPF > 0
105 #include <net/pfvar.h>
106 #endif
107 
108 struct	tcpiphdr tcp_saveti;
109 
110 int tcp_mss_adv(struct ifnet *, int);
111 
112 #ifdef INET6
113 #include <netinet6/in6_var.h>
114 #include <netinet6/nd6.h>
115 
116 struct  tcpipv6hdr tcp_saveti6;
117 
118 /* for the packet header length in the mbuf */
119 #define M_PH_LEN(m)      (((struct mbuf *)(m))->m_pkthdr.len)
120 #define M_V6_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip6_hdr))
121 #define M_V4_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip))
122 #endif /* INET6 */
123 
124 int	tcprexmtthresh = 3;
125 int	tcptv_keep_init = TCPTV_KEEP_INIT;
126 
127 extern u_long sb_max;
128 
129 int tcp_rst_ppslim = 100;		/* 100pps */
130 int tcp_rst_ppslim_count = 0;
131 struct timeval tcp_rst_ppslim_last;
132 
133 int tcp_ackdrop_ppslim = 100;		/* 100pps */
134 int tcp_ackdrop_ppslim_count = 0;
135 struct timeval tcp_ackdrop_ppslim_last;
136 
137 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
138 
139 /* for modulo comparisons of timestamps */
140 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
141 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
142 
143 /* for TCP SACK comparisons */
144 #define	SEQ_MIN(a,b)	(SEQ_LT(a,b) ? (a) : (b))
145 #define	SEQ_MAX(a,b)	(SEQ_GT(a,b) ? (a) : (b))
146 
147 /*
148  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
149  */
150 #ifdef INET6
151 #define ND6_HINT(tp) \
152 do { \
153 	if (tp && tp->t_inpcb && (tp->t_inpcb->inp_flags & INP_IPV6) && \
154 	    tp->t_inpcb->inp_route6.ro_rt) { \
155 		nd6_nud_hint(tp->t_inpcb->inp_route6.ro_rt, NULL, 0); \
156 	} \
157 } while (0)
158 #else
159 #define ND6_HINT(tp)
160 #endif
161 
162 #ifdef TCP_ECN
163 /*
164  * ECN (Explicit Congestion Notification) support based on RFC3168
165  * implementation note:
166  *   snd_last is used to track a recovery phase.
167  *   when cwnd is reduced, snd_last is set to snd_max.
168  *   while snd_last > snd_una, the sender is in a recovery phase and
169  *   its cwnd should not be reduced again.
170  *   snd_last follows snd_una when not in a recovery phase.
171  */
172 #endif
173 
174 /*
175  * Macro to compute ACK transmission behavior.  Delay the ACK unless
176  * we have already delayed an ACK (must send an ACK every two segments).
177  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
178  * option is enabled.
179  */
180 #define	TCP_SETUP_ACK(tp, tiflags) \
181 do { \
182 	if ((tp)->t_flags & TF_DELACK || \
183 	    (tcp_ack_on_push && (tiflags) & TH_PUSH)) \
184 		tp->t_flags |= TF_ACKNOW; \
185 	else \
186 		TCP_SET_DELACK(tp); \
187 } while (0)
188 
189 /*
190  * Insert segment ti into reassembly queue of tcp with
191  * control block tp.  Return TH_FIN if reassembly now includes
192  * a segment with FIN.  The macro form does the common case inline
193  * (segment is the next to be received on an established connection,
194  * and the queue is empty), avoiding linkage into and removal
195  * from the queue and repetition of various conversions.
196  * Set DELACK for segments received in order, but ack immediately
197  * when segments are out of order (so fast retransmit can work).
198  */
199 
200 int
201 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
202 {
203 	struct tcpqent *p, *q, *nq, *tiqe;
204 	struct socket *so = tp->t_inpcb->inp_socket;
205 	int flags;
206 
207 	/*
208 	 * Call with th==0 after become established to
209 	 * force pre-ESTABLISHED data up to user socket.
210 	 */
211 	if (th == 0)
212 		goto present;
213 
214 	/*
215 	 * Allocate a new queue entry, before we throw away any data.
216 	 * If we can't, just drop the packet.  XXX
217 	 */
218 	tiqe = pool_get(&tcpqe_pool, PR_NOWAIT);
219 	if (tiqe == NULL) {
220 		tiqe = TAILQ_LAST(&tp->t_segq, tcpqehead);
221 		if (tiqe != NULL && th->th_seq == tp->rcv_nxt) {
222 			/* Reuse last entry since new segment fills a hole */
223 			m_freem(tiqe->tcpqe_m);
224 			TAILQ_REMOVE(&tp->t_segq, tiqe, tcpqe_q);
225 		}
226 		if (tiqe == NULL || th->th_seq != tp->rcv_nxt) {
227 			/* Flush segment queue for this connection */
228 			tcp_freeq(tp);
229 			tcpstat.tcps_rcvmemdrop++;
230 			m_freem(m);
231 			return (0);
232 		}
233 	}
234 
235 	/*
236 	 * Find a segment which begins after this one does.
237 	 */
238 	for (p = NULL, q = TAILQ_FIRST(&tp->t_segq); q != NULL;
239 	    p = q, q = TAILQ_NEXT(q, tcpqe_q))
240 		if (SEQ_GT(q->tcpqe_tcp->th_seq, th->th_seq))
241 			break;
242 
243 	/*
244 	 * If there is a preceding segment, it may provide some of
245 	 * our data already.  If so, drop the data from the incoming
246 	 * segment.  If it provides all of our data, drop us.
247 	 */
248 	if (p != NULL) {
249 		struct tcphdr *phdr = p->tcpqe_tcp;
250 		int i;
251 
252 		/* conversion to int (in i) handles seq wraparound */
253 		i = phdr->th_seq + phdr->th_reseqlen - th->th_seq;
254 		if (i > 0) {
255 		        if (i >= *tlen) {
256 				tcpstat.tcps_rcvduppack++;
257 				tcpstat.tcps_rcvdupbyte += *tlen;
258 				m_freem(m);
259 				pool_put(&tcpqe_pool, tiqe);
260 				return (0);
261 			}
262 			m_adj(m, i);
263 			*tlen -= i;
264 			th->th_seq += i;
265 		}
266 	}
267 	tcpstat.tcps_rcvoopack++;
268 	tcpstat.tcps_rcvoobyte += *tlen;
269 
270 	/*
271 	 * While we overlap succeeding segments trim them or,
272 	 * if they are completely covered, dequeue them.
273 	 */
274 	for (; q != NULL; q = nq) {
275 		struct tcphdr *qhdr = q->tcpqe_tcp;
276 		int i = (th->th_seq + *tlen) - qhdr->th_seq;
277 
278 		if (i <= 0)
279 			break;
280 		if (i < qhdr->th_reseqlen) {
281 			qhdr->th_seq += i;
282 			qhdr->th_reseqlen -= i;
283 			m_adj(q->tcpqe_m, i);
284 			break;
285 		}
286 		nq = TAILQ_NEXT(q, tcpqe_q);
287 		m_freem(q->tcpqe_m);
288 		TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q);
289 		pool_put(&tcpqe_pool, q);
290 	}
291 
292 	/* Insert the new segment queue entry into place. */
293 	tiqe->tcpqe_m = m;
294 	th->th_reseqlen = *tlen;
295 	tiqe->tcpqe_tcp = th;
296 	if (p == NULL) {
297 		TAILQ_INSERT_HEAD(&tp->t_segq, tiqe, tcpqe_q);
298 	} else {
299 		TAILQ_INSERT_AFTER(&tp->t_segq, p, tiqe, tcpqe_q);
300 	}
301 
302 present:
303 	/*
304 	 * Present data to user, advancing rcv_nxt through
305 	 * completed sequence space.
306 	 */
307 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
308 		return (0);
309 	q = TAILQ_FIRST(&tp->t_segq);
310 	if (q == NULL || q->tcpqe_tcp->th_seq != tp->rcv_nxt)
311 		return (0);
312 	if (tp->t_state == TCPS_SYN_RECEIVED && q->tcpqe_tcp->th_reseqlen)
313 		return (0);
314 	do {
315 		tp->rcv_nxt += q->tcpqe_tcp->th_reseqlen;
316 		flags = q->tcpqe_tcp->th_flags & TH_FIN;
317 
318 		nq = TAILQ_NEXT(q, tcpqe_q);
319 		TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q);
320 		ND6_HINT(tp);
321 		if (so->so_state & SS_CANTRCVMORE)
322 			m_freem(q->tcpqe_m);
323 		else
324 			sbappendstream(&so->so_rcv, q->tcpqe_m);
325 		pool_put(&tcpqe_pool, q);
326 		q = nq;
327 	} while (q != NULL && q->tcpqe_tcp->th_seq == tp->rcv_nxt);
328 	sorwakeup(so);
329 	return (flags);
330 }
331 
332 #ifdef INET6
333 int
334 tcp6_input(struct mbuf **mp, int *offp, int proto)
335 {
336 	struct mbuf *m = *mp;
337 
338 #if NFAITH > 0
339 	if (m->m_pkthdr.rcvif) {
340 		if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
341 			/* XXX send icmp6 host/port unreach? */
342 			m_freem(m);
343 			return IPPROTO_DONE;
344 		}
345 	}
346 #endif
347 
348 	tcp_input(m, *offp, proto);
349 	return IPPROTO_DONE;
350 }
351 #endif
352 
353 /*
354  * TCP input routine, follows pages 65-76 of the
355  * protocol specification dated September, 1981 very closely.
356  */
357 void
358 tcp_input(struct mbuf *m, ...)
359 {
360 	struct ip *ip;
361 	struct inpcb *inp = NULL;
362 	u_int8_t *optp = NULL;
363 	int optlen = 0;
364 	int tlen, off;
365 	struct tcpcb *tp = 0;
366 	int tiflags;
367 	struct socket *so = NULL;
368 	int todrop, acked, ourfinisacked, needoutput = 0;
369 	int hdroptlen = 0;
370 	short ostate = 0;
371 	tcp_seq iss, *reuse = NULL;
372 	u_long tiwin;
373 	struct tcp_opt_info opti;
374 	int iphlen;
375 	va_list ap;
376 	struct tcphdr *th;
377 #ifdef INET6
378 	struct ip6_hdr *ip6 = NULL;
379 #endif /* INET6 */
380 #ifdef IPSEC
381 	struct m_tag *mtag;
382 	struct tdb_ident *tdbi;
383 	struct tdb *tdb;
384 	int error, s;
385 #endif /* IPSEC */
386 	int af;
387 #ifdef TCP_ECN
388 	u_char iptos;
389 #endif
390 
391 	va_start(ap, m);
392 	iphlen = va_arg(ap, int);
393 	va_end(ap);
394 
395 	tcpstat.tcps_rcvtotal++;
396 
397 	opti.ts_present = 0;
398 	opti.maxseg = 0;
399 
400 	/*
401 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
402 	 * See below for AF specific multicast.
403 	 */
404 	if (m->m_flags & (M_BCAST|M_MCAST))
405 		goto drop;
406 
407 	/*
408 	 * Before we do ANYTHING, we have to figure out if it's TCP/IPv6 or
409 	 * TCP/IPv4.
410 	 */
411 	switch (mtod(m, struct ip *)->ip_v) {
412 #ifdef INET6
413 	case 6:
414 		af = AF_INET6;
415 		break;
416 #endif
417 	case 4:
418 		af = AF_INET;
419 		break;
420 	default:
421 		m_freem(m);
422 		return;	/*EAFNOSUPPORT*/
423 	}
424 
425 	/*
426 	 * Get IP and TCP header together in first mbuf.
427 	 * Note: IP leaves IP header in first mbuf.
428 	 */
429 	switch (af) {
430 	case AF_INET:
431 #ifdef DIAGNOSTIC
432 		if (iphlen < sizeof(struct ip)) {
433 			m_freem(m);
434 			return;
435 		}
436 #endif /* DIAGNOSTIC */
437 		break;
438 #ifdef INET6
439 	case AF_INET6:
440 #ifdef DIAGNOSTIC
441 		if (iphlen < sizeof(struct ip6_hdr)) {
442 			m_freem(m);
443 			return;
444 		}
445 #endif /* DIAGNOSTIC */
446 		break;
447 #endif
448 	default:
449 		m_freem(m);
450 		return;
451 	}
452 
453 	IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, sizeof(*th));
454 	if (!th) {
455 		tcpstat.tcps_rcvshort++;
456 		return;
457 	}
458 
459 	tlen = m->m_pkthdr.len - iphlen;
460 	ip = NULL;
461 #ifdef INET6
462 	ip6 = NULL;
463 #endif
464 	switch (af) {
465 	case AF_INET:
466 		ip = mtod(m, struct ip *);
467 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
468 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
469 			goto drop;
470 #ifdef TCP_ECN
471 		/* save ip_tos before clearing it for checksum */
472 		iptos = ip->ip_tos;
473 #endif
474 		/*
475 		 * Checksum extended TCP header and data.
476 		 */
477 		if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_OK) == 0) {
478 			if (m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_BAD) {
479 				tcpstat.tcps_inhwcsum++;
480 				tcpstat.tcps_rcvbadsum++;
481 				goto drop;
482 			}
483 			if (in4_cksum(m, IPPROTO_TCP, iphlen, tlen) != 0) {
484 				tcpstat.tcps_rcvbadsum++;
485 				goto drop;
486 			}
487 		} else {
488 			m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_IN_OK;
489 			tcpstat.tcps_inhwcsum++;
490 		}
491 		break;
492 #ifdef INET6
493 	case AF_INET6:
494 		ip6 = mtod(m, struct ip6_hdr *);
495 #ifdef TCP_ECN
496 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
497 #endif
498 
499 		/* Be proactive about malicious use of IPv4 mapped address */
500 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
501 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
502 			/* XXX stat */
503 			goto drop;
504 		}
505 
506 		/*
507 		 * Be proactive about unspecified IPv6 address in source.
508 		 * As we use all-zero to indicate unbounded/unconnected pcb,
509 		 * unspecified IPv6 address can be used to confuse us.
510 		 *
511 		 * Note that packets with unspecified IPv6 destination is
512 		 * already dropped in ip6_input.
513 		 */
514 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
515 			/* XXX stat */
516 			goto drop;
517 		}
518 
519 		/* Discard packets to multicast */
520 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
521 			/* XXX stat */
522 			goto drop;
523 		}
524 
525 		/*
526 		 * Checksum extended TCP header and data.
527 		 */
528 		if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_OK) == 0) {
529 			if (m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_BAD) {
530 				tcpstat.tcps_inhwcsum++;
531 				tcpstat.tcps_rcvbadsum++;
532 				goto drop;
533 			}
534 			if (in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
535 			    tlen)) {
536 				tcpstat.tcps_rcvbadsum++;
537 				goto drop;
538 			}
539 		} else {
540 			m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_IN_OK;
541 			tcpstat.tcps_inhwcsum++;
542 		}
543 		break;
544 #endif
545 	}
546 
547 	/*
548 	 * Check that TCP offset makes sense,
549 	 * pull out TCP options and adjust length.		XXX
550 	 */
551 	off = th->th_off << 2;
552 	if (off < sizeof(struct tcphdr) || off > tlen) {
553 		tcpstat.tcps_rcvbadoff++;
554 		goto drop;
555 	}
556 	tlen -= off;
557 	if (off > sizeof(struct tcphdr)) {
558 		IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, off);
559 		if (!th) {
560 			tcpstat.tcps_rcvshort++;
561 			return;
562 		}
563 		optlen = off - sizeof(struct tcphdr);
564 		optp = (u_int8_t *)(th + 1);
565 		/*
566 		 * Do quick retrieval of timestamp options ("options
567 		 * prediction?").  If timestamp is the only option and it's
568 		 * formatted as recommended in RFC 1323 appendix A, we
569 		 * quickly get the values now and not bother calling
570 		 * tcp_dooptions(), etc.
571 		 */
572 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
573 		     (optlen > TCPOLEN_TSTAMP_APPA &&
574 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
575 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
576 		     (th->th_flags & TH_SYN) == 0) {
577 			opti.ts_present = 1;
578 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
579 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
580 			optp = NULL;	/* we've parsed the options */
581 		}
582 	}
583 	tiflags = th->th_flags;
584 
585 	/*
586 	 * Convert TCP protocol specific fields to host format.
587 	 */
588 	NTOHL(th->th_seq);
589 	NTOHL(th->th_ack);
590 	NTOHS(th->th_win);
591 	NTOHS(th->th_urp);
592 
593 	/*
594 	 * Locate pcb for segment.
595 	 */
596 #if NPF > 0
597 	if (m->m_pkthdr.pf.statekey)
598 		inp = ((struct pf_state_key *)m->m_pkthdr.pf.statekey)->inp;
599 #endif
600 findpcb:
601 	if (inp == NULL) {
602 		switch (af) {
603 #ifdef INET6
604 		case AF_INET6:
605 			inp = in6_pcbhashlookup(&tcbtable, &ip6->ip6_src,
606 			    th->th_sport, &ip6->ip6_dst, th->th_dport);
607 			break;
608 #endif
609 		case AF_INET:
610 			inp = in_pcbhashlookup(&tcbtable, ip->ip_src,
611 			    th->th_sport, ip->ip_dst, th->th_dport,
612 			    m->m_pkthdr.rdomain);
613 			break;
614 		}
615 #if NPF > 0
616 		if (m->m_pkthdr.pf.statekey && inp) {
617 			((struct pf_state_key *)m->m_pkthdr.pf.statekey)->inp =
618 			    inp;
619 			inp->inp_pf_sk = m->m_pkthdr.pf.statekey;
620 		}
621 #endif
622 	}
623 	if (inp == NULL) {
624 		int	inpl_flags = 0;
625 		if (m->m_pkthdr.pf.flags & PF_TAG_TRANSLATE_LOCALHOST)
626 			inpl_flags = INPLOOKUP_WILDCARD;
627 		++tcpstat.tcps_pcbhashmiss;
628 		switch (af) {
629 #ifdef INET6
630 		case AF_INET6:
631 			inp = in6_pcblookup_listen(&tcbtable,
632 			    &ip6->ip6_dst, th->th_dport, inpl_flags, m);
633 			break;
634 #endif /* INET6 */
635 		case AF_INET:
636 			inp = in_pcblookup_listen(&tcbtable,
637 			    ip->ip_dst, th->th_dport, inpl_flags, m,
638 			    m->m_pkthdr.rdomain);
639 			break;
640 		}
641 		/*
642 		 * If the state is CLOSED (i.e., TCB does not exist) then
643 		 * all data in the incoming segment is discarded.
644 		 * If the TCB exists but is in CLOSED state, it is embryonic,
645 		 * but should either do a listen or a connect soon.
646 		 */
647 		if (inp == 0) {
648 			++tcpstat.tcps_noport;
649 			goto dropwithreset_ratelim;
650 		}
651 	}
652 
653 	/* Check the minimum TTL for socket. */
654 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl)
655 		goto drop;
656 
657 	tp = intotcpcb(inp);
658 	if (tp == 0)
659 		goto dropwithreset_ratelim;
660 	if (tp->t_state == TCPS_CLOSED)
661 		goto drop;
662 
663 	/* Unscale the window into a 32-bit value. */
664 	if ((tiflags & TH_SYN) == 0)
665 		tiwin = th->th_win << tp->snd_scale;
666 	else
667 		tiwin = th->th_win;
668 
669 	so = inp->inp_socket;
670 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
671 		union syn_cache_sa src;
672 		union syn_cache_sa dst;
673 
674 		bzero(&src, sizeof(src));
675 		bzero(&dst, sizeof(dst));
676 		switch (af) {
677 #ifdef INET
678 		case AF_INET:
679 			src.sin.sin_len = sizeof(struct sockaddr_in);
680 			src.sin.sin_family = AF_INET;
681 			src.sin.sin_addr = ip->ip_src;
682 			src.sin.sin_port = th->th_sport;
683 
684 			dst.sin.sin_len = sizeof(struct sockaddr_in);
685 			dst.sin.sin_family = AF_INET;
686 			dst.sin.sin_addr = ip->ip_dst;
687 			dst.sin.sin_port = th->th_dport;
688 			break;
689 #endif
690 #ifdef INET6
691 		case AF_INET6:
692 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
693 			src.sin6.sin6_family = AF_INET6;
694 			src.sin6.sin6_addr = ip6->ip6_src;
695 			src.sin6.sin6_port = th->th_sport;
696 
697 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
698 			dst.sin6.sin6_family = AF_INET6;
699 			dst.sin6.sin6_addr = ip6->ip6_dst;
700 			dst.sin6.sin6_port = th->th_dport;
701 			break;
702 #endif /* INET6 */
703 		default:
704 			goto badsyn;	/*sanity*/
705 		}
706 
707 		if (so->so_options & SO_DEBUG) {
708 			ostate = tp->t_state;
709 			switch (af) {
710 #ifdef INET6
711 			case AF_INET6:
712 				bcopy(ip6, &tcp_saveti6.ti6_i, sizeof(*ip6));
713 				bcopy(th, &tcp_saveti6.ti6_t, sizeof(*th));
714 				break;
715 #endif
716 			case AF_INET:
717 				bcopy(ip, &tcp_saveti.ti_i, sizeof(*ip));
718 				bcopy(th, &tcp_saveti.ti_t, sizeof(*th));
719 				break;
720 			}
721 		}
722 		if (so->so_options & SO_ACCEPTCONN) {
723 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
724 				if (tiflags & TH_RST) {
725 					syn_cache_reset(&src.sa, &dst.sa, th,
726 					    inp->inp_rdomain);
727 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
728 				    (TH_ACK|TH_SYN)) {
729 					/*
730 					 * Received a SYN,ACK.  This should
731 					 * never happen while we are in
732 					 * LISTEN.  Send an RST.
733 					 */
734 					goto badsyn;
735 				} else if (tiflags & TH_ACK) {
736 					so = syn_cache_get(&src.sa, &dst.sa,
737 						th, iphlen, tlen, so, m);
738 					if (so == NULL) {
739 						/*
740 						 * We don't have a SYN for
741 						 * this ACK; send an RST.
742 						 */
743 						goto badsyn;
744 					} else if (so ==
745 					    (struct socket *)(-1)) {
746 						/*
747 						 * We were unable to create
748 						 * the connection.  If the
749 						 * 3-way handshake was
750 						 * completed, and RST has
751 						 * been sent to the peer.
752 						 * Since the mbuf might be
753 						 * in use for the reply,
754 						 * do not free it.
755 						 */
756 						m = NULL;
757 					} else {
758 						/*
759 						 * We have created a
760 						 * full-blown connection.
761 						 */
762 						tp = NULL;
763 						inp = (struct inpcb *)so->so_pcb;
764 						tp = intotcpcb(inp);
765 						if (tp == NULL)
766 							goto badsyn;	/*XXX*/
767 
768 						/*
769 						 * Compute proper scaling
770 						 * value from buffer space
771 						 */
772 						tcp_rscale(tp, so->so_rcv.sb_hiwat);
773 						goto after_listen;
774 					}
775 				} else {
776 					/*
777 					 * None of RST, SYN or ACK was set.
778 					 * This is an invalid packet for a
779 					 * TCB in LISTEN state.  Send a RST.
780 					 */
781 					goto badsyn;
782 				}
783 			} else {
784 				/*
785 				 * Received a SYN.
786 				 */
787 #ifdef INET6
788 				/*
789 				 * If deprecated address is forbidden, we do
790 				 * not accept SYN to deprecated interface
791 				 * address to prevent any new inbound
792 				 * connection from getting established.
793 				 * When we do not accept SYN, we send a TCP
794 				 * RST, with deprecated source address (instead
795 				 * of dropping it).  We compromise it as it is
796 				 * much better for peer to send a RST, and
797 				 * RST will be the final packet for the
798 				 * exchange.
799 				 *
800 				 * If we do not forbid deprecated addresses, we
801 				 * accept the SYN packet.  RFC2462 does not
802 				 * suggest dropping SYN in this case.
803 				 * If we decipher RFC2462 5.5.4, it says like
804 				 * this:
805 				 * 1. use of deprecated addr with existing
806 				 *    communication is okay - "SHOULD continue
807 				 *    to be used"
808 				 * 2. use of it with new communication:
809 				 *   (2a) "SHOULD NOT be used if alternate
810 				 *        address with sufficient scope is
811 				 *        available"
812 				 *   (2b) nothing mentioned otherwise.
813 				 * Here we fall into (2b) case as we have no
814 				 * choice in our source address selection - we
815 				 * must obey the peer.
816 				 *
817 				 * The wording in RFC2462 is confusing, and
818 				 * there are multiple description text for
819 				 * deprecated address handling - worse, they
820 				 * are not exactly the same.  I believe 5.5.4
821 				 * is the best one, so we follow 5.5.4.
822 				 */
823 				if (ip6 && !ip6_use_deprecated) {
824 					struct in6_ifaddr *ia6;
825 
826 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
827 					    &ip6->ip6_dst)) &&
828 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
829 						tp = NULL;
830 						goto dropwithreset;
831 					}
832 				}
833 #endif
834 
835 				/*
836 				 * LISTEN socket received a SYN
837 				 * from itself?  This can't possibly
838 				 * be valid; drop the packet.
839 				 */
840 				if (th->th_dport == th->th_sport) {
841 					switch (af) {
842 #ifdef INET6
843 					case AF_INET6:
844 						if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
845 						    &ip6->ip6_dst)) {
846 							tcpstat.tcps_badsyn++;
847 							goto drop;
848 						}
849 						break;
850 #endif /* INET6 */
851 					case AF_INET:
852 						if (ip->ip_dst.s_addr == ip->ip_src.s_addr) {
853 							tcpstat.tcps_badsyn++;
854 							goto drop;
855 						}
856 						break;
857 					}
858 				}
859 
860 				/*
861 				 * SYN looks ok; create compressed TCP
862 				 * state for it.
863 				 */
864 				if (so->so_qlen <= so->so_qlimit &&
865 				    syn_cache_add(&src.sa, &dst.sa, th, iphlen,
866 				    so, m, optp, optlen, &opti, reuse))
867 					m = NULL;
868 			}
869 			goto drop;
870 		}
871 	}
872 
873 after_listen:
874 #ifdef DIAGNOSTIC
875 	/*
876 	 * Should not happen now that all embryonic connections
877 	 * are handled with compressed state.
878 	 */
879 	if (tp->t_state == TCPS_LISTEN)
880 		panic("tcp_input: TCPS_LISTEN");
881 #endif
882 
883 #if NPF > 0
884 	if (m->m_pkthdr.pf.statekey) {
885 		((struct pf_state_key *)m->m_pkthdr.pf.statekey)->inp = inp;
886 		inp->inp_pf_sk = m->m_pkthdr.pf.statekey;
887 	}
888 #endif
889 
890 #ifdef IPSEC
891 	/* Find most recent IPsec tag */
892 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
893         s = splnet();
894 	if (mtag != NULL) {
895 		tdbi = (struct tdb_ident *)(mtag + 1);
896 	        tdb = gettdb(tdbi->spi, &tdbi->dst, tdbi->proto);
897 	} else
898 		tdb = NULL;
899 	ipsp_spd_lookup(m, af, iphlen, &error, IPSP_DIRECTION_IN,
900 	    tdb, inp);
901 	if (error) {
902 		splx(s);
903 		goto drop;
904 	}
905 
906 	/* Latch SA */
907 	if (inp->inp_tdb_in != tdb) {
908 		if (tdb) {
909 		        tdb_add_inp(tdb, inp, 1);
910 			if (inp->inp_ipo == NULL) {
911 				inp->inp_ipo = ipsec_add_policy(inp, af,
912 				    IPSP_DIRECTION_OUT);
913 				if (inp->inp_ipo == NULL) {
914 					splx(s);
915 					goto drop;
916 				}
917 			}
918 			if (inp->inp_ipo->ipo_dstid == NULL &&
919 			    tdb->tdb_srcid != NULL) {
920 				inp->inp_ipo->ipo_dstid = tdb->tdb_srcid;
921 				tdb->tdb_srcid->ref_count++;
922 			}
923 			if (inp->inp_ipsec_remotecred == NULL &&
924 			    tdb->tdb_remote_cred != NULL) {
925 				inp->inp_ipsec_remotecred =
926 				    tdb->tdb_remote_cred;
927 				tdb->tdb_remote_cred->ref_count++;
928 			}
929 			if (inp->inp_ipsec_remoteauth == NULL &&
930 			    tdb->tdb_remote_auth != NULL) {
931 				inp->inp_ipsec_remoteauth =
932 				    tdb->tdb_remote_auth;
933 				tdb->tdb_remote_auth->ref_count++;
934 			}
935 		} else { /* Just reset */
936 		        TAILQ_REMOVE(&inp->inp_tdb_in->tdb_inp_in, inp,
937 				     inp_tdb_in_next);
938 			inp->inp_tdb_in = NULL;
939 		}
940 	}
941         splx(s);
942 #endif /* IPSEC */
943 
944 	/*
945 	 * Segment received on connection.
946 	 * Reset idle time and keep-alive timer.
947 	 */
948 	tp->t_rcvtime = tcp_now;
949 	if (TCPS_HAVEESTABLISHED(tp->t_state))
950 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
951 
952 #ifdef TCP_SACK
953 	if (tp->sack_enable)
954 		tcp_del_sackholes(tp, th); /* Delete stale SACK holes */
955 #endif /* TCP_SACK */
956 
957 	/*
958 	 * Process options.
959 	 */
960 #ifdef TCP_SIGNATURE
961 	if (optp || (tp->t_flags & TF_SIGNATURE))
962 #else
963 	if (optp)
964 #endif
965 		if (tcp_dooptions(tp, optp, optlen, th, m, iphlen, &opti))
966 			goto drop;
967 
968 	if (opti.ts_present && opti.ts_ecr) {
969 		int rtt_test;
970 
971 		/* subtract out the tcp timestamp modulator */
972 		opti.ts_ecr -= tp->ts_modulate;
973 
974 		/* make sure ts_ecr is sensible */
975 		rtt_test = tcp_now - opti.ts_ecr;
976 		if (rtt_test < 0 || rtt_test > TCP_RTT_MAX)
977 			opti.ts_ecr = 0;
978 	}
979 
980 #ifdef TCP_ECN
981 	/* if congestion experienced, set ECE bit in subsequent packets. */
982 	if ((iptos & IPTOS_ECN_MASK) == IPTOS_ECN_CE) {
983 		tp->t_flags |= TF_RCVD_CE;
984 		tcpstat.tcps_ecn_rcvce++;
985 	}
986 #endif
987 	/*
988 	 * Header prediction: check for the two common cases
989 	 * of a uni-directional data xfer.  If the packet has
990 	 * no control flags, is in-sequence, the window didn't
991 	 * change and we're not retransmitting, it's a
992 	 * candidate.  If the length is zero and the ack moved
993 	 * forward, we're the sender side of the xfer.  Just
994 	 * free the data acked & wake any higher level process
995 	 * that was blocked waiting for space.  If the length
996 	 * is non-zero and the ack didn't move, we're the
997 	 * receiver side.  If we're getting packets in-order
998 	 * (the reassembly queue is empty), add the data to
999 	 * the socket buffer and note that we need a delayed ack.
1000 	 */
1001 	if (tp->t_state == TCPS_ESTABLISHED &&
1002 #ifdef TCP_ECN
1003 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK)) == TH_ACK &&
1004 #else
1005 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1006 #endif
1007 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1008 	    th->th_seq == tp->rcv_nxt &&
1009 	    tiwin && tiwin == tp->snd_wnd &&
1010 	    tp->snd_nxt == tp->snd_max) {
1011 
1012 		/*
1013 		 * If last ACK falls within this segment's sequence numbers,
1014 		 *  record the timestamp.
1015 		 * Fix from Braden, see Stevens p. 870
1016 		 */
1017 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1018 			tp->ts_recent_age = tcp_now;
1019 			tp->ts_recent = opti.ts_val;
1020 		}
1021 
1022 		if (tlen == 0) {
1023 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1024 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1025 			    tp->snd_cwnd >= tp->snd_wnd &&
1026 			    tp->t_dupacks == 0) {
1027 				/*
1028 				 * this is a pure ack for outstanding data.
1029 				 */
1030 				++tcpstat.tcps_predack;
1031 				if (opti.ts_present && opti.ts_ecr)
1032 					tcp_xmit_timer(tp, tcp_now - opti.ts_ecr);
1033 				else if (tp->t_rtttime &&
1034 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1035 					tcp_xmit_timer(tp,
1036 					    tcp_now - tp->t_rtttime);
1037 				acked = th->th_ack - tp->snd_una;
1038 				tcpstat.tcps_rcvackpack++;
1039 				tcpstat.tcps_rcvackbyte += acked;
1040 				ND6_HINT(tp);
1041 				sbdrop(&so->so_snd, acked);
1042 
1043 				/*
1044 				 * If we had a pending ICMP message that
1045 				 * referres to data that have just been
1046 				 * acknowledged, disregard the recorded ICMP
1047 				 * message.
1048 				 */
1049 				if ((tp->t_flags & TF_PMTUD_PEND) &&
1050 				    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
1051 					tp->t_flags &= ~TF_PMTUD_PEND;
1052 
1053 				/*
1054 				 * Keep track of the largest chunk of data
1055 				 * acknowledged since last PMTU update
1056 				 */
1057 				if (tp->t_pmtud_mss_acked < acked)
1058 					tp->t_pmtud_mss_acked = acked;
1059 
1060 				tp->snd_una = th->th_ack;
1061 #if defined(TCP_SACK) || defined(TCP_ECN)
1062 				/*
1063 				 * We want snd_last to track snd_una so
1064 				 * as to avoid sequence wraparound problems
1065 				 * for very large transfers.
1066 				 */
1067 #ifdef TCP_ECN
1068 				if (SEQ_GT(tp->snd_una, tp->snd_last))
1069 #endif
1070 				tp->snd_last = tp->snd_una;
1071 #endif /* TCP_SACK */
1072 #if defined(TCP_SACK) && defined(TCP_FACK)
1073 				tp->snd_fack = tp->snd_una;
1074 				tp->retran_data = 0;
1075 #endif /* TCP_FACK */
1076 				m_freem(m);
1077 
1078 				/*
1079 				 * If all outstanding data are acked, stop
1080 				 * retransmit timer, otherwise restart timer
1081 				 * using current (possibly backed-off) value.
1082 				 * If process is waiting for space,
1083 				 * wakeup/selwakeup/signal.  If data
1084 				 * are ready to send, let tcp_output
1085 				 * decide between more output or persist.
1086 				 */
1087 				if (tp->snd_una == tp->snd_max)
1088 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1089 				else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1090 					TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1091 
1092 				if (sb_notify(&so->so_snd))
1093 					sowwakeup(so);
1094 				if (so->so_snd.sb_cc)
1095 					(void) tcp_output(tp);
1096 				return;
1097 			}
1098 		} else if (th->th_ack == tp->snd_una &&
1099 		    TAILQ_EMPTY(&tp->t_segq) &&
1100 		    tlen <= sbspace(&so->so_rcv)) {
1101 			/*
1102 			 * This is a pure, in-sequence data packet
1103 			 * with nothing on the reassembly queue and
1104 			 * we have enough buffer space to take it.
1105 			 */
1106 #ifdef TCP_SACK
1107 			/* Clean receiver SACK report if present */
1108 			if (tp->sack_enable && tp->rcv_numsacks)
1109 				tcp_clean_sackreport(tp);
1110 #endif /* TCP_SACK */
1111 			++tcpstat.tcps_preddat;
1112 			tp->rcv_nxt += tlen;
1113 			tcpstat.tcps_rcvpack++;
1114 			tcpstat.tcps_rcvbyte += tlen;
1115 			ND6_HINT(tp);
1116 			/*
1117 			 * Drop TCP, IP headers and TCP options then add data
1118 			 * to socket buffer.
1119 			 */
1120 			if (so->so_state & SS_CANTRCVMORE)
1121 				m_freem(m);
1122 			else {
1123 				m_adj(m, iphlen + off);
1124 				sbappendstream(&so->so_rcv, m);
1125 			}
1126 			sorwakeup(so);
1127 			TCP_SETUP_ACK(tp, tiflags);
1128 			if (tp->t_flags & TF_ACKNOW)
1129 				(void) tcp_output(tp);
1130 			return;
1131 		}
1132 	}
1133 
1134 	/*
1135 	 * Compute mbuf offset to TCP data segment.
1136 	 */
1137 	hdroptlen = iphlen + off;
1138 
1139 	/*
1140 	 * Calculate amount of space in receive window,
1141 	 * and then do TCP input processing.
1142 	 * Receive window is amount of space in rcv queue,
1143 	 * but not less than advertised window.
1144 	 */
1145 	{ int win;
1146 
1147 	win = sbspace(&so->so_rcv);
1148 	if (win < 0)
1149 		win = 0;
1150 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1151 	}
1152 
1153 	switch (tp->t_state) {
1154 
1155 	/*
1156 	 * If the state is SYN_RECEIVED:
1157 	 * 	if seg contains SYN/ACK, send an RST.
1158 	 *	if seg contains an ACK, but not for our SYN/ACK, send an RST
1159 	 */
1160 
1161 	case TCPS_SYN_RECEIVED:
1162 		if (tiflags & TH_ACK) {
1163 			if (tiflags & TH_SYN) {
1164 				tcpstat.tcps_badsyn++;
1165 				goto dropwithreset;
1166 			}
1167 			if (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1168 			    SEQ_GT(th->th_ack, tp->snd_max))
1169 				goto dropwithreset;
1170 		}
1171 		break;
1172 
1173 	/*
1174 	 * If the state is SYN_SENT:
1175 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1176 	 *	if seg contains a RST, then drop the connection.
1177 	 *	if seg does not contain SYN, then drop it.
1178 	 * Otherwise this is an acceptable SYN segment
1179 	 *	initialize tp->rcv_nxt and tp->irs
1180 	 *	if seg contains ack then advance tp->snd_una
1181 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1182 	 *	arrange for segment to be acked (eventually)
1183 	 *	continue processing rest of data/controls, beginning with URG
1184 	 */
1185 	case TCPS_SYN_SENT:
1186 		if ((tiflags & TH_ACK) &&
1187 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1188 		     SEQ_GT(th->th_ack, tp->snd_max)))
1189 			goto dropwithreset;
1190 		if (tiflags & TH_RST) {
1191 #ifdef TCP_ECN
1192 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1193 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1194 				goto drop;
1195 #endif
1196 			if (tiflags & TH_ACK)
1197 				tp = tcp_drop(tp, ECONNREFUSED);
1198 			goto drop;
1199 		}
1200 		if ((tiflags & TH_SYN) == 0)
1201 			goto drop;
1202 		if (tiflags & TH_ACK) {
1203 			tp->snd_una = th->th_ack;
1204 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1205 				tp->snd_nxt = tp->snd_una;
1206 		}
1207 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
1208 		tp->irs = th->th_seq;
1209 		tcp_mss(tp, opti.maxseg);
1210 		/* Reset initial window to 1 segment for retransmit */
1211 		if (tp->t_rxtshift > 0)
1212 			tp->snd_cwnd = tp->t_maxseg;
1213 		tcp_rcvseqinit(tp);
1214 		tp->t_flags |= TF_ACKNOW;
1215 #ifdef TCP_SACK
1216                 /*
1217                  * If we've sent a SACK_PERMITTED option, and the peer
1218                  * also replied with one, then TF_SACK_PERMIT should have
1219                  * been set in tcp_dooptions().  If it was not, disable SACKs.
1220                  */
1221 		if (tp->sack_enable)
1222 			tp->sack_enable = tp->t_flags & TF_SACK_PERMIT;
1223 #endif
1224 #ifdef TCP_ECN
1225 		/*
1226 		 * if ECE is set but CWR is not set for SYN-ACK, or
1227 		 * both ECE and CWR are set for simultaneous open,
1228 		 * peer is ECN capable.
1229 		 */
1230 		if (tcp_do_ecn) {
1231 			if ((tiflags & (TH_ACK|TH_ECE|TH_CWR))
1232 			    == (TH_ACK|TH_ECE) ||
1233 			    (tiflags & (TH_ACK|TH_ECE|TH_CWR))
1234 			    == (TH_ECE|TH_CWR)) {
1235 				tp->t_flags |= TF_ECN_PERMIT;
1236 				tiflags &= ~(TH_ECE|TH_CWR);
1237 				tcpstat.tcps_ecn_accepts++;
1238 			}
1239 		}
1240 #endif
1241 
1242 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
1243 			tcpstat.tcps_connects++;
1244 			soisconnected(so);
1245 			tp->t_state = TCPS_ESTABLISHED;
1246 			TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1247 			/* Do window scaling on this connection? */
1248 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1249 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1250 				tp->snd_scale = tp->requested_s_scale;
1251 				tp->rcv_scale = tp->request_r_scale;
1252 			}
1253 			(void) tcp_reass(tp, (struct tcphdr *)0,
1254 				(struct mbuf *)0, &tlen);
1255 			/*
1256 			 * if we didn't have to retransmit the SYN,
1257 			 * use its rtt as our initial srtt & rtt var.
1258 			 */
1259 			if (tp->t_rtttime)
1260 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1261 			/*
1262 			 * Since new data was acked (the SYN), open the
1263 			 * congestion window by one MSS.  We do this
1264 			 * here, because we won't go through the normal
1265 			 * ACK processing below.  And since this is the
1266 			 * start of the connection, we know we are in
1267 			 * the exponential phase of slow-start.
1268 			 */
1269 			tp->snd_cwnd += tp->t_maxseg;
1270 		} else
1271 			tp->t_state = TCPS_SYN_RECEIVED;
1272 
1273 #if 0
1274 trimthenstep6:
1275 #endif
1276 		/*
1277 		 * Advance th->th_seq to correspond to first data byte.
1278 		 * If data, trim to stay within window,
1279 		 * dropping FIN if necessary.
1280 		 */
1281 		th->th_seq++;
1282 		if (tlen > tp->rcv_wnd) {
1283 			todrop = tlen - tp->rcv_wnd;
1284 			m_adj(m, -todrop);
1285 			tlen = tp->rcv_wnd;
1286 			tiflags &= ~TH_FIN;
1287 			tcpstat.tcps_rcvpackafterwin++;
1288 			tcpstat.tcps_rcvbyteafterwin += todrop;
1289 		}
1290 		tp->snd_wl1 = th->th_seq - 1;
1291 		tp->rcv_up = th->th_seq;
1292 		goto step6;
1293 	/*
1294 	 * If a new connection request is received while in TIME_WAIT,
1295 	 * drop the old connection and start over if the if the
1296 	 * timestamp or the sequence numbers are above the previous
1297 	 * ones.
1298 	 */
1299 	case TCPS_TIME_WAIT:
1300 		if (((tiflags & (TH_SYN|TH_ACK)) == TH_SYN) &&
1301 		    ((opti.ts_present &&
1302 		    TSTMP_LT(tp->ts_recent, opti.ts_val)) ||
1303 		    SEQ_GT(th->th_seq, tp->rcv_nxt))) {
1304 			/*
1305 			* Advance the iss by at least 32768, but
1306 			* clear the msb in order to make sure
1307 			* that SEG_LT(snd_nxt, iss).
1308 			*/
1309 			iss = tp->snd_nxt +
1310 			    ((arc4random() & 0x7fffffff) | 0x8000);
1311 			reuse = &iss;
1312 			tp = tcp_close(tp);
1313 			inp = NULL;
1314 			goto findpcb;
1315 		}
1316 	}
1317 
1318 	/*
1319 	 * States other than LISTEN or SYN_SENT.
1320 	 * First check timestamp, if present.
1321 	 * Then check that at least some bytes of segment are within
1322 	 * receive window.  If segment begins before rcv_nxt,
1323 	 * drop leading data (and SYN); if nothing left, just ack.
1324 	 *
1325 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1326 	 * and it's less than opti.ts_recent, drop it.
1327 	 */
1328 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1329 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1330 
1331 		/* Check to see if ts_recent is over 24 days old.  */
1332 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1333 			/*
1334 			 * Invalidate ts_recent.  If this segment updates
1335 			 * ts_recent, the age will be reset later and ts_recent
1336 			 * will get a valid value.  If it does not, setting
1337 			 * ts_recent to zero will at least satisfy the
1338 			 * requirement that zero be placed in the timestamp
1339 			 * echo reply when ts_recent isn't valid.  The
1340 			 * age isn't reset until we get a valid ts_recent
1341 			 * because we don't want out-of-order segments to be
1342 			 * dropped when ts_recent is old.
1343 			 */
1344 			tp->ts_recent = 0;
1345 		} else {
1346 			tcpstat.tcps_rcvduppack++;
1347 			tcpstat.tcps_rcvdupbyte += tlen;
1348 			tcpstat.tcps_pawsdrop++;
1349 			goto dropafterack;
1350 		}
1351 	}
1352 
1353 	todrop = tp->rcv_nxt - th->th_seq;
1354 	if (todrop > 0) {
1355 		if (tiflags & TH_SYN) {
1356 			tiflags &= ~TH_SYN;
1357 			th->th_seq++;
1358 			if (th->th_urp > 1)
1359 				th->th_urp--;
1360 			else
1361 				tiflags &= ~TH_URG;
1362 			todrop--;
1363 		}
1364 		if (todrop > tlen ||
1365 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1366 			/*
1367 			 * Any valid FIN must be to the left of the
1368 			 * window.  At this point, FIN must be a
1369 			 * duplicate or out-of-sequence, so drop it.
1370 			 */
1371 			tiflags &= ~TH_FIN;
1372 			/*
1373 			 * Send ACK to resynchronize, and drop any data,
1374 			 * but keep on processing for RST or ACK.
1375 			 */
1376 			tp->t_flags |= TF_ACKNOW;
1377 			tcpstat.tcps_rcvdupbyte += todrop = tlen;
1378 			tcpstat.tcps_rcvduppack++;
1379 		} else {
1380 			tcpstat.tcps_rcvpartduppack++;
1381 			tcpstat.tcps_rcvpartdupbyte += todrop;
1382 		}
1383 		hdroptlen += todrop;	/* drop from head afterwards */
1384 		th->th_seq += todrop;
1385 		tlen -= todrop;
1386 		if (th->th_urp > todrop)
1387 			th->th_urp -= todrop;
1388 		else {
1389 			tiflags &= ~TH_URG;
1390 			th->th_urp = 0;
1391 		}
1392 	}
1393 
1394 	/*
1395 	 * If new data are received on a connection after the
1396 	 * user processes are gone, then RST the other end.
1397 	 */
1398 	if ((so->so_state & SS_NOFDREF) &&
1399 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1400 		tp = tcp_close(tp);
1401 		tcpstat.tcps_rcvafterclose++;
1402 		goto dropwithreset;
1403 	}
1404 
1405 	/*
1406 	 * If segment ends after window, drop trailing data
1407 	 * (and PUSH and FIN); if nothing left, just ACK.
1408 	 */
1409 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1410 	if (todrop > 0) {
1411 		tcpstat.tcps_rcvpackafterwin++;
1412 		if (todrop >= tlen) {
1413 			tcpstat.tcps_rcvbyteafterwin += tlen;
1414 			/*
1415 			 * If window is closed can only take segments at
1416 			 * window edge, and have to drop data and PUSH from
1417 			 * incoming segments.  Continue processing, but
1418 			 * remember to ack.  Otherwise, drop segment
1419 			 * and ack.
1420 			 */
1421 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1422 				tp->t_flags |= TF_ACKNOW;
1423 				tcpstat.tcps_rcvwinprobe++;
1424 			} else
1425 				goto dropafterack;
1426 		} else
1427 			tcpstat.tcps_rcvbyteafterwin += todrop;
1428 		m_adj(m, -todrop);
1429 		tlen -= todrop;
1430 		tiflags &= ~(TH_PUSH|TH_FIN);
1431 	}
1432 
1433 	/*
1434 	 * If last ACK falls within this segment's sequence numbers,
1435 	 * record its timestamp if it's more recent.
1436 	 * Cf fix from Braden, see Stevens p. 870
1437 	 */
1438 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1439 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1440 		if (SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1441 		    ((tiflags & (TH_SYN|TH_FIN)) != 0)))
1442 			tp->ts_recent = opti.ts_val;
1443 		else
1444 			tp->ts_recent = 0;
1445 		tp->ts_recent_age = tcp_now;
1446 	}
1447 
1448 	/*
1449 	 * If the RST bit is set examine the state:
1450 	 *    SYN_RECEIVED STATE:
1451 	 *	If passive open, return to LISTEN state.
1452 	 *	If active open, inform user that connection was refused.
1453 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1454 	 *	Inform user that connection was reset, and close tcb.
1455 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1456 	 *	Close the tcb.
1457 	 */
1458 	if (tiflags & TH_RST) {
1459 		if (th->th_seq != tp->last_ack_sent &&
1460 		    th->th_seq != tp->rcv_nxt &&
1461 		    th->th_seq != (tp->rcv_nxt + 1))
1462 			goto drop;
1463 
1464 		switch (tp->t_state) {
1465 		case TCPS_SYN_RECEIVED:
1466 #ifdef TCP_ECN
1467 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1468 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1469 				goto drop;
1470 #endif
1471 			so->so_error = ECONNREFUSED;
1472 			goto close;
1473 
1474 		case TCPS_ESTABLISHED:
1475 		case TCPS_FIN_WAIT_1:
1476 		case TCPS_FIN_WAIT_2:
1477 		case TCPS_CLOSE_WAIT:
1478 			so->so_error = ECONNRESET;
1479 		close:
1480 			tp->t_state = TCPS_CLOSED;
1481 			tcpstat.tcps_drops++;
1482 			tp = tcp_close(tp);
1483 			goto drop;
1484 		case TCPS_CLOSING:
1485 		case TCPS_LAST_ACK:
1486 		case TCPS_TIME_WAIT:
1487 			tp = tcp_close(tp);
1488 			goto drop;
1489 		}
1490 	}
1491 
1492 	/*
1493 	 * If a SYN is in the window, then this is an
1494 	 * error and we ACK and drop the packet.
1495 	 */
1496 	if (tiflags & TH_SYN)
1497 		goto dropafterack_ratelim;
1498 
1499 	/*
1500 	 * If the ACK bit is off we drop the segment and return.
1501 	 */
1502 	if ((tiflags & TH_ACK) == 0) {
1503 		if (tp->t_flags & TF_ACKNOW)
1504 			goto dropafterack;
1505 		else
1506 			goto drop;
1507 	}
1508 
1509 	/*
1510 	 * Ack processing.
1511 	 */
1512 	switch (tp->t_state) {
1513 
1514 	/*
1515 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1516 	 * ESTABLISHED state and continue processing.
1517 	 * The ACK was checked above.
1518 	 */
1519 	case TCPS_SYN_RECEIVED:
1520 		tcpstat.tcps_connects++;
1521 		soisconnected(so);
1522 		tp->t_state = TCPS_ESTABLISHED;
1523 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1524 		/* Do window scaling? */
1525 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1526 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1527 			tp->snd_scale = tp->requested_s_scale;
1528 			tp->rcv_scale = tp->request_r_scale;
1529 			tiwin = th->th_win << tp->snd_scale;
1530 		}
1531 		(void) tcp_reass(tp, (struct tcphdr *)0, (struct mbuf *)0,
1532 				 &tlen);
1533 		tp->snd_wl1 = th->th_seq - 1;
1534 		/* fall into ... */
1535 
1536 	/*
1537 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1538 	 * ACKs.  If the ack is in the range
1539 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1540 	 * then advance tp->snd_una to th->th_ack and drop
1541 	 * data from the retransmission queue.  If this ACK reflects
1542 	 * more up to date window information we update our window information.
1543 	 */
1544 	case TCPS_ESTABLISHED:
1545 	case TCPS_FIN_WAIT_1:
1546 	case TCPS_FIN_WAIT_2:
1547 	case TCPS_CLOSE_WAIT:
1548 	case TCPS_CLOSING:
1549 	case TCPS_LAST_ACK:
1550 	case TCPS_TIME_WAIT:
1551 #ifdef TCP_ECN
1552 		/*
1553 		 * if we receive ECE and are not already in recovery phase,
1554 		 * reduce cwnd by half but don't slow-start.
1555 		 * advance snd_last to snd_max not to reduce cwnd again
1556 		 * until all outstanding packets are acked.
1557 		 */
1558 		if (tcp_do_ecn && (tiflags & TH_ECE)) {
1559 			if ((tp->t_flags & TF_ECN_PERMIT) &&
1560 			    SEQ_GEQ(tp->snd_una, tp->snd_last)) {
1561 				u_int win;
1562 
1563 				win = min(tp->snd_wnd, tp->snd_cwnd) / tp->t_maxseg;
1564 				if (win > 1) {
1565 					tp->snd_ssthresh = win / 2 * tp->t_maxseg;
1566 					tp->snd_cwnd = tp->snd_ssthresh;
1567 					tp->snd_last = tp->snd_max;
1568 					tp->t_flags |= TF_SEND_CWR;
1569 					tcpstat.tcps_cwr_ecn++;
1570 				}
1571 			}
1572 			tcpstat.tcps_ecn_rcvece++;
1573 		}
1574 		/*
1575 		 * if we receive CWR, we know that the peer has reduced
1576 		 * its congestion window.  stop sending ecn-echo.
1577 		 */
1578 		if ((tiflags & TH_CWR)) {
1579 			tp->t_flags &= ~TF_RCVD_CE;
1580 			tcpstat.tcps_ecn_rcvcwr++;
1581 		}
1582 #endif /* TCP_ECN */
1583 
1584 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1585 			/*
1586 			 * Duplicate/old ACK processing.
1587 			 * Increments t_dupacks:
1588 			 *	Pure duplicate (same seq/ack/window, no data)
1589 			 * Doesn't affect t_dupacks:
1590 			 *	Data packets.
1591 			 *	Normal window updates (window opens)
1592 			 * Resets t_dupacks:
1593 			 *	New data ACKed.
1594 			 *	Window shrinks
1595 			 *	Old ACK
1596 			 */
1597 			if (tlen) {
1598 				/* Drop very old ACKs unless th_seq matches */
1599 				if (th->th_seq != tp->rcv_nxt &&
1600 				   SEQ_LT(th->th_ack,
1601 				   tp->snd_una - tp->max_sndwnd)) {
1602 					tcpstat.tcps_rcvacktooold++;
1603 					goto drop;
1604 				}
1605 				break;
1606 			}
1607 			/*
1608 			 * If we get an old ACK, there is probably packet
1609 			 * reordering going on.  Be conservative and reset
1610 			 * t_dupacks so that we are less aggressive in
1611 			 * doing a fast retransmit.
1612 			 */
1613 			if (th->th_ack != tp->snd_una) {
1614 				tp->t_dupacks = 0;
1615 				break;
1616 			}
1617 			if (tiwin == tp->snd_wnd) {
1618 				tcpstat.tcps_rcvdupack++;
1619 				/*
1620 				 * If we have outstanding data (other than
1621 				 * a window probe), this is a completely
1622 				 * duplicate ack (ie, window info didn't
1623 				 * change), the ack is the biggest we've
1624 				 * seen and we've seen exactly our rexmt
1625 				 * threshold of them, assume a packet
1626 				 * has been dropped and retransmit it.
1627 				 * Kludge snd_nxt & the congestion
1628 				 * window so we send only this one
1629 				 * packet.
1630 				 *
1631 				 * We know we're losing at the current
1632 				 * window size so do congestion avoidance
1633 				 * (set ssthresh to half the current window
1634 				 * and pull our congestion window back to
1635 				 * the new ssthresh).
1636 				 *
1637 				 * Dup acks mean that packets have left the
1638 				 * network (they're now cached at the receiver)
1639 				 * so bump cwnd by the amount in the receiver
1640 				 * to keep a constant cwnd packets in the
1641 				 * network.
1642 				 */
1643 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0)
1644 					tp->t_dupacks = 0;
1645 #if defined(TCP_SACK) && defined(TCP_FACK)
1646 				/*
1647 				 * In FACK, can enter fast rec. if the receiver
1648 				 * reports a reass. queue longer than 3 segs.
1649 				 */
1650 				else if (++tp->t_dupacks == tcprexmtthresh ||
1651 				    ((SEQ_GT(tp->snd_fack, tcprexmtthresh *
1652 				    tp->t_maxseg + tp->snd_una)) &&
1653 				    SEQ_GT(tp->snd_una, tp->snd_last))) {
1654 #else
1655 				else if (++tp->t_dupacks == tcprexmtthresh) {
1656 #endif /* TCP_FACK */
1657 					tcp_seq onxt = tp->snd_nxt;
1658 					u_long win =
1659 					    ulmin(tp->snd_wnd, tp->snd_cwnd) /
1660 						2 / tp->t_maxseg;
1661 
1662 #if defined(TCP_SACK) || defined(TCP_ECN)
1663 					if (SEQ_LT(th->th_ack, tp->snd_last)){
1664 					    	/*
1665 						 * False fast retx after
1666 						 * timeout.  Do not cut window.
1667 						 */
1668 						tp->t_dupacks = 0;
1669 						goto drop;
1670 					}
1671 #endif
1672 					if (win < 2)
1673 						win = 2;
1674 					tp->snd_ssthresh = win * tp->t_maxseg;
1675 #ifdef TCP_SACK
1676 					tp->snd_last = tp->snd_max;
1677                     			if (tp->sack_enable) {
1678 						TCP_TIMER_DISARM(tp, TCPT_REXMT);
1679 						tp->t_rtttime = 0;
1680 #ifdef TCP_ECN
1681 						tp->t_flags |= TF_SEND_CWR;
1682 #endif
1683 						tcpstat.tcps_cwr_frecovery++;
1684 						tcpstat.tcps_sack_recovery_episode++;
1685 #if defined(TCP_SACK) && defined(TCP_FACK)
1686 						tp->t_dupacks = tcprexmtthresh;
1687 						(void) tcp_output(tp);
1688 						/*
1689 						 * During FR, snd_cwnd is held
1690 						 * constant for FACK.
1691 						 */
1692 						tp->snd_cwnd = tp->snd_ssthresh;
1693 #else
1694 						/*
1695 						 * tcp_output() will send
1696 						 * oldest SACK-eligible rtx.
1697 						 */
1698 						(void) tcp_output(tp);
1699 						tp->snd_cwnd = tp->snd_ssthresh+
1700 					           tp->t_maxseg * tp->t_dupacks;
1701 #endif /* TCP_FACK */
1702 						goto drop;
1703 					}
1704 #endif /* TCP_SACK */
1705 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1706 					tp->t_rtttime = 0;
1707 					tp->snd_nxt = th->th_ack;
1708 					tp->snd_cwnd = tp->t_maxseg;
1709 #ifdef TCP_ECN
1710 					tp->t_flags |= TF_SEND_CWR;
1711 #endif
1712 					tcpstat.tcps_cwr_frecovery++;
1713 					tcpstat.tcps_sndrexmitfast++;
1714 					(void) tcp_output(tp);
1715 
1716 					tp->snd_cwnd = tp->snd_ssthresh +
1717 					    tp->t_maxseg * tp->t_dupacks;
1718 					if (SEQ_GT(onxt, tp->snd_nxt))
1719 						tp->snd_nxt = onxt;
1720 					goto drop;
1721 				} else if (tp->t_dupacks > tcprexmtthresh) {
1722 #if defined(TCP_SACK) && defined(TCP_FACK)
1723 					/*
1724 					 * while (awnd < cwnd)
1725 					 *         sendsomething();
1726 					 */
1727 					if (tp->sack_enable) {
1728 						if (tp->snd_awnd < tp->snd_cwnd)
1729 							tcp_output(tp);
1730 						goto drop;
1731 					}
1732 #endif /* TCP_FACK */
1733 					tp->snd_cwnd += tp->t_maxseg;
1734 					(void) tcp_output(tp);
1735 					goto drop;
1736 				}
1737 			} else if (tiwin < tp->snd_wnd) {
1738 				/*
1739 				 * The window was retracted!  Previous dup
1740 				 * ACKs may have been due to packets arriving
1741 				 * after the shrunken window, not a missing
1742 				 * packet, so play it safe and reset t_dupacks
1743 				 */
1744 				tp->t_dupacks = 0;
1745 			}
1746 			break;
1747 		}
1748 		/*
1749 		 * If the congestion window was inflated to account
1750 		 * for the other side's cached packets, retract it.
1751 		 */
1752 #if defined(TCP_SACK)
1753 		if (tp->sack_enable) {
1754 			if (tp->t_dupacks >= tcprexmtthresh) {
1755 				/* Check for a partial ACK */
1756 				if (tcp_sack_partialack(tp, th)) {
1757 #if defined(TCP_SACK) && defined(TCP_FACK)
1758 					/* Force call to tcp_output */
1759 					if (tp->snd_awnd < tp->snd_cwnd)
1760 						needoutput = 1;
1761 #else
1762 					tp->snd_cwnd += tp->t_maxseg;
1763 					needoutput = 1;
1764 #endif /* TCP_FACK */
1765 				} else {
1766 					/* Out of fast recovery */
1767 					tp->snd_cwnd = tp->snd_ssthresh;
1768 					if (tcp_seq_subtract(tp->snd_max,
1769 					    th->th_ack) < tp->snd_ssthresh)
1770 						tp->snd_cwnd =
1771 						   tcp_seq_subtract(tp->snd_max,
1772 					           th->th_ack);
1773 					tp->t_dupacks = 0;
1774 #if defined(TCP_SACK) && defined(TCP_FACK)
1775 					if (SEQ_GT(th->th_ack, tp->snd_fack))
1776 						tp->snd_fack = th->th_ack;
1777 #endif /* TCP_FACK */
1778 				}
1779 			}
1780 		} else {
1781 			if (tp->t_dupacks >= tcprexmtthresh &&
1782 			    !tcp_newreno(tp, th)) {
1783 				/* Out of fast recovery */
1784 				tp->snd_cwnd = tp->snd_ssthresh;
1785 				if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
1786 			  	    tp->snd_ssthresh)
1787 					tp->snd_cwnd =
1788 					    tcp_seq_subtract(tp->snd_max,
1789 					    th->th_ack);
1790 				tp->t_dupacks = 0;
1791 			}
1792 		}
1793 		if (tp->t_dupacks < tcprexmtthresh)
1794 			tp->t_dupacks = 0;
1795 #else /* else no TCP_SACK */
1796 		if (tp->t_dupacks >= tcprexmtthresh &&
1797 		    tp->snd_cwnd > tp->snd_ssthresh)
1798 			tp->snd_cwnd = tp->snd_ssthresh;
1799 		tp->t_dupacks = 0;
1800 #endif
1801 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1802 			tcpstat.tcps_rcvacktoomuch++;
1803 			goto dropafterack_ratelim;
1804 		}
1805 		acked = th->th_ack - tp->snd_una;
1806 		tcpstat.tcps_rcvackpack++;
1807 		tcpstat.tcps_rcvackbyte += acked;
1808 
1809 		/*
1810 		 * If we have a timestamp reply, update smoothed
1811 		 * round trip time.  If no timestamp is present but
1812 		 * transmit timer is running and timed sequence
1813 		 * number was acked, update smoothed round trip time.
1814 		 * Since we now have an rtt measurement, cancel the
1815 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1816 		 * Recompute the initial retransmit timer.
1817 		 */
1818 		if (opti.ts_present && opti.ts_ecr)
1819 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr);
1820 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1821 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1822 
1823 		/*
1824 		 * If all outstanding data is acked, stop retransmit
1825 		 * timer and remember to restart (more output or persist).
1826 		 * If there is more data to be acked, restart retransmit
1827 		 * timer, using current (possibly backed-off) value.
1828 		 */
1829 		if (th->th_ack == tp->snd_max) {
1830 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1831 			needoutput = 1;
1832 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1833 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1834 		/*
1835 		 * When new data is acked, open the congestion window.
1836 		 * If the window gives us less than ssthresh packets
1837 		 * in flight, open exponentially (maxseg per packet).
1838 		 * Otherwise open linearly: maxseg per window
1839 		 * (maxseg^2 / cwnd per packet).
1840 		 */
1841 		{
1842 		u_int cw = tp->snd_cwnd;
1843 		u_int incr = tp->t_maxseg;
1844 
1845 		if (cw > tp->snd_ssthresh)
1846 			incr = incr * incr / cw;
1847 #if defined (TCP_SACK)
1848 		if (tp->t_dupacks < tcprexmtthresh)
1849 #endif
1850 		tp->snd_cwnd = ulmin(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1851 		}
1852 		ND6_HINT(tp);
1853 		if (acked > so->so_snd.sb_cc) {
1854 			tp->snd_wnd -= so->so_snd.sb_cc;
1855 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1856 			ourfinisacked = 1;
1857 		} else {
1858 			sbdrop(&so->so_snd, acked);
1859 			tp->snd_wnd -= acked;
1860 			ourfinisacked = 0;
1861 		}
1862 		if (sb_notify(&so->so_snd))
1863 			sowwakeup(so);
1864 
1865 		/*
1866 		 * If we had a pending ICMP message that referred to data
1867 		 * that have just been acknowledged, disregard the recorded
1868 		 * ICMP message.
1869 		 */
1870 		if ((tp->t_flags & TF_PMTUD_PEND) &&
1871 		    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
1872 			tp->t_flags &= ~TF_PMTUD_PEND;
1873 
1874 		/*
1875 		 * Keep track of the largest chunk of data acknowledged
1876 		 * since last PMTU update
1877 		 */
1878 		if (tp->t_pmtud_mss_acked < acked)
1879 			tp->t_pmtud_mss_acked = acked;
1880 
1881 		tp->snd_una = th->th_ack;
1882 #ifdef TCP_ECN
1883 		/* sync snd_last with snd_una */
1884 		if (SEQ_GT(tp->snd_una, tp->snd_last))
1885 			tp->snd_last = tp->snd_una;
1886 #endif
1887 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1888 			tp->snd_nxt = tp->snd_una;
1889 #if defined (TCP_SACK) && defined (TCP_FACK)
1890 		if (SEQ_GT(tp->snd_una, tp->snd_fack)) {
1891 			tp->snd_fack = tp->snd_una;
1892 			/* Update snd_awnd for partial ACK
1893 			 * without any SACK blocks.
1894 			 */
1895 			tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt,
1896 				tp->snd_fack) + tp->retran_data;
1897 		}
1898 #endif
1899 
1900 		switch (tp->t_state) {
1901 
1902 		/*
1903 		 * In FIN_WAIT_1 STATE in addition to the processing
1904 		 * for the ESTABLISHED state if our FIN is now acknowledged
1905 		 * then enter FIN_WAIT_2.
1906 		 */
1907 		case TCPS_FIN_WAIT_1:
1908 			if (ourfinisacked) {
1909 				/*
1910 				 * If we can't receive any more
1911 				 * data, then closing user can proceed.
1912 				 * Starting the timer is contrary to the
1913 				 * specification, but if we don't get a FIN
1914 				 * we'll hang forever.
1915 				 */
1916 				if (so->so_state & SS_CANTRCVMORE) {
1917 					soisdisconnected(so);
1918 					TCP_TIMER_ARM(tp, TCPT_2MSL, tcp_maxidle);
1919 				}
1920 				tp->t_state = TCPS_FIN_WAIT_2;
1921 			}
1922 			break;
1923 
1924 		/*
1925 		 * In CLOSING STATE in addition to the processing for
1926 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1927 		 * then enter the TIME-WAIT state, otherwise ignore
1928 		 * the segment.
1929 		 */
1930 		case TCPS_CLOSING:
1931 			if (ourfinisacked) {
1932 				tp->t_state = TCPS_TIME_WAIT;
1933 				tcp_canceltimers(tp);
1934 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1935 				soisdisconnected(so);
1936 			}
1937 			break;
1938 
1939 		/*
1940 		 * In LAST_ACK, we may still be waiting for data to drain
1941 		 * and/or to be acked, as well as for the ack of our FIN.
1942 		 * If our FIN is now acknowledged, delete the TCB,
1943 		 * enter the closed state and return.
1944 		 */
1945 		case TCPS_LAST_ACK:
1946 			if (ourfinisacked) {
1947 				tp = tcp_close(tp);
1948 				goto drop;
1949 			}
1950 			break;
1951 
1952 		/*
1953 		 * In TIME_WAIT state the only thing that should arrive
1954 		 * is a retransmission of the remote FIN.  Acknowledge
1955 		 * it and restart the finack timer.
1956 		 */
1957 		case TCPS_TIME_WAIT:
1958 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1959 			goto dropafterack;
1960 		}
1961 	}
1962 
1963 step6:
1964 	/*
1965 	 * Update window information.
1966 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1967 	 */
1968 	if ((tiflags & TH_ACK) &&
1969 	    (SEQ_LT(tp->snd_wl1, th->th_seq) || (tp->snd_wl1 == th->th_seq &&
1970 	    (SEQ_LT(tp->snd_wl2, th->th_ack) ||
1971 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
1972 		/* keep track of pure window updates */
1973 		if (tlen == 0 &&
1974 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1975 			tcpstat.tcps_rcvwinupd++;
1976 		tp->snd_wnd = tiwin;
1977 		tp->snd_wl1 = th->th_seq;
1978 		tp->snd_wl2 = th->th_ack;
1979 		if (tp->snd_wnd > tp->max_sndwnd)
1980 			tp->max_sndwnd = tp->snd_wnd;
1981 		needoutput = 1;
1982 	}
1983 
1984 	/*
1985 	 * Process segments with URG.
1986 	 */
1987 	if ((tiflags & TH_URG) && th->th_urp &&
1988 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1989 		/*
1990 		 * This is a kludge, but if we receive and accept
1991 		 * random urgent pointers, we'll crash in
1992 		 * soreceive.  It's hard to imagine someone
1993 		 * actually wanting to send this much urgent data.
1994 		 */
1995 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1996 			th->th_urp = 0;			/* XXX */
1997 			tiflags &= ~TH_URG;		/* XXX */
1998 			goto dodata;			/* XXX */
1999 		}
2000 		/*
2001 		 * If this segment advances the known urgent pointer,
2002 		 * then mark the data stream.  This should not happen
2003 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2004 		 * a FIN has been received from the remote side.
2005 		 * In these states we ignore the URG.
2006 		 *
2007 		 * According to RFC961 (Assigned Protocols),
2008 		 * the urgent pointer points to the last octet
2009 		 * of urgent data.  We continue, however,
2010 		 * to consider it to indicate the first octet
2011 		 * of data past the urgent section as the original
2012 		 * spec states (in one of two places).
2013 		 */
2014 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2015 			tp->rcv_up = th->th_seq + th->th_urp;
2016 			so->so_oobmark = so->so_rcv.sb_cc +
2017 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2018 			if (so->so_oobmark == 0)
2019 				so->so_state |= SS_RCVATMARK;
2020 			sohasoutofband(so);
2021 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2022 		}
2023 		/*
2024 		 * Remove out of band data so doesn't get presented to user.
2025 		 * This can happen independent of advancing the URG pointer,
2026 		 * but if two URG's are pending at once, some out-of-band
2027 		 * data may creep in... ick.
2028 		 */
2029 		if (th->th_urp <= (u_int16_t) tlen
2030 #ifdef SO_OOBINLINE
2031 		     && (so->so_options & SO_OOBINLINE) == 0
2032 #endif
2033 		     )
2034 		        tcp_pulloutofband(so, th->th_urp, m, hdroptlen);
2035 	} else
2036 		/*
2037 		 * If no out of band data is expected,
2038 		 * pull receive urgent pointer along
2039 		 * with the receive window.
2040 		 */
2041 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2042 			tp->rcv_up = tp->rcv_nxt;
2043 dodata:							/* XXX */
2044 
2045 	/*
2046 	 * Process the segment text, merging it into the TCP sequencing queue,
2047 	 * and arranging for acknowledgment of receipt if necessary.
2048 	 * This process logically involves adjusting tp->rcv_wnd as data
2049 	 * is presented to the user (this happens in tcp_usrreq.c,
2050 	 * case PRU_RCVD).  If a FIN has already been received on this
2051 	 * connection then we just ignore the text.
2052 	 */
2053 	if ((tlen || (tiflags & TH_FIN)) &&
2054 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2055 #ifdef TCP_SACK
2056 		tcp_seq laststart = th->th_seq;
2057 		tcp_seq lastend = th->th_seq + tlen;
2058 #endif
2059 		if (th->th_seq == tp->rcv_nxt && TAILQ_EMPTY(&tp->t_segq) &&
2060 		    tp->t_state == TCPS_ESTABLISHED) {
2061 			TCP_SETUP_ACK(tp, tiflags);
2062 			tp->rcv_nxt += tlen;
2063 			tiflags = th->th_flags & TH_FIN;
2064 			tcpstat.tcps_rcvpack++;
2065 			tcpstat.tcps_rcvbyte += tlen;
2066 			ND6_HINT(tp);
2067 			if (so->so_state & SS_CANTRCVMORE)
2068 				m_freem(m);
2069 			else {
2070 				m_adj(m, hdroptlen);
2071 				sbappendstream(&so->so_rcv, m);
2072 			}
2073 			sorwakeup(so);
2074 		} else {
2075 			m_adj(m, hdroptlen);
2076 			tiflags = tcp_reass(tp, th, m, &tlen);
2077 			tp->t_flags |= TF_ACKNOW;
2078 		}
2079 #ifdef TCP_SACK
2080 		if (tp->sack_enable)
2081 			tcp_update_sack_list(tp, laststart, lastend);
2082 #endif
2083 
2084 		/*
2085 		 * variable len never referenced again in modern BSD,
2086 		 * so why bother computing it ??
2087 		 */
2088 #if 0
2089 		/*
2090 		 * Note the amount of data that peer has sent into
2091 		 * our window, in order to estimate the sender's
2092 		 * buffer size.
2093 		 */
2094 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2095 #endif /* 0 */
2096 	} else {
2097 		m_freem(m);
2098 		tiflags &= ~TH_FIN;
2099 	}
2100 
2101 	/*
2102 	 * If FIN is received ACK the FIN and let the user know
2103 	 * that the connection is closing.  Ignore a FIN received before
2104 	 * the connection is fully established.
2105 	 */
2106 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2107 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2108 			socantrcvmore(so);
2109 			tp->t_flags |= TF_ACKNOW;
2110 			tp->rcv_nxt++;
2111 		}
2112 		switch (tp->t_state) {
2113 
2114 		/*
2115 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2116 		 */
2117 		case TCPS_ESTABLISHED:
2118 			tp->t_state = TCPS_CLOSE_WAIT;
2119 			break;
2120 
2121 		/*
2122 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2123 		 * enter the CLOSING state.
2124 		 */
2125 		case TCPS_FIN_WAIT_1:
2126 			tp->t_state = TCPS_CLOSING;
2127 			break;
2128 
2129 		/*
2130 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2131 		 * starting the time-wait timer, turning off the other
2132 		 * standard timers.
2133 		 */
2134 		case TCPS_FIN_WAIT_2:
2135 			tp->t_state = TCPS_TIME_WAIT;
2136 			tcp_canceltimers(tp);
2137 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2138 			soisdisconnected(so);
2139 			break;
2140 
2141 		/*
2142 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2143 		 */
2144 		case TCPS_TIME_WAIT:
2145 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2146 			break;
2147 		}
2148 	}
2149 	if (so->so_options & SO_DEBUG) {
2150 		switch (tp->pf) {
2151 #ifdef INET6
2152 		case PF_INET6:
2153 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti6,
2154 			    0, tlen);
2155 			break;
2156 #endif /* INET6 */
2157 		case PF_INET:
2158 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti,
2159 			    0, tlen);
2160 			break;
2161 		}
2162 	}
2163 
2164 	/*
2165 	 * Return any desired output.
2166 	 */
2167 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2168 		(void) tcp_output(tp);
2169 	}
2170 	return;
2171 
2172 badsyn:
2173 	/*
2174 	 * Received a bad SYN.  Increment counters and dropwithreset.
2175 	 */
2176 	tcpstat.tcps_badsyn++;
2177 	tp = NULL;
2178 	goto dropwithreset;
2179 
2180 dropafterack_ratelim:
2181 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2182 	    tcp_ackdrop_ppslim) == 0) {
2183 		/* XXX stat */
2184 		goto drop;
2185 	}
2186 	/* ...fall into dropafterack... */
2187 
2188 dropafterack:
2189 	/*
2190 	 * Generate an ACK dropping incoming segment if it occupies
2191 	 * sequence space, where the ACK reflects our state.
2192 	 */
2193 	if (tiflags & TH_RST)
2194 		goto drop;
2195 	m_freem(m);
2196 	tp->t_flags |= TF_ACKNOW;
2197 	(void) tcp_output(tp);
2198 	return;
2199 
2200 dropwithreset_ratelim:
2201 	/*
2202 	 * We may want to rate-limit RSTs in certain situations,
2203 	 * particularly if we are sending an RST in response to
2204 	 * an attempt to connect to or otherwise communicate with
2205 	 * a port for which we have no socket.
2206 	 */
2207 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2208 	    tcp_rst_ppslim) == 0) {
2209 		/* XXX stat */
2210 		goto drop;
2211 	}
2212 	/* ...fall into dropwithreset... */
2213 
2214 dropwithreset:
2215 	/*
2216 	 * Generate a RST, dropping incoming segment.
2217 	 * Make ACK acceptable to originator of segment.
2218 	 * Don't bother to respond to RST.
2219 	 */
2220 	if (tiflags & TH_RST)
2221 		goto drop;
2222 	if (tiflags & TH_ACK) {
2223 		tcp_respond(tp, mtod(m, caddr_t), th, (tcp_seq)0, th->th_ack,
2224 		    TH_RST, 0);
2225 	} else {
2226 		if (tiflags & TH_SYN)
2227 			tlen++;
2228 		tcp_respond(tp, mtod(m, caddr_t), th, th->th_seq + tlen,
2229 		    (tcp_seq)0, TH_RST|TH_ACK, 0);
2230 	}
2231 	m_freem(m);
2232 	return;
2233 
2234 drop:
2235 	/*
2236 	 * Drop space held by incoming segment and return.
2237 	 */
2238 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
2239 		switch (tp->pf) {
2240 #ifdef INET6
2241 		case PF_INET6:
2242 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti6,
2243 			    0, tlen);
2244 			break;
2245 #endif /* INET6 */
2246 		case PF_INET:
2247 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti,
2248 			    0, tlen);
2249 			break;
2250 		}
2251 	}
2252 
2253 	m_freem(m);
2254 	return;
2255 }
2256 
2257 int
2258 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2259     struct mbuf *m, int iphlen, struct tcp_opt_info *oi)
2260 {
2261 	u_int16_t mss = 0;
2262 	int opt, optlen;
2263 #ifdef TCP_SIGNATURE
2264 	caddr_t sigp = NULL;
2265 	struct tdb *tdb = NULL;
2266 #endif /* TCP_SIGNATURE */
2267 
2268 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2269 		opt = cp[0];
2270 		if (opt == TCPOPT_EOL)
2271 			break;
2272 		if (opt == TCPOPT_NOP)
2273 			optlen = 1;
2274 		else {
2275 			if (cnt < 2)
2276 				break;
2277 			optlen = cp[1];
2278 			if (optlen < 2 || optlen > cnt)
2279 				break;
2280 		}
2281 		switch (opt) {
2282 
2283 		default:
2284 			continue;
2285 
2286 		case TCPOPT_MAXSEG:
2287 			if (optlen != TCPOLEN_MAXSEG)
2288 				continue;
2289 			if (!(th->th_flags & TH_SYN))
2290 				continue;
2291 			if (TCPS_HAVERCVDSYN(tp->t_state))
2292 				continue;
2293 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
2294 			NTOHS(mss);
2295 			oi->maxseg = mss;
2296 			break;
2297 
2298 		case TCPOPT_WINDOW:
2299 			if (optlen != TCPOLEN_WINDOW)
2300 				continue;
2301 			if (!(th->th_flags & TH_SYN))
2302 				continue;
2303 			if (TCPS_HAVERCVDSYN(tp->t_state))
2304 				continue;
2305 			tp->t_flags |= TF_RCVD_SCALE;
2306 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2307 			break;
2308 
2309 		case TCPOPT_TIMESTAMP:
2310 			if (optlen != TCPOLEN_TIMESTAMP)
2311 				continue;
2312 			oi->ts_present = 1;
2313 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2314 			NTOHL(oi->ts_val);
2315 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2316 			NTOHL(oi->ts_ecr);
2317 
2318 			if (!(th->th_flags & TH_SYN))
2319 				continue;
2320 			if (TCPS_HAVERCVDSYN(tp->t_state))
2321 				continue;
2322 			/*
2323 			 * A timestamp received in a SYN makes
2324 			 * it ok to send timestamp requests and replies.
2325 			 */
2326 			tp->t_flags |= TF_RCVD_TSTMP;
2327 			tp->ts_recent = oi->ts_val;
2328 			tp->ts_recent_age = tcp_now;
2329 			break;
2330 
2331 #ifdef TCP_SACK
2332 		case TCPOPT_SACK_PERMITTED:
2333 			if (!tp->sack_enable || optlen!=TCPOLEN_SACK_PERMITTED)
2334 				continue;
2335 			if (!(th->th_flags & TH_SYN))
2336 				continue;
2337 			if (TCPS_HAVERCVDSYN(tp->t_state))
2338 				continue;
2339 			/* MUST only be set on SYN */
2340 			tp->t_flags |= TF_SACK_PERMIT;
2341 			break;
2342 		case TCPOPT_SACK:
2343 			tcp_sack_option(tp, th, cp, optlen);
2344 			break;
2345 #endif
2346 #ifdef TCP_SIGNATURE
2347 		case TCPOPT_SIGNATURE:
2348 			if (optlen != TCPOLEN_SIGNATURE)
2349 				continue;
2350 
2351 			if (sigp && bcmp(sigp, cp + 2, 16))
2352 				return (-1);
2353 
2354 			sigp = cp + 2;
2355 			break;
2356 #endif /* TCP_SIGNATURE */
2357 		}
2358 	}
2359 
2360 #ifdef TCP_SIGNATURE
2361 	if (tp->t_flags & TF_SIGNATURE) {
2362 		union sockaddr_union src, dst;
2363 
2364 		memset(&src, 0, sizeof(union sockaddr_union));
2365 		memset(&dst, 0, sizeof(union sockaddr_union));
2366 
2367 		switch (tp->pf) {
2368 		case 0:
2369 #ifdef INET
2370 		case AF_INET:
2371 			src.sa.sa_len = sizeof(struct sockaddr_in);
2372 			src.sa.sa_family = AF_INET;
2373 			src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
2374 			dst.sa.sa_len = sizeof(struct sockaddr_in);
2375 			dst.sa.sa_family = AF_INET;
2376 			dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
2377 			break;
2378 #endif
2379 #ifdef INET6
2380 		case AF_INET6:
2381 			src.sa.sa_len = sizeof(struct sockaddr_in6);
2382 			src.sa.sa_family = AF_INET6;
2383 			src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
2384 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
2385 			dst.sa.sa_family = AF_INET6;
2386 			dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
2387 			break;
2388 #endif /* INET6 */
2389 		}
2390 
2391 		tdb = gettdbbysrcdst(0, &src, &dst, IPPROTO_TCP);
2392 
2393 		/*
2394 		 * We don't have an SA for this peer, so we turn off
2395 		 * TF_SIGNATURE on the listen socket
2396 		 */
2397 		if (tdb == NULL && tp->t_state == TCPS_LISTEN)
2398 			tp->t_flags &= ~TF_SIGNATURE;
2399 
2400 	}
2401 
2402 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2403 		tcpstat.tcps_rcvbadsig++;
2404 		return (-1);
2405 	}
2406 
2407 	if (sigp) {
2408 		char sig[16];
2409 
2410 		if (tdb == NULL) {
2411 			tcpstat.tcps_rcvbadsig++;
2412 			return (-1);
2413 		}
2414 
2415 		if (tcp_signature(tdb, tp->pf, m, th, iphlen, 1, sig) < 0)
2416 			return (-1);
2417 
2418 		if (bcmp(sig, sigp, 16)) {
2419 			tcpstat.tcps_rcvbadsig++;
2420 			return (-1);
2421 		}
2422 
2423 		tcpstat.tcps_rcvgoodsig++;
2424 	}
2425 #endif /* TCP_SIGNATURE */
2426 
2427 	return (0);
2428 }
2429 
2430 #if defined(TCP_SACK)
2431 u_long
2432 tcp_seq_subtract(u_long a, u_long b)
2433 {
2434 	return ((long)(a - b));
2435 }
2436 #endif
2437 
2438 
2439 #ifdef TCP_SACK
2440 /*
2441  * This function is called upon receipt of new valid data (while not in header
2442  * prediction mode), and it updates the ordered list of sacks.
2443  */
2444 void
2445 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_laststart,
2446     tcp_seq rcv_lastend)
2447 {
2448 	/*
2449 	 * First reported block MUST be the most recent one.  Subsequent
2450 	 * blocks SHOULD be in the order in which they arrived at the
2451 	 * receiver.  These two conditions make the implementation fully
2452 	 * compliant with RFC 2018.
2453 	 */
2454 	int i, j = 0, count = 0, lastpos = -1;
2455 	struct sackblk sack, firstsack, temp[MAX_SACK_BLKS];
2456 
2457 	/* First clean up current list of sacks */
2458 	for (i = 0; i < tp->rcv_numsacks; i++) {
2459 		sack = tp->sackblks[i];
2460 		if (sack.start == 0 && sack.end == 0) {
2461 			count++; /* count = number of blocks to be discarded */
2462 			continue;
2463 		}
2464 		if (SEQ_LEQ(sack.end, tp->rcv_nxt)) {
2465 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2466 			count++;
2467 		} else {
2468 			temp[j].start = tp->sackblks[i].start;
2469 			temp[j++].end = tp->sackblks[i].end;
2470 		}
2471 	}
2472 	tp->rcv_numsacks -= count;
2473 	if (tp->rcv_numsacks == 0) { /* no sack blocks currently (fast path) */
2474 		tcp_clean_sackreport(tp);
2475 		if (SEQ_LT(tp->rcv_nxt, rcv_laststart)) {
2476 			/* ==> need first sack block */
2477 			tp->sackblks[0].start = rcv_laststart;
2478 			tp->sackblks[0].end = rcv_lastend;
2479 			tp->rcv_numsacks = 1;
2480 		}
2481 		return;
2482 	}
2483 	/* Otherwise, sack blocks are already present. */
2484 	for (i = 0; i < tp->rcv_numsacks; i++)
2485 		tp->sackblks[i] = temp[i]; /* first copy back sack list */
2486 	if (SEQ_GEQ(tp->rcv_nxt, rcv_lastend))
2487 		return;     /* sack list remains unchanged */
2488 	/*
2489 	 * From here, segment just received should be (part of) the 1st sack.
2490 	 * Go through list, possibly coalescing sack block entries.
2491 	 */
2492 	firstsack.start = rcv_laststart;
2493 	firstsack.end = rcv_lastend;
2494 	for (i = 0; i < tp->rcv_numsacks; i++) {
2495 		sack = tp->sackblks[i];
2496 		if (SEQ_LT(sack.end, firstsack.start) ||
2497 		    SEQ_GT(sack.start, firstsack.end))
2498 			continue; /* no overlap */
2499 		if (sack.start == firstsack.start && sack.end == firstsack.end){
2500 			/*
2501 			 * identical block; delete it here since we will
2502 			 * move it to the front of the list.
2503 			 */
2504 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2505 			lastpos = i;    /* last posn with a zero entry */
2506 			continue;
2507 		}
2508 		if (SEQ_LEQ(sack.start, firstsack.start))
2509 			firstsack.start = sack.start; /* merge blocks */
2510 		if (SEQ_GEQ(sack.end, firstsack.end))
2511 			firstsack.end = sack.end;     /* merge blocks */
2512 		tp->sackblks[i].start = tp->sackblks[i].end = 0;
2513 		lastpos = i;    /* last posn with a zero entry */
2514 	}
2515 	if (lastpos != -1) {    /* at least one merge */
2516 		for (i = 0, j = 1; i < tp->rcv_numsacks; i++) {
2517 			sack = tp->sackblks[i];
2518 			if (sack.start == 0 && sack.end == 0)
2519 				continue;
2520 			temp[j++] = sack;
2521 		}
2522 		tp->rcv_numsacks = j; /* including first blk (added later) */
2523 		for (i = 1; i < tp->rcv_numsacks; i++) /* now copy back */
2524 			tp->sackblks[i] = temp[i];
2525 	} else {        /* no merges -- shift sacks by 1 */
2526 		if (tp->rcv_numsacks < MAX_SACK_BLKS)
2527 			tp->rcv_numsacks++;
2528 		for (i = tp->rcv_numsacks-1; i > 0; i--)
2529 			tp->sackblks[i] = tp->sackblks[i-1];
2530 	}
2531 	tp->sackblks[0] = firstsack;
2532 	return;
2533 }
2534 
2535 /*
2536  * Process the TCP SACK option.  tp->snd_holes is an ordered list
2537  * of holes (oldest to newest, in terms of the sequence space).
2538  */
2539 void
2540 tcp_sack_option(struct tcpcb *tp, struct tcphdr *th, u_char *cp, int optlen)
2541 {
2542 	int tmp_olen;
2543 	u_char *tmp_cp;
2544 	struct sackhole *cur, *p, *temp;
2545 
2546 	if (!tp->sack_enable)
2547 		return;
2548 	/* SACK without ACK doesn't make sense. */
2549 	if ((th->th_flags & TH_ACK) == 0)
2550 	       return;
2551 	/* Make sure the ACK on this segment is in [snd_una, snd_max]. */
2552 	if (SEQ_LT(th->th_ack, tp->snd_una) ||
2553 	    SEQ_GT(th->th_ack, tp->snd_max))
2554 		return;
2555 	/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2556 	if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2557 		return;
2558 	/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2559 	tmp_cp = cp + 2;
2560 	tmp_olen = optlen - 2;
2561 	tcpstat.tcps_sack_rcv_opts++;
2562 	if (tp->snd_numholes < 0)
2563 		tp->snd_numholes = 0;
2564 	if (tp->t_maxseg == 0)
2565 		panic("tcp_sack_option"); /* Should never happen */
2566 	while (tmp_olen > 0) {
2567 		struct sackblk sack;
2568 
2569 		bcopy(tmp_cp, (char *) &(sack.start), sizeof(tcp_seq));
2570 		NTOHL(sack.start);
2571 		bcopy(tmp_cp + sizeof(tcp_seq),
2572 		    (char *) &(sack.end), sizeof(tcp_seq));
2573 		NTOHL(sack.end);
2574 		tmp_olen -= TCPOLEN_SACK;
2575 		tmp_cp += TCPOLEN_SACK;
2576 		if (SEQ_LEQ(sack.end, sack.start))
2577 			continue; /* bad SACK fields */
2578 		if (SEQ_LEQ(sack.end, tp->snd_una))
2579 			continue; /* old block */
2580 #if defined(TCP_SACK) && defined(TCP_FACK)
2581 		/* Updates snd_fack.  */
2582 		if (SEQ_GT(sack.end, tp->snd_fack))
2583 			tp->snd_fack = sack.end;
2584 #endif /* TCP_FACK */
2585 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
2586 			if (SEQ_LT(sack.start, th->th_ack))
2587 				continue;
2588 		}
2589 		if (SEQ_GT(sack.end, tp->snd_max))
2590 			continue;
2591 		if (tp->snd_holes == NULL) { /* first hole */
2592 			tp->snd_holes = (struct sackhole *)
2593 			    pool_get(&sackhl_pool, PR_NOWAIT);
2594 			if (tp->snd_holes == NULL) {
2595 				/* ENOBUFS, so ignore SACKed block for now*/
2596 				goto done;
2597 			}
2598 			cur = tp->snd_holes;
2599 			cur->start = th->th_ack;
2600 			cur->end = sack.start;
2601 			cur->rxmit = cur->start;
2602 			cur->next = NULL;
2603 			tp->snd_numholes = 1;
2604 			tp->rcv_lastsack = sack.end;
2605 			/*
2606 			 * dups is at least one.  If more data has been
2607 			 * SACKed, it can be greater than one.
2608 			 */
2609 			cur->dups = min(tcprexmtthresh,
2610 			    ((sack.end - cur->end)/tp->t_maxseg));
2611 			if (cur->dups < 1)
2612 				cur->dups = 1;
2613 			continue; /* with next sack block */
2614 		}
2615 		/* Go thru list of holes:  p = previous,  cur = current */
2616 		p = cur = tp->snd_holes;
2617 		while (cur) {
2618 			if (SEQ_LEQ(sack.end, cur->start))
2619 				/* SACKs data before the current hole */
2620 				break; /* no use going through more holes */
2621 			if (SEQ_GEQ(sack.start, cur->end)) {
2622 				/* SACKs data beyond the current hole */
2623 				cur->dups++;
2624 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2625 				    tcprexmtthresh)
2626 					cur->dups = tcprexmtthresh;
2627 				p = cur;
2628 				cur = cur->next;
2629 				continue;
2630 			}
2631 			if (SEQ_LEQ(sack.start, cur->start)) {
2632 				/* Data acks at least the beginning of hole */
2633 #if defined(TCP_SACK) && defined(TCP_FACK)
2634 				if (SEQ_GT(sack.end, cur->rxmit))
2635 					tp->retran_data -=
2636 				    	    tcp_seq_subtract(cur->rxmit,
2637 					    cur->start);
2638 				else
2639 					tp->retran_data -=
2640 					    tcp_seq_subtract(sack.end,
2641 					    cur->start);
2642 #endif /* TCP_FACK */
2643 				if (SEQ_GEQ(sack.end, cur->end)) {
2644 					/* Acks entire hole, so delete hole */
2645 					if (p != cur) {
2646 						p->next = cur->next;
2647 						pool_put(&sackhl_pool, cur);
2648 						cur = p->next;
2649 					} else {
2650 						cur = cur->next;
2651 						pool_put(&sackhl_pool, p);
2652 						p = cur;
2653 						tp->snd_holes = p;
2654 					}
2655 					tp->snd_numholes--;
2656 					continue;
2657 				}
2658 				/* otherwise, move start of hole forward */
2659 				cur->start = sack.end;
2660 				cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
2661 				p = cur;
2662 				cur = cur->next;
2663 				continue;
2664 			}
2665 			/* move end of hole backward */
2666 			if (SEQ_GEQ(sack.end, cur->end)) {
2667 #if defined(TCP_SACK) && defined(TCP_FACK)
2668 				if (SEQ_GT(cur->rxmit, sack.start))
2669 					tp->retran_data -=
2670 					    tcp_seq_subtract(cur->rxmit,
2671 					    sack.start);
2672 #endif /* TCP_FACK */
2673 				cur->end = sack.start;
2674 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
2675 				cur->dups++;
2676 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2677 				    tcprexmtthresh)
2678 					cur->dups = tcprexmtthresh;
2679 				p = cur;
2680 				cur = cur->next;
2681 				continue;
2682 			}
2683 			if (SEQ_LT(cur->start, sack.start) &&
2684 			    SEQ_GT(cur->end, sack.end)) {
2685 				/*
2686 				 * ACKs some data in middle of a hole; need to
2687 				 * split current hole
2688 				 */
2689 				temp = (struct sackhole *)
2690 				    pool_get(&sackhl_pool, PR_NOWAIT);
2691 				if (temp == NULL)
2692 					goto done; /* ENOBUFS */
2693 #if defined(TCP_SACK) && defined(TCP_FACK)
2694 				if (SEQ_GT(cur->rxmit, sack.end))
2695 					tp->retran_data -=
2696 					    tcp_seq_subtract(sack.end,
2697 					    sack.start);
2698 				else if (SEQ_GT(cur->rxmit, sack.start))
2699 					tp->retran_data -=
2700 					    tcp_seq_subtract(cur->rxmit,
2701 					    sack.start);
2702 #endif /* TCP_FACK */
2703 				temp->next = cur->next;
2704 				temp->start = sack.end;
2705 				temp->end = cur->end;
2706 				temp->dups = cur->dups;
2707 				temp->rxmit = SEQ_MAX(cur->rxmit, temp->start);
2708 				cur->end = sack.start;
2709 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
2710 				cur->dups++;
2711 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2712 					tcprexmtthresh)
2713 					cur->dups = tcprexmtthresh;
2714 				cur->next = temp;
2715 				p = temp;
2716 				cur = p->next;
2717 				tp->snd_numholes++;
2718 			}
2719 		}
2720 		/* At this point, p points to the last hole on the list */
2721 		if (SEQ_LT(tp->rcv_lastsack, sack.start)) {
2722 			/*
2723 			 * Need to append new hole at end.
2724 			 * Last hole is p (and it's not NULL).
2725 			 */
2726 			temp = (struct sackhole *)
2727 			    pool_get(&sackhl_pool, PR_NOWAIT);
2728 			if (temp == NULL)
2729 				goto done; /* ENOBUFS */
2730 			temp->start = tp->rcv_lastsack;
2731 			temp->end = sack.start;
2732 			temp->dups = min(tcprexmtthresh,
2733 			    ((sack.end - sack.start)/tp->t_maxseg));
2734 			if (temp->dups < 1)
2735 				temp->dups = 1;
2736 			temp->rxmit = temp->start;
2737 			temp->next = 0;
2738 			p->next = temp;
2739 			tp->rcv_lastsack = sack.end;
2740 			tp->snd_numholes++;
2741 		}
2742 	}
2743 done:
2744 #if defined(TCP_SACK) && defined(TCP_FACK)
2745 	/*
2746 	 * Update retran_data and snd_awnd.  Go through the list of
2747 	 * holes.   Increment retran_data by (hole->rxmit - hole->start).
2748 	 */
2749 	tp->retran_data = 0;
2750 	cur = tp->snd_holes;
2751 	while (cur) {
2752 		tp->retran_data += cur->rxmit - cur->start;
2753 		cur = cur->next;
2754 	}
2755 	tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt, tp->snd_fack) +
2756 	    tp->retran_data;
2757 #endif /* TCP_FACK */
2758 
2759 	return;
2760 }
2761 
2762 /*
2763  * Delete stale (i.e, cumulatively ack'd) holes.  Hole is deleted only if
2764  * it is completely acked; otherwise, tcp_sack_option(), called from
2765  * tcp_dooptions(), will fix up the hole.
2766  */
2767 void
2768 tcp_del_sackholes(struct tcpcb *tp, struct tcphdr *th)
2769 {
2770 	if (tp->sack_enable && tp->t_state != TCPS_LISTEN) {
2771 		/* max because this could be an older ack just arrived */
2772 		tcp_seq lastack = SEQ_GT(th->th_ack, tp->snd_una) ?
2773 			th->th_ack : tp->snd_una;
2774 		struct sackhole *cur = tp->snd_holes;
2775 		struct sackhole *prev;
2776 		while (cur)
2777 			if (SEQ_LEQ(cur->end, lastack)) {
2778 				prev = cur;
2779 				cur = cur->next;
2780 				pool_put(&sackhl_pool, prev);
2781 				tp->snd_numholes--;
2782 			} else if (SEQ_LT(cur->start, lastack)) {
2783 				cur->start = lastack;
2784 				if (SEQ_LT(cur->rxmit, cur->start))
2785 					cur->rxmit = cur->start;
2786 				break;
2787 			} else
2788 				break;
2789 		tp->snd_holes = cur;
2790 	}
2791 }
2792 
2793 /*
2794  * Delete all receiver-side SACK information.
2795  */
2796 void
2797 tcp_clean_sackreport(struct tcpcb *tp)
2798 {
2799 	int i;
2800 
2801 	tp->rcv_numsacks = 0;
2802 	for (i = 0; i < MAX_SACK_BLKS; i++)
2803 		tp->sackblks[i].start = tp->sackblks[i].end=0;
2804 
2805 }
2806 
2807 /*
2808  * Checks for partial ack.  If partial ack arrives, turn off retransmission
2809  * timer, deflate the window, do not clear tp->t_dupacks, and return 1.
2810  * If the ack advances at least to tp->snd_last, return 0.
2811  */
2812 int
2813 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
2814 {
2815 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
2816 		/* Turn off retx. timer (will start again next segment) */
2817 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2818 		tp->t_rtttime = 0;
2819 #ifndef TCP_FACK
2820 		/*
2821 		 * Partial window deflation.  This statement relies on the
2822 		 * fact that tp->snd_una has not been updated yet.  In FACK
2823 		 * hold snd_cwnd constant during fast recovery.
2824 		 */
2825 		if (tp->snd_cwnd > (th->th_ack - tp->snd_una)) {
2826 			tp->snd_cwnd -= th->th_ack - tp->snd_una;
2827 			tp->snd_cwnd += tp->t_maxseg;
2828 		} else
2829 			tp->snd_cwnd = tp->t_maxseg;
2830 #endif
2831 		return (1);
2832 	}
2833 	return (0);
2834 }
2835 #endif /* TCP_SACK */
2836 
2837 /*
2838  * Pull out of band byte out of a segment so
2839  * it doesn't appear in the user's data queue.
2840  * It is still reflected in the segment length for
2841  * sequencing purposes.
2842  */
2843 void
2844 tcp_pulloutofband(struct socket *so, u_int urgent, struct mbuf *m, int off)
2845 {
2846         int cnt = off + urgent - 1;
2847 
2848 	while (cnt >= 0) {
2849 		if (m->m_len > cnt) {
2850 			char *cp = mtod(m, caddr_t) + cnt;
2851 			struct tcpcb *tp = sototcpcb(so);
2852 
2853 			tp->t_iobc = *cp;
2854 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2855 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2856 			m->m_len--;
2857 			return;
2858 		}
2859 		cnt -= m->m_len;
2860 		m = m->m_next;
2861 		if (m == 0)
2862 			break;
2863 	}
2864 	panic("tcp_pulloutofband");
2865 }
2866 
2867 /*
2868  * Collect new round-trip time estimate
2869  * and update averages and current timeout.
2870  */
2871 void
2872 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2873 {
2874 	short delta;
2875 	short rttmin;
2876 
2877 	if (rtt < 0)
2878 		rtt = 0;
2879 	else if (rtt > TCP_RTT_MAX)
2880 		rtt = TCP_RTT_MAX;
2881 
2882 	tcpstat.tcps_rttupdated++;
2883 	if (tp->t_srtt != 0) {
2884 		/*
2885 		 * delta is fixed point with 2 (TCP_RTT_BASE_SHIFT) bits
2886 		 * after the binary point (scaled by 4), whereas
2887 		 * srtt is stored as fixed point with 5 bits after the
2888 		 * binary point (i.e., scaled by 32).  The following magic
2889 		 * is equivalent to the smoothing algorithm in rfc793 with
2890 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2891 		 * point).
2892 		 */
2893 		delta = (rtt << TCP_RTT_BASE_SHIFT) -
2894 		    (tp->t_srtt >> TCP_RTT_SHIFT);
2895 		if ((tp->t_srtt += delta) <= 0)
2896 			tp->t_srtt = 1 << TCP_RTT_BASE_SHIFT;
2897 		/*
2898 		 * We accumulate a smoothed rtt variance (actually, a
2899 		 * smoothed mean difference), then set the retransmit
2900 		 * timer to smoothed rtt + 4 times the smoothed variance.
2901 		 * rttvar is stored as fixed point with 4 bits after the
2902 		 * binary point (scaled by 16).  The following is
2903 		 * equivalent to rfc793 smoothing with an alpha of .75
2904 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2905 		 * rfc793's wired-in beta.
2906 		 */
2907 		if (delta < 0)
2908 			delta = -delta;
2909 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2910 		if ((tp->t_rttvar += delta) <= 0)
2911 			tp->t_rttvar = 1 << TCP_RTT_BASE_SHIFT;
2912 	} else {
2913 		/*
2914 		 * No rtt measurement yet - use the unsmoothed rtt.
2915 		 * Set the variance to half the rtt (so our first
2916 		 * retransmit happens at 3*rtt).
2917 		 */
2918 		tp->t_srtt = (rtt + 1) << (TCP_RTT_SHIFT + TCP_RTT_BASE_SHIFT);
2919 		tp->t_rttvar = (rtt + 1) <<
2920 		    (TCP_RTTVAR_SHIFT + TCP_RTT_BASE_SHIFT - 1);
2921 	}
2922 	tp->t_rtttime = 0;
2923 	tp->t_rxtshift = 0;
2924 
2925 	/*
2926 	 * the retransmit should happen at rtt + 4 * rttvar.
2927 	 * Because of the way we do the smoothing, srtt and rttvar
2928 	 * will each average +1/2 tick of bias.  When we compute
2929 	 * the retransmit timer, we want 1/2 tick of rounding and
2930 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2931 	 * firing of the timer.  The bias will give us exactly the
2932 	 * 1.5 tick we need.  But, because the bias is
2933 	 * statistical, we have to test that we don't drop below
2934 	 * the minimum feasible timer (which is 2 ticks).
2935 	 */
2936 	rttmin = min(max(rtt + 2, tp->t_rttmin), TCPTV_REXMTMAX);
2937 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2938 
2939 	/*
2940 	 * We received an ack for a packet that wasn't retransmitted;
2941 	 * it is probably safe to discard any error indications we've
2942 	 * received recently.  This isn't quite right, but close enough
2943 	 * for now (a route might have failed after we sent a segment,
2944 	 * and the return path might not be symmetrical).
2945 	 */
2946 	tp->t_softerror = 0;
2947 }
2948 
2949 /*
2950  * Determine a reasonable value for maxseg size.
2951  * If the route is known, check route for mtu.
2952  * If none, use an mss that can be handled on the outgoing
2953  * interface without forcing IP to fragment; if bigger than
2954  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2955  * to utilize large mbufs.  If no route is found, route has no mtu,
2956  * or the destination isn't local, use a default, hopefully conservative
2957  * size (usually 512 or the default IP max size, but no more than the mtu
2958  * of the interface), as we can't discover anything about intervening
2959  * gateways or networks.  We also initialize the congestion/slow start
2960  * window to be a single segment if the destination isn't local.
2961  * While looking at the routing entry, we also initialize other path-dependent
2962  * parameters from pre-set or cached values in the routing entry.
2963  *
2964  * Also take into account the space needed for options that we
2965  * send regularly.  Make maxseg shorter by that amount to assure
2966  * that we can send maxseg amount of data even when the options
2967  * are present.  Store the upper limit of the length of options plus
2968  * data in maxopd.
2969  *
2970  * NOTE: offer == -1 indicates that the maxseg size changed due to
2971  * Path MTU discovery.
2972  */
2973 int
2974 tcp_mss(struct tcpcb *tp, int offer)
2975 {
2976 	struct rtentry *rt;
2977 	struct ifnet *ifp;
2978 	int mss, mssopt;
2979 	int iphlen;
2980 	struct inpcb *inp;
2981 
2982 	inp = tp->t_inpcb;
2983 
2984 	mssopt = mss = tcp_mssdflt;
2985 
2986 	rt = in_pcbrtentry(inp);
2987 
2988 	if (rt == NULL)
2989 		goto out;
2990 
2991 	ifp = rt->rt_ifp;
2992 
2993 	switch (tp->pf) {
2994 #ifdef INET6
2995 	case AF_INET6:
2996 		iphlen = sizeof(struct ip6_hdr);
2997 		break;
2998 #endif
2999 	case AF_INET:
3000 		iphlen = sizeof(struct ip);
3001 		break;
3002 	default:
3003 		/* the family does not support path MTU discovery */
3004 		goto out;
3005 	}
3006 
3007 #ifdef RTV_MTU
3008 	/*
3009 	 * if there's an mtu associated with the route and we support
3010 	 * path MTU discovery for the underlying protocol family, use it.
3011 	 */
3012 	if (rt->rt_rmx.rmx_mtu) {
3013 		/*
3014 		 * One may wish to lower MSS to take into account options,
3015 		 * especially security-related options.
3016 		 */
3017 		if (tp->pf == AF_INET6 && rt->rt_rmx.rmx_mtu < IPV6_MMTU) {
3018 			/*
3019 			 * RFC2460 section 5, last paragraph: if path MTU is
3020 			 * smaller than 1280, use 1280 as packet size and
3021 			 * attach fragment header.
3022 			 */
3023 			mss = IPV6_MMTU - iphlen - sizeof(struct ip6_frag) -
3024 			    sizeof(struct tcphdr);
3025 		} else
3026 			mss = rt->rt_rmx.rmx_mtu - iphlen - sizeof(struct tcphdr);
3027 	} else
3028 #endif /* RTV_MTU */
3029 	if (!ifp)
3030 		/*
3031 		 * ifp may be null and rmx_mtu may be zero in certain
3032 		 * v6 cases (e.g., if ND wasn't able to resolve the
3033 		 * destination host.
3034 		 */
3035 		goto out;
3036 	else if (ifp->if_flags & IFF_LOOPBACK)
3037 		mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3038 	else if (tp->pf == AF_INET) {
3039 		if (ip_mtudisc)
3040 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3041 		else if (inp && in_localaddr(inp->inp_faddr, inp->inp_rdomain))
3042 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3043 	}
3044 #ifdef INET6
3045 	else if (tp->pf == AF_INET6) {
3046 		/*
3047 		 * for IPv6, path MTU discovery is always turned on,
3048 		 * or the node must use packet size <= 1280.
3049 		 */
3050 		mss = IN6_LINKMTU(ifp) - iphlen - sizeof(struct tcphdr);
3051 	}
3052 #endif /* INET6 */
3053 
3054 	/* Calculate the value that we offer in TCPOPT_MAXSEG */
3055 	if (offer != -1) {
3056 #ifndef INET6
3057 		mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3058 #else
3059 		if (tp->pf == AF_INET6)
3060 			mssopt = IN6_LINKMTU(ifp) - iphlen -
3061 			    sizeof(struct tcphdr);
3062 		else
3063 			mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3064 #endif
3065 
3066 		mssopt = max(tcp_mssdflt, mssopt);
3067 	}
3068 
3069  out:
3070 	/*
3071 	 * The current mss, t_maxseg, is initialized to the default value.
3072 	 * If we compute a smaller value, reduce the current mss.
3073 	 * If we compute a larger value, return it for use in sending
3074 	 * a max seg size option, but don't store it for use
3075 	 * unless we received an offer at least that large from peer.
3076 	 *
3077 	 * However, do not accept offers lower than the minimum of
3078 	 * the interface MTU and 216.
3079 	 */
3080 	if (offer > 0)
3081 		tp->t_peermss = offer;
3082 	if (tp->t_peermss)
3083 		mss = min(mss, max(tp->t_peermss, 216));
3084 
3085 	/* sanity - at least max opt. space */
3086 	mss = max(mss, 64);
3087 
3088 	/*
3089 	 * maxopd stores the maximum length of data AND options
3090 	 * in a segment; maxseg is the amount of data in a normal
3091 	 * segment.  We need to store this value (maxopd) apart
3092 	 * from maxseg, because now every segment carries options
3093 	 * and thus we normally have somewhat less data in segments.
3094 	 */
3095 	tp->t_maxopd = mss;
3096 
3097 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3098 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
3099 		mss -= TCPOLEN_TSTAMP_APPA;
3100 #ifdef TCP_SIGNATURE
3101 	if (tp->t_flags & TF_SIGNATURE)
3102 		mss -= TCPOLEN_SIGLEN;
3103 #endif
3104 
3105 	if (offer == -1) {
3106 		/* mss changed due to Path MTU discovery */
3107 		tp->t_flags &= ~TF_PMTUD_PEND;
3108 		tp->t_pmtud_mtu_sent = 0;
3109 		tp->t_pmtud_mss_acked = 0;
3110 		if (mss < tp->t_maxseg) {
3111 			/*
3112 			 * Follow suggestion in RFC 2414 to reduce the
3113 			 * congestion window by the ratio of the old
3114 			 * segment size to the new segment size.
3115 			 */
3116 			tp->snd_cwnd = ulmax((tp->snd_cwnd / tp->t_maxseg) *
3117 					     mss, mss);
3118 		}
3119 	} else if (tcp_do_rfc3390) {
3120 		/* increase initial window  */
3121 		tp->snd_cwnd = ulmin(4 * mss, ulmax(2 * mss, 4380));
3122 	} else
3123 		tp->snd_cwnd = mss;
3124 
3125 	tp->t_maxseg = mss;
3126 
3127 	return (offer != -1 ? mssopt : mss);
3128 }
3129 
3130 u_int
3131 tcp_hdrsz(struct tcpcb *tp)
3132 {
3133 	u_int hlen;
3134 
3135 	switch (tp->pf) {
3136 #ifdef INET6
3137 	case AF_INET6:
3138 		hlen = sizeof(struct ip6_hdr);
3139 		break;
3140 #endif
3141 	case AF_INET:
3142 		hlen = sizeof(struct ip);
3143 		break;
3144 	default:
3145 		hlen = 0;
3146 		break;
3147 	}
3148 	hlen += sizeof(struct tcphdr);
3149 
3150 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3151 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
3152 		hlen += TCPOLEN_TSTAMP_APPA;
3153 #ifdef TCP_SIGNATURE
3154 	if (tp->t_flags & TF_SIGNATURE)
3155 		hlen += TCPOLEN_SIGLEN;
3156 #endif
3157 	return (hlen);
3158 }
3159 
3160 /*
3161  * Set connection variables based on the effective MSS.
3162  * We are passed the TCPCB for the actual connection.  If we
3163  * are the server, we are called by the compressed state engine
3164  * when the 3-way handshake is complete.  If we are the client,
3165  * we are called when we receive the SYN,ACK from the server.
3166  *
3167  * NOTE: The t_maxseg value must be initialized in the TCPCB
3168  * before this routine is called!
3169  */
3170 void
3171 tcp_mss_update(struct tcpcb *tp)
3172 {
3173 	int mss;
3174 	u_long bufsize;
3175 	struct rtentry *rt;
3176 	struct socket *so;
3177 
3178 	so = tp->t_inpcb->inp_socket;
3179 	mss = tp->t_maxseg;
3180 
3181 	rt = in_pcbrtentry(tp->t_inpcb);
3182 
3183 	if (rt == NULL)
3184 		return;
3185 
3186 	bufsize = so->so_snd.sb_hiwat;
3187 	if (bufsize < mss) {
3188 		mss = bufsize;
3189 		/* Update t_maxseg and t_maxopd */
3190 		tcp_mss(tp, mss);
3191 	} else {
3192 		bufsize = roundup(bufsize, mss);
3193 		if (bufsize > sb_max)
3194 			bufsize = sb_max;
3195 		(void)sbreserve(&so->so_snd, bufsize);
3196 	}
3197 
3198 	bufsize = so->so_rcv.sb_hiwat;
3199 	if (bufsize > mss) {
3200 		bufsize = roundup(bufsize, mss);
3201 		if (bufsize > sb_max)
3202 			bufsize = sb_max;
3203 		(void)sbreserve(&so->so_rcv, bufsize);
3204 	}
3205 
3206 }
3207 
3208 #if defined (TCP_SACK)
3209 /*
3210  * Checks for partial ack.  If partial ack arrives, force the retransmission
3211  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
3212  * 1.  By setting snd_nxt to ti_ack, this forces retransmission timer to
3213  * be started again.  If the ack advances at least to tp->snd_last, return 0.
3214  */
3215 int
3216 tcp_newreno(struct tcpcb *tp, struct tcphdr *th)
3217 {
3218 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
3219 		/*
3220 		 * snd_una has not been updated and the socket send buffer
3221 		 * not yet drained of the acked data, so we have to leave
3222 		 * snd_una as it was to get the correct data offset in
3223 		 * tcp_output().
3224 		 */
3225 		tcp_seq onxt = tp->snd_nxt;
3226 		u_long  ocwnd = tp->snd_cwnd;
3227 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
3228 		tp->t_rtttime = 0;
3229 		tp->snd_nxt = th->th_ack;
3230 		/*
3231 		 * Set snd_cwnd to one segment beyond acknowledged offset
3232 		 * (tp->snd_una not yet updated when this function is called)
3233 		 */
3234 		tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3235 		(void) tcp_output(tp);
3236 		tp->snd_cwnd = ocwnd;
3237 		if (SEQ_GT(onxt, tp->snd_nxt))
3238 			tp->snd_nxt = onxt;
3239 		/*
3240 		 * Partial window deflation.  Relies on fact that tp->snd_una
3241 		 * not updated yet.
3242 		 */
3243 		if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3244 			tp->snd_cwnd -= th->th_ack - tp->snd_una;
3245 		else
3246 			tp->snd_cwnd = 0;
3247 		tp->snd_cwnd += tp->t_maxseg;
3248 
3249 		return 1;
3250 	}
3251 	return 0;
3252 }
3253 #endif /* TCP_SACK */
3254 
3255 int
3256 tcp_mss_adv(struct ifnet *ifp, int af)
3257 {
3258 	int mss = 0;
3259 	int iphlen;
3260 
3261 	switch (af) {
3262 	case AF_INET:
3263 		if (ifp != NULL)
3264 			mss = ifp->if_mtu;
3265 		iphlen = sizeof(struct ip);
3266 		break;
3267 #ifdef INET6
3268 	case AF_INET6:
3269 		if (ifp != NULL)
3270 			mss = IN6_LINKMTU(ifp);
3271 		iphlen = sizeof(struct ip6_hdr);
3272 		break;
3273 #endif
3274 	}
3275 	mss = mss - iphlen - sizeof(struct tcphdr);
3276 	return (max(mss, tcp_mssdflt));
3277 }
3278 
3279 /*
3280  * TCP compressed state engine.  Currently used to hold compressed
3281  * state for SYN_RECEIVED.
3282  */
3283 
3284 u_long	syn_cache_count;
3285 u_int32_t syn_hash1, syn_hash2;
3286 
3287 #define SYN_HASH(sa, sp, dp) \
3288 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3289 				     ((u_int32_t)(sp)))^syn_hash2)))
3290 #ifndef INET6
3291 #define	SYN_HASHALL(hash, src, dst) \
3292 do {									\
3293 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
3294 		((struct sockaddr_in *)(src))->sin_port,		\
3295 		((struct sockaddr_in *)(dst))->sin_port);		\
3296 } while (/*CONSTCOND*/ 0)
3297 #else
3298 #define SYN_HASH6(sa, sp, dp) \
3299 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3300 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3301 	 & 0x7fffffff)
3302 
3303 #define SYN_HASHALL(hash, src, dst) \
3304 do {									\
3305 	switch ((src)->sa_family) {					\
3306 	case AF_INET:							\
3307 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3308 			((struct sockaddr_in *)(src))->sin_port,	\
3309 			((struct sockaddr_in *)(dst))->sin_port);	\
3310 		break;							\
3311 	case AF_INET6:							\
3312 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3313 			((struct sockaddr_in6 *)(src))->sin6_port,	\
3314 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
3315 		break;							\
3316 	default:							\
3317 		hash = 0;						\
3318 	}								\
3319 } while (/*CONSTCOND*/0)
3320 #endif /* INET6 */
3321 
3322 #define	SYN_CACHE_RM(sc)						\
3323 do {									\
3324 	(sc)->sc_flags |= SCF_DEAD;					\
3325 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
3326 	    (sc), sc_bucketq);						\
3327 	(sc)->sc_tp = NULL;						\
3328 	LIST_REMOVE((sc), sc_tpq);					\
3329 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
3330 	timeout_del(&(sc)->sc_timer);					\
3331 	syn_cache_count--;						\
3332 } while (/*CONSTCOND*/0)
3333 
3334 #define	SYN_CACHE_PUT(sc)						\
3335 do {									\
3336 	if ((sc)->sc_ipopts)						\
3337 		(void) m_free((sc)->sc_ipopts);				\
3338 	if ((sc)->sc_route4.ro_rt != NULL)				\
3339 		RTFREE((sc)->sc_route4.ro_rt);				\
3340 	timeout_set(&(sc)->sc_timer, syn_cache_reaper, (sc));		\
3341 	timeout_add(&(sc)->sc_timer, 0);				\
3342 } while (/*CONSTCOND*/0)
3343 
3344 struct pool syn_cache_pool;
3345 
3346 /*
3347  * We don't estimate RTT with SYNs, so each packet starts with the default
3348  * RTT and each timer step has a fixed timeout value.
3349  */
3350 #define	SYN_CACHE_TIMER_ARM(sc)						\
3351 do {									\
3352 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3353 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3354 	    TCPTV_REXMTMAX);						\
3355 	if (!timeout_initialized(&(sc)->sc_timer))			\
3356 		timeout_set(&(sc)->sc_timer, syn_cache_timer, (sc));	\
3357 	timeout_add(&(sc)->sc_timer, (sc)->sc_rxtcur * (hz / PR_SLOWHZ)); \
3358 } while (/*CONSTCOND*/0)
3359 
3360 #define	SYN_CACHE_TIMESTAMP(sc)	tcp_now + (sc)->sc_modulate
3361 
3362 void
3363 syn_cache_init()
3364 {
3365 	int i;
3366 
3367 	/* Initialize the hash buckets. */
3368 	for (i = 0; i < tcp_syn_cache_size; i++)
3369 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3370 
3371 	/* Initialize the syn cache pool. */
3372 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3373 	    "synpl", NULL);
3374 }
3375 
3376 void
3377 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3378 {
3379 	struct syn_cache_head *scp;
3380 	struct syn_cache *sc2;
3381 	int s;
3382 
3383 	/*
3384 	 * If there are no entries in the hash table, reinitialize
3385 	 * the hash secrets.
3386 	 */
3387 	if (syn_cache_count == 0) {
3388 		syn_hash1 = arc4random();
3389 		syn_hash2 = arc4random();
3390 	}
3391 
3392 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3393 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3394 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3395 
3396 	/*
3397 	 * Make sure that we don't overflow the per-bucket
3398 	 * limit or the total cache size limit.
3399 	 */
3400 	s = splsoftnet();
3401 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3402 		tcpstat.tcps_sc_bucketoverflow++;
3403 		/*
3404 		 * The bucket is full.  Toss the oldest element in the
3405 		 * bucket.  This will be the first entry in the bucket.
3406 		 */
3407 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3408 #ifdef DIAGNOSTIC
3409 		/*
3410 		 * This should never happen; we should always find an
3411 		 * entry in our bucket.
3412 		 */
3413 		if (sc2 == NULL)
3414 			panic("syn_cache_insert: bucketoverflow: impossible");
3415 #endif
3416 		SYN_CACHE_RM(sc2);
3417 		SYN_CACHE_PUT(sc2);
3418 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3419 		struct syn_cache_head *scp2, *sce;
3420 
3421 		tcpstat.tcps_sc_overflowed++;
3422 		/*
3423 		 * The cache is full.  Toss the oldest entry in the
3424 		 * first non-empty bucket we can find.
3425 		 *
3426 		 * XXX We would really like to toss the oldest
3427 		 * entry in the cache, but we hope that this
3428 		 * condition doesn't happen very often.
3429 		 */
3430 		scp2 = scp;
3431 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3432 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3433 			for (++scp2; scp2 != scp; scp2++) {
3434 				if (scp2 >= sce)
3435 					scp2 = &tcp_syn_cache[0];
3436 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3437 					break;
3438 			}
3439 #ifdef DIAGNOSTIC
3440 			/*
3441 			 * This should never happen; we should always find a
3442 			 * non-empty bucket.
3443 			 */
3444 			if (scp2 == scp)
3445 				panic("syn_cache_insert: cacheoverflow: "
3446 				    "impossible");
3447 #endif
3448 		}
3449 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3450 		SYN_CACHE_RM(sc2);
3451 		SYN_CACHE_PUT(sc2);
3452 	}
3453 
3454 	/*
3455 	 * Initialize the entry's timer.
3456 	 */
3457 	sc->sc_rxttot = 0;
3458 	sc->sc_rxtshift = 0;
3459 	SYN_CACHE_TIMER_ARM(sc);
3460 
3461 	/* Link it from tcpcb entry */
3462 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3463 
3464 	/* Put it into the bucket. */
3465 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3466 	scp->sch_length++;
3467 	syn_cache_count++;
3468 
3469 	tcpstat.tcps_sc_added++;
3470 	splx(s);
3471 }
3472 
3473 /*
3474  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3475  * If we have retransmitted an entry the maximum number of times, expire
3476  * that entry.
3477  */
3478 void
3479 syn_cache_timer(void *arg)
3480 {
3481 	struct syn_cache *sc = arg;
3482 	int s;
3483 
3484 	s = splsoftnet();
3485 	if (sc->sc_flags & SCF_DEAD) {
3486 		splx(s);
3487 		return;
3488 	}
3489 
3490 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3491 		/* Drop it -- too many retransmissions. */
3492 		goto dropit;
3493 	}
3494 
3495 	/*
3496 	 * Compute the total amount of time this entry has
3497 	 * been on a queue.  If this entry has been on longer
3498 	 * than the keep alive timer would allow, expire it.
3499 	 */
3500 	sc->sc_rxttot += sc->sc_rxtcur;
3501 	if (sc->sc_rxttot >= tcptv_keep_init)
3502 		goto dropit;
3503 
3504 	tcpstat.tcps_sc_retransmitted++;
3505 	(void) syn_cache_respond(sc, NULL);
3506 
3507 	/* Advance the timer back-off. */
3508 	sc->sc_rxtshift++;
3509 	SYN_CACHE_TIMER_ARM(sc);
3510 
3511 	splx(s);
3512 	return;
3513 
3514  dropit:
3515 	tcpstat.tcps_sc_timed_out++;
3516 	SYN_CACHE_RM(sc);
3517 	SYN_CACHE_PUT(sc);
3518 	splx(s);
3519 }
3520 
3521 void
3522 syn_cache_reaper(void *arg)
3523 {
3524 	struct syn_cache *sc = arg;
3525 	int s;
3526 
3527 	s = splsoftnet();
3528 	pool_put(&syn_cache_pool, (sc));
3529 	splx(s);
3530 	return;
3531 }
3532 
3533 /*
3534  * Remove syn cache created by the specified tcb entry,
3535  * because this does not make sense to keep them
3536  * (if there's no tcb entry, syn cache entry will never be used)
3537  */
3538 void
3539 syn_cache_cleanup(struct tcpcb *tp)
3540 {
3541 	struct syn_cache *sc, *nsc;
3542 	int s;
3543 
3544 	s = splsoftnet();
3545 
3546 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3547 		nsc = LIST_NEXT(sc, sc_tpq);
3548 
3549 #ifdef DIAGNOSTIC
3550 		if (sc->sc_tp != tp)
3551 			panic("invalid sc_tp in syn_cache_cleanup");
3552 #endif
3553 		SYN_CACHE_RM(sc);
3554 		SYN_CACHE_PUT(sc);
3555 	}
3556 	/* just for safety */
3557 	LIST_INIT(&tp->t_sc);
3558 
3559 	splx(s);
3560 }
3561 
3562 /*
3563  * Find an entry in the syn cache.
3564  */
3565 struct syn_cache *
3566 syn_cache_lookup(struct sockaddr *src, struct sockaddr *dst,
3567     struct syn_cache_head **headp, u_int rdomain)
3568 {
3569 	struct syn_cache *sc;
3570 	struct syn_cache_head *scp;
3571 	u_int32_t hash;
3572 	int s;
3573 
3574 	SYN_HASHALL(hash, src, dst);
3575 
3576 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3577 	*headp = scp;
3578 	s = splsoftnet();
3579 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3580 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3581 		if (sc->sc_hash != hash)
3582 			continue;
3583 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3584 		    !bcmp(&sc->sc_dst, dst, dst->sa_len) &&
3585 		    rtable_l2(rdomain) == rtable_l2(sc->sc_rdomain)) {
3586 			splx(s);
3587 			return (sc);
3588 		}
3589 	}
3590 	splx(s);
3591 	return (NULL);
3592 }
3593 
3594 /*
3595  * This function gets called when we receive an ACK for a
3596  * socket in the LISTEN state.  We look up the connection
3597  * in the syn cache, and if its there, we pull it out of
3598  * the cache and turn it into a full-blown connection in
3599  * the SYN-RECEIVED state.
3600  *
3601  * The return values may not be immediately obvious, and their effects
3602  * can be subtle, so here they are:
3603  *
3604  *	NULL	SYN was not found in cache; caller should drop the
3605  *		packet and send an RST.
3606  *
3607  *	-1	We were unable to create the new connection, and are
3608  *		aborting it.  An ACK,RST is being sent to the peer
3609  *		(unless we got screwey sequence numbners; see below),
3610  *		because the 3-way handshake has been completed.  Caller
3611  *		should not free the mbuf, since we may be using it.  If
3612  *		we are not, we will free it.
3613  *
3614  *	Otherwise, the return value is a pointer to the new socket
3615  *	associated with the connection.
3616  */
3617 struct socket *
3618 syn_cache_get(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3619     u_int hlen, u_int tlen, struct socket *so, struct mbuf *m)
3620 {
3621 	struct syn_cache *sc;
3622 	struct syn_cache_head *scp;
3623 	struct inpcb *inp = NULL;
3624 	struct tcpcb *tp = 0;
3625 	struct mbuf *am;
3626 	int s;
3627 	struct socket *oso;
3628 
3629 	s = splsoftnet();
3630 	if ((sc = syn_cache_lookup(src, dst, &scp,
3631 	    sotoinpcb(so)->inp_rdomain)) == NULL) {
3632 		splx(s);
3633 		return (NULL);
3634 	}
3635 
3636 	/*
3637 	 * Verify the sequence and ack numbers.  Try getting the correct
3638 	 * response again.
3639 	 */
3640 	if ((th->th_ack != sc->sc_iss + 1) ||
3641 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3642 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3643 		(void) syn_cache_respond(sc, m);
3644 		splx(s);
3645 		return ((struct socket *)(-1));
3646 	}
3647 
3648 	/* Remove this cache entry */
3649 	SYN_CACHE_RM(sc);
3650 	splx(s);
3651 
3652 	/*
3653 	 * Ok, create the full blown connection, and set things up
3654 	 * as they would have been set up if we had created the
3655 	 * connection when the SYN arrived.  If we can't create
3656 	 * the connection, abort it.
3657 	 */
3658 	oso = so;
3659 	so = sonewconn(so, SS_ISCONNECTED);
3660 	if (so == NULL)
3661 		goto resetandabort;
3662 
3663 	inp = sotoinpcb(oso);
3664 
3665 #ifdef IPSEC
3666 	/*
3667 	 * We need to copy the required security levels
3668 	 * from the old pcb. Ditto for any other
3669 	 * IPsec-related information.
3670 	 */
3671 	{
3672 	  struct inpcb *newinp = (struct inpcb *)so->so_pcb;
3673 	  bcopy(inp->inp_seclevel, newinp->inp_seclevel,
3674 		sizeof(inp->inp_seclevel));
3675 	  newinp->inp_secrequire = inp->inp_secrequire;
3676 	  if (inp->inp_ipo != NULL) {
3677 		  newinp->inp_ipo = inp->inp_ipo;
3678 		  inp->inp_ipo->ipo_ref_count++;
3679 	  }
3680 	  if (inp->inp_ipsec_remotecred != NULL) {
3681 		  newinp->inp_ipsec_remotecred = inp->inp_ipsec_remotecred;
3682 		  inp->inp_ipsec_remotecred->ref_count++;
3683 	  }
3684 	  if (inp->inp_ipsec_remoteauth != NULL) {
3685 		  newinp->inp_ipsec_remoteauth
3686 		      = inp->inp_ipsec_remoteauth;
3687 		  inp->inp_ipsec_remoteauth->ref_count++;
3688 	  }
3689 	}
3690 #endif /* IPSEC */
3691 #ifdef INET6
3692 	/*
3693 	 * inp still has the OLD in_pcb stuff, set the
3694 	 * v6-related flags on the new guy, too.
3695 	 */
3696 	{
3697 	  int flags = inp->inp_flags;
3698 	  struct inpcb *oldinpcb = inp;
3699 
3700 	  inp = (struct inpcb *)so->so_pcb;
3701 	  inp->inp_flags |= (flags & INP_IPV6);
3702 	  if ((inp->inp_flags & INP_IPV6) != 0) {
3703 	    inp->inp_ipv6.ip6_hlim =
3704 	      oldinpcb->inp_ipv6.ip6_hlim;
3705 	  }
3706 	}
3707 #else /* INET6 */
3708 	inp = (struct inpcb *)so->so_pcb;
3709 #endif /* INET6 */
3710 
3711 	/* inherit rdomain from listening socket */
3712 	inp->inp_rdomain = sc->sc_rdomain;
3713 
3714 	inp->inp_lport = th->th_dport;
3715 	switch (src->sa_family) {
3716 #ifdef INET6
3717 	case AF_INET6:
3718 		inp->inp_laddr6 = ((struct sockaddr_in6 *)dst)->sin6_addr;
3719 		break;
3720 #endif /* INET6 */
3721 	case AF_INET:
3722 
3723 		inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3724 		inp->inp_options = ip_srcroute();
3725 		if (inp->inp_options == NULL) {
3726 			inp->inp_options = sc->sc_ipopts;
3727 			sc->sc_ipopts = NULL;
3728 		}
3729 		break;
3730 	}
3731 	in_pcbrehash(inp);
3732 
3733 	/*
3734 	 * Give the new socket our cached route reference.
3735 	 */
3736 	if (src->sa_family == AF_INET)
3737 		inp->inp_route = sc->sc_route4;         /* struct assignment */
3738 #ifdef INET6
3739 	else
3740 		inp->inp_route6 = sc->sc_route6;
3741 #endif
3742 	sc->sc_route4.ro_rt = NULL;
3743 
3744 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3745 	if (am == NULL)
3746 		goto resetandabort;
3747 	am->m_len = src->sa_len;
3748 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3749 
3750 	switch (src->sa_family) {
3751 	case AF_INET:
3752 		/* drop IPv4 packet to AF_INET6 socket */
3753 		if (inp->inp_flags & INP_IPV6) {
3754 			(void) m_free(am);
3755 			goto resetandabort;
3756 		}
3757 		if (in_pcbconnect(inp, am)) {
3758 			(void) m_free(am);
3759 			goto resetandabort;
3760 		}
3761 		break;
3762 #ifdef INET6
3763 	case AF_INET6:
3764 		if (in6_pcbconnect(inp, am)) {
3765 			(void) m_free(am);
3766 			goto resetandabort;
3767 		}
3768 		break;
3769 #endif
3770 	}
3771 	(void) m_free(am);
3772 
3773 	tp = intotcpcb(inp);
3774 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3775 	if (sc->sc_request_r_scale != 15) {
3776 		tp->requested_s_scale = sc->sc_requested_s_scale;
3777 		tp->request_r_scale = sc->sc_request_r_scale;
3778 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3779 	}
3780 	if (sc->sc_flags & SCF_TIMESTAMP)
3781 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3782 
3783 	tp->t_template = tcp_template(tp);
3784 	if (tp->t_template == 0) {
3785 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3786 		so = NULL;
3787 		m_freem(m);
3788 		goto abort;
3789 	}
3790 #ifdef TCP_SACK
3791 	tp->sack_enable = sc->sc_flags & SCF_SACK_PERMIT;
3792 #endif
3793 
3794 	tp->ts_modulate = sc->sc_modulate;
3795 	tp->iss = sc->sc_iss;
3796 	tp->irs = sc->sc_irs;
3797 	tcp_sendseqinit(tp);
3798 #if defined (TCP_SACK) || defined(TCP_ECN)
3799 	tp->snd_last = tp->snd_una;
3800 #endif /* TCP_SACK */
3801 #if defined(TCP_SACK) && defined(TCP_FACK)
3802 	tp->snd_fack = tp->snd_una;
3803 	tp->retran_data = 0;
3804 	tp->snd_awnd = 0;
3805 #endif /* TCP_FACK */
3806 #ifdef TCP_ECN
3807 	if (sc->sc_flags & SCF_ECN_PERMIT) {
3808 		tp->t_flags |= TF_ECN_PERMIT;
3809 		tcpstat.tcps_ecn_accepts++;
3810 	}
3811 #endif
3812 #ifdef TCP_SACK
3813 	if (sc->sc_flags & SCF_SACK_PERMIT)
3814 		tp->t_flags |= TF_SACK_PERMIT;
3815 #endif
3816 #ifdef TCP_SIGNATURE
3817 	if (sc->sc_flags & SCF_SIGNATURE)
3818 		tp->t_flags |= TF_SIGNATURE;
3819 #endif
3820 	tcp_rcvseqinit(tp);
3821 	tp->t_state = TCPS_SYN_RECEIVED;
3822 	tp->t_rcvtime = tcp_now;
3823 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcptv_keep_init);
3824 	tcpstat.tcps_accepts++;
3825 
3826 	tcp_mss(tp, sc->sc_peermaxseg);	 /* sets t_maxseg */
3827 	if (sc->sc_peermaxseg)
3828 		tcp_mss_update(tp);
3829 	/* Reset initial window to 1 segment for retransmit */
3830 	if (sc->sc_rxtshift > 0)
3831 		tp->snd_cwnd = tp->t_maxseg;
3832 	tp->snd_wl1 = sc->sc_irs;
3833 	tp->rcv_up = sc->sc_irs + 1;
3834 
3835 	/*
3836 	 * This is what whould have happened in tcp_output() when
3837 	 * the SYN,ACK was sent.
3838 	 */
3839 	tp->snd_up = tp->snd_una;
3840 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3841 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3842 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3843 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3844 	tp->last_ack_sent = tp->rcv_nxt;
3845 
3846 	tcpstat.tcps_sc_completed++;
3847 	SYN_CACHE_PUT(sc);
3848 	return (so);
3849 
3850 resetandabort:
3851 	tcp_respond(NULL, mtod(m, caddr_t), th, (tcp_seq)0, th->th_ack, TH_RST,
3852 	    m->m_pkthdr.rdomain);
3853 	m_freem(m);
3854 abort:
3855 	if (so != NULL)
3856 		(void) soabort(so);
3857 	SYN_CACHE_PUT(sc);
3858 	tcpstat.tcps_sc_aborted++;
3859 	return ((struct socket *)(-1));
3860 }
3861 
3862 /*
3863  * This function is called when we get a RST for a
3864  * non-existent connection, so that we can see if the
3865  * connection is in the syn cache.  If it is, zap it.
3866  */
3867 
3868 void
3869 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3870     u_int rdomain)
3871 {
3872 	struct syn_cache *sc;
3873 	struct syn_cache_head *scp;
3874 	int s = splsoftnet();
3875 
3876 	if ((sc = syn_cache_lookup(src, dst, &scp, rdomain)) == NULL) {
3877 		splx(s);
3878 		return;
3879 	}
3880 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3881 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3882 		splx(s);
3883 		return;
3884 	}
3885 	SYN_CACHE_RM(sc);
3886 	splx(s);
3887 	tcpstat.tcps_sc_reset++;
3888 	SYN_CACHE_PUT(sc);
3889 }
3890 
3891 void
3892 syn_cache_unreach(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3893     u_int rdomain)
3894 {
3895 	struct syn_cache *sc;
3896 	struct syn_cache_head *scp;
3897 	int s;
3898 
3899 	s = splsoftnet();
3900 	if ((sc = syn_cache_lookup(src, dst, &scp, rdomain)) == NULL) {
3901 		splx(s);
3902 		return;
3903 	}
3904 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3905 	if (ntohl (th->th_seq) != sc->sc_iss) {
3906 		splx(s);
3907 		return;
3908 	}
3909 
3910 	/*
3911 	 * If we've retransmitted 3 times and this is our second error,
3912 	 * we remove the entry.  Otherwise, we allow it to continue on.
3913 	 * This prevents us from incorrectly nuking an entry during a
3914 	 * spurious network outage.
3915 	 *
3916 	 * See tcp_notify().
3917 	 */
3918 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3919 		sc->sc_flags |= SCF_UNREACH;
3920 		splx(s);
3921 		return;
3922 	}
3923 
3924 	SYN_CACHE_RM(sc);
3925 	splx(s);
3926 	tcpstat.tcps_sc_unreach++;
3927 	SYN_CACHE_PUT(sc);
3928 }
3929 
3930 /*
3931  * Given a LISTEN socket and an inbound SYN request, add
3932  * this to the syn cache, and send back a segment:
3933  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3934  * to the source.
3935  *
3936  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3937  * Doing so would require that we hold onto the data and deliver it
3938  * to the application.  However, if we are the target of a SYN-flood
3939  * DoS attack, an attacker could send data which would eventually
3940  * consume all available buffer space if it were ACKed.  By not ACKing
3941  * the data, we avoid this DoS scenario.
3942  */
3943 
3944 int
3945 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3946     u_int iphlen, struct socket *so, struct mbuf *m, u_char *optp, int optlen,
3947     struct tcp_opt_info *oi, tcp_seq *issp)
3948 {
3949 	struct tcpcb tb, *tp;
3950 	long win;
3951 	struct syn_cache *sc;
3952 	struct syn_cache_head *scp;
3953 	struct mbuf *ipopts;
3954 
3955 	tp = sototcpcb(so);
3956 
3957 	/*
3958 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3959 	 *
3960 	 * Note this check is performed in tcp_input() very early on.
3961 	 */
3962 
3963 	/*
3964 	 * Initialize some local state.
3965 	 */
3966 	win = sbspace(&so->so_rcv);
3967 	if (win > TCP_MAXWIN)
3968 		win = TCP_MAXWIN;
3969 
3970 #ifdef TCP_SIGNATURE
3971 	if (optp || (tp->t_flags & TF_SIGNATURE)) {
3972 #else
3973 	if (optp) {
3974 #endif
3975 		tb.pf = tp->pf;
3976 #ifdef TCP_SACK
3977 		tb.sack_enable = tp->sack_enable;
3978 #endif
3979 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3980 #ifdef TCP_SIGNATURE
3981 		if (tp->t_flags & TF_SIGNATURE)
3982 			tb.t_flags |= TF_SIGNATURE;
3983 #endif
3984 		tb.t_state = TCPS_LISTEN;
3985 		if (tcp_dooptions(&tb, optp, optlen, th, m, iphlen, oi))
3986 			return (0);
3987 	} else
3988 		tb.t_flags = 0;
3989 
3990 	switch (src->sa_family) {
3991 #ifdef INET
3992 	case AF_INET:
3993 		/*
3994 		 * Remember the IP options, if any.
3995 		 */
3996 		ipopts = ip_srcroute();
3997 		break;
3998 #endif
3999 	default:
4000 		ipopts = NULL;
4001 	}
4002 
4003 	/*
4004 	 * See if we already have an entry for this connection.
4005 	 * If we do, resend the SYN,ACK.  We do not count this
4006 	 * as a retransmission (XXX though maybe we should).
4007 	 */
4008 	if ((sc = syn_cache_lookup(src, dst, &scp, sotoinpcb(so)->inp_rdomain))
4009 	    != NULL) {
4010 		tcpstat.tcps_sc_dupesyn++;
4011 		if (ipopts) {
4012 			/*
4013 			 * If we were remembering a previous source route,
4014 			 * forget it and use the new one we've been given.
4015 			 */
4016 			if (sc->sc_ipopts)
4017 				(void) m_free(sc->sc_ipopts);
4018 			sc->sc_ipopts = ipopts;
4019 		}
4020 		sc->sc_timestamp = tb.ts_recent;
4021 		if (syn_cache_respond(sc, m) == 0) {
4022 			tcpstat.tcps_sndacks++;
4023 			tcpstat.tcps_sndtotal++;
4024 		}
4025 		return (1);
4026 	}
4027 
4028 	sc = pool_get(&syn_cache_pool, PR_NOWAIT|PR_ZERO);
4029 	if (sc == NULL) {
4030 		if (ipopts)
4031 			(void) m_free(ipopts);
4032 		return (0);
4033 	}
4034 
4035 	/*
4036 	 * Fill in the cache, and put the necessary IP and TCP
4037 	 * options into the reply.
4038 	 */
4039 	bcopy(src, &sc->sc_src, src->sa_len);
4040 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4041 	sc->sc_rdomain = sotoinpcb(so)->inp_rdomain;
4042 	sc->sc_flags = 0;
4043 	sc->sc_ipopts = ipopts;
4044 	sc->sc_irs = th->th_seq;
4045 
4046 	sc->sc_iss = issp ? *issp : arc4random();
4047 	sc->sc_peermaxseg = oi->maxseg;
4048 	sc->sc_ourmaxseg = tcp_mss_adv(m->m_flags & M_PKTHDR ?
4049 	    m->m_pkthdr.rcvif : NULL, sc->sc_src.sa.sa_family);
4050 	sc->sc_win = win;
4051 	sc->sc_timestamp = tb.ts_recent;
4052 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4053 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP)) {
4054 		sc->sc_flags |= SCF_TIMESTAMP;
4055 		sc->sc_modulate = arc4random();
4056 	}
4057 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4058 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4059 		sc->sc_requested_s_scale = tb.requested_s_scale;
4060 		sc->sc_request_r_scale = 0;
4061 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4062 		    TCP_MAXWIN << sc->sc_request_r_scale <
4063 		    so->so_rcv.sb_hiwat)
4064 			sc->sc_request_r_scale++;
4065 	} else {
4066 		sc->sc_requested_s_scale = 15;
4067 		sc->sc_request_r_scale = 15;
4068 	}
4069 #ifdef TCP_ECN
4070 	/*
4071 	 * if both ECE and CWR flag bits are set, peer is ECN capable.
4072 	 */
4073 	if (tcp_do_ecn &&
4074 	    (th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR))
4075 		sc->sc_flags |= SCF_ECN_PERMIT;
4076 #endif
4077 #ifdef TCP_SACK
4078 	/*
4079 	 * Set SCF_SACK_PERMIT if peer did send a SACK_PERMITTED option
4080 	 * (i.e., if tcp_dooptions() did set TF_SACK_PERMIT).
4081 	 */
4082 	if (tb.sack_enable && (tb.t_flags & TF_SACK_PERMIT))
4083 		sc->sc_flags |= SCF_SACK_PERMIT;
4084 #endif
4085 #ifdef TCP_SIGNATURE
4086 	if (tb.t_flags & TF_SIGNATURE)
4087 		sc->sc_flags |= SCF_SIGNATURE;
4088 #endif
4089 	sc->sc_tp = tp;
4090 	if (syn_cache_respond(sc, m) == 0) {
4091 		syn_cache_insert(sc, tp);
4092 		tcpstat.tcps_sndacks++;
4093 		tcpstat.tcps_sndtotal++;
4094 	} else {
4095 		SYN_CACHE_PUT(sc);
4096 		tcpstat.tcps_sc_dropped++;
4097 	}
4098 	return (1);
4099 }
4100 
4101 int
4102 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4103 {
4104 	struct route *ro;
4105 	u_int8_t *optp;
4106 	int optlen, error;
4107 	u_int16_t tlen;
4108 	struct ip *ip = NULL;
4109 #ifdef INET6
4110 	struct ip6_hdr *ip6 = NULL;
4111 #endif
4112 	struct tcphdr *th;
4113 	u_int hlen;
4114 	struct inpcb *inp;
4115 
4116 	switch (sc->sc_src.sa.sa_family) {
4117 	case AF_INET:
4118 		hlen = sizeof(struct ip);
4119 		ro = &sc->sc_route4;
4120 		break;
4121 #ifdef INET6
4122 	case AF_INET6:
4123 		hlen = sizeof(struct ip6_hdr);
4124 		ro = (struct route *)&sc->sc_route6;
4125 		break;
4126 #endif
4127 	default:
4128 		if (m)
4129 			m_freem(m);
4130 		return (EAFNOSUPPORT);
4131 	}
4132 
4133 	/* Compute the size of the TCP options. */
4134 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4135 #ifdef TCP_SACK
4136 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? 4 : 0) +
4137 #endif
4138 #ifdef TCP_SIGNATURE
4139 	    ((sc->sc_flags & SCF_SIGNATURE) ? TCPOLEN_SIGLEN : 0) +
4140 #endif
4141 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4142 
4143 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4144 
4145 	/*
4146 	 * Create the IP+TCP header from scratch.
4147 	 */
4148 	if (m)
4149 		m_freem(m);
4150 #ifdef DIAGNOSTIC
4151 	if (max_linkhdr + tlen > MCLBYTES)
4152 		return (ENOBUFS);
4153 #endif
4154 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4155 	if (m && max_linkhdr + tlen > MHLEN) {
4156 		MCLGET(m, M_DONTWAIT);
4157 		if ((m->m_flags & M_EXT) == 0) {
4158 			m_freem(m);
4159 			m = NULL;
4160 		}
4161 	}
4162 	if (m == NULL)
4163 		return (ENOBUFS);
4164 
4165 	/* Fixup the mbuf. */
4166 	m->m_data += max_linkhdr;
4167 	m->m_len = m->m_pkthdr.len = tlen;
4168 	m->m_pkthdr.rcvif = NULL;
4169 	m->m_pkthdr.rdomain = sc->sc_rdomain;
4170 	memset(mtod(m, u_char *), 0, tlen);
4171 
4172 	switch (sc->sc_src.sa.sa_family) {
4173 	case AF_INET:
4174 		ip = mtod(m, struct ip *);
4175 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4176 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4177 		ip->ip_p = IPPROTO_TCP;
4178 		th = (struct tcphdr *)(ip + 1);
4179 		th->th_dport = sc->sc_src.sin.sin_port;
4180 		th->th_sport = sc->sc_dst.sin.sin_port;
4181 		break;
4182 #ifdef INET6
4183 	case AF_INET6:
4184 		ip6 = mtod(m, struct ip6_hdr *);
4185 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4186 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4187 		ip6->ip6_nxt = IPPROTO_TCP;
4188 		/* ip6_plen will be updated in ip6_output() */
4189 		th = (struct tcphdr *)(ip6 + 1);
4190 		th->th_dport = sc->sc_src.sin6.sin6_port;
4191 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4192 		break;
4193 #endif
4194 	default:
4195 		th = NULL;
4196 	}
4197 
4198 	th->th_seq = htonl(sc->sc_iss);
4199 	th->th_ack = htonl(sc->sc_irs + 1);
4200 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4201 	th->th_flags = TH_SYN|TH_ACK;
4202 #ifdef TCP_ECN
4203 	/* Set ECE for SYN-ACK if peer supports ECN. */
4204 	if (tcp_do_ecn && (sc->sc_flags & SCF_ECN_PERMIT))
4205 		th->th_flags |= TH_ECE;
4206 #endif
4207 	th->th_win = htons(sc->sc_win);
4208 	/* th_sum already 0 */
4209 	/* th_urp already 0 */
4210 
4211 	/* Tack on the TCP options. */
4212 	optp = (u_int8_t *)(th + 1);
4213 	*optp++ = TCPOPT_MAXSEG;
4214 	*optp++ = 4;
4215 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4216 	*optp++ = sc->sc_ourmaxseg & 0xff;
4217 
4218 #ifdef TCP_SACK
4219 	/* Include SACK_PERMIT_HDR option if peer has already done so. */
4220 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4221 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMIT_HDR);
4222 		optp += 4;
4223 	}
4224 #endif
4225 
4226 	if (sc->sc_request_r_scale != 15) {
4227 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4228 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4229 		    sc->sc_request_r_scale);
4230 		optp += 4;
4231 	}
4232 
4233 	if (sc->sc_flags & SCF_TIMESTAMP) {
4234 		u_int32_t *lp = (u_int32_t *)(optp);
4235 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4236 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4237 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4238 		*lp   = htonl(sc->sc_timestamp);
4239 		optp += TCPOLEN_TSTAMP_APPA;
4240 	}
4241 
4242 #ifdef TCP_SIGNATURE
4243 	if (sc->sc_flags & SCF_SIGNATURE) {
4244 		union sockaddr_union src, dst;
4245 		struct tdb *tdb;
4246 
4247 		bzero(&src, sizeof(union sockaddr_union));
4248 		bzero(&dst, sizeof(union sockaddr_union));
4249 		src.sa.sa_len = sc->sc_src.sa.sa_len;
4250 		src.sa.sa_family = sc->sc_src.sa.sa_family;
4251 		dst.sa.sa_len = sc->sc_dst.sa.sa_len;
4252 		dst.sa.sa_family = sc->sc_dst.sa.sa_family;
4253 
4254 		switch (sc->sc_src.sa.sa_family) {
4255 		case 0:	/*default to PF_INET*/
4256 #ifdef INET
4257 		case AF_INET:
4258 			src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
4259 			dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
4260 			break;
4261 #endif /* INET */
4262 #ifdef INET6
4263 		case AF_INET6:
4264 			src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
4265 			dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
4266 			break;
4267 #endif /* INET6 */
4268 		}
4269 
4270 		tdb = gettdbbysrcdst(0, &src, &dst, IPPROTO_TCP);
4271 		if (tdb == NULL) {
4272 			if (m)
4273 				m_freem(m);
4274 			return (EPERM);
4275 		}
4276 
4277 		/* Send signature option */
4278 		*(optp++) = TCPOPT_SIGNATURE;
4279 		*(optp++) = TCPOLEN_SIGNATURE;
4280 
4281 		if (tcp_signature(tdb, sc->sc_src.sa.sa_family, m, th,
4282 		    hlen, 0, optp) < 0) {
4283 			if (m)
4284 				m_freem(m);
4285 			return (EINVAL);
4286 		}
4287 		optp += 16;
4288 
4289 		/* Pad options list to the next 32 bit boundary and
4290 		 * terminate it.
4291 		 */
4292 		*optp++ = TCPOPT_NOP;
4293 		*optp++ = TCPOPT_EOL;
4294 	}
4295 #endif /* TCP_SIGNATURE */
4296 
4297 	/* Compute the packet's checksum. */
4298 	switch (sc->sc_src.sa.sa_family) {
4299 	case AF_INET:
4300 		ip->ip_len = htons(tlen - hlen);
4301 		th->th_sum = 0;
4302 		th->th_sum = in_cksum(m, tlen);
4303 		break;
4304 #ifdef INET6
4305 	case AF_INET6:
4306 		ip6->ip6_plen = htons(tlen - hlen);
4307 		th->th_sum = 0;
4308 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4309 		break;
4310 #endif
4311 	}
4312 
4313 	/* use IPsec policy and ttl from listening socket, on SYN ACK */
4314 	inp = sc->sc_tp ? sc->sc_tp->t_inpcb : NULL;
4315 
4316 	/*
4317 	 * Fill in some straggling IP bits.  Note the stack expects
4318 	 * ip_len to be in host order, for convenience.
4319 	 */
4320 	switch (sc->sc_src.sa.sa_family) {
4321 #ifdef INET
4322 	case AF_INET:
4323 		ip->ip_len = htons(tlen);
4324 		ip->ip_ttl = inp ? inp->inp_ip.ip_ttl : ip_defttl;
4325 		/* XXX tos? */
4326 		break;
4327 #endif
4328 #ifdef INET6
4329 	case AF_INET6:
4330 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4331 		ip6->ip6_vfc |= IPV6_VERSION;
4332 		ip6->ip6_plen = htons(tlen - hlen);
4333 		/* ip6_hlim will be initialized afterwards */
4334 		/* leave flowlabel = 0, it is legal and require no state mgmt */
4335 		break;
4336 #endif
4337 	}
4338 
4339 	switch (sc->sc_src.sa.sa_family) {
4340 #ifdef INET
4341 	case AF_INET:
4342 		error = ip_output(m, sc->sc_ipopts, ro,
4343 		    (ip_mtudisc ? IP_MTUDISC : 0),
4344 		    (struct ip_moptions *)NULL, inp);
4345 		break;
4346 #endif
4347 #ifdef INET6
4348 	case AF_INET6:
4349 		ip6->ip6_hlim = in6_selecthlim(NULL,
4350 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4351 
4352 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4353 			(struct ip6_moptions *)0, NULL, NULL);
4354 		break;
4355 #endif
4356 	default:
4357 		error = EAFNOSUPPORT;
4358 		break;
4359 	}
4360 	return (error);
4361 }
4362