xref: /openbsd-src/sys/netinet/tcp_input.c (revision 91f110e064cd7c194e59e019b83bb7496c1c84d4)
1 /*	$OpenBSD: tcp_input.c,v 1.272 2014/01/24 18:54:58 henning Exp $	*/
2 /*	$NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
33  *
34  * NRL grants permission for redistribution and use in source and binary
35  * forms, with or without modification, of the software and documentation
36  * created at NRL provided that the following conditions are met:
37  *
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgements:
45  * 	This product includes software developed by the University of
46  * 	California, Berkeley and its contributors.
47  * 	This product includes software developed at the Information
48  * 	Technology Division, US Naval Research Laboratory.
49  * 4. Neither the name of the NRL nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
54  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
56  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
57  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
58  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
59  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
60  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
61  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
62  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
63  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64  *
65  * The views and conclusions contained in the software and documentation
66  * are those of the authors and should not be interpreted as representing
67  * official policies, either expressed or implied, of the US Naval
68  * Research Laboratory (NRL).
69  */
70 
71 #include "pf.h"
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/mbuf.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/timeout.h>
80 #include <sys/kernel.h>
81 #include <sys/pool.h>
82 
83 #include <dev/rndvar.h>
84 
85 #include <net/if.h>
86 #include <net/route.h>
87 
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/in_pcb.h>
92 #include <netinet/ip_var.h>
93 #include <netinet/tcp.h>
94 #include <netinet/tcp_fsm.h>
95 #include <netinet/tcp_seq.h>
96 #include <netinet/tcp_timer.h>
97 #include <netinet/tcp_var.h>
98 #include <netinet/tcpip.h>
99 #include <netinet/tcp_debug.h>
100 
101 #if NPF > 0
102 #include <net/pfvar.h>
103 #endif
104 
105 struct	tcpiphdr tcp_saveti;
106 
107 int tcp_mss_adv(struct ifnet *, int);
108 int tcp_flush_queue(struct tcpcb *);
109 
110 #ifdef INET6
111 #include <netinet6/in6_var.h>
112 #include <netinet6/nd6.h>
113 
114 struct  tcpipv6hdr tcp_saveti6;
115 
116 /* for the packet header length in the mbuf */
117 #define M_PH_LEN(m)      (((struct mbuf *)(m))->m_pkthdr.len)
118 #define M_V6_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip6_hdr))
119 #define M_V4_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip))
120 #endif /* INET6 */
121 
122 int	tcprexmtthresh = 3;
123 int	tcptv_keep_init = TCPTV_KEEP_INIT;
124 
125 int tcp_rst_ppslim = 100;		/* 100pps */
126 int tcp_rst_ppslim_count = 0;
127 struct timeval tcp_rst_ppslim_last;
128 
129 int tcp_ackdrop_ppslim = 100;		/* 100pps */
130 int tcp_ackdrop_ppslim_count = 0;
131 struct timeval tcp_ackdrop_ppslim_last;
132 
133 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
134 
135 /* for modulo comparisons of timestamps */
136 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
137 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
138 
139 /* for TCP SACK comparisons */
140 #define	SEQ_MIN(a,b)	(SEQ_LT(a,b) ? (a) : (b))
141 #define	SEQ_MAX(a,b)	(SEQ_GT(a,b) ? (a) : (b))
142 
143 /*
144  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
145  */
146 #ifdef INET6
147 #define ND6_HINT(tp) \
148 do { \
149 	if (tp && tp->t_inpcb && (tp->t_inpcb->inp_flags & INP_IPV6) && \
150 	    tp->t_inpcb->inp_route6.ro_rt) { \
151 		nd6_nud_hint(tp->t_inpcb->inp_route6.ro_rt, NULL, 0, \
152 		    tp->t_inpcb->inp_rtableid); \
153 	} \
154 } while (0)
155 #else
156 #define ND6_HINT(tp)
157 #endif
158 
159 #ifdef TCP_ECN
160 /*
161  * ECN (Explicit Congestion Notification) support based on RFC3168
162  * implementation note:
163  *   snd_last is used to track a recovery phase.
164  *   when cwnd is reduced, snd_last is set to snd_max.
165  *   while snd_last > snd_una, the sender is in a recovery phase and
166  *   its cwnd should not be reduced again.
167  *   snd_last follows snd_una when not in a recovery phase.
168  */
169 #endif
170 
171 /*
172  * Macro to compute ACK transmission behavior.  Delay the ACK unless
173  * we have already delayed an ACK (must send an ACK every two segments).
174  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
175  * option is enabled or when the packet is coming from a loopback
176  * interface.
177  */
178 #define	TCP_SETUP_ACK(tp, tiflags, m) \
179 do { \
180 	if ((tp)->t_flags & TF_DELACK || \
181 	    (tcp_ack_on_push && (tiflags) & TH_PUSH) || \
182 	    (m && (m->m_flags & M_PKTHDR) && m->m_pkthdr.rcvif && \
183 	    (m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK))) \
184 		tp->t_flags |= TF_ACKNOW; \
185 	else \
186 		TCP_SET_DELACK(tp); \
187 } while (0)
188 
189 void syn_cache_put(struct syn_cache *);
190 void syn_cache_rm(struct syn_cache *);
191 
192 /*
193  * Insert segment ti into reassembly queue of tcp with
194  * control block tp.  Return TH_FIN if reassembly now includes
195  * a segment with FIN.  The macro form does the common case inline
196  * (segment is the next to be received on an established connection,
197  * and the queue is empty), avoiding linkage into and removal
198  * from the queue and repetition of various conversions.
199  * Set DELACK for segments received in order, but ack immediately
200  * when segments are out of order (so fast retransmit can work).
201  */
202 
203 int
204 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
205 {
206 	struct tcpqent *p, *q, *nq, *tiqe;
207 
208 	/*
209 	 * Allocate a new queue entry, before we throw away any data.
210 	 * If we can't, just drop the packet.  XXX
211 	 */
212 	tiqe = pool_get(&tcpqe_pool, PR_NOWAIT);
213 	if (tiqe == NULL) {
214 		tiqe = TAILQ_LAST(&tp->t_segq, tcpqehead);
215 		if (tiqe != NULL && th->th_seq == tp->rcv_nxt) {
216 			/* Reuse last entry since new segment fills a hole */
217 			m_freem(tiqe->tcpqe_m);
218 			TAILQ_REMOVE(&tp->t_segq, tiqe, tcpqe_q);
219 		}
220 		if (tiqe == NULL || th->th_seq != tp->rcv_nxt) {
221 			/* Flush segment queue for this connection */
222 			tcp_freeq(tp);
223 			tcpstat.tcps_rcvmemdrop++;
224 			m_freem(m);
225 			return (0);
226 		}
227 	}
228 
229 	/*
230 	 * Find a segment which begins after this one does.
231 	 */
232 	for (p = NULL, q = TAILQ_FIRST(&tp->t_segq); q != NULL;
233 	    p = q, q = TAILQ_NEXT(q, tcpqe_q))
234 		if (SEQ_GT(q->tcpqe_tcp->th_seq, th->th_seq))
235 			break;
236 
237 	/*
238 	 * If there is a preceding segment, it may provide some of
239 	 * our data already.  If so, drop the data from the incoming
240 	 * segment.  If it provides all of our data, drop us.
241 	 */
242 	if (p != NULL) {
243 		struct tcphdr *phdr = p->tcpqe_tcp;
244 		int i;
245 
246 		/* conversion to int (in i) handles seq wraparound */
247 		i = phdr->th_seq + phdr->th_reseqlen - th->th_seq;
248 		if (i > 0) {
249 		        if (i >= *tlen) {
250 				tcpstat.tcps_rcvduppack++;
251 				tcpstat.tcps_rcvdupbyte += *tlen;
252 				m_freem(m);
253 				pool_put(&tcpqe_pool, tiqe);
254 				return (0);
255 			}
256 			m_adj(m, i);
257 			*tlen -= i;
258 			th->th_seq += i;
259 		}
260 	}
261 	tcpstat.tcps_rcvoopack++;
262 	tcpstat.tcps_rcvoobyte += *tlen;
263 
264 	/*
265 	 * While we overlap succeeding segments trim them or,
266 	 * if they are completely covered, dequeue them.
267 	 */
268 	for (; q != NULL; q = nq) {
269 		struct tcphdr *qhdr = q->tcpqe_tcp;
270 		int i = (th->th_seq + *tlen) - qhdr->th_seq;
271 
272 		if (i <= 0)
273 			break;
274 		if (i < qhdr->th_reseqlen) {
275 			qhdr->th_seq += i;
276 			qhdr->th_reseqlen -= i;
277 			m_adj(q->tcpqe_m, i);
278 			break;
279 		}
280 		nq = TAILQ_NEXT(q, tcpqe_q);
281 		m_freem(q->tcpqe_m);
282 		TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q);
283 		pool_put(&tcpqe_pool, q);
284 	}
285 
286 	/* Insert the new segment queue entry into place. */
287 	tiqe->tcpqe_m = m;
288 	th->th_reseqlen = *tlen;
289 	tiqe->tcpqe_tcp = th;
290 	if (p == NULL) {
291 		TAILQ_INSERT_HEAD(&tp->t_segq, tiqe, tcpqe_q);
292 	} else {
293 		TAILQ_INSERT_AFTER(&tp->t_segq, p, tiqe, tcpqe_q);
294 	}
295 
296 	if (th->th_seq != tp->rcv_nxt)
297 		return (0);
298 
299 	return (tcp_flush_queue(tp));
300 }
301 
302 int
303 tcp_flush_queue(struct tcpcb *tp)
304 {
305 	struct socket *so = tp->t_inpcb->inp_socket;
306 	struct tcpqent *q, *nq;
307 	int flags;
308 
309 	/*
310 	 * Present data to user, advancing rcv_nxt through
311 	 * completed sequence space.
312 	 */
313 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
314 		return (0);
315 	q = TAILQ_FIRST(&tp->t_segq);
316 	if (q == NULL || q->tcpqe_tcp->th_seq != tp->rcv_nxt)
317 		return (0);
318 	if (tp->t_state == TCPS_SYN_RECEIVED && q->tcpqe_tcp->th_reseqlen)
319 		return (0);
320 	do {
321 		tp->rcv_nxt += q->tcpqe_tcp->th_reseqlen;
322 		flags = q->tcpqe_tcp->th_flags & TH_FIN;
323 
324 		nq = TAILQ_NEXT(q, tcpqe_q);
325 		TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q);
326 		ND6_HINT(tp);
327 		if (so->so_state & SS_CANTRCVMORE)
328 			m_freem(q->tcpqe_m);
329 		else
330 			sbappendstream(&so->so_rcv, q->tcpqe_m);
331 		pool_put(&tcpqe_pool, q);
332 		q = nq;
333 	} while (q != NULL && q->tcpqe_tcp->th_seq == tp->rcv_nxt);
334 	tp->t_flags |= TF_BLOCKOUTPUT;
335 	sorwakeup(so);
336 	tp->t_flags &= ~TF_BLOCKOUTPUT;
337 	return (flags);
338 }
339 
340 #ifdef INET6
341 int
342 tcp6_input(struct mbuf **mp, int *offp, int proto)
343 {
344 	struct mbuf *m = *mp;
345 
346 	tcp_input(m, *offp, proto);
347 	return IPPROTO_DONE;
348 }
349 #endif
350 
351 /*
352  * TCP input routine, follows pages 65-76 of the
353  * protocol specification dated September, 1981 very closely.
354  */
355 void
356 tcp_input(struct mbuf *m, ...)
357 {
358 	struct ip *ip;
359 	struct inpcb *inp = NULL;
360 	u_int8_t *optp = NULL;
361 	int optlen = 0;
362 	int tlen, off;
363 	struct tcpcb *tp = NULL;
364 	int tiflags;
365 	struct socket *so = NULL;
366 	int todrop, acked, ourfinisacked;
367 	int hdroptlen = 0;
368 	short ostate = 0;
369 	tcp_seq iss, *reuse = NULL;
370 	u_long tiwin;
371 	struct tcp_opt_info opti;
372 	int iphlen;
373 	va_list ap;
374 	struct tcphdr *th;
375 #ifdef INET6
376 	struct ip6_hdr *ip6 = NULL;
377 #endif /* INET6 */
378 #ifdef IPSEC
379 	struct m_tag *mtag;
380 	struct tdb_ident *tdbi;
381 	struct tdb *tdb;
382 	int error;
383 #endif /* IPSEC */
384 	int af;
385 #ifdef TCP_ECN
386 	u_char iptos;
387 #endif
388 
389 	va_start(ap, m);
390 	iphlen = va_arg(ap, int);
391 	va_end(ap);
392 
393 	tcpstat.tcps_rcvtotal++;
394 
395 	opti.ts_present = 0;
396 	opti.maxseg = 0;
397 
398 	/*
399 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
400 	 * See below for AF specific multicast.
401 	 */
402 	if (m->m_flags & (M_BCAST|M_MCAST))
403 		goto drop;
404 
405 	/*
406 	 * Before we do ANYTHING, we have to figure out if it's TCP/IPv6 or
407 	 * TCP/IPv4.
408 	 */
409 	switch (mtod(m, struct ip *)->ip_v) {
410 #ifdef INET6
411 	case 6:
412 		af = AF_INET6;
413 		break;
414 #endif
415 	case 4:
416 		af = AF_INET;
417 		break;
418 	default:
419 		m_freem(m);
420 		return;	/*EAFNOSUPPORT*/
421 	}
422 
423 	/*
424 	 * Get IP and TCP header together in first mbuf.
425 	 * Note: IP leaves IP header in first mbuf.
426 	 */
427 	switch (af) {
428 	case AF_INET:
429 #ifdef DIAGNOSTIC
430 		if (iphlen < sizeof(struct ip)) {
431 			m_freem(m);
432 			return;
433 		}
434 #endif /* DIAGNOSTIC */
435 		break;
436 #ifdef INET6
437 	case AF_INET6:
438 #ifdef DIAGNOSTIC
439 		if (iphlen < sizeof(struct ip6_hdr)) {
440 			m_freem(m);
441 			return;
442 		}
443 #endif /* DIAGNOSTIC */
444 		break;
445 #endif
446 	default:
447 		m_freem(m);
448 		return;
449 	}
450 
451 	IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, sizeof(*th));
452 	if (!th) {
453 		tcpstat.tcps_rcvshort++;
454 		return;
455 	}
456 
457 	tlen = m->m_pkthdr.len - iphlen;
458 	ip = NULL;
459 #ifdef INET6
460 	ip6 = NULL;
461 #endif
462 	switch (af) {
463 	case AF_INET:
464 		ip = mtod(m, struct ip *);
465 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
466 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif,
467 		    m->m_pkthdr.rdomain))
468 			goto drop;
469 #ifdef TCP_ECN
470 		/* save ip_tos before clearing it for checksum */
471 		iptos = ip->ip_tos;
472 #endif
473 		break;
474 #ifdef INET6
475 	case AF_INET6:
476 		ip6 = mtod(m, struct ip6_hdr *);
477 #ifdef TCP_ECN
478 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
479 #endif
480 
481 		/* Be proactive about malicious use of IPv4 mapped address */
482 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
483 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
484 			/* XXX stat */
485 			goto drop;
486 		}
487 
488 		/*
489 		 * Be proactive about unspecified IPv6 address in source.
490 		 * As we use all-zero to indicate unbounded/unconnected pcb,
491 		 * unspecified IPv6 address can be used to confuse us.
492 		 *
493 		 * Note that packets with unspecified IPv6 destination is
494 		 * already dropped in ip6_input.
495 		 */
496 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
497 			/* XXX stat */
498 			goto drop;
499 		}
500 
501 		/* Discard packets to multicast */
502 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
503 			/* XXX stat */
504 			goto drop;
505 		}
506 		break;
507 #endif
508 	}
509 
510 	/*
511 	 * Checksum extended TCP header and data.
512 	 */
513 	if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_OK) == 0) {
514 		int sum;
515 
516 		if (m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_BAD) {
517 			tcpstat.tcps_rcvbadsum++;
518 			goto drop;
519 		}
520 		tcpstat.tcps_inswcsum++;
521 		switch (af) {
522 		case AF_INET:
523 			sum = in4_cksum(m, IPPROTO_TCP, iphlen, tlen);
524 			break;
525 #ifdef INET6
526 		case AF_INET6:
527 			sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
528 			    tlen);
529 			break;
530 #endif
531 		}
532 		if (sum != 0) {
533 			tcpstat.tcps_rcvbadsum++;
534 			goto drop;
535 		}
536 	}
537 
538 	/*
539 	 * Check that TCP offset makes sense,
540 	 * pull out TCP options and adjust length.		XXX
541 	 */
542 	off = th->th_off << 2;
543 	if (off < sizeof(struct tcphdr) || off > tlen) {
544 		tcpstat.tcps_rcvbadoff++;
545 		goto drop;
546 	}
547 	tlen -= off;
548 	if (off > sizeof(struct tcphdr)) {
549 		IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, off);
550 		if (!th) {
551 			tcpstat.tcps_rcvshort++;
552 			return;
553 		}
554 		optlen = off - sizeof(struct tcphdr);
555 		optp = (u_int8_t *)(th + 1);
556 		/*
557 		 * Do quick retrieval of timestamp options ("options
558 		 * prediction?").  If timestamp is the only option and it's
559 		 * formatted as recommended in RFC 1323 appendix A, we
560 		 * quickly get the values now and not bother calling
561 		 * tcp_dooptions(), etc.
562 		 */
563 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
564 		     (optlen > TCPOLEN_TSTAMP_APPA &&
565 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
566 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
567 		     (th->th_flags & TH_SYN) == 0) {
568 			opti.ts_present = 1;
569 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
570 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
571 			optp = NULL;	/* we've parsed the options */
572 		}
573 	}
574 	tiflags = th->th_flags;
575 
576 	/*
577 	 * Convert TCP protocol specific fields to host format.
578 	 */
579 	NTOHL(th->th_seq);
580 	NTOHL(th->th_ack);
581 	NTOHS(th->th_win);
582 	NTOHS(th->th_urp);
583 
584 	/*
585 	 * Locate pcb for segment.
586 	 */
587 #if NPF > 0
588 	if (m->m_pkthdr.pf.statekey)
589 		inp = m->m_pkthdr.pf.statekey->inp;
590 #endif
591 findpcb:
592 	if (inp == NULL) {
593 		switch (af) {
594 #ifdef INET6
595 		case AF_INET6:
596 			inp = in6_pcbhashlookup(&tcbtable, &ip6->ip6_src,
597 			    th->th_sport, &ip6->ip6_dst, th->th_dport,
598 			    m->m_pkthdr.rdomain);
599 			break;
600 #endif
601 		case AF_INET:
602 			inp = in_pcbhashlookup(&tcbtable, ip->ip_src,
603 			    th->th_sport, ip->ip_dst, th->th_dport,
604 			    m->m_pkthdr.rdomain);
605 			break;
606 		}
607 #if NPF > 0
608 		if (m->m_pkthdr.pf.statekey && inp) {
609 			m->m_pkthdr.pf.statekey->inp = inp;
610 			inp->inp_pf_sk = m->m_pkthdr.pf.statekey;
611 		}
612 #endif
613 	}
614 	if (inp == NULL) {
615 		int	inpl_reverse = 0;
616 		if (m->m_pkthdr.pf.flags & PF_TAG_TRANSLATE_LOCALHOST)
617 			inpl_reverse = 1;
618 		++tcpstat.tcps_pcbhashmiss;
619 		switch (af) {
620 #ifdef INET6
621 		case AF_INET6:
622 			inp = in6_pcblookup_listen(&tcbtable,
623 			    &ip6->ip6_dst, th->th_dport, inpl_reverse, m,
624 			    m->m_pkthdr.rdomain);
625 			break;
626 #endif /* INET6 */
627 		case AF_INET:
628 			inp = in_pcblookup_listen(&tcbtable,
629 			    ip->ip_dst, th->th_dport, inpl_reverse, m,
630 			    m->m_pkthdr.rdomain);
631 			break;
632 		}
633 		/*
634 		 * If the state is CLOSED (i.e., TCB does not exist) then
635 		 * all data in the incoming segment is discarded.
636 		 * If the TCB exists but is in CLOSED state, it is embryonic,
637 		 * but should either do a listen or a connect soon.
638 		 */
639 		if (inp == 0) {
640 			++tcpstat.tcps_noport;
641 			goto dropwithreset_ratelim;
642 		}
643 	}
644 	KASSERT(sotoinpcb(inp->inp_socket) == inp);
645 	KASSERT(intotcpcb(inp)->t_inpcb == inp);
646 
647 	/* Check the minimum TTL for socket. */
648 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl)
649 		goto drop;
650 
651 	tp = intotcpcb(inp);
652 	if (tp == 0)
653 		goto dropwithreset_ratelim;
654 	if (tp->t_state == TCPS_CLOSED)
655 		goto drop;
656 
657 	/* Unscale the window into a 32-bit value. */
658 	if ((tiflags & TH_SYN) == 0)
659 		tiwin = th->th_win << tp->snd_scale;
660 	else
661 		tiwin = th->th_win;
662 
663 	so = inp->inp_socket;
664 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
665 		union syn_cache_sa src;
666 		union syn_cache_sa dst;
667 
668 		bzero(&src, sizeof(src));
669 		bzero(&dst, sizeof(dst));
670 		switch (af) {
671 #ifdef INET
672 		case AF_INET:
673 			src.sin.sin_len = sizeof(struct sockaddr_in);
674 			src.sin.sin_family = AF_INET;
675 			src.sin.sin_addr = ip->ip_src;
676 			src.sin.sin_port = th->th_sport;
677 
678 			dst.sin.sin_len = sizeof(struct sockaddr_in);
679 			dst.sin.sin_family = AF_INET;
680 			dst.sin.sin_addr = ip->ip_dst;
681 			dst.sin.sin_port = th->th_dport;
682 			break;
683 #endif
684 #ifdef INET6
685 		case AF_INET6:
686 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
687 			src.sin6.sin6_family = AF_INET6;
688 			src.sin6.sin6_addr = ip6->ip6_src;
689 			src.sin6.sin6_port = th->th_sport;
690 
691 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
692 			dst.sin6.sin6_family = AF_INET6;
693 			dst.sin6.sin6_addr = ip6->ip6_dst;
694 			dst.sin6.sin6_port = th->th_dport;
695 			break;
696 #endif /* INET6 */
697 		default:
698 			goto badsyn;	/*sanity*/
699 		}
700 
701 		if (so->so_options & SO_DEBUG) {
702 			ostate = tp->t_state;
703 			switch (af) {
704 #ifdef INET6
705 			case AF_INET6:
706 				bcopy(ip6, &tcp_saveti6.ti6_i, sizeof(*ip6));
707 				bcopy(th, &tcp_saveti6.ti6_t, sizeof(*th));
708 				break;
709 #endif
710 			case AF_INET:
711 				bcopy(ip, &tcp_saveti.ti_i, sizeof(*ip));
712 				bcopy(th, &tcp_saveti.ti_t, sizeof(*th));
713 				break;
714 			}
715 		}
716 		if (so->so_options & SO_ACCEPTCONN) {
717 			switch (tiflags & (TH_RST|TH_SYN|TH_ACK)) {
718 
719 			case TH_SYN|TH_ACK|TH_RST:
720 			case TH_SYN|TH_RST:
721 			case TH_ACK|TH_RST:
722 			case TH_RST:
723 				syn_cache_reset(&src.sa, &dst.sa, th,
724 				    inp->inp_rtableid);
725 				goto drop;
726 
727 			case TH_SYN|TH_ACK:
728 				/*
729 				 * Received a SYN,ACK.  This should
730 				 * never happen while we are in
731 				 * LISTEN.  Send an RST.
732 				 */
733 				goto badsyn;
734 
735 			case TH_ACK:
736 				so = syn_cache_get(&src.sa, &dst.sa,
737 					th, iphlen, tlen, so, m);
738 				if (so == NULL) {
739 					/*
740 					 * We don't have a SYN for
741 					 * this ACK; send an RST.
742 					 */
743 					goto badsyn;
744 				} else if (so == (struct socket *)(-1)) {
745 					/*
746 					 * We were unable to create
747 					 * the connection.  If the
748 					 * 3-way handshake was
749 					 * completed, and RST has
750 					 * been sent to the peer.
751 					 * Since the mbuf might be
752 					 * in use for the reply,
753 					 * do not free it.
754 					 */
755 					m = NULL;
756 					goto drop;
757 				} else {
758 					/*
759 					 * We have created a
760 					 * full-blown connection.
761 					 */
762 					tp = NULL;
763 					inp = sotoinpcb(so);
764 					tp = intotcpcb(inp);
765 					if (tp == NULL)
766 						goto badsyn;	/*XXX*/
767 
768 				}
769 				break;
770 
771 			default:
772 				/*
773 				 * None of RST, SYN or ACK was set.
774 				 * This is an invalid packet for a
775 				 * TCB in LISTEN state.  Send a RST.
776 				 */
777 				goto badsyn;
778 
779 			case TH_SYN:
780 				/*
781 				 * Received a SYN.
782 				 */
783 #ifdef INET6
784 				/*
785 				 * If deprecated address is forbidden, we do
786 				 * not accept SYN to deprecated interface
787 				 * address to prevent any new inbound
788 				 * connection from getting established.
789 				 * When we do not accept SYN, we send a TCP
790 				 * RST, with deprecated source address (instead
791 				 * of dropping it).  We compromise it as it is
792 				 * much better for peer to send a RST, and
793 				 * RST will be the final packet for the
794 				 * exchange.
795 				 *
796 				 * If we do not forbid deprecated addresses, we
797 				 * accept the SYN packet.  RFC2462 does not
798 				 * suggest dropping SYN in this case.
799 				 * If we decipher RFC2462 5.5.4, it says like
800 				 * this:
801 				 * 1. use of deprecated addr with existing
802 				 *    communication is okay - "SHOULD continue
803 				 *    to be used"
804 				 * 2. use of it with new communication:
805 				 *   (2a) "SHOULD NOT be used if alternate
806 				 *        address with sufficient scope is
807 				 *        available"
808 				 *   (2b) nothing mentioned otherwise.
809 				 * Here we fall into (2b) case as we have no
810 				 * choice in our source address selection - we
811 				 * must obey the peer.
812 				 *
813 				 * The wording in RFC2462 is confusing, and
814 				 * there are multiple description text for
815 				 * deprecated address handling - worse, they
816 				 * are not exactly the same.  I believe 5.5.4
817 				 * is the best one, so we follow 5.5.4.
818 				 */
819 				if (ip6 && !ip6_use_deprecated) {
820 					struct in6_ifaddr *ia6;
821 
822 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
823 					    &ip6->ip6_dst)) &&
824 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
825 						tp = NULL;
826 						goto dropwithreset;
827 					}
828 				}
829 #endif
830 
831 				/*
832 				 * LISTEN socket received a SYN
833 				 * from itself?  This can't possibly
834 				 * be valid; drop the packet.
835 				 */
836 				if (th->th_dport == th->th_sport) {
837 					switch (af) {
838 #ifdef INET6
839 					case AF_INET6:
840 						if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
841 						    &ip6->ip6_dst)) {
842 							tcpstat.tcps_badsyn++;
843 							goto drop;
844 						}
845 						break;
846 #endif /* INET6 */
847 					case AF_INET:
848 						if (ip->ip_dst.s_addr == ip->ip_src.s_addr) {
849 							tcpstat.tcps_badsyn++;
850 							goto drop;
851 						}
852 						break;
853 					}
854 				}
855 
856 				/*
857 				 * SYN looks ok; create compressed TCP
858 				 * state for it.
859 				 */
860 				if (so->so_qlen > so->so_qlimit ||
861 				    syn_cache_add(&src.sa, &dst.sa, th, iphlen,
862 				    so, m, optp, optlen, &opti, reuse) == -1)
863 					goto drop;
864 				return;
865 			}
866 		}
867 	}
868 
869 #ifdef DIAGNOSTIC
870 	/*
871 	 * Should not happen now that all embryonic connections
872 	 * are handled with compressed state.
873 	 */
874 	if (tp->t_state == TCPS_LISTEN)
875 		panic("tcp_input: TCPS_LISTEN");
876 #endif
877 
878 #if NPF > 0
879 	if (m->m_pkthdr.pf.statekey && !m->m_pkthdr.pf.statekey->inp &&
880 	    !inp->inp_pf_sk) {
881 		m->m_pkthdr.pf.statekey->inp = inp;
882 		inp->inp_pf_sk = m->m_pkthdr.pf.statekey;
883 	}
884 	/* The statekey has finished finding the inp, it is no longer needed. */
885 	m->m_pkthdr.pf.statekey = NULL;
886 #endif
887 
888 #ifdef IPSEC
889 	/* Find most recent IPsec tag */
890 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
891 	if (mtag != NULL) {
892 		tdbi = (struct tdb_ident *)(mtag + 1);
893 	        tdb = gettdb(tdbi->rdomain, tdbi->spi,
894 		    &tdbi->dst, tdbi->proto);
895 	} else
896 		tdb = NULL;
897 	ipsp_spd_lookup(m, af, iphlen, &error, IPSP_DIRECTION_IN,
898 	    tdb, inp, 0);
899 	if (error) {
900 		tcpstat.tcps_rcvnosec++;
901 		goto drop;
902 	}
903 
904 	/* Latch SA */
905 	if (inp->inp_tdb_in != tdb) {
906 		if (tdb) {
907 		        tdb_add_inp(tdb, inp, 1);
908 			if (inp->inp_ipo == NULL) {
909 				inp->inp_ipo = ipsec_add_policy(inp, af,
910 				    IPSP_DIRECTION_OUT);
911 				if (inp->inp_ipo == NULL) {
912 					goto drop;
913 				}
914 			}
915 			if (inp->inp_ipo->ipo_dstid == NULL &&
916 			    tdb->tdb_srcid != NULL) {
917 				inp->inp_ipo->ipo_dstid = tdb->tdb_srcid;
918 				tdb->tdb_srcid->ref_count++;
919 			}
920 			if (inp->inp_ipsec_remotecred == NULL &&
921 			    tdb->tdb_remote_cred != NULL) {
922 				inp->inp_ipsec_remotecred =
923 				    tdb->tdb_remote_cred;
924 				tdb->tdb_remote_cred->ref_count++;
925 			}
926 			if (inp->inp_ipsec_remoteauth == NULL &&
927 			    tdb->tdb_remote_auth != NULL) {
928 				inp->inp_ipsec_remoteauth =
929 				    tdb->tdb_remote_auth;
930 				tdb->tdb_remote_auth->ref_count++;
931 			}
932 		} else { /* Just reset */
933 		        TAILQ_REMOVE(&inp->inp_tdb_in->tdb_inp_in, inp,
934 				     inp_tdb_in_next);
935 			inp->inp_tdb_in = NULL;
936 		}
937 	}
938 #endif /* IPSEC */
939 
940 	/*
941 	 * Segment received on connection.
942 	 * Reset idle time and keep-alive timer.
943 	 */
944 	tp->t_rcvtime = tcp_now;
945 	if (TCPS_HAVEESTABLISHED(tp->t_state))
946 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
947 
948 #ifdef TCP_SACK
949 	if (tp->sack_enable)
950 		tcp_del_sackholes(tp, th); /* Delete stale SACK holes */
951 #endif /* TCP_SACK */
952 
953 	/*
954 	 * Process options.
955 	 */
956 #ifdef TCP_SIGNATURE
957 	if (optp || (tp->t_flags & TF_SIGNATURE))
958 #else
959 	if (optp)
960 #endif
961 		if (tcp_dooptions(tp, optp, optlen, th, m, iphlen, &opti,
962 		    m->m_pkthdr.rdomain))
963 			goto drop;
964 
965 	if (opti.ts_present && opti.ts_ecr) {
966 		int rtt_test;
967 
968 		/* subtract out the tcp timestamp modulator */
969 		opti.ts_ecr -= tp->ts_modulate;
970 
971 		/* make sure ts_ecr is sensible */
972 		rtt_test = tcp_now - opti.ts_ecr;
973 		if (rtt_test < 0 || rtt_test > TCP_RTT_MAX)
974 			opti.ts_ecr = 0;
975 	}
976 
977 #ifdef TCP_ECN
978 	/* if congestion experienced, set ECE bit in subsequent packets. */
979 	if ((iptos & IPTOS_ECN_MASK) == IPTOS_ECN_CE) {
980 		tp->t_flags |= TF_RCVD_CE;
981 		tcpstat.tcps_ecn_rcvce++;
982 	}
983 #endif
984 	/*
985 	 * Header prediction: check for the two common cases
986 	 * of a uni-directional data xfer.  If the packet has
987 	 * no control flags, is in-sequence, the window didn't
988 	 * change and we're not retransmitting, it's a
989 	 * candidate.  If the length is zero and the ack moved
990 	 * forward, we're the sender side of the xfer.  Just
991 	 * free the data acked & wake any higher level process
992 	 * that was blocked waiting for space.  If the length
993 	 * is non-zero and the ack didn't move, we're the
994 	 * receiver side.  If we're getting packets in-order
995 	 * (the reassembly queue is empty), add the data to
996 	 * the socket buffer and note that we need a delayed ack.
997 	 */
998 	if (tp->t_state == TCPS_ESTABLISHED &&
999 #ifdef TCP_ECN
1000 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK)) == TH_ACK &&
1001 #else
1002 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1003 #endif
1004 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1005 	    th->th_seq == tp->rcv_nxt &&
1006 	    tiwin && tiwin == tp->snd_wnd &&
1007 	    tp->snd_nxt == tp->snd_max) {
1008 
1009 		/*
1010 		 * If last ACK falls within this segment's sequence numbers,
1011 		 *  record the timestamp.
1012 		 * Fix from Braden, see Stevens p. 870
1013 		 */
1014 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1015 			tp->ts_recent_age = tcp_now;
1016 			tp->ts_recent = opti.ts_val;
1017 		}
1018 
1019 		if (tlen == 0) {
1020 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1021 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1022 			    tp->snd_cwnd >= tp->snd_wnd &&
1023 			    tp->t_dupacks == 0) {
1024 				/*
1025 				 * this is a pure ack for outstanding data.
1026 				 */
1027 				++tcpstat.tcps_predack;
1028 				if (opti.ts_present && opti.ts_ecr)
1029 					tcp_xmit_timer(tp, tcp_now - opti.ts_ecr);
1030 				else if (tp->t_rtttime &&
1031 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1032 					tcp_xmit_timer(tp,
1033 					    tcp_now - tp->t_rtttime);
1034 				acked = th->th_ack - tp->snd_una;
1035 				tcpstat.tcps_rcvackpack++;
1036 				tcpstat.tcps_rcvackbyte += acked;
1037 				ND6_HINT(tp);
1038 				sbdrop(&so->so_snd, acked);
1039 
1040 				/*
1041 				 * If we had a pending ICMP message that
1042 				 * referres to data that have just been
1043 				 * acknowledged, disregard the recorded ICMP
1044 				 * message.
1045 				 */
1046 				if ((tp->t_flags & TF_PMTUD_PEND) &&
1047 				    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
1048 					tp->t_flags &= ~TF_PMTUD_PEND;
1049 
1050 				/*
1051 				 * Keep track of the largest chunk of data
1052 				 * acknowledged since last PMTU update
1053 				 */
1054 				if (tp->t_pmtud_mss_acked < acked)
1055 					tp->t_pmtud_mss_acked = acked;
1056 
1057 				tp->snd_una = th->th_ack;
1058 #if defined(TCP_SACK) || defined(TCP_ECN)
1059 				/*
1060 				 * We want snd_last to track snd_una so
1061 				 * as to avoid sequence wraparound problems
1062 				 * for very large transfers.
1063 				 */
1064 #ifdef TCP_ECN
1065 				if (SEQ_GT(tp->snd_una, tp->snd_last))
1066 #endif
1067 				tp->snd_last = tp->snd_una;
1068 #endif /* TCP_SACK */
1069 #if defined(TCP_SACK) && defined(TCP_FACK)
1070 				tp->snd_fack = tp->snd_una;
1071 				tp->retran_data = 0;
1072 #endif /* TCP_FACK */
1073 				m_freem(m);
1074 
1075 				/*
1076 				 * If all outstanding data are acked, stop
1077 				 * retransmit timer, otherwise restart timer
1078 				 * using current (possibly backed-off) value.
1079 				 * If process is waiting for space,
1080 				 * wakeup/selwakeup/signal.  If data
1081 				 * are ready to send, let tcp_output
1082 				 * decide between more output or persist.
1083 				 */
1084 				if (tp->snd_una == tp->snd_max)
1085 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1086 				else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1087 					TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1088 
1089 				tcp_update_sndspace(tp);
1090 				if (sb_notify(&so->so_snd)) {
1091 					tp->t_flags |= TF_BLOCKOUTPUT;
1092 					sowwakeup(so);
1093 					tp->t_flags &= ~TF_BLOCKOUTPUT;
1094 				}
1095 				if (so->so_snd.sb_cc ||
1096 				    tp->t_flags & TF_NEEDOUTPUT)
1097 					(void) tcp_output(tp);
1098 				return;
1099 			}
1100 		} else if (th->th_ack == tp->snd_una &&
1101 		    TAILQ_EMPTY(&tp->t_segq) &&
1102 		    tlen <= sbspace(&so->so_rcv)) {
1103 			/*
1104 			 * This is a pure, in-sequence data packet
1105 			 * with nothing on the reassembly queue and
1106 			 * we have enough buffer space to take it.
1107 			 */
1108 #ifdef TCP_SACK
1109 			/* Clean receiver SACK report if present */
1110 			if (tp->sack_enable && tp->rcv_numsacks)
1111 				tcp_clean_sackreport(tp);
1112 #endif /* TCP_SACK */
1113 			++tcpstat.tcps_preddat;
1114 			tp->rcv_nxt += tlen;
1115 			tcpstat.tcps_rcvpack++;
1116 			tcpstat.tcps_rcvbyte += tlen;
1117 			ND6_HINT(tp);
1118 
1119 			TCP_SETUP_ACK(tp, tiflags, m);
1120 			/*
1121 			 * Drop TCP, IP headers and TCP options then add data
1122 			 * to socket buffer.
1123 			 */
1124 			if (so->so_state & SS_CANTRCVMORE)
1125 				m_freem(m);
1126 			else {
1127 				if (opti.ts_present && opti.ts_ecr) {
1128 					if (tp->rfbuf_ts < opti.ts_ecr &&
1129 					    opti.ts_ecr - tp->rfbuf_ts < hz) {
1130 						tcp_update_rcvspace(tp);
1131 						/* Start over with next RTT. */
1132 						tp->rfbuf_cnt = 0;
1133 						tp->rfbuf_ts = 0;
1134 					} else
1135 						tp->rfbuf_cnt += tlen;
1136 				}
1137 				m_adj(m, iphlen + off);
1138 				sbappendstream(&so->so_rcv, m);
1139 			}
1140 			tp->t_flags |= TF_BLOCKOUTPUT;
1141 			sorwakeup(so);
1142 			tp->t_flags &= ~TF_BLOCKOUTPUT;
1143 			if (tp->t_flags & (TF_ACKNOW|TF_NEEDOUTPUT))
1144 				(void) tcp_output(tp);
1145 			return;
1146 		}
1147 	}
1148 
1149 	/*
1150 	 * Compute mbuf offset to TCP data segment.
1151 	 */
1152 	hdroptlen = iphlen + off;
1153 
1154 	/*
1155 	 * Calculate amount of space in receive window,
1156 	 * and then do TCP input processing.
1157 	 * Receive window is amount of space in rcv queue,
1158 	 * but not less than advertised window.
1159 	 */
1160 	{ int win;
1161 
1162 	win = sbspace(&so->so_rcv);
1163 	if (win < 0)
1164 		win = 0;
1165 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1166 	}
1167 
1168 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1169 	tp->rfbuf_cnt = 0;
1170 	tp->rfbuf_ts = 0;
1171 
1172 	switch (tp->t_state) {
1173 
1174 	/*
1175 	 * If the state is SYN_RECEIVED:
1176 	 * 	if seg contains SYN/ACK, send an RST.
1177 	 *	if seg contains an ACK, but not for our SYN/ACK, send an RST
1178 	 */
1179 
1180 	case TCPS_SYN_RECEIVED:
1181 		if (tiflags & TH_ACK) {
1182 			if (tiflags & TH_SYN) {
1183 				tcpstat.tcps_badsyn++;
1184 				goto dropwithreset;
1185 			}
1186 			if (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1187 			    SEQ_GT(th->th_ack, tp->snd_max))
1188 				goto dropwithreset;
1189 		}
1190 		break;
1191 
1192 	/*
1193 	 * If the state is SYN_SENT:
1194 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1195 	 *	if seg contains a RST, then drop the connection.
1196 	 *	if seg does not contain SYN, then drop it.
1197 	 * Otherwise this is an acceptable SYN segment
1198 	 *	initialize tp->rcv_nxt and tp->irs
1199 	 *	if seg contains ack then advance tp->snd_una
1200 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1201 	 *	arrange for segment to be acked (eventually)
1202 	 *	continue processing rest of data/controls, beginning with URG
1203 	 */
1204 	case TCPS_SYN_SENT:
1205 		if ((tiflags & TH_ACK) &&
1206 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1207 		     SEQ_GT(th->th_ack, tp->snd_max)))
1208 			goto dropwithreset;
1209 		if (tiflags & TH_RST) {
1210 #ifdef TCP_ECN
1211 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1212 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1213 				goto drop;
1214 #endif
1215 			if (tiflags & TH_ACK)
1216 				tp = tcp_drop(tp, ECONNREFUSED);
1217 			goto drop;
1218 		}
1219 		if ((tiflags & TH_SYN) == 0)
1220 			goto drop;
1221 		if (tiflags & TH_ACK) {
1222 			tp->snd_una = th->th_ack;
1223 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1224 				tp->snd_nxt = tp->snd_una;
1225 		}
1226 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
1227 		tp->irs = th->th_seq;
1228 		tcp_mss(tp, opti.maxseg);
1229 		/* Reset initial window to 1 segment for retransmit */
1230 		if (tp->t_rxtshift > 0)
1231 			tp->snd_cwnd = tp->t_maxseg;
1232 		tcp_rcvseqinit(tp);
1233 		tp->t_flags |= TF_ACKNOW;
1234 #ifdef TCP_SACK
1235                 /*
1236                  * If we've sent a SACK_PERMITTED option, and the peer
1237                  * also replied with one, then TF_SACK_PERMIT should have
1238                  * been set in tcp_dooptions().  If it was not, disable SACKs.
1239                  */
1240 		if (tp->sack_enable)
1241 			tp->sack_enable = tp->t_flags & TF_SACK_PERMIT;
1242 #endif
1243 #ifdef TCP_ECN
1244 		/*
1245 		 * if ECE is set but CWR is not set for SYN-ACK, or
1246 		 * both ECE and CWR are set for simultaneous open,
1247 		 * peer is ECN capable.
1248 		 */
1249 		if (tcp_do_ecn) {
1250 			switch (tiflags & (TH_ACK|TH_ECE|TH_CWR)) {
1251 			case TH_ACK|TH_ECE:
1252 			case TH_ECE|TH_CWR:
1253 				tp->t_flags |= TF_ECN_PERMIT;
1254 				tiflags &= ~(TH_ECE|TH_CWR);
1255 				tcpstat.tcps_ecn_accepts++;
1256 			}
1257 		}
1258 #endif
1259 
1260 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
1261 			tcpstat.tcps_connects++;
1262 			soisconnected(so);
1263 			tp->t_state = TCPS_ESTABLISHED;
1264 			TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1265 			/* Do window scaling on this connection? */
1266 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1267 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1268 				tp->snd_scale = tp->requested_s_scale;
1269 				tp->rcv_scale = tp->request_r_scale;
1270 			}
1271 			tcp_flush_queue(tp);
1272 
1273 			/*
1274 			 * if we didn't have to retransmit the SYN,
1275 			 * use its rtt as our initial srtt & rtt var.
1276 			 */
1277 			if (tp->t_rtttime)
1278 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1279 			/*
1280 			 * Since new data was acked (the SYN), open the
1281 			 * congestion window by one MSS.  We do this
1282 			 * here, because we won't go through the normal
1283 			 * ACK processing below.  And since this is the
1284 			 * start of the connection, we know we are in
1285 			 * the exponential phase of slow-start.
1286 			 */
1287 			tp->snd_cwnd += tp->t_maxseg;
1288 		} else
1289 			tp->t_state = TCPS_SYN_RECEIVED;
1290 
1291 #if 0
1292 trimthenstep6:
1293 #endif
1294 		/*
1295 		 * Advance th->th_seq to correspond to first data byte.
1296 		 * If data, trim to stay within window,
1297 		 * dropping FIN if necessary.
1298 		 */
1299 		th->th_seq++;
1300 		if (tlen > tp->rcv_wnd) {
1301 			todrop = tlen - tp->rcv_wnd;
1302 			m_adj(m, -todrop);
1303 			tlen = tp->rcv_wnd;
1304 			tiflags &= ~TH_FIN;
1305 			tcpstat.tcps_rcvpackafterwin++;
1306 			tcpstat.tcps_rcvbyteafterwin += todrop;
1307 		}
1308 		tp->snd_wl1 = th->th_seq - 1;
1309 		tp->rcv_up = th->th_seq;
1310 		goto step6;
1311 	/*
1312 	 * If a new connection request is received while in TIME_WAIT,
1313 	 * drop the old connection and start over if the if the
1314 	 * timestamp or the sequence numbers are above the previous
1315 	 * ones.
1316 	 */
1317 	case TCPS_TIME_WAIT:
1318 		if (((tiflags & (TH_SYN|TH_ACK)) == TH_SYN) &&
1319 		    ((opti.ts_present &&
1320 		    TSTMP_LT(tp->ts_recent, opti.ts_val)) ||
1321 		    SEQ_GT(th->th_seq, tp->rcv_nxt))) {
1322 #if NPF > 0
1323 			/*
1324 			 * The socket will be recreated but the new state
1325 			 * has already been linked to the socket.  Remove the
1326 			 * link between old socket and new state.
1327 			 */
1328 			if (inp->inp_pf_sk) {
1329 				inp->inp_pf_sk->inp = NULL;
1330 				inp->inp_pf_sk = NULL;
1331 			}
1332 #endif
1333 			/*
1334 			* Advance the iss by at least 32768, but
1335 			* clear the msb in order to make sure
1336 			* that SEG_LT(snd_nxt, iss).
1337 			*/
1338 			iss = tp->snd_nxt +
1339 			    ((arc4random() & 0x7fffffff) | 0x8000);
1340 			reuse = &iss;
1341 			tp = tcp_close(tp);
1342 			inp = NULL;
1343 			goto findpcb;
1344 		}
1345 	}
1346 
1347 	/*
1348 	 * States other than LISTEN or SYN_SENT.
1349 	 * First check timestamp, if present.
1350 	 * Then check that at least some bytes of segment are within
1351 	 * receive window.  If segment begins before rcv_nxt,
1352 	 * drop leading data (and SYN); if nothing left, just ack.
1353 	 *
1354 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1355 	 * and it's less than opti.ts_recent, drop it.
1356 	 */
1357 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1358 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1359 
1360 		/* Check to see if ts_recent is over 24 days old.  */
1361 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1362 			/*
1363 			 * Invalidate ts_recent.  If this segment updates
1364 			 * ts_recent, the age will be reset later and ts_recent
1365 			 * will get a valid value.  If it does not, setting
1366 			 * ts_recent to zero will at least satisfy the
1367 			 * requirement that zero be placed in the timestamp
1368 			 * echo reply when ts_recent isn't valid.  The
1369 			 * age isn't reset until we get a valid ts_recent
1370 			 * because we don't want out-of-order segments to be
1371 			 * dropped when ts_recent is old.
1372 			 */
1373 			tp->ts_recent = 0;
1374 		} else {
1375 			tcpstat.tcps_rcvduppack++;
1376 			tcpstat.tcps_rcvdupbyte += tlen;
1377 			tcpstat.tcps_pawsdrop++;
1378 			goto dropafterack;
1379 		}
1380 	}
1381 
1382 	todrop = tp->rcv_nxt - th->th_seq;
1383 	if (todrop > 0) {
1384 		if (tiflags & TH_SYN) {
1385 			tiflags &= ~TH_SYN;
1386 			th->th_seq++;
1387 			if (th->th_urp > 1)
1388 				th->th_urp--;
1389 			else
1390 				tiflags &= ~TH_URG;
1391 			todrop--;
1392 		}
1393 		if (todrop > tlen ||
1394 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1395 			/*
1396 			 * Any valid FIN must be to the left of the
1397 			 * window.  At this point, FIN must be a
1398 			 * duplicate or out-of-sequence, so drop it.
1399 			 */
1400 			tiflags &= ~TH_FIN;
1401 			/*
1402 			 * Send ACK to resynchronize, and drop any data,
1403 			 * but keep on processing for RST or ACK.
1404 			 */
1405 			tp->t_flags |= TF_ACKNOW;
1406 			tcpstat.tcps_rcvdupbyte += todrop = tlen;
1407 			tcpstat.tcps_rcvduppack++;
1408 		} else {
1409 			tcpstat.tcps_rcvpartduppack++;
1410 			tcpstat.tcps_rcvpartdupbyte += todrop;
1411 		}
1412 		hdroptlen += todrop;	/* drop from head afterwards */
1413 		th->th_seq += todrop;
1414 		tlen -= todrop;
1415 		if (th->th_urp > todrop)
1416 			th->th_urp -= todrop;
1417 		else {
1418 			tiflags &= ~TH_URG;
1419 			th->th_urp = 0;
1420 		}
1421 	}
1422 
1423 	/*
1424 	 * If new data are received on a connection after the
1425 	 * user processes are gone, then RST the other end.
1426 	 */
1427 	if ((so->so_state & SS_NOFDREF) &&
1428 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1429 		tp = tcp_close(tp);
1430 		tcpstat.tcps_rcvafterclose++;
1431 		goto dropwithreset;
1432 	}
1433 
1434 	/*
1435 	 * If segment ends after window, drop trailing data
1436 	 * (and PUSH and FIN); if nothing left, just ACK.
1437 	 */
1438 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1439 	if (todrop > 0) {
1440 		tcpstat.tcps_rcvpackafterwin++;
1441 		if (todrop >= tlen) {
1442 			tcpstat.tcps_rcvbyteafterwin += tlen;
1443 			/*
1444 			 * If window is closed can only take segments at
1445 			 * window edge, and have to drop data and PUSH from
1446 			 * incoming segments.  Continue processing, but
1447 			 * remember to ack.  Otherwise, drop segment
1448 			 * and ack.
1449 			 */
1450 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1451 				tp->t_flags |= TF_ACKNOW;
1452 				tcpstat.tcps_rcvwinprobe++;
1453 			} else
1454 				goto dropafterack;
1455 		} else
1456 			tcpstat.tcps_rcvbyteafterwin += todrop;
1457 		m_adj(m, -todrop);
1458 		tlen -= todrop;
1459 		tiflags &= ~(TH_PUSH|TH_FIN);
1460 	}
1461 
1462 	/*
1463 	 * If last ACK falls within this segment's sequence numbers,
1464 	 * record its timestamp if it's more recent.
1465 	 * Cf fix from Braden, see Stevens p. 870
1466 	 */
1467 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1468 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1469 		if (SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1470 		    ((tiflags & (TH_SYN|TH_FIN)) != 0)))
1471 			tp->ts_recent = opti.ts_val;
1472 		else
1473 			tp->ts_recent = 0;
1474 		tp->ts_recent_age = tcp_now;
1475 	}
1476 
1477 	/*
1478 	 * If the RST bit is set examine the state:
1479 	 *    SYN_RECEIVED STATE:
1480 	 *	If passive open, return to LISTEN state.
1481 	 *	If active open, inform user that connection was refused.
1482 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1483 	 *	Inform user that connection was reset, and close tcb.
1484 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1485 	 *	Close the tcb.
1486 	 */
1487 	if (tiflags & TH_RST) {
1488 		if (th->th_seq != tp->last_ack_sent &&
1489 		    th->th_seq != tp->rcv_nxt &&
1490 		    th->th_seq != (tp->rcv_nxt + 1))
1491 			goto drop;
1492 
1493 		switch (tp->t_state) {
1494 		case TCPS_SYN_RECEIVED:
1495 #ifdef TCP_ECN
1496 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1497 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1498 				goto drop;
1499 #endif
1500 			so->so_error = ECONNREFUSED;
1501 			goto close;
1502 
1503 		case TCPS_ESTABLISHED:
1504 		case TCPS_FIN_WAIT_1:
1505 		case TCPS_FIN_WAIT_2:
1506 		case TCPS_CLOSE_WAIT:
1507 			so->so_error = ECONNRESET;
1508 		close:
1509 			tp->t_state = TCPS_CLOSED;
1510 			tcpstat.tcps_drops++;
1511 			tp = tcp_close(tp);
1512 			goto drop;
1513 		case TCPS_CLOSING:
1514 		case TCPS_LAST_ACK:
1515 		case TCPS_TIME_WAIT:
1516 			tp = tcp_close(tp);
1517 			goto drop;
1518 		}
1519 	}
1520 
1521 	/*
1522 	 * If a SYN is in the window, then this is an
1523 	 * error and we ACK and drop the packet.
1524 	 */
1525 	if (tiflags & TH_SYN)
1526 		goto dropafterack_ratelim;
1527 
1528 	/*
1529 	 * If the ACK bit is off we drop the segment and return.
1530 	 */
1531 	if ((tiflags & TH_ACK) == 0) {
1532 		if (tp->t_flags & TF_ACKNOW)
1533 			goto dropafterack;
1534 		else
1535 			goto drop;
1536 	}
1537 
1538 	/*
1539 	 * Ack processing.
1540 	 */
1541 	switch (tp->t_state) {
1542 
1543 	/*
1544 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1545 	 * ESTABLISHED state and continue processing.
1546 	 * The ACK was checked above.
1547 	 */
1548 	case TCPS_SYN_RECEIVED:
1549 		tcpstat.tcps_connects++;
1550 		soisconnected(so);
1551 		tp->t_state = TCPS_ESTABLISHED;
1552 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1553 		/* Do window scaling? */
1554 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1555 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1556 			tp->snd_scale = tp->requested_s_scale;
1557 			tp->rcv_scale = tp->request_r_scale;
1558 			tiwin = th->th_win << tp->snd_scale;
1559 		}
1560 		tcp_flush_queue(tp);
1561 		tp->snd_wl1 = th->th_seq - 1;
1562 		/* fall into ... */
1563 
1564 	/*
1565 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1566 	 * ACKs.  If the ack is in the range
1567 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1568 	 * then advance tp->snd_una to th->th_ack and drop
1569 	 * data from the retransmission queue.  If this ACK reflects
1570 	 * more up to date window information we update our window information.
1571 	 */
1572 	case TCPS_ESTABLISHED:
1573 	case TCPS_FIN_WAIT_1:
1574 	case TCPS_FIN_WAIT_2:
1575 	case TCPS_CLOSE_WAIT:
1576 	case TCPS_CLOSING:
1577 	case TCPS_LAST_ACK:
1578 	case TCPS_TIME_WAIT:
1579 #ifdef TCP_ECN
1580 		/*
1581 		 * if we receive ECE and are not already in recovery phase,
1582 		 * reduce cwnd by half but don't slow-start.
1583 		 * advance snd_last to snd_max not to reduce cwnd again
1584 		 * until all outstanding packets are acked.
1585 		 */
1586 		if (tcp_do_ecn && (tiflags & TH_ECE)) {
1587 			if ((tp->t_flags & TF_ECN_PERMIT) &&
1588 			    SEQ_GEQ(tp->snd_una, tp->snd_last)) {
1589 				u_int win;
1590 
1591 				win = min(tp->snd_wnd, tp->snd_cwnd) / tp->t_maxseg;
1592 				if (win > 1) {
1593 					tp->snd_ssthresh = win / 2 * tp->t_maxseg;
1594 					tp->snd_cwnd = tp->snd_ssthresh;
1595 					tp->snd_last = tp->snd_max;
1596 					tp->t_flags |= TF_SEND_CWR;
1597 					tcpstat.tcps_cwr_ecn++;
1598 				}
1599 			}
1600 			tcpstat.tcps_ecn_rcvece++;
1601 		}
1602 		/*
1603 		 * if we receive CWR, we know that the peer has reduced
1604 		 * its congestion window.  stop sending ecn-echo.
1605 		 */
1606 		if ((tiflags & TH_CWR)) {
1607 			tp->t_flags &= ~TF_RCVD_CE;
1608 			tcpstat.tcps_ecn_rcvcwr++;
1609 		}
1610 #endif /* TCP_ECN */
1611 
1612 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1613 			/*
1614 			 * Duplicate/old ACK processing.
1615 			 * Increments t_dupacks:
1616 			 *	Pure duplicate (same seq/ack/window, no data)
1617 			 * Doesn't affect t_dupacks:
1618 			 *	Data packets.
1619 			 *	Normal window updates (window opens)
1620 			 * Resets t_dupacks:
1621 			 *	New data ACKed.
1622 			 *	Window shrinks
1623 			 *	Old ACK
1624 			 */
1625 			if (tlen) {
1626 				/* Drop very old ACKs unless th_seq matches */
1627 				if (th->th_seq != tp->rcv_nxt &&
1628 				   SEQ_LT(th->th_ack,
1629 				   tp->snd_una - tp->max_sndwnd)) {
1630 					tcpstat.tcps_rcvacktooold++;
1631 					goto drop;
1632 				}
1633 				break;
1634 			}
1635 			/*
1636 			 * If we get an old ACK, there is probably packet
1637 			 * reordering going on.  Be conservative and reset
1638 			 * t_dupacks so that we are less aggressive in
1639 			 * doing a fast retransmit.
1640 			 */
1641 			if (th->th_ack != tp->snd_una) {
1642 				tp->t_dupacks = 0;
1643 				break;
1644 			}
1645 			if (tiwin == tp->snd_wnd) {
1646 				tcpstat.tcps_rcvdupack++;
1647 				/*
1648 				 * If we have outstanding data (other than
1649 				 * a window probe), this is a completely
1650 				 * duplicate ack (ie, window info didn't
1651 				 * change), the ack is the biggest we've
1652 				 * seen and we've seen exactly our rexmt
1653 				 * threshold of them, assume a packet
1654 				 * has been dropped and retransmit it.
1655 				 * Kludge snd_nxt & the congestion
1656 				 * window so we send only this one
1657 				 * packet.
1658 				 *
1659 				 * We know we're losing at the current
1660 				 * window size so do congestion avoidance
1661 				 * (set ssthresh to half the current window
1662 				 * and pull our congestion window back to
1663 				 * the new ssthresh).
1664 				 *
1665 				 * Dup acks mean that packets have left the
1666 				 * network (they're now cached at the receiver)
1667 				 * so bump cwnd by the amount in the receiver
1668 				 * to keep a constant cwnd packets in the
1669 				 * network.
1670 				 */
1671 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0)
1672 					tp->t_dupacks = 0;
1673 #if defined(TCP_SACK) && defined(TCP_FACK)
1674 				/*
1675 				 * In FACK, can enter fast rec. if the receiver
1676 				 * reports a reass. queue longer than 3 segs.
1677 				 */
1678 				else if (++tp->t_dupacks == tcprexmtthresh ||
1679 				    ((SEQ_GT(tp->snd_fack, tcprexmtthresh *
1680 				    tp->t_maxseg + tp->snd_una)) &&
1681 				    SEQ_GT(tp->snd_una, tp->snd_last))) {
1682 #else
1683 				else if (++tp->t_dupacks == tcprexmtthresh) {
1684 #endif /* TCP_FACK */
1685 					tcp_seq onxt = tp->snd_nxt;
1686 					u_long win =
1687 					    ulmin(tp->snd_wnd, tp->snd_cwnd) /
1688 						2 / tp->t_maxseg;
1689 
1690 #if defined(TCP_SACK) || defined(TCP_ECN)
1691 					if (SEQ_LT(th->th_ack, tp->snd_last)){
1692 					    	/*
1693 						 * False fast retx after
1694 						 * timeout.  Do not cut window.
1695 						 */
1696 						tp->t_dupacks = 0;
1697 						goto drop;
1698 					}
1699 #endif
1700 					if (win < 2)
1701 						win = 2;
1702 					tp->snd_ssthresh = win * tp->t_maxseg;
1703 #ifdef TCP_SACK
1704 					tp->snd_last = tp->snd_max;
1705                     			if (tp->sack_enable) {
1706 						TCP_TIMER_DISARM(tp, TCPT_REXMT);
1707 						tp->t_rtttime = 0;
1708 #ifdef TCP_ECN
1709 						tp->t_flags |= TF_SEND_CWR;
1710 #endif
1711 						tcpstat.tcps_cwr_frecovery++;
1712 						tcpstat.tcps_sack_recovery_episode++;
1713 #if defined(TCP_SACK) && defined(TCP_FACK)
1714 						tp->t_dupacks = tcprexmtthresh;
1715 						(void) tcp_output(tp);
1716 						/*
1717 						 * During FR, snd_cwnd is held
1718 						 * constant for FACK.
1719 						 */
1720 						tp->snd_cwnd = tp->snd_ssthresh;
1721 #else
1722 						/*
1723 						 * tcp_output() will send
1724 						 * oldest SACK-eligible rtx.
1725 						 */
1726 						(void) tcp_output(tp);
1727 						tp->snd_cwnd = tp->snd_ssthresh+
1728 					           tp->t_maxseg * tp->t_dupacks;
1729 #endif /* TCP_FACK */
1730 						goto drop;
1731 					}
1732 #endif /* TCP_SACK */
1733 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1734 					tp->t_rtttime = 0;
1735 					tp->snd_nxt = th->th_ack;
1736 					tp->snd_cwnd = tp->t_maxseg;
1737 #ifdef TCP_ECN
1738 					tp->t_flags |= TF_SEND_CWR;
1739 #endif
1740 					tcpstat.tcps_cwr_frecovery++;
1741 					tcpstat.tcps_sndrexmitfast++;
1742 					(void) tcp_output(tp);
1743 
1744 					tp->snd_cwnd = tp->snd_ssthresh +
1745 					    tp->t_maxseg * tp->t_dupacks;
1746 					if (SEQ_GT(onxt, tp->snd_nxt))
1747 						tp->snd_nxt = onxt;
1748 					goto drop;
1749 				} else if (tp->t_dupacks > tcprexmtthresh) {
1750 #if defined(TCP_SACK) && defined(TCP_FACK)
1751 					/*
1752 					 * while (awnd < cwnd)
1753 					 *         sendsomething();
1754 					 */
1755 					if (tp->sack_enable) {
1756 						if (tp->snd_awnd < tp->snd_cwnd)
1757 							tcp_output(tp);
1758 						goto drop;
1759 					}
1760 #endif /* TCP_FACK */
1761 					tp->snd_cwnd += tp->t_maxseg;
1762 					(void) tcp_output(tp);
1763 					goto drop;
1764 				}
1765 			} else if (tiwin < tp->snd_wnd) {
1766 				/*
1767 				 * The window was retracted!  Previous dup
1768 				 * ACKs may have been due to packets arriving
1769 				 * after the shrunken window, not a missing
1770 				 * packet, so play it safe and reset t_dupacks
1771 				 */
1772 				tp->t_dupacks = 0;
1773 			}
1774 			break;
1775 		}
1776 		/*
1777 		 * If the congestion window was inflated to account
1778 		 * for the other side's cached packets, retract it.
1779 		 */
1780 #if defined(TCP_SACK)
1781 		if (tp->sack_enable) {
1782 			if (tp->t_dupacks >= tcprexmtthresh) {
1783 				/* Check for a partial ACK */
1784 				if (tcp_sack_partialack(tp, th)) {
1785 #if defined(TCP_SACK) && defined(TCP_FACK)
1786 					/* Force call to tcp_output */
1787 					if (tp->snd_awnd < tp->snd_cwnd)
1788 						tp->t_flags |= TF_NEEDOUTPUT;
1789 #else
1790 					tp->snd_cwnd += tp->t_maxseg;
1791 					tp->t_flags |= TF_NEEDOUTPUT;
1792 #endif /* TCP_FACK */
1793 				} else {
1794 					/* Out of fast recovery */
1795 					tp->snd_cwnd = tp->snd_ssthresh;
1796 					if (tcp_seq_subtract(tp->snd_max,
1797 					    th->th_ack) < tp->snd_ssthresh)
1798 						tp->snd_cwnd =
1799 						   tcp_seq_subtract(tp->snd_max,
1800 					           th->th_ack);
1801 					tp->t_dupacks = 0;
1802 #if defined(TCP_SACK) && defined(TCP_FACK)
1803 					if (SEQ_GT(th->th_ack, tp->snd_fack))
1804 						tp->snd_fack = th->th_ack;
1805 #endif /* TCP_FACK */
1806 				}
1807 			}
1808 		} else {
1809 			if (tp->t_dupacks >= tcprexmtthresh &&
1810 			    !tcp_newreno(tp, th)) {
1811 				/* Out of fast recovery */
1812 				tp->snd_cwnd = tp->snd_ssthresh;
1813 				if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
1814 			  	    tp->snd_ssthresh)
1815 					tp->snd_cwnd =
1816 					    tcp_seq_subtract(tp->snd_max,
1817 					    th->th_ack);
1818 				tp->t_dupacks = 0;
1819 			}
1820 		}
1821 		if (tp->t_dupacks < tcprexmtthresh)
1822 			tp->t_dupacks = 0;
1823 #else /* else no TCP_SACK */
1824 		if (tp->t_dupacks >= tcprexmtthresh &&
1825 		    tp->snd_cwnd > tp->snd_ssthresh)
1826 			tp->snd_cwnd = tp->snd_ssthresh;
1827 		tp->t_dupacks = 0;
1828 #endif
1829 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1830 			tcpstat.tcps_rcvacktoomuch++;
1831 			goto dropafterack_ratelim;
1832 		}
1833 		acked = th->th_ack - tp->snd_una;
1834 		tcpstat.tcps_rcvackpack++;
1835 		tcpstat.tcps_rcvackbyte += acked;
1836 
1837 		/*
1838 		 * If we have a timestamp reply, update smoothed
1839 		 * round trip time.  If no timestamp is present but
1840 		 * transmit timer is running and timed sequence
1841 		 * number was acked, update smoothed round trip time.
1842 		 * Since we now have an rtt measurement, cancel the
1843 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1844 		 * Recompute the initial retransmit timer.
1845 		 */
1846 		if (opti.ts_present && opti.ts_ecr)
1847 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr);
1848 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1849 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1850 
1851 		/*
1852 		 * If all outstanding data is acked, stop retransmit
1853 		 * timer and remember to restart (more output or persist).
1854 		 * If there is more data to be acked, restart retransmit
1855 		 * timer, using current (possibly backed-off) value.
1856 		 */
1857 		if (th->th_ack == tp->snd_max) {
1858 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1859 			tp->t_flags |= TF_NEEDOUTPUT;
1860 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1861 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1862 		/*
1863 		 * When new data is acked, open the congestion window.
1864 		 * If the window gives us less than ssthresh packets
1865 		 * in flight, open exponentially (maxseg per packet).
1866 		 * Otherwise open linearly: maxseg per window
1867 		 * (maxseg^2 / cwnd per packet).
1868 		 */
1869 		{
1870 		u_int cw = tp->snd_cwnd;
1871 		u_int incr = tp->t_maxseg;
1872 
1873 		if (cw > tp->snd_ssthresh)
1874 			incr = incr * incr / cw;
1875 #if defined (TCP_SACK)
1876 		if (tp->t_dupacks < tcprexmtthresh)
1877 #endif
1878 		tp->snd_cwnd = ulmin(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1879 		}
1880 		ND6_HINT(tp);
1881 		if (acked > so->so_snd.sb_cc) {
1882 			tp->snd_wnd -= so->so_snd.sb_cc;
1883 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1884 			ourfinisacked = 1;
1885 		} else {
1886 			sbdrop(&so->so_snd, acked);
1887 			tp->snd_wnd -= acked;
1888 			ourfinisacked = 0;
1889 		}
1890 
1891 		tcp_update_sndspace(tp);
1892 		if (sb_notify(&so->so_snd)) {
1893 			tp->t_flags |= TF_BLOCKOUTPUT;
1894 			sowwakeup(so);
1895 			tp->t_flags &= ~TF_BLOCKOUTPUT;
1896 		}
1897 
1898 		/*
1899 		 * If we had a pending ICMP message that referred to data
1900 		 * that have just been acknowledged, disregard the recorded
1901 		 * ICMP message.
1902 		 */
1903 		if ((tp->t_flags & TF_PMTUD_PEND) &&
1904 		    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
1905 			tp->t_flags &= ~TF_PMTUD_PEND;
1906 
1907 		/*
1908 		 * Keep track of the largest chunk of data acknowledged
1909 		 * since last PMTU update
1910 		 */
1911 		if (tp->t_pmtud_mss_acked < acked)
1912 			tp->t_pmtud_mss_acked = acked;
1913 
1914 		tp->snd_una = th->th_ack;
1915 #ifdef TCP_ECN
1916 		/* sync snd_last with snd_una */
1917 		if (SEQ_GT(tp->snd_una, tp->snd_last))
1918 			tp->snd_last = tp->snd_una;
1919 #endif
1920 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1921 			tp->snd_nxt = tp->snd_una;
1922 #if defined (TCP_SACK) && defined (TCP_FACK)
1923 		if (SEQ_GT(tp->snd_una, tp->snd_fack)) {
1924 			tp->snd_fack = tp->snd_una;
1925 			/* Update snd_awnd for partial ACK
1926 			 * without any SACK blocks.
1927 			 */
1928 			tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt,
1929 				tp->snd_fack) + tp->retran_data;
1930 		}
1931 #endif
1932 
1933 		switch (tp->t_state) {
1934 
1935 		/*
1936 		 * In FIN_WAIT_1 STATE in addition to the processing
1937 		 * for the ESTABLISHED state if our FIN is now acknowledged
1938 		 * then enter FIN_WAIT_2.
1939 		 */
1940 		case TCPS_FIN_WAIT_1:
1941 			if (ourfinisacked) {
1942 				/*
1943 				 * If we can't receive any more
1944 				 * data, then closing user can proceed.
1945 				 * Starting the timer is contrary to the
1946 				 * specification, but if we don't get a FIN
1947 				 * we'll hang forever.
1948 				 */
1949 				if (so->so_state & SS_CANTRCVMORE) {
1950 					soisdisconnected(so);
1951 					TCP_TIMER_ARM(tp, TCPT_2MSL, tcp_maxidle);
1952 				}
1953 				tp->t_state = TCPS_FIN_WAIT_2;
1954 			}
1955 			break;
1956 
1957 		/*
1958 		 * In CLOSING STATE in addition to the processing for
1959 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1960 		 * then enter the TIME-WAIT state, otherwise ignore
1961 		 * the segment.
1962 		 */
1963 		case TCPS_CLOSING:
1964 			if (ourfinisacked) {
1965 				tp->t_state = TCPS_TIME_WAIT;
1966 				tcp_canceltimers(tp);
1967 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1968 				soisdisconnected(so);
1969 			}
1970 			break;
1971 
1972 		/*
1973 		 * In LAST_ACK, we may still be waiting for data to drain
1974 		 * and/or to be acked, as well as for the ack of our FIN.
1975 		 * If our FIN is now acknowledged, delete the TCB,
1976 		 * enter the closed state and return.
1977 		 */
1978 		case TCPS_LAST_ACK:
1979 			if (ourfinisacked) {
1980 				tp = tcp_close(tp);
1981 				goto drop;
1982 			}
1983 			break;
1984 
1985 		/*
1986 		 * In TIME_WAIT state the only thing that should arrive
1987 		 * is a retransmission of the remote FIN.  Acknowledge
1988 		 * it and restart the finack timer.
1989 		 */
1990 		case TCPS_TIME_WAIT:
1991 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1992 			goto dropafterack;
1993 		}
1994 	}
1995 
1996 step6:
1997 	/*
1998 	 * Update window information.
1999 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2000 	 */
2001 	if ((tiflags & TH_ACK) &&
2002 	    (SEQ_LT(tp->snd_wl1, th->th_seq) || (tp->snd_wl1 == th->th_seq &&
2003 	    (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2004 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2005 		/* keep track of pure window updates */
2006 		if (tlen == 0 &&
2007 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2008 			tcpstat.tcps_rcvwinupd++;
2009 		tp->snd_wnd = tiwin;
2010 		tp->snd_wl1 = th->th_seq;
2011 		tp->snd_wl2 = th->th_ack;
2012 		if (tp->snd_wnd > tp->max_sndwnd)
2013 			tp->max_sndwnd = tp->snd_wnd;
2014 		tp->t_flags |= TF_NEEDOUTPUT;
2015 	}
2016 
2017 	/*
2018 	 * Process segments with URG.
2019 	 */
2020 	if ((tiflags & TH_URG) && th->th_urp &&
2021 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2022 		/*
2023 		 * This is a kludge, but if we receive and accept
2024 		 * random urgent pointers, we'll crash in
2025 		 * soreceive.  It's hard to imagine someone
2026 		 * actually wanting to send this much urgent data.
2027 		 */
2028 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2029 			th->th_urp = 0;			/* XXX */
2030 			tiflags &= ~TH_URG;		/* XXX */
2031 			goto dodata;			/* XXX */
2032 		}
2033 		/*
2034 		 * If this segment advances the known urgent pointer,
2035 		 * then mark the data stream.  This should not happen
2036 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2037 		 * a FIN has been received from the remote side.
2038 		 * In these states we ignore the URG.
2039 		 *
2040 		 * According to RFC961 (Assigned Protocols),
2041 		 * the urgent pointer points to the last octet
2042 		 * of urgent data.  We continue, however,
2043 		 * to consider it to indicate the first octet
2044 		 * of data past the urgent section as the original
2045 		 * spec states (in one of two places).
2046 		 */
2047 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2048 			tp->rcv_up = th->th_seq + th->th_urp;
2049 			so->so_oobmark = so->so_rcv.sb_cc +
2050 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2051 			if (so->so_oobmark == 0)
2052 				so->so_state |= SS_RCVATMARK;
2053 			sohasoutofband(so);
2054 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2055 		}
2056 		/*
2057 		 * Remove out of band data so doesn't get presented to user.
2058 		 * This can happen independent of advancing the URG pointer,
2059 		 * but if two URG's are pending at once, some out-of-band
2060 		 * data may creep in... ick.
2061 		 */
2062 		if (th->th_urp <= (u_int16_t) tlen
2063 #ifdef SO_OOBINLINE
2064 		     && (so->so_options & SO_OOBINLINE) == 0
2065 #endif
2066 		     )
2067 		        tcp_pulloutofband(so, th->th_urp, m, hdroptlen);
2068 	} else
2069 		/*
2070 		 * If no out of band data is expected,
2071 		 * pull receive urgent pointer along
2072 		 * with the receive window.
2073 		 */
2074 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2075 			tp->rcv_up = tp->rcv_nxt;
2076 dodata:							/* XXX */
2077 
2078 	/*
2079 	 * Process the segment text, merging it into the TCP sequencing queue,
2080 	 * and arranging for acknowledgment of receipt if necessary.
2081 	 * This process logically involves adjusting tp->rcv_wnd as data
2082 	 * is presented to the user (this happens in tcp_usrreq.c,
2083 	 * case PRU_RCVD).  If a FIN has already been received on this
2084 	 * connection then we just ignore the text.
2085 	 */
2086 	if ((tlen || (tiflags & TH_FIN)) &&
2087 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2088 #ifdef TCP_SACK
2089 		tcp_seq laststart = th->th_seq;
2090 		tcp_seq lastend = th->th_seq + tlen;
2091 #endif
2092 		if (th->th_seq == tp->rcv_nxt && TAILQ_EMPTY(&tp->t_segq) &&
2093 		    tp->t_state == TCPS_ESTABLISHED) {
2094 			TCP_SETUP_ACK(tp, tiflags, m);
2095 			tp->rcv_nxt += tlen;
2096 			tiflags = th->th_flags & TH_FIN;
2097 			tcpstat.tcps_rcvpack++;
2098 			tcpstat.tcps_rcvbyte += tlen;
2099 			ND6_HINT(tp);
2100 			if (so->so_state & SS_CANTRCVMORE)
2101 				m_freem(m);
2102 			else {
2103 				m_adj(m, hdroptlen);
2104 				sbappendstream(&so->so_rcv, m);
2105 			}
2106 			tp->t_flags |= TF_BLOCKOUTPUT;
2107 			sorwakeup(so);
2108 			tp->t_flags &= ~TF_BLOCKOUTPUT;
2109 		} else {
2110 			m_adj(m, hdroptlen);
2111 			tiflags = tcp_reass(tp, th, m, &tlen);
2112 			tp->t_flags |= TF_ACKNOW;
2113 		}
2114 #ifdef TCP_SACK
2115 		if (tp->sack_enable)
2116 			tcp_update_sack_list(tp, laststart, lastend);
2117 #endif
2118 
2119 		/*
2120 		 * variable len never referenced again in modern BSD,
2121 		 * so why bother computing it ??
2122 		 */
2123 #if 0
2124 		/*
2125 		 * Note the amount of data that peer has sent into
2126 		 * our window, in order to estimate the sender's
2127 		 * buffer size.
2128 		 */
2129 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2130 #endif /* 0 */
2131 	} else {
2132 		m_freem(m);
2133 		tiflags &= ~TH_FIN;
2134 	}
2135 
2136 	/*
2137 	 * If FIN is received ACK the FIN and let the user know
2138 	 * that the connection is closing.  Ignore a FIN received before
2139 	 * the connection is fully established.
2140 	 */
2141 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2142 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2143 			socantrcvmore(so);
2144 			tp->t_flags |= TF_ACKNOW;
2145 			tp->rcv_nxt++;
2146 		}
2147 		switch (tp->t_state) {
2148 
2149 		/*
2150 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2151 		 */
2152 		case TCPS_ESTABLISHED:
2153 			tp->t_state = TCPS_CLOSE_WAIT;
2154 			break;
2155 
2156 		/*
2157 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2158 		 * enter the CLOSING state.
2159 		 */
2160 		case TCPS_FIN_WAIT_1:
2161 			tp->t_state = TCPS_CLOSING;
2162 			break;
2163 
2164 		/*
2165 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2166 		 * starting the time-wait timer, turning off the other
2167 		 * standard timers.
2168 		 */
2169 		case TCPS_FIN_WAIT_2:
2170 			tp->t_state = TCPS_TIME_WAIT;
2171 			tcp_canceltimers(tp);
2172 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2173 			soisdisconnected(so);
2174 			break;
2175 
2176 		/*
2177 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2178 		 */
2179 		case TCPS_TIME_WAIT:
2180 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2181 			break;
2182 		}
2183 	}
2184 	if (so->so_options & SO_DEBUG) {
2185 		switch (tp->pf) {
2186 #ifdef INET6
2187 		case PF_INET6:
2188 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti6,
2189 			    0, tlen);
2190 			break;
2191 #endif /* INET6 */
2192 		case PF_INET:
2193 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti,
2194 			    0, tlen);
2195 			break;
2196 		}
2197 	}
2198 
2199 	/*
2200 	 * Return any desired output.
2201 	 */
2202 	if (tp->t_flags & (TF_ACKNOW|TF_NEEDOUTPUT))
2203 		(void) tcp_output(tp);
2204 	return;
2205 
2206 badsyn:
2207 	/*
2208 	 * Received a bad SYN.  Increment counters and dropwithreset.
2209 	 */
2210 	tcpstat.tcps_badsyn++;
2211 	tp = NULL;
2212 	goto dropwithreset;
2213 
2214 dropafterack_ratelim:
2215 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2216 	    tcp_ackdrop_ppslim) == 0) {
2217 		/* XXX stat */
2218 		goto drop;
2219 	}
2220 	/* ...fall into dropafterack... */
2221 
2222 dropafterack:
2223 	/*
2224 	 * Generate an ACK dropping incoming segment if it occupies
2225 	 * sequence space, where the ACK reflects our state.
2226 	 */
2227 	if (tiflags & TH_RST)
2228 		goto drop;
2229 	m_freem(m);
2230 	tp->t_flags |= TF_ACKNOW;
2231 	(void) tcp_output(tp);
2232 	return;
2233 
2234 dropwithreset_ratelim:
2235 	/*
2236 	 * We may want to rate-limit RSTs in certain situations,
2237 	 * particularly if we are sending an RST in response to
2238 	 * an attempt to connect to or otherwise communicate with
2239 	 * a port for which we have no socket.
2240 	 */
2241 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2242 	    tcp_rst_ppslim) == 0) {
2243 		/* XXX stat */
2244 		goto drop;
2245 	}
2246 	/* ...fall into dropwithreset... */
2247 
2248 dropwithreset:
2249 	/*
2250 	 * Generate a RST, dropping incoming segment.
2251 	 * Make ACK acceptable to originator of segment.
2252 	 * Don't bother to respond to RST.
2253 	 */
2254 	if (tiflags & TH_RST)
2255 		goto drop;
2256 	if (tiflags & TH_ACK) {
2257 		tcp_respond(tp, mtod(m, caddr_t), th, (tcp_seq)0, th->th_ack,
2258 		    TH_RST, m->m_pkthdr.rdomain);
2259 	} else {
2260 		if (tiflags & TH_SYN)
2261 			tlen++;
2262 		tcp_respond(tp, mtod(m, caddr_t), th, th->th_seq + tlen,
2263 		    (tcp_seq)0, TH_RST|TH_ACK, m->m_pkthdr.rdomain);
2264 	}
2265 	m_freem(m);
2266 	return;
2267 
2268 drop:
2269 	/*
2270 	 * Drop space held by incoming segment and return.
2271 	 */
2272 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
2273 		switch (tp->pf) {
2274 #ifdef INET6
2275 		case PF_INET6:
2276 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti6,
2277 			    0, tlen);
2278 			break;
2279 #endif /* INET6 */
2280 		case PF_INET:
2281 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti,
2282 			    0, tlen);
2283 			break;
2284 		}
2285 	}
2286 
2287 	m_freem(m);
2288 	return;
2289 }
2290 
2291 int
2292 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2293     struct mbuf *m, int iphlen, struct tcp_opt_info *oi,
2294     u_int rtableid)
2295 {
2296 	u_int16_t mss = 0;
2297 	int opt, optlen;
2298 #ifdef TCP_SIGNATURE
2299 	caddr_t sigp = NULL;
2300 	struct tdb *tdb = NULL;
2301 #endif /* TCP_SIGNATURE */
2302 
2303 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2304 		opt = cp[0];
2305 		if (opt == TCPOPT_EOL)
2306 			break;
2307 		if (opt == TCPOPT_NOP)
2308 			optlen = 1;
2309 		else {
2310 			if (cnt < 2)
2311 				break;
2312 			optlen = cp[1];
2313 			if (optlen < 2 || optlen > cnt)
2314 				break;
2315 		}
2316 		switch (opt) {
2317 
2318 		default:
2319 			continue;
2320 
2321 		case TCPOPT_MAXSEG:
2322 			if (optlen != TCPOLEN_MAXSEG)
2323 				continue;
2324 			if (!(th->th_flags & TH_SYN))
2325 				continue;
2326 			if (TCPS_HAVERCVDSYN(tp->t_state))
2327 				continue;
2328 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
2329 			NTOHS(mss);
2330 			oi->maxseg = mss;
2331 			break;
2332 
2333 		case TCPOPT_WINDOW:
2334 			if (optlen != TCPOLEN_WINDOW)
2335 				continue;
2336 			if (!(th->th_flags & TH_SYN))
2337 				continue;
2338 			if (TCPS_HAVERCVDSYN(tp->t_state))
2339 				continue;
2340 			tp->t_flags |= TF_RCVD_SCALE;
2341 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2342 			break;
2343 
2344 		case TCPOPT_TIMESTAMP:
2345 			if (optlen != TCPOLEN_TIMESTAMP)
2346 				continue;
2347 			oi->ts_present = 1;
2348 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2349 			NTOHL(oi->ts_val);
2350 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2351 			NTOHL(oi->ts_ecr);
2352 
2353 			if (!(th->th_flags & TH_SYN))
2354 				continue;
2355 			if (TCPS_HAVERCVDSYN(tp->t_state))
2356 				continue;
2357 			/*
2358 			 * A timestamp received in a SYN makes
2359 			 * it ok to send timestamp requests and replies.
2360 			 */
2361 			tp->t_flags |= TF_RCVD_TSTMP;
2362 			tp->ts_recent = oi->ts_val;
2363 			tp->ts_recent_age = tcp_now;
2364 			break;
2365 
2366 #ifdef TCP_SACK
2367 		case TCPOPT_SACK_PERMITTED:
2368 			if (!tp->sack_enable || optlen!=TCPOLEN_SACK_PERMITTED)
2369 				continue;
2370 			if (!(th->th_flags & TH_SYN))
2371 				continue;
2372 			if (TCPS_HAVERCVDSYN(tp->t_state))
2373 				continue;
2374 			/* MUST only be set on SYN */
2375 			tp->t_flags |= TF_SACK_PERMIT;
2376 			break;
2377 		case TCPOPT_SACK:
2378 			tcp_sack_option(tp, th, cp, optlen);
2379 			break;
2380 #endif
2381 #ifdef TCP_SIGNATURE
2382 		case TCPOPT_SIGNATURE:
2383 			if (optlen != TCPOLEN_SIGNATURE)
2384 				continue;
2385 
2386 			if (sigp && timingsafe_bcmp(sigp, cp + 2, 16))
2387 				return (-1);
2388 
2389 			sigp = cp + 2;
2390 			break;
2391 #endif /* TCP_SIGNATURE */
2392 		}
2393 	}
2394 
2395 #ifdef TCP_SIGNATURE
2396 	if (tp->t_flags & TF_SIGNATURE) {
2397 		union sockaddr_union src, dst;
2398 
2399 		memset(&src, 0, sizeof(union sockaddr_union));
2400 		memset(&dst, 0, sizeof(union sockaddr_union));
2401 
2402 		switch (tp->pf) {
2403 		case 0:
2404 #ifdef INET
2405 		case AF_INET:
2406 			src.sa.sa_len = sizeof(struct sockaddr_in);
2407 			src.sa.sa_family = AF_INET;
2408 			src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
2409 			dst.sa.sa_len = sizeof(struct sockaddr_in);
2410 			dst.sa.sa_family = AF_INET;
2411 			dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
2412 			break;
2413 #endif
2414 #ifdef INET6
2415 		case AF_INET6:
2416 			src.sa.sa_len = sizeof(struct sockaddr_in6);
2417 			src.sa.sa_family = AF_INET6;
2418 			src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
2419 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
2420 			dst.sa.sa_family = AF_INET6;
2421 			dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
2422 			break;
2423 #endif /* INET6 */
2424 		}
2425 
2426 		tdb = gettdbbysrcdst(rtable_l2(rtableid),
2427 		    0, &src, &dst, IPPROTO_TCP);
2428 
2429 		/*
2430 		 * We don't have an SA for this peer, so we turn off
2431 		 * TF_SIGNATURE on the listen socket
2432 		 */
2433 		if (tdb == NULL && tp->t_state == TCPS_LISTEN)
2434 			tp->t_flags &= ~TF_SIGNATURE;
2435 
2436 	}
2437 
2438 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2439 		tcpstat.tcps_rcvbadsig++;
2440 		return (-1);
2441 	}
2442 
2443 	if (sigp) {
2444 		char sig[16];
2445 
2446 		if (tdb == NULL) {
2447 			tcpstat.tcps_rcvbadsig++;
2448 			return (-1);
2449 		}
2450 
2451 		if (tcp_signature(tdb, tp->pf, m, th, iphlen, 1, sig) < 0)
2452 			return (-1);
2453 
2454 		if (timingsafe_bcmp(sig, sigp, 16)) {
2455 			tcpstat.tcps_rcvbadsig++;
2456 			return (-1);
2457 		}
2458 
2459 		tcpstat.tcps_rcvgoodsig++;
2460 	}
2461 #endif /* TCP_SIGNATURE */
2462 
2463 	return (0);
2464 }
2465 
2466 #if defined(TCP_SACK)
2467 u_long
2468 tcp_seq_subtract(u_long a, u_long b)
2469 {
2470 	return ((long)(a - b));
2471 }
2472 #endif
2473 
2474 
2475 #ifdef TCP_SACK
2476 /*
2477  * This function is called upon receipt of new valid data (while not in header
2478  * prediction mode), and it updates the ordered list of sacks.
2479  */
2480 void
2481 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_laststart,
2482     tcp_seq rcv_lastend)
2483 {
2484 	/*
2485 	 * First reported block MUST be the most recent one.  Subsequent
2486 	 * blocks SHOULD be in the order in which they arrived at the
2487 	 * receiver.  These two conditions make the implementation fully
2488 	 * compliant with RFC 2018.
2489 	 */
2490 	int i, j = 0, count = 0, lastpos = -1;
2491 	struct sackblk sack, firstsack, temp[MAX_SACK_BLKS];
2492 
2493 	/* First clean up current list of sacks */
2494 	for (i = 0; i < tp->rcv_numsacks; i++) {
2495 		sack = tp->sackblks[i];
2496 		if (sack.start == 0 && sack.end == 0) {
2497 			count++; /* count = number of blocks to be discarded */
2498 			continue;
2499 		}
2500 		if (SEQ_LEQ(sack.end, tp->rcv_nxt)) {
2501 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2502 			count++;
2503 		} else {
2504 			temp[j].start = tp->sackblks[i].start;
2505 			temp[j++].end = tp->sackblks[i].end;
2506 		}
2507 	}
2508 	tp->rcv_numsacks -= count;
2509 	if (tp->rcv_numsacks == 0) { /* no sack blocks currently (fast path) */
2510 		tcp_clean_sackreport(tp);
2511 		if (SEQ_LT(tp->rcv_nxt, rcv_laststart)) {
2512 			/* ==> need first sack block */
2513 			tp->sackblks[0].start = rcv_laststart;
2514 			tp->sackblks[0].end = rcv_lastend;
2515 			tp->rcv_numsacks = 1;
2516 		}
2517 		return;
2518 	}
2519 	/* Otherwise, sack blocks are already present. */
2520 	for (i = 0; i < tp->rcv_numsacks; i++)
2521 		tp->sackblks[i] = temp[i]; /* first copy back sack list */
2522 	if (SEQ_GEQ(tp->rcv_nxt, rcv_lastend))
2523 		return;     /* sack list remains unchanged */
2524 	/*
2525 	 * From here, segment just received should be (part of) the 1st sack.
2526 	 * Go through list, possibly coalescing sack block entries.
2527 	 */
2528 	firstsack.start = rcv_laststart;
2529 	firstsack.end = rcv_lastend;
2530 	for (i = 0; i < tp->rcv_numsacks; i++) {
2531 		sack = tp->sackblks[i];
2532 		if (SEQ_LT(sack.end, firstsack.start) ||
2533 		    SEQ_GT(sack.start, firstsack.end))
2534 			continue; /* no overlap */
2535 		if (sack.start == firstsack.start && sack.end == firstsack.end){
2536 			/*
2537 			 * identical block; delete it here since we will
2538 			 * move it to the front of the list.
2539 			 */
2540 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2541 			lastpos = i;    /* last posn with a zero entry */
2542 			continue;
2543 		}
2544 		if (SEQ_LEQ(sack.start, firstsack.start))
2545 			firstsack.start = sack.start; /* merge blocks */
2546 		if (SEQ_GEQ(sack.end, firstsack.end))
2547 			firstsack.end = sack.end;     /* merge blocks */
2548 		tp->sackblks[i].start = tp->sackblks[i].end = 0;
2549 		lastpos = i;    /* last posn with a zero entry */
2550 	}
2551 	if (lastpos != -1) {    /* at least one merge */
2552 		for (i = 0, j = 1; i < tp->rcv_numsacks; i++) {
2553 			sack = tp->sackblks[i];
2554 			if (sack.start == 0 && sack.end == 0)
2555 				continue;
2556 			temp[j++] = sack;
2557 		}
2558 		tp->rcv_numsacks = j; /* including first blk (added later) */
2559 		for (i = 1; i < tp->rcv_numsacks; i++) /* now copy back */
2560 			tp->sackblks[i] = temp[i];
2561 	} else {        /* no merges -- shift sacks by 1 */
2562 		if (tp->rcv_numsacks < MAX_SACK_BLKS)
2563 			tp->rcv_numsacks++;
2564 		for (i = tp->rcv_numsacks-1; i > 0; i--)
2565 			tp->sackblks[i] = tp->sackblks[i-1];
2566 	}
2567 	tp->sackblks[0] = firstsack;
2568 	return;
2569 }
2570 
2571 /*
2572  * Process the TCP SACK option.  tp->snd_holes is an ordered list
2573  * of holes (oldest to newest, in terms of the sequence space).
2574  */
2575 void
2576 tcp_sack_option(struct tcpcb *tp, struct tcphdr *th, u_char *cp, int optlen)
2577 {
2578 	int tmp_olen;
2579 	u_char *tmp_cp;
2580 	struct sackhole *cur, *p, *temp;
2581 
2582 	if (!tp->sack_enable)
2583 		return;
2584 	/* SACK without ACK doesn't make sense. */
2585 	if ((th->th_flags & TH_ACK) == 0)
2586 	       return;
2587 	/* Make sure the ACK on this segment is in [snd_una, snd_max]. */
2588 	if (SEQ_LT(th->th_ack, tp->snd_una) ||
2589 	    SEQ_GT(th->th_ack, tp->snd_max))
2590 		return;
2591 	/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2592 	if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2593 		return;
2594 	/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2595 	tmp_cp = cp + 2;
2596 	tmp_olen = optlen - 2;
2597 	tcpstat.tcps_sack_rcv_opts++;
2598 	if (tp->snd_numholes < 0)
2599 		tp->snd_numholes = 0;
2600 	if (tp->t_maxseg == 0)
2601 		panic("tcp_sack_option"); /* Should never happen */
2602 	while (tmp_olen > 0) {
2603 		struct sackblk sack;
2604 
2605 		bcopy(tmp_cp, (char *) &(sack.start), sizeof(tcp_seq));
2606 		NTOHL(sack.start);
2607 		bcopy(tmp_cp + sizeof(tcp_seq),
2608 		    (char *) &(sack.end), sizeof(tcp_seq));
2609 		NTOHL(sack.end);
2610 		tmp_olen -= TCPOLEN_SACK;
2611 		tmp_cp += TCPOLEN_SACK;
2612 		if (SEQ_LEQ(sack.end, sack.start))
2613 			continue; /* bad SACK fields */
2614 		if (SEQ_LEQ(sack.end, tp->snd_una))
2615 			continue; /* old block */
2616 #if defined(TCP_SACK) && defined(TCP_FACK)
2617 		/* Updates snd_fack.  */
2618 		if (SEQ_GT(sack.end, tp->snd_fack))
2619 			tp->snd_fack = sack.end;
2620 #endif /* TCP_FACK */
2621 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
2622 			if (SEQ_LT(sack.start, th->th_ack))
2623 				continue;
2624 		}
2625 		if (SEQ_GT(sack.end, tp->snd_max))
2626 			continue;
2627 		if (tp->snd_holes == NULL) { /* first hole */
2628 			tp->snd_holes = (struct sackhole *)
2629 			    pool_get(&sackhl_pool, PR_NOWAIT);
2630 			if (tp->snd_holes == NULL) {
2631 				/* ENOBUFS, so ignore SACKed block for now*/
2632 				goto done;
2633 			}
2634 			cur = tp->snd_holes;
2635 			cur->start = th->th_ack;
2636 			cur->end = sack.start;
2637 			cur->rxmit = cur->start;
2638 			cur->next = NULL;
2639 			tp->snd_numholes = 1;
2640 			tp->rcv_lastsack = sack.end;
2641 			/*
2642 			 * dups is at least one.  If more data has been
2643 			 * SACKed, it can be greater than one.
2644 			 */
2645 			cur->dups = min(tcprexmtthresh,
2646 			    ((sack.end - cur->end)/tp->t_maxseg));
2647 			if (cur->dups < 1)
2648 				cur->dups = 1;
2649 			continue; /* with next sack block */
2650 		}
2651 		/* Go thru list of holes:  p = previous,  cur = current */
2652 		p = cur = tp->snd_holes;
2653 		while (cur) {
2654 			if (SEQ_LEQ(sack.end, cur->start))
2655 				/* SACKs data before the current hole */
2656 				break; /* no use going through more holes */
2657 			if (SEQ_GEQ(sack.start, cur->end)) {
2658 				/* SACKs data beyond the current hole */
2659 				cur->dups++;
2660 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2661 				    tcprexmtthresh)
2662 					cur->dups = tcprexmtthresh;
2663 				p = cur;
2664 				cur = cur->next;
2665 				continue;
2666 			}
2667 			if (SEQ_LEQ(sack.start, cur->start)) {
2668 				/* Data acks at least the beginning of hole */
2669 #if defined(TCP_SACK) && defined(TCP_FACK)
2670 				if (SEQ_GT(sack.end, cur->rxmit))
2671 					tp->retran_data -=
2672 				    	    tcp_seq_subtract(cur->rxmit,
2673 					    cur->start);
2674 				else
2675 					tp->retran_data -=
2676 					    tcp_seq_subtract(sack.end,
2677 					    cur->start);
2678 #endif /* TCP_FACK */
2679 				if (SEQ_GEQ(sack.end, cur->end)) {
2680 					/* Acks entire hole, so delete hole */
2681 					if (p != cur) {
2682 						p->next = cur->next;
2683 						pool_put(&sackhl_pool, cur);
2684 						cur = p->next;
2685 					} else {
2686 						cur = cur->next;
2687 						pool_put(&sackhl_pool, p);
2688 						p = cur;
2689 						tp->snd_holes = p;
2690 					}
2691 					tp->snd_numholes--;
2692 					continue;
2693 				}
2694 				/* otherwise, move start of hole forward */
2695 				cur->start = sack.end;
2696 				cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
2697 				p = cur;
2698 				cur = cur->next;
2699 				continue;
2700 			}
2701 			/* move end of hole backward */
2702 			if (SEQ_GEQ(sack.end, cur->end)) {
2703 #if defined(TCP_SACK) && defined(TCP_FACK)
2704 				if (SEQ_GT(cur->rxmit, sack.start))
2705 					tp->retran_data -=
2706 					    tcp_seq_subtract(cur->rxmit,
2707 					    sack.start);
2708 #endif /* TCP_FACK */
2709 				cur->end = sack.start;
2710 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
2711 				cur->dups++;
2712 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2713 				    tcprexmtthresh)
2714 					cur->dups = tcprexmtthresh;
2715 				p = cur;
2716 				cur = cur->next;
2717 				continue;
2718 			}
2719 			if (SEQ_LT(cur->start, sack.start) &&
2720 			    SEQ_GT(cur->end, sack.end)) {
2721 				/*
2722 				 * ACKs some data in middle of a hole; need to
2723 				 * split current hole
2724 				 */
2725 				temp = (struct sackhole *)
2726 				    pool_get(&sackhl_pool, PR_NOWAIT);
2727 				if (temp == NULL)
2728 					goto done; /* ENOBUFS */
2729 #if defined(TCP_SACK) && defined(TCP_FACK)
2730 				if (SEQ_GT(cur->rxmit, sack.end))
2731 					tp->retran_data -=
2732 					    tcp_seq_subtract(sack.end,
2733 					    sack.start);
2734 				else if (SEQ_GT(cur->rxmit, sack.start))
2735 					tp->retran_data -=
2736 					    tcp_seq_subtract(cur->rxmit,
2737 					    sack.start);
2738 #endif /* TCP_FACK */
2739 				temp->next = cur->next;
2740 				temp->start = sack.end;
2741 				temp->end = cur->end;
2742 				temp->dups = cur->dups;
2743 				temp->rxmit = SEQ_MAX(cur->rxmit, temp->start);
2744 				cur->end = sack.start;
2745 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
2746 				cur->dups++;
2747 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2748 					tcprexmtthresh)
2749 					cur->dups = tcprexmtthresh;
2750 				cur->next = temp;
2751 				p = temp;
2752 				cur = p->next;
2753 				tp->snd_numholes++;
2754 			}
2755 		}
2756 		/* At this point, p points to the last hole on the list */
2757 		if (SEQ_LT(tp->rcv_lastsack, sack.start)) {
2758 			/*
2759 			 * Need to append new hole at end.
2760 			 * Last hole is p (and it's not NULL).
2761 			 */
2762 			temp = (struct sackhole *)
2763 			    pool_get(&sackhl_pool, PR_NOWAIT);
2764 			if (temp == NULL)
2765 				goto done; /* ENOBUFS */
2766 			temp->start = tp->rcv_lastsack;
2767 			temp->end = sack.start;
2768 			temp->dups = min(tcprexmtthresh,
2769 			    ((sack.end - sack.start)/tp->t_maxseg));
2770 			if (temp->dups < 1)
2771 				temp->dups = 1;
2772 			temp->rxmit = temp->start;
2773 			temp->next = 0;
2774 			p->next = temp;
2775 			tp->rcv_lastsack = sack.end;
2776 			tp->snd_numholes++;
2777 		}
2778 	}
2779 done:
2780 #if defined(TCP_SACK) && defined(TCP_FACK)
2781 	/*
2782 	 * Update retran_data and snd_awnd.  Go through the list of
2783 	 * holes.   Increment retran_data by (hole->rxmit - hole->start).
2784 	 */
2785 	tp->retran_data = 0;
2786 	cur = tp->snd_holes;
2787 	while (cur) {
2788 		tp->retran_data += cur->rxmit - cur->start;
2789 		cur = cur->next;
2790 	}
2791 	tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt, tp->snd_fack) +
2792 	    tp->retran_data;
2793 #endif /* TCP_FACK */
2794 
2795 	return;
2796 }
2797 
2798 /*
2799  * Delete stale (i.e, cumulatively ack'd) holes.  Hole is deleted only if
2800  * it is completely acked; otherwise, tcp_sack_option(), called from
2801  * tcp_dooptions(), will fix up the hole.
2802  */
2803 void
2804 tcp_del_sackholes(struct tcpcb *tp, struct tcphdr *th)
2805 {
2806 	if (tp->sack_enable && tp->t_state != TCPS_LISTEN) {
2807 		/* max because this could be an older ack just arrived */
2808 		tcp_seq lastack = SEQ_GT(th->th_ack, tp->snd_una) ?
2809 			th->th_ack : tp->snd_una;
2810 		struct sackhole *cur = tp->snd_holes;
2811 		struct sackhole *prev;
2812 		while (cur)
2813 			if (SEQ_LEQ(cur->end, lastack)) {
2814 				prev = cur;
2815 				cur = cur->next;
2816 				pool_put(&sackhl_pool, prev);
2817 				tp->snd_numholes--;
2818 			} else if (SEQ_LT(cur->start, lastack)) {
2819 				cur->start = lastack;
2820 				if (SEQ_LT(cur->rxmit, cur->start))
2821 					cur->rxmit = cur->start;
2822 				break;
2823 			} else
2824 				break;
2825 		tp->snd_holes = cur;
2826 	}
2827 }
2828 
2829 /*
2830  * Delete all receiver-side SACK information.
2831  */
2832 void
2833 tcp_clean_sackreport(struct tcpcb *tp)
2834 {
2835 	int i;
2836 
2837 	tp->rcv_numsacks = 0;
2838 	for (i = 0; i < MAX_SACK_BLKS; i++)
2839 		tp->sackblks[i].start = tp->sackblks[i].end=0;
2840 
2841 }
2842 
2843 /*
2844  * Checks for partial ack.  If partial ack arrives, turn off retransmission
2845  * timer, deflate the window, do not clear tp->t_dupacks, and return 1.
2846  * If the ack advances at least to tp->snd_last, return 0.
2847  */
2848 int
2849 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
2850 {
2851 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
2852 		/* Turn off retx. timer (will start again next segment) */
2853 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2854 		tp->t_rtttime = 0;
2855 #ifndef TCP_FACK
2856 		/*
2857 		 * Partial window deflation.  This statement relies on the
2858 		 * fact that tp->snd_una has not been updated yet.  In FACK
2859 		 * hold snd_cwnd constant during fast recovery.
2860 		 */
2861 		if (tp->snd_cwnd > (th->th_ack - tp->snd_una)) {
2862 			tp->snd_cwnd -= th->th_ack - tp->snd_una;
2863 			tp->snd_cwnd += tp->t_maxseg;
2864 		} else
2865 			tp->snd_cwnd = tp->t_maxseg;
2866 #endif
2867 		return (1);
2868 	}
2869 	return (0);
2870 }
2871 #endif /* TCP_SACK */
2872 
2873 /*
2874  * Pull out of band byte out of a segment so
2875  * it doesn't appear in the user's data queue.
2876  * It is still reflected in the segment length for
2877  * sequencing purposes.
2878  */
2879 void
2880 tcp_pulloutofband(struct socket *so, u_int urgent, struct mbuf *m, int off)
2881 {
2882         int cnt = off + urgent - 1;
2883 
2884 	while (cnt >= 0) {
2885 		if (m->m_len > cnt) {
2886 			char *cp = mtod(m, caddr_t) + cnt;
2887 			struct tcpcb *tp = sototcpcb(so);
2888 
2889 			tp->t_iobc = *cp;
2890 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2891 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2892 			m->m_len--;
2893 			return;
2894 		}
2895 		cnt -= m->m_len;
2896 		m = m->m_next;
2897 		if (m == 0)
2898 			break;
2899 	}
2900 	panic("tcp_pulloutofband");
2901 }
2902 
2903 /*
2904  * Collect new round-trip time estimate
2905  * and update averages and current timeout.
2906  */
2907 void
2908 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2909 {
2910 	short delta;
2911 	short rttmin;
2912 
2913 	if (rtt < 0)
2914 		rtt = 0;
2915 	else if (rtt > TCP_RTT_MAX)
2916 		rtt = TCP_RTT_MAX;
2917 
2918 	tcpstat.tcps_rttupdated++;
2919 	if (tp->t_srtt != 0) {
2920 		/*
2921 		 * delta is fixed point with 2 (TCP_RTT_BASE_SHIFT) bits
2922 		 * after the binary point (scaled by 4), whereas
2923 		 * srtt is stored as fixed point with 5 bits after the
2924 		 * binary point (i.e., scaled by 32).  The following magic
2925 		 * is equivalent to the smoothing algorithm in rfc793 with
2926 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2927 		 * point).
2928 		 */
2929 		delta = (rtt << TCP_RTT_BASE_SHIFT) -
2930 		    (tp->t_srtt >> TCP_RTT_SHIFT);
2931 		if ((tp->t_srtt += delta) <= 0)
2932 			tp->t_srtt = 1 << TCP_RTT_BASE_SHIFT;
2933 		/*
2934 		 * We accumulate a smoothed rtt variance (actually, a
2935 		 * smoothed mean difference), then set the retransmit
2936 		 * timer to smoothed rtt + 4 times the smoothed variance.
2937 		 * rttvar is stored as fixed point with 4 bits after the
2938 		 * binary point (scaled by 16).  The following is
2939 		 * equivalent to rfc793 smoothing with an alpha of .75
2940 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2941 		 * rfc793's wired-in beta.
2942 		 */
2943 		if (delta < 0)
2944 			delta = -delta;
2945 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2946 		if ((tp->t_rttvar += delta) <= 0)
2947 			tp->t_rttvar = 1 << TCP_RTT_BASE_SHIFT;
2948 	} else {
2949 		/*
2950 		 * No rtt measurement yet - use the unsmoothed rtt.
2951 		 * Set the variance to half the rtt (so our first
2952 		 * retransmit happens at 3*rtt).
2953 		 */
2954 		tp->t_srtt = (rtt + 1) << (TCP_RTT_SHIFT + TCP_RTT_BASE_SHIFT);
2955 		tp->t_rttvar = (rtt + 1) <<
2956 		    (TCP_RTTVAR_SHIFT + TCP_RTT_BASE_SHIFT - 1);
2957 	}
2958 	tp->t_rtttime = 0;
2959 	tp->t_rxtshift = 0;
2960 
2961 	/*
2962 	 * the retransmit should happen at rtt + 4 * rttvar.
2963 	 * Because of the way we do the smoothing, srtt and rttvar
2964 	 * will each average +1/2 tick of bias.  When we compute
2965 	 * the retransmit timer, we want 1/2 tick of rounding and
2966 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2967 	 * firing of the timer.  The bias will give us exactly the
2968 	 * 1.5 tick we need.  But, because the bias is
2969 	 * statistical, we have to test that we don't drop below
2970 	 * the minimum feasible timer (which is 2 ticks).
2971 	 */
2972 	rttmin = min(max(rtt + 2, tp->t_rttmin), TCPTV_REXMTMAX);
2973 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2974 
2975 	/*
2976 	 * We received an ack for a packet that wasn't retransmitted;
2977 	 * it is probably safe to discard any error indications we've
2978 	 * received recently.  This isn't quite right, but close enough
2979 	 * for now (a route might have failed after we sent a segment,
2980 	 * and the return path might not be symmetrical).
2981 	 */
2982 	tp->t_softerror = 0;
2983 }
2984 
2985 /*
2986  * Determine a reasonable value for maxseg size.
2987  * If the route is known, check route for mtu.
2988  * If none, use an mss that can be handled on the outgoing
2989  * interface without forcing IP to fragment; if bigger than
2990  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2991  * to utilize large mbufs.  If no route is found, route has no mtu,
2992  * or the destination isn't local, use a default, hopefully conservative
2993  * size (usually 512 or the default IP max size, but no more than the mtu
2994  * of the interface), as we can't discover anything about intervening
2995  * gateways or networks.  We also initialize the congestion/slow start
2996  * window to be a single segment if the destination isn't local.
2997  * While looking at the routing entry, we also initialize other path-dependent
2998  * parameters from pre-set or cached values in the routing entry.
2999  *
3000  * Also take into account the space needed for options that we
3001  * send regularly.  Make maxseg shorter by that amount to assure
3002  * that we can send maxseg amount of data even when the options
3003  * are present.  Store the upper limit of the length of options plus
3004  * data in maxopd.
3005  *
3006  * NOTE: offer == -1 indicates that the maxseg size changed due to
3007  * Path MTU discovery.
3008  */
3009 int
3010 tcp_mss(struct tcpcb *tp, int offer)
3011 {
3012 	struct rtentry *rt;
3013 	struct ifnet *ifp;
3014 	int mss, mssopt;
3015 	int iphlen;
3016 	struct inpcb *inp;
3017 
3018 	inp = tp->t_inpcb;
3019 
3020 	mssopt = mss = tcp_mssdflt;
3021 
3022 	rt = in_pcbrtentry(inp);
3023 
3024 	if (rt == NULL)
3025 		goto out;
3026 
3027 	ifp = rt->rt_ifp;
3028 
3029 	switch (tp->pf) {
3030 #ifdef INET6
3031 	case AF_INET6:
3032 		iphlen = sizeof(struct ip6_hdr);
3033 		break;
3034 #endif
3035 	case AF_INET:
3036 		iphlen = sizeof(struct ip);
3037 		break;
3038 	default:
3039 		/* the family does not support path MTU discovery */
3040 		goto out;
3041 	}
3042 
3043 #ifdef RTV_MTU
3044 	/*
3045 	 * if there's an mtu associated with the route and we support
3046 	 * path MTU discovery for the underlying protocol family, use it.
3047 	 */
3048 	if (rt->rt_rmx.rmx_mtu) {
3049 		/*
3050 		 * One may wish to lower MSS to take into account options,
3051 		 * especially security-related options.
3052 		 */
3053 		if (tp->pf == AF_INET6 && rt->rt_rmx.rmx_mtu < IPV6_MMTU) {
3054 			/*
3055 			 * RFC2460 section 5, last paragraph: if path MTU is
3056 			 * smaller than 1280, use 1280 as packet size and
3057 			 * attach fragment header.
3058 			 */
3059 			mss = IPV6_MMTU - iphlen - sizeof(struct ip6_frag) -
3060 			    sizeof(struct tcphdr);
3061 		} else
3062 			mss = rt->rt_rmx.rmx_mtu - iphlen - sizeof(struct tcphdr);
3063 	} else
3064 #endif /* RTV_MTU */
3065 	if (!ifp)
3066 		/*
3067 		 * ifp may be null and rmx_mtu may be zero in certain
3068 		 * v6 cases (e.g., if ND wasn't able to resolve the
3069 		 * destination host.
3070 		 */
3071 		goto out;
3072 	else if (ifp->if_flags & IFF_LOOPBACK)
3073 		mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3074 	else if (tp->pf == AF_INET) {
3075 		if (ip_mtudisc)
3076 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3077 		else if (inp && in_localaddr(inp->inp_faddr, inp->inp_rtableid))
3078 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3079 	}
3080 #ifdef INET6
3081 	else if (tp->pf == AF_INET6) {
3082 		/*
3083 		 * for IPv6, path MTU discovery is always turned on,
3084 		 * or the node must use packet size <= 1280.
3085 		 */
3086 		mss = IN6_LINKMTU(ifp) - iphlen - sizeof(struct tcphdr);
3087 	}
3088 #endif /* INET6 */
3089 
3090 	/* Calculate the value that we offer in TCPOPT_MAXSEG */
3091 	if (offer != -1) {
3092 #ifndef INET6
3093 		mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3094 #else
3095 		if (tp->pf == AF_INET6)
3096 			mssopt = IN6_LINKMTU(ifp) - iphlen -
3097 			    sizeof(struct tcphdr);
3098 		else
3099 			mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3100 #endif
3101 
3102 		mssopt = max(tcp_mssdflt, mssopt);
3103 	}
3104 
3105  out:
3106 	/*
3107 	 * The current mss, t_maxseg, is initialized to the default value.
3108 	 * If we compute a smaller value, reduce the current mss.
3109 	 * If we compute a larger value, return it for use in sending
3110 	 * a max seg size option, but don't store it for use
3111 	 * unless we received an offer at least that large from peer.
3112 	 *
3113 	 * However, do not accept offers lower than the minimum of
3114 	 * the interface MTU and 216.
3115 	 */
3116 	if (offer > 0)
3117 		tp->t_peermss = offer;
3118 	if (tp->t_peermss)
3119 		mss = min(mss, max(tp->t_peermss, 216));
3120 
3121 	/* sanity - at least max opt. space */
3122 	mss = max(mss, 64);
3123 
3124 	/*
3125 	 * maxopd stores the maximum length of data AND options
3126 	 * in a segment; maxseg is the amount of data in a normal
3127 	 * segment.  We need to store this value (maxopd) apart
3128 	 * from maxseg, because now every segment carries options
3129 	 * and thus we normally have somewhat less data in segments.
3130 	 */
3131 	tp->t_maxopd = mss;
3132 
3133 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3134 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
3135 		mss -= TCPOLEN_TSTAMP_APPA;
3136 #ifdef TCP_SIGNATURE
3137 	if (tp->t_flags & TF_SIGNATURE)
3138 		mss -= TCPOLEN_SIGLEN;
3139 #endif
3140 
3141 	if (offer == -1) {
3142 		/* mss changed due to Path MTU discovery */
3143 		tp->t_flags &= ~TF_PMTUD_PEND;
3144 		tp->t_pmtud_mtu_sent = 0;
3145 		tp->t_pmtud_mss_acked = 0;
3146 		if (mss < tp->t_maxseg) {
3147 			/*
3148 			 * Follow suggestion in RFC 2414 to reduce the
3149 			 * congestion window by the ratio of the old
3150 			 * segment size to the new segment size.
3151 			 */
3152 			tp->snd_cwnd = ulmax((tp->snd_cwnd / tp->t_maxseg) *
3153 					     mss, mss);
3154 		}
3155 	} else if (tcp_do_rfc3390 == 2) {
3156 		/* increase initial window  */
3157 		tp->snd_cwnd = ulmin(10 * mss, ulmax(2 * mss, 14600));
3158 	} else if (tcp_do_rfc3390) {
3159 		/* increase initial window  */
3160 		tp->snd_cwnd = ulmin(4 * mss, ulmax(2 * mss, 4380));
3161 	} else
3162 		tp->snd_cwnd = mss;
3163 
3164 	tp->t_maxseg = mss;
3165 
3166 	return (offer != -1 ? mssopt : mss);
3167 }
3168 
3169 u_int
3170 tcp_hdrsz(struct tcpcb *tp)
3171 {
3172 	u_int hlen;
3173 
3174 	switch (tp->pf) {
3175 #ifdef INET6
3176 	case AF_INET6:
3177 		hlen = sizeof(struct ip6_hdr);
3178 		break;
3179 #endif
3180 	case AF_INET:
3181 		hlen = sizeof(struct ip);
3182 		break;
3183 	default:
3184 		hlen = 0;
3185 		break;
3186 	}
3187 	hlen += sizeof(struct tcphdr);
3188 
3189 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3190 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
3191 		hlen += TCPOLEN_TSTAMP_APPA;
3192 #ifdef TCP_SIGNATURE
3193 	if (tp->t_flags & TF_SIGNATURE)
3194 		hlen += TCPOLEN_SIGLEN;
3195 #endif
3196 	return (hlen);
3197 }
3198 
3199 /*
3200  * Set connection variables based on the effective MSS.
3201  * We are passed the TCPCB for the actual connection.  If we
3202  * are the server, we are called by the compressed state engine
3203  * when the 3-way handshake is complete.  If we are the client,
3204  * we are called when we receive the SYN,ACK from the server.
3205  *
3206  * NOTE: The t_maxseg value must be initialized in the TCPCB
3207  * before this routine is called!
3208  */
3209 void
3210 tcp_mss_update(struct tcpcb *tp)
3211 {
3212 	int mss;
3213 	u_long bufsize;
3214 	struct rtentry *rt;
3215 	struct socket *so;
3216 
3217 	so = tp->t_inpcb->inp_socket;
3218 	mss = tp->t_maxseg;
3219 
3220 	rt = in_pcbrtentry(tp->t_inpcb);
3221 
3222 	if (rt == NULL)
3223 		return;
3224 
3225 	bufsize = so->so_snd.sb_hiwat;
3226 	if (bufsize < mss) {
3227 		mss = bufsize;
3228 		/* Update t_maxseg and t_maxopd */
3229 		tcp_mss(tp, mss);
3230 	} else {
3231 		bufsize = roundup(bufsize, mss);
3232 		if (bufsize > sb_max)
3233 			bufsize = sb_max;
3234 		(void)sbreserve(&so->so_snd, bufsize);
3235 	}
3236 
3237 	bufsize = so->so_rcv.sb_hiwat;
3238 	if (bufsize > mss) {
3239 		bufsize = roundup(bufsize, mss);
3240 		if (bufsize > sb_max)
3241 			bufsize = sb_max;
3242 		(void)sbreserve(&so->so_rcv, bufsize);
3243 	}
3244 
3245 }
3246 
3247 #if defined (TCP_SACK)
3248 /*
3249  * Checks for partial ack.  If partial ack arrives, force the retransmission
3250  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
3251  * 1.  By setting snd_nxt to ti_ack, this forces retransmission timer to
3252  * be started again.  If the ack advances at least to tp->snd_last, return 0.
3253  */
3254 int
3255 tcp_newreno(struct tcpcb *tp, struct tcphdr *th)
3256 {
3257 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
3258 		/*
3259 		 * snd_una has not been updated and the socket send buffer
3260 		 * not yet drained of the acked data, so we have to leave
3261 		 * snd_una as it was to get the correct data offset in
3262 		 * tcp_output().
3263 		 */
3264 		tcp_seq onxt = tp->snd_nxt;
3265 		u_long  ocwnd = tp->snd_cwnd;
3266 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
3267 		tp->t_rtttime = 0;
3268 		tp->snd_nxt = th->th_ack;
3269 		/*
3270 		 * Set snd_cwnd to one segment beyond acknowledged offset
3271 		 * (tp->snd_una not yet updated when this function is called)
3272 		 */
3273 		tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3274 		(void) tcp_output(tp);
3275 		tp->snd_cwnd = ocwnd;
3276 		if (SEQ_GT(onxt, tp->snd_nxt))
3277 			tp->snd_nxt = onxt;
3278 		/*
3279 		 * Partial window deflation.  Relies on fact that tp->snd_una
3280 		 * not updated yet.
3281 		 */
3282 		if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3283 			tp->snd_cwnd -= th->th_ack - tp->snd_una;
3284 		else
3285 			tp->snd_cwnd = 0;
3286 		tp->snd_cwnd += tp->t_maxseg;
3287 
3288 		return 1;
3289 	}
3290 	return 0;
3291 }
3292 #endif /* TCP_SACK */
3293 
3294 int
3295 tcp_mss_adv(struct ifnet *ifp, int af)
3296 {
3297 	int mss = 0;
3298 	int iphlen;
3299 
3300 	switch (af) {
3301 	case AF_INET:
3302 		if (ifp != NULL)
3303 			mss = ifp->if_mtu;
3304 		iphlen = sizeof(struct ip);
3305 		break;
3306 #ifdef INET6
3307 	case AF_INET6:
3308 		if (ifp != NULL)
3309 			mss = IN6_LINKMTU(ifp);
3310 		iphlen = sizeof(struct ip6_hdr);
3311 		break;
3312 #endif
3313 	}
3314 	mss = mss - iphlen - sizeof(struct tcphdr);
3315 	return (max(mss, tcp_mssdflt));
3316 }
3317 
3318 /*
3319  * TCP compressed state engine.  Currently used to hold compressed
3320  * state for SYN_RECEIVED.
3321  */
3322 
3323 u_long	syn_cache_count;
3324 u_int32_t syn_hash1, syn_hash2;
3325 
3326 #define SYN_HASH(sa, sp, dp) \
3327 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3328 				     ((u_int32_t)(sp)))^syn_hash2)))
3329 #ifndef INET6
3330 #define	SYN_HASHALL(hash, src, dst) \
3331 do {									\
3332 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
3333 		((struct sockaddr_in *)(src))->sin_port,		\
3334 		((struct sockaddr_in *)(dst))->sin_port);		\
3335 } while (/*CONSTCOND*/ 0)
3336 #else
3337 #define SYN_HASH6(sa, sp, dp) \
3338 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3339 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3340 	 & 0x7fffffff)
3341 
3342 #define SYN_HASHALL(hash, src, dst) \
3343 do {									\
3344 	switch ((src)->sa_family) {					\
3345 	case AF_INET:							\
3346 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3347 			((struct sockaddr_in *)(src))->sin_port,	\
3348 			((struct sockaddr_in *)(dst))->sin_port);	\
3349 		break;							\
3350 	case AF_INET6:							\
3351 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3352 			((struct sockaddr_in6 *)(src))->sin6_port,	\
3353 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
3354 		break;							\
3355 	default:							\
3356 		hash = 0;						\
3357 	}								\
3358 } while (/*CONSTCOND*/0)
3359 #endif /* INET6 */
3360 
3361 void
3362 syn_cache_rm(struct syn_cache *sc)
3363 {
3364 	sc->sc_flags |= SCF_DEAD;
3365 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3366 	    sc, sc_bucketq);
3367 	sc->sc_tp = NULL;
3368 	LIST_REMOVE(sc, sc_tpq);
3369 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3370 	timeout_del(&sc->sc_timer);
3371 	syn_cache_count--;
3372 }
3373 
3374 void
3375 syn_cache_put(struct syn_cache *sc)
3376 {
3377 	if (sc->sc_ipopts)
3378 		(void) m_free(sc->sc_ipopts);
3379 	if (sc->sc_route4.ro_rt != NULL)
3380 		RTFREE(sc->sc_route4.ro_rt);
3381 	timeout_set(&sc->sc_timer, syn_cache_reaper, sc);
3382 	timeout_add(&sc->sc_timer, 0);
3383 }
3384 
3385 struct pool syn_cache_pool;
3386 
3387 /*
3388  * We don't estimate RTT with SYNs, so each packet starts with the default
3389  * RTT and each timer step has a fixed timeout value.
3390  */
3391 #define	SYN_CACHE_TIMER_ARM(sc)						\
3392 do {									\
3393 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3394 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3395 	    TCPTV_REXMTMAX);						\
3396 	if (!timeout_initialized(&(sc)->sc_timer))			\
3397 		timeout_set(&(sc)->sc_timer, syn_cache_timer, (sc));	\
3398 	timeout_add(&(sc)->sc_timer, (sc)->sc_rxtcur * (hz / PR_SLOWHZ)); \
3399 } while (/*CONSTCOND*/0)
3400 
3401 #define	SYN_CACHE_TIMESTAMP(sc)	tcp_now + (sc)->sc_modulate
3402 
3403 void
3404 syn_cache_init()
3405 {
3406 	int i;
3407 
3408 	/* Initialize the hash buckets. */
3409 	for (i = 0; i < tcp_syn_cache_size; i++)
3410 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3411 
3412 	/* Initialize the syn cache pool. */
3413 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3414 	    "synpl", NULL);
3415 }
3416 
3417 void
3418 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3419 {
3420 	struct syn_cache_head *scp;
3421 	struct syn_cache *sc2;
3422 	int s;
3423 
3424 	/*
3425 	 * If there are no entries in the hash table, reinitialize
3426 	 * the hash secrets.
3427 	 */
3428 	if (syn_cache_count == 0) {
3429 		syn_hash1 = arc4random();
3430 		syn_hash2 = arc4random();
3431 	}
3432 
3433 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3434 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3435 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3436 
3437 	/*
3438 	 * Make sure that we don't overflow the per-bucket
3439 	 * limit or the total cache size limit.
3440 	 */
3441 	s = splsoftnet();
3442 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3443 		tcpstat.tcps_sc_bucketoverflow++;
3444 		/*
3445 		 * The bucket is full.  Toss the oldest element in the
3446 		 * bucket.  This will be the first entry in the bucket.
3447 		 */
3448 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3449 #ifdef DIAGNOSTIC
3450 		/*
3451 		 * This should never happen; we should always find an
3452 		 * entry in our bucket.
3453 		 */
3454 		if (sc2 == NULL)
3455 			panic("syn_cache_insert: bucketoverflow: impossible");
3456 #endif
3457 		syn_cache_rm(sc2);
3458 		syn_cache_put(sc2);
3459 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3460 		struct syn_cache_head *scp2, *sce;
3461 
3462 		tcpstat.tcps_sc_overflowed++;
3463 		/*
3464 		 * The cache is full.  Toss the oldest entry in the
3465 		 * first non-empty bucket we can find.
3466 		 *
3467 		 * XXX We would really like to toss the oldest
3468 		 * entry in the cache, but we hope that this
3469 		 * condition doesn't happen very often.
3470 		 */
3471 		scp2 = scp;
3472 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3473 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3474 			for (++scp2; scp2 != scp; scp2++) {
3475 				if (scp2 >= sce)
3476 					scp2 = &tcp_syn_cache[0];
3477 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3478 					break;
3479 			}
3480 #ifdef DIAGNOSTIC
3481 			/*
3482 			 * This should never happen; we should always find a
3483 			 * non-empty bucket.
3484 			 */
3485 			if (scp2 == scp)
3486 				panic("syn_cache_insert: cacheoverflow: "
3487 				    "impossible");
3488 #endif
3489 		}
3490 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3491 		syn_cache_rm(sc2);
3492 		syn_cache_put(sc2);
3493 	}
3494 
3495 	/*
3496 	 * Initialize the entry's timer.
3497 	 */
3498 	sc->sc_rxttot = 0;
3499 	sc->sc_rxtshift = 0;
3500 	SYN_CACHE_TIMER_ARM(sc);
3501 
3502 	/* Link it from tcpcb entry */
3503 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3504 
3505 	/* Put it into the bucket. */
3506 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3507 	scp->sch_length++;
3508 	syn_cache_count++;
3509 
3510 	tcpstat.tcps_sc_added++;
3511 	splx(s);
3512 }
3513 
3514 /*
3515  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3516  * If we have retransmitted an entry the maximum number of times, expire
3517  * that entry.
3518  */
3519 void
3520 syn_cache_timer(void *arg)
3521 {
3522 	struct syn_cache *sc = arg;
3523 	int s;
3524 
3525 	s = splsoftnet();
3526 	if (sc->sc_flags & SCF_DEAD) {
3527 		splx(s);
3528 		return;
3529 	}
3530 
3531 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3532 		/* Drop it -- too many retransmissions. */
3533 		goto dropit;
3534 	}
3535 
3536 	/*
3537 	 * Compute the total amount of time this entry has
3538 	 * been on a queue.  If this entry has been on longer
3539 	 * than the keep alive timer would allow, expire it.
3540 	 */
3541 	sc->sc_rxttot += sc->sc_rxtcur;
3542 	if (sc->sc_rxttot >= tcptv_keep_init)
3543 		goto dropit;
3544 
3545 	tcpstat.tcps_sc_retransmitted++;
3546 	(void) syn_cache_respond(sc, NULL);
3547 
3548 	/* Advance the timer back-off. */
3549 	sc->sc_rxtshift++;
3550 	SYN_CACHE_TIMER_ARM(sc);
3551 
3552 	splx(s);
3553 	return;
3554 
3555  dropit:
3556 	tcpstat.tcps_sc_timed_out++;
3557 	syn_cache_rm(sc);
3558 	syn_cache_put(sc);
3559 	splx(s);
3560 }
3561 
3562 void
3563 syn_cache_reaper(void *arg)
3564 {
3565 	struct syn_cache *sc = arg;
3566 	int s;
3567 
3568 	s = splsoftnet();
3569 	pool_put(&syn_cache_pool, (sc));
3570 	splx(s);
3571 	return;
3572 }
3573 
3574 /*
3575  * Remove syn cache created by the specified tcb entry,
3576  * because this does not make sense to keep them
3577  * (if there's no tcb entry, syn cache entry will never be used)
3578  */
3579 void
3580 syn_cache_cleanup(struct tcpcb *tp)
3581 {
3582 	struct syn_cache *sc, *nsc;
3583 	int s;
3584 
3585 	s = splsoftnet();
3586 
3587 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3588 		nsc = LIST_NEXT(sc, sc_tpq);
3589 
3590 #ifdef DIAGNOSTIC
3591 		if (sc->sc_tp != tp)
3592 			panic("invalid sc_tp in syn_cache_cleanup");
3593 #endif
3594 		syn_cache_rm(sc);
3595 		syn_cache_put(sc);
3596 	}
3597 	/* just for safety */
3598 	LIST_INIT(&tp->t_sc);
3599 
3600 	splx(s);
3601 }
3602 
3603 /*
3604  * Find an entry in the syn cache.
3605  */
3606 struct syn_cache *
3607 syn_cache_lookup(struct sockaddr *src, struct sockaddr *dst,
3608     struct syn_cache_head **headp, u_int rtableid)
3609 {
3610 	struct syn_cache *sc;
3611 	struct syn_cache_head *scp;
3612 	u_int32_t hash;
3613 	int s;
3614 
3615 	SYN_HASHALL(hash, src, dst);
3616 
3617 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3618 	*headp = scp;
3619 	s = splsoftnet();
3620 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3621 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3622 		if (sc->sc_hash != hash)
3623 			continue;
3624 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3625 		    !bcmp(&sc->sc_dst, dst, dst->sa_len) &&
3626 		    rtable_l2(rtableid) == rtable_l2(sc->sc_rtableid)) {
3627 			splx(s);
3628 			return (sc);
3629 		}
3630 	}
3631 	splx(s);
3632 	return (NULL);
3633 }
3634 
3635 /*
3636  * This function gets called when we receive an ACK for a
3637  * socket in the LISTEN state.  We look up the connection
3638  * in the syn cache, and if its there, we pull it out of
3639  * the cache and turn it into a full-blown connection in
3640  * the SYN-RECEIVED state.
3641  *
3642  * The return values may not be immediately obvious, and their effects
3643  * can be subtle, so here they are:
3644  *
3645  *	NULL	SYN was not found in cache; caller should drop the
3646  *		packet and send an RST.
3647  *
3648  *	-1	We were unable to create the new connection, and are
3649  *		aborting it.  An ACK,RST is being sent to the peer
3650  *		(unless we got screwey sequence numbners; see below),
3651  *		because the 3-way handshake has been completed.  Caller
3652  *		should not free the mbuf, since we may be using it.  If
3653  *		we are not, we will free it.
3654  *
3655  *	Otherwise, the return value is a pointer to the new socket
3656  *	associated with the connection.
3657  */
3658 struct socket *
3659 syn_cache_get(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3660     u_int hlen, u_int tlen, struct socket *so, struct mbuf *m)
3661 {
3662 	struct syn_cache *sc;
3663 	struct syn_cache_head *scp;
3664 	struct inpcb *inp = NULL;
3665 	struct tcpcb *tp = NULL;
3666 	struct mbuf *am;
3667 	int s;
3668 	struct socket *oso;
3669 #if NPF > 0
3670 	struct pf_divert *divert = NULL;
3671 #endif
3672 
3673 	s = splsoftnet();
3674 	if ((sc = syn_cache_lookup(src, dst, &scp,
3675 	    sotoinpcb(so)->inp_rtableid)) == NULL) {
3676 		splx(s);
3677 		return (NULL);
3678 	}
3679 
3680 	/*
3681 	 * Verify the sequence and ack numbers.  Try getting the correct
3682 	 * response again.
3683 	 */
3684 	if ((th->th_ack != sc->sc_iss + 1) ||
3685 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3686 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3687 		(void) syn_cache_respond(sc, m);
3688 		splx(s);
3689 		return ((struct socket *)(-1));
3690 	}
3691 
3692 	/* Remove this cache entry */
3693 	syn_cache_rm(sc);
3694 	splx(s);
3695 
3696 	/*
3697 	 * Ok, create the full blown connection, and set things up
3698 	 * as they would have been set up if we had created the
3699 	 * connection when the SYN arrived.  If we can't create
3700 	 * the connection, abort it.
3701 	 */
3702 	oso = so;
3703 	so = sonewconn(so, SS_ISCONNECTED);
3704 	if (so == NULL)
3705 		goto resetandabort;
3706 
3707 	inp = sotoinpcb(oso);
3708 
3709 #ifdef IPSEC
3710 	/*
3711 	 * We need to copy the required security levels
3712 	 * from the old pcb. Ditto for any other
3713 	 * IPsec-related information.
3714 	 */
3715 	{
3716 	  struct inpcb *newinp = sotoinpcb(so);
3717 	  bcopy(inp->inp_seclevel, newinp->inp_seclevel,
3718 		sizeof(inp->inp_seclevel));
3719 	  newinp->inp_secrequire = inp->inp_secrequire;
3720 	  if (inp->inp_ipo != NULL) {
3721 		  newinp->inp_ipo = inp->inp_ipo;
3722 		  inp->inp_ipo->ipo_ref_count++;
3723 	  }
3724 	  if (inp->inp_ipsec_remotecred != NULL) {
3725 		  newinp->inp_ipsec_remotecred = inp->inp_ipsec_remotecred;
3726 		  inp->inp_ipsec_remotecred->ref_count++;
3727 	  }
3728 	  if (inp->inp_ipsec_remoteauth != NULL) {
3729 		  newinp->inp_ipsec_remoteauth
3730 		      = inp->inp_ipsec_remoteauth;
3731 		  inp->inp_ipsec_remoteauth->ref_count++;
3732 	  }
3733 	}
3734 #endif /* IPSEC */
3735 #ifdef INET6
3736 	/*
3737 	 * inp still has the OLD in_pcb stuff, set the
3738 	 * v6-related flags on the new guy, too.
3739 	 */
3740 	{
3741 	  int flags = inp->inp_flags;
3742 	  struct inpcb *oldinpcb = inp;
3743 
3744 	  inp = sotoinpcb(so);
3745 	  inp->inp_flags |= (flags & INP_IPV6);
3746 	  if ((inp->inp_flags & INP_IPV6) != 0) {
3747 	    inp->inp_ipv6.ip6_hlim =
3748 	      oldinpcb->inp_ipv6.ip6_hlim;
3749 	  }
3750 	}
3751 #else /* INET6 */
3752 	inp = sotoinpcb(so);
3753 #endif /* INET6 */
3754 
3755 #if NPF > 0
3756 	if (m && m->m_pkthdr.pf.flags & PF_TAG_DIVERTED &&
3757 	    (divert = pf_find_divert(m)) != NULL)
3758 		inp->inp_rtableid = divert->rdomain;
3759 	else
3760 #endif
3761 	/* inherit rtable from listening socket */
3762 	inp->inp_rtableid = sc->sc_rtableid;
3763 
3764 	inp->inp_lport = th->th_dport;
3765 	switch (src->sa_family) {
3766 #ifdef INET6
3767 	case AF_INET6:
3768 		inp->inp_laddr6 = ((struct sockaddr_in6 *)dst)->sin6_addr;
3769 		break;
3770 #endif /* INET6 */
3771 	case AF_INET:
3772 
3773 		inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3774 		inp->inp_options = ip_srcroute(m);
3775 		if (inp->inp_options == NULL) {
3776 			inp->inp_options = sc->sc_ipopts;
3777 			sc->sc_ipopts = NULL;
3778 		}
3779 		break;
3780 	}
3781 	in_pcbrehash(inp);
3782 
3783 	/*
3784 	 * Give the new socket our cached route reference.
3785 	 */
3786 	if (src->sa_family == AF_INET)
3787 		inp->inp_route = sc->sc_route4;         /* struct assignment */
3788 #ifdef INET6
3789 	else
3790 		inp->inp_route6 = sc->sc_route6;
3791 #endif
3792 	sc->sc_route4.ro_rt = NULL;
3793 
3794 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3795 	if (am == NULL)
3796 		goto resetandabort;
3797 	am->m_len = src->sa_len;
3798 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3799 
3800 	switch (src->sa_family) {
3801 	case AF_INET:
3802 		/* drop IPv4 packet to AF_INET6 socket */
3803 		if (inp->inp_flags & INP_IPV6) {
3804 			(void) m_free(am);
3805 			goto resetandabort;
3806 		}
3807 		if (in_pcbconnect(inp, am)) {
3808 			(void) m_free(am);
3809 			goto resetandabort;
3810 		}
3811 		break;
3812 #ifdef INET6
3813 	case AF_INET6:
3814 		if (in6_pcbconnect(inp, am)) {
3815 			(void) m_free(am);
3816 			goto resetandabort;
3817 		}
3818 		break;
3819 #endif
3820 	}
3821 	(void) m_free(am);
3822 
3823 	tp = intotcpcb(inp);
3824 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3825 	if (sc->sc_request_r_scale != 15) {
3826 		tp->requested_s_scale = sc->sc_requested_s_scale;
3827 		tp->request_r_scale = sc->sc_request_r_scale;
3828 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3829 	}
3830 	if (sc->sc_flags & SCF_TIMESTAMP)
3831 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3832 
3833 	tp->t_template = tcp_template(tp);
3834 	if (tp->t_template == 0) {
3835 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3836 		so = NULL;
3837 		m_freem(m);
3838 		goto abort;
3839 	}
3840 #ifdef TCP_SACK
3841 	tp->sack_enable = sc->sc_flags & SCF_SACK_PERMIT;
3842 #endif
3843 
3844 	tp->ts_modulate = sc->sc_modulate;
3845 	tp->ts_recent = sc->sc_timestamp;
3846 	tp->iss = sc->sc_iss;
3847 	tp->irs = sc->sc_irs;
3848 	tcp_sendseqinit(tp);
3849 #if defined (TCP_SACK) || defined(TCP_ECN)
3850 	tp->snd_last = tp->snd_una;
3851 #endif /* TCP_SACK */
3852 #if defined(TCP_SACK) && defined(TCP_FACK)
3853 	tp->snd_fack = tp->snd_una;
3854 	tp->retran_data = 0;
3855 	tp->snd_awnd = 0;
3856 #endif /* TCP_FACK */
3857 #ifdef TCP_ECN
3858 	if (sc->sc_flags & SCF_ECN_PERMIT) {
3859 		tp->t_flags |= TF_ECN_PERMIT;
3860 		tcpstat.tcps_ecn_accepts++;
3861 	}
3862 #endif
3863 #ifdef TCP_SACK
3864 	if (sc->sc_flags & SCF_SACK_PERMIT)
3865 		tp->t_flags |= TF_SACK_PERMIT;
3866 #endif
3867 #ifdef TCP_SIGNATURE
3868 	if (sc->sc_flags & SCF_SIGNATURE)
3869 		tp->t_flags |= TF_SIGNATURE;
3870 #endif
3871 	tcp_rcvseqinit(tp);
3872 	tp->t_state = TCPS_SYN_RECEIVED;
3873 	tp->t_rcvtime = tcp_now;
3874 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcptv_keep_init);
3875 	tcpstat.tcps_accepts++;
3876 
3877 	tcp_mss(tp, sc->sc_peermaxseg);	 /* sets t_maxseg */
3878 	if (sc->sc_peermaxseg)
3879 		tcp_mss_update(tp);
3880 	/* Reset initial window to 1 segment for retransmit */
3881 	if (sc->sc_rxtshift > 0)
3882 		tp->snd_cwnd = tp->t_maxseg;
3883 	tp->snd_wl1 = sc->sc_irs;
3884 	tp->rcv_up = sc->sc_irs + 1;
3885 
3886 	/*
3887 	 * This is what whould have happened in tcp_output() when
3888 	 * the SYN,ACK was sent.
3889 	 */
3890 	tp->snd_up = tp->snd_una;
3891 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3892 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3893 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3894 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3895 	tp->last_ack_sent = tp->rcv_nxt;
3896 
3897 	tcpstat.tcps_sc_completed++;
3898 	syn_cache_put(sc);
3899 	return (so);
3900 
3901 resetandabort:
3902 	tcp_respond(NULL, mtod(m, caddr_t), th, (tcp_seq)0, th->th_ack, TH_RST,
3903 	    m->m_pkthdr.rdomain);
3904 	m_freem(m);
3905 abort:
3906 	if (so != NULL)
3907 		(void) soabort(so);
3908 	syn_cache_put(sc);
3909 	tcpstat.tcps_sc_aborted++;
3910 	return ((struct socket *)(-1));
3911 }
3912 
3913 /*
3914  * This function is called when we get a RST for a
3915  * non-existent connection, so that we can see if the
3916  * connection is in the syn cache.  If it is, zap it.
3917  */
3918 
3919 void
3920 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3921     u_int rtableid)
3922 {
3923 	struct syn_cache *sc;
3924 	struct syn_cache_head *scp;
3925 	int s = splsoftnet();
3926 
3927 	if ((sc = syn_cache_lookup(src, dst, &scp, rtableid)) == NULL) {
3928 		splx(s);
3929 		return;
3930 	}
3931 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3932 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3933 		splx(s);
3934 		return;
3935 	}
3936 	syn_cache_rm(sc);
3937 	splx(s);
3938 	tcpstat.tcps_sc_reset++;
3939 	syn_cache_put(sc);
3940 }
3941 
3942 void
3943 syn_cache_unreach(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3944     u_int rtableid)
3945 {
3946 	struct syn_cache *sc;
3947 	struct syn_cache_head *scp;
3948 	int s;
3949 
3950 	s = splsoftnet();
3951 	if ((sc = syn_cache_lookup(src, dst, &scp, rtableid)) == NULL) {
3952 		splx(s);
3953 		return;
3954 	}
3955 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3956 	if (ntohl (th->th_seq) != sc->sc_iss) {
3957 		splx(s);
3958 		return;
3959 	}
3960 
3961 	/*
3962 	 * If we've retransmitted 3 times and this is our second error,
3963 	 * we remove the entry.  Otherwise, we allow it to continue on.
3964 	 * This prevents us from incorrectly nuking an entry during a
3965 	 * spurious network outage.
3966 	 *
3967 	 * See tcp_notify().
3968 	 */
3969 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3970 		sc->sc_flags |= SCF_UNREACH;
3971 		splx(s);
3972 		return;
3973 	}
3974 
3975 	syn_cache_rm(sc);
3976 	splx(s);
3977 	tcpstat.tcps_sc_unreach++;
3978 	syn_cache_put(sc);
3979 }
3980 
3981 /*
3982  * Given a LISTEN socket and an inbound SYN request, add
3983  * this to the syn cache, and send back a segment:
3984  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3985  * to the source.
3986  *
3987  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3988  * Doing so would require that we hold onto the data and deliver it
3989  * to the application.  However, if we are the target of a SYN-flood
3990  * DoS attack, an attacker could send data which would eventually
3991  * consume all available buffer space if it were ACKed.  By not ACKing
3992  * the data, we avoid this DoS scenario.
3993  */
3994 
3995 int
3996 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3997     u_int iphlen, struct socket *so, struct mbuf *m, u_char *optp, int optlen,
3998     struct tcp_opt_info *oi, tcp_seq *issp)
3999 {
4000 	struct tcpcb tb, *tp;
4001 	long win;
4002 	struct syn_cache *sc;
4003 	struct syn_cache_head *scp;
4004 	struct mbuf *ipopts;
4005 
4006 	tp = sototcpcb(so);
4007 
4008 	/*
4009 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4010 	 *
4011 	 * Note this check is performed in tcp_input() very early on.
4012 	 */
4013 
4014 	/*
4015 	 * Initialize some local state.
4016 	 */
4017 	win = sbspace(&so->so_rcv);
4018 	if (win > TCP_MAXWIN)
4019 		win = TCP_MAXWIN;
4020 
4021 	bzero(&tb, sizeof(tb));
4022 #ifdef TCP_SIGNATURE
4023 	if (optp || (tp->t_flags & TF_SIGNATURE)) {
4024 #else
4025 	if (optp) {
4026 #endif
4027 		tb.pf = tp->pf;
4028 #ifdef TCP_SACK
4029 		tb.sack_enable = tp->sack_enable;
4030 #endif
4031 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4032 #ifdef TCP_SIGNATURE
4033 		if (tp->t_flags & TF_SIGNATURE)
4034 			tb.t_flags |= TF_SIGNATURE;
4035 #endif
4036 		tb.t_state = TCPS_LISTEN;
4037 		if (tcp_dooptions(&tb, optp, optlen, th, m, iphlen, oi,
4038 		    sotoinpcb(so)->inp_rtableid))
4039 			return (-1);
4040 	}
4041 
4042 	switch (src->sa_family) {
4043 #ifdef INET
4044 	case AF_INET:
4045 		/*
4046 		 * Remember the IP options, if any.
4047 		 */
4048 		ipopts = ip_srcroute(m);
4049 		break;
4050 #endif
4051 	default:
4052 		ipopts = NULL;
4053 	}
4054 
4055 	/*
4056 	 * See if we already have an entry for this connection.
4057 	 * If we do, resend the SYN,ACK.  We do not count this
4058 	 * as a retransmission (XXX though maybe we should).
4059 	 */
4060 	if ((sc = syn_cache_lookup(src, dst, &scp, sotoinpcb(so)->inp_rtableid))
4061 	    != NULL) {
4062 		tcpstat.tcps_sc_dupesyn++;
4063 		if (ipopts) {
4064 			/*
4065 			 * If we were remembering a previous source route,
4066 			 * forget it and use the new one we've been given.
4067 			 */
4068 			if (sc->sc_ipopts)
4069 				(void) m_free(sc->sc_ipopts);
4070 			sc->sc_ipopts = ipopts;
4071 		}
4072 		sc->sc_timestamp = tb.ts_recent;
4073 		if (syn_cache_respond(sc, m) == 0) {
4074 			tcpstat.tcps_sndacks++;
4075 			tcpstat.tcps_sndtotal++;
4076 		}
4077 		return (0);
4078 	}
4079 
4080 	sc = pool_get(&syn_cache_pool, PR_NOWAIT|PR_ZERO);
4081 	if (sc == NULL) {
4082 		if (ipopts)
4083 			(void) m_free(ipopts);
4084 		return (-1);
4085 	}
4086 
4087 	/*
4088 	 * Fill in the cache, and put the necessary IP and TCP
4089 	 * options into the reply.
4090 	 */
4091 	bcopy(src, &sc->sc_src, src->sa_len);
4092 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4093 	sc->sc_rtableid = sotoinpcb(so)->inp_rtableid;
4094 	sc->sc_flags = 0;
4095 	sc->sc_ipopts = ipopts;
4096 	sc->sc_irs = th->th_seq;
4097 
4098 	sc->sc_iss = issp ? *issp : arc4random();
4099 	sc->sc_peermaxseg = oi->maxseg;
4100 	sc->sc_ourmaxseg = tcp_mss_adv(m->m_flags & M_PKTHDR ?
4101 	    m->m_pkthdr.rcvif : NULL, sc->sc_src.sa.sa_family);
4102 	sc->sc_win = win;
4103 	sc->sc_timestamp = tb.ts_recent;
4104 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4105 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP)) {
4106 		sc->sc_flags |= SCF_TIMESTAMP;
4107 		sc->sc_modulate = arc4random();
4108 	}
4109 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4110 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4111 		sc->sc_requested_s_scale = tb.requested_s_scale;
4112 		sc->sc_request_r_scale = 0;
4113 		/*
4114 		 * Pick the smallest possible scaling factor that
4115 		 * will still allow us to scale up to sb_max.
4116 		 *
4117 		 * We do this because there are broken firewalls that
4118 		 * will corrupt the window scale option, leading to
4119 		 * the other endpoint believing that our advertised
4120 		 * window is unscaled.  At scale factors larger than
4121 		 * 5 the unscaled window will drop below 1500 bytes,
4122 		 * leading to serious problems when traversing these
4123 		 * broken firewalls.
4124 		 *
4125 		 * With the default sbmax of 256K, a scale factor
4126 		 * of 3 will be chosen by this algorithm.  Those who
4127 		 * choose a larger sbmax should watch out
4128 		 * for the compatiblity problems mentioned above.
4129 		 *
4130 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4131 		 * or <SYN,ACK>) segment itself is never scaled.
4132 		 */
4133 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4134 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4135 			sc->sc_request_r_scale++;
4136 	} else {
4137 		sc->sc_requested_s_scale = 15;
4138 		sc->sc_request_r_scale = 15;
4139 	}
4140 #ifdef TCP_ECN
4141 	/*
4142 	 * if both ECE and CWR flag bits are set, peer is ECN capable.
4143 	 */
4144 	if (tcp_do_ecn &&
4145 	    (th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR))
4146 		sc->sc_flags |= SCF_ECN_PERMIT;
4147 #endif
4148 #ifdef TCP_SACK
4149 	/*
4150 	 * Set SCF_SACK_PERMIT if peer did send a SACK_PERMITTED option
4151 	 * (i.e., if tcp_dooptions() did set TF_SACK_PERMIT).
4152 	 */
4153 	if (tb.sack_enable && (tb.t_flags & TF_SACK_PERMIT))
4154 		sc->sc_flags |= SCF_SACK_PERMIT;
4155 #endif
4156 #ifdef TCP_SIGNATURE
4157 	if (tb.t_flags & TF_SIGNATURE)
4158 		sc->sc_flags |= SCF_SIGNATURE;
4159 #endif
4160 	sc->sc_tp = tp;
4161 	if (syn_cache_respond(sc, m) == 0) {
4162 		syn_cache_insert(sc, tp);
4163 		tcpstat.tcps_sndacks++;
4164 		tcpstat.tcps_sndtotal++;
4165 	} else {
4166 		syn_cache_put(sc);
4167 		tcpstat.tcps_sc_dropped++;
4168 	}
4169 
4170 	return (0);
4171 }
4172 
4173 int
4174 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4175 {
4176 	struct route *ro;
4177 	u_int8_t *optp;
4178 	int optlen, error;
4179 	u_int16_t tlen;
4180 	struct ip *ip = NULL;
4181 #ifdef INET6
4182 	struct ip6_hdr *ip6 = NULL;
4183 #endif
4184 	struct tcphdr *th;
4185 	u_int hlen;
4186 	struct inpcb *inp;
4187 
4188 	switch (sc->sc_src.sa.sa_family) {
4189 	case AF_INET:
4190 		hlen = sizeof(struct ip);
4191 		ro = &sc->sc_route4;
4192 		break;
4193 #ifdef INET6
4194 	case AF_INET6:
4195 		hlen = sizeof(struct ip6_hdr);
4196 		ro = (struct route *)&sc->sc_route6;
4197 		break;
4198 #endif
4199 	default:
4200 		if (m)
4201 			m_freem(m);
4202 		return (EAFNOSUPPORT);
4203 	}
4204 
4205 	/* Compute the size of the TCP options. */
4206 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4207 #ifdef TCP_SACK
4208 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? 4 : 0) +
4209 #endif
4210 #ifdef TCP_SIGNATURE
4211 	    ((sc->sc_flags & SCF_SIGNATURE) ? TCPOLEN_SIGLEN : 0) +
4212 #endif
4213 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4214 
4215 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4216 
4217 	/*
4218 	 * Create the IP+TCP header from scratch.
4219 	 */
4220 	if (m)
4221 		m_freem(m);
4222 #ifdef DIAGNOSTIC
4223 	if (max_linkhdr + tlen > MCLBYTES)
4224 		return (ENOBUFS);
4225 #endif
4226 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4227 	if (m && max_linkhdr + tlen > MHLEN) {
4228 		MCLGET(m, M_DONTWAIT);
4229 		if ((m->m_flags & M_EXT) == 0) {
4230 			m_freem(m);
4231 			m = NULL;
4232 		}
4233 	}
4234 	if (m == NULL)
4235 		return (ENOBUFS);
4236 
4237 	/* Fixup the mbuf. */
4238 	m->m_data += max_linkhdr;
4239 	m->m_len = m->m_pkthdr.len = tlen;
4240 	m->m_pkthdr.rcvif = NULL;
4241 	m->m_pkthdr.rdomain = sc->sc_rtableid;
4242 	memset(mtod(m, u_char *), 0, tlen);
4243 
4244 	switch (sc->sc_src.sa.sa_family) {
4245 	case AF_INET:
4246 		ip = mtod(m, struct ip *);
4247 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4248 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4249 		ip->ip_p = IPPROTO_TCP;
4250 		th = (struct tcphdr *)(ip + 1);
4251 		th->th_dport = sc->sc_src.sin.sin_port;
4252 		th->th_sport = sc->sc_dst.sin.sin_port;
4253 		break;
4254 #ifdef INET6
4255 	case AF_INET6:
4256 		ip6 = mtod(m, struct ip6_hdr *);
4257 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4258 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4259 		ip6->ip6_nxt = IPPROTO_TCP;
4260 		/* ip6_plen will be updated in ip6_output() */
4261 		th = (struct tcphdr *)(ip6 + 1);
4262 		th->th_dport = sc->sc_src.sin6.sin6_port;
4263 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4264 		break;
4265 #endif
4266 	default:
4267 		th = NULL;
4268 	}
4269 
4270 	th->th_seq = htonl(sc->sc_iss);
4271 	th->th_ack = htonl(sc->sc_irs + 1);
4272 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4273 	th->th_flags = TH_SYN|TH_ACK;
4274 #ifdef TCP_ECN
4275 	/* Set ECE for SYN-ACK if peer supports ECN. */
4276 	if (tcp_do_ecn && (sc->sc_flags & SCF_ECN_PERMIT))
4277 		th->th_flags |= TH_ECE;
4278 #endif
4279 	th->th_win = htons(sc->sc_win);
4280 	/* th_sum already 0 */
4281 	/* th_urp already 0 */
4282 
4283 	/* Tack on the TCP options. */
4284 	optp = (u_int8_t *)(th + 1);
4285 	*optp++ = TCPOPT_MAXSEG;
4286 	*optp++ = 4;
4287 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4288 	*optp++ = sc->sc_ourmaxseg & 0xff;
4289 
4290 #ifdef TCP_SACK
4291 	/* Include SACK_PERMIT_HDR option if peer has already done so. */
4292 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4293 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMIT_HDR);
4294 		optp += 4;
4295 	}
4296 #endif
4297 
4298 	if (sc->sc_request_r_scale != 15) {
4299 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4300 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4301 		    sc->sc_request_r_scale);
4302 		optp += 4;
4303 	}
4304 
4305 	if (sc->sc_flags & SCF_TIMESTAMP) {
4306 		u_int32_t *lp = (u_int32_t *)(optp);
4307 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4308 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4309 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4310 		*lp   = htonl(sc->sc_timestamp);
4311 		optp += TCPOLEN_TSTAMP_APPA;
4312 	}
4313 
4314 #ifdef TCP_SIGNATURE
4315 	if (sc->sc_flags & SCF_SIGNATURE) {
4316 		union sockaddr_union src, dst;
4317 		struct tdb *tdb;
4318 
4319 		bzero(&src, sizeof(union sockaddr_union));
4320 		bzero(&dst, sizeof(union sockaddr_union));
4321 		src.sa.sa_len = sc->sc_src.sa.sa_len;
4322 		src.sa.sa_family = sc->sc_src.sa.sa_family;
4323 		dst.sa.sa_len = sc->sc_dst.sa.sa_len;
4324 		dst.sa.sa_family = sc->sc_dst.sa.sa_family;
4325 
4326 		switch (sc->sc_src.sa.sa_family) {
4327 		case 0:	/*default to PF_INET*/
4328 #ifdef INET
4329 		case AF_INET:
4330 			src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
4331 			dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
4332 			break;
4333 #endif /* INET */
4334 #ifdef INET6
4335 		case AF_INET6:
4336 			src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
4337 			dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
4338 			break;
4339 #endif /* INET6 */
4340 		}
4341 
4342 		tdb = gettdbbysrcdst(rtable_l2(sc->sc_rtableid),
4343 		    0, &src, &dst, IPPROTO_TCP);
4344 		if (tdb == NULL) {
4345 			if (m)
4346 				m_freem(m);
4347 			return (EPERM);
4348 		}
4349 
4350 		/* Send signature option */
4351 		*(optp++) = TCPOPT_SIGNATURE;
4352 		*(optp++) = TCPOLEN_SIGNATURE;
4353 
4354 		if (tcp_signature(tdb, sc->sc_src.sa.sa_family, m, th,
4355 		    hlen, 0, optp) < 0) {
4356 			if (m)
4357 				m_freem(m);
4358 			return (EINVAL);
4359 		}
4360 		optp += 16;
4361 
4362 		/* Pad options list to the next 32 bit boundary and
4363 		 * terminate it.
4364 		 */
4365 		*optp++ = TCPOPT_NOP;
4366 		*optp++ = TCPOPT_EOL;
4367 	}
4368 #endif /* TCP_SIGNATURE */
4369 
4370 	/* Compute the packet's checksum. */
4371 	switch (sc->sc_src.sa.sa_family) {
4372 	case AF_INET:
4373 		ip->ip_len = htons(tlen - hlen);
4374 		th->th_sum = 0;
4375 		th->th_sum = in_cksum(m, tlen);
4376 		break;
4377 #ifdef INET6
4378 	case AF_INET6:
4379 		ip6->ip6_plen = htons(tlen - hlen);
4380 		th->th_sum = 0;
4381 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4382 		break;
4383 #endif
4384 	}
4385 
4386 	/* use IPsec policy and ttl from listening socket, on SYN ACK */
4387 	inp = sc->sc_tp ? sc->sc_tp->t_inpcb : NULL;
4388 
4389 	/*
4390 	 * Fill in some straggling IP bits.  Note the stack expects
4391 	 * ip_len to be in host order, for convenience.
4392 	 */
4393 	switch (sc->sc_src.sa.sa_family) {
4394 #ifdef INET
4395 	case AF_INET:
4396 		ip->ip_len = htons(tlen);
4397 		ip->ip_ttl = inp ? inp->inp_ip.ip_ttl : ip_defttl;
4398 		if (inp != NULL)
4399 			ip->ip_tos = inp->inp_ip.ip_tos;
4400 		break;
4401 #endif
4402 #ifdef INET6
4403 	case AF_INET6:
4404 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4405 		ip6->ip6_vfc |= IPV6_VERSION;
4406 		ip6->ip6_plen = htons(tlen - hlen);
4407 		/* ip6_hlim will be initialized afterwards */
4408 		/* leave flowlabel = 0, it is legal and require no state mgmt */
4409 		break;
4410 #endif
4411 	}
4412 
4413 	switch (sc->sc_src.sa.sa_family) {
4414 #ifdef INET
4415 	case AF_INET:
4416 		error = ip_output(m, sc->sc_ipopts, ro,
4417 		    (ip_mtudisc ? IP_MTUDISC : 0),
4418 		    (struct ip_moptions *)NULL, inp);
4419 		break;
4420 #endif
4421 #ifdef INET6
4422 	case AF_INET6:
4423 		ip6->ip6_hlim = in6_selecthlim(NULL,
4424 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4425 
4426 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4427 			(struct ip6_moptions *)0, NULL, NULL);
4428 		break;
4429 #endif
4430 	default:
4431 		error = EAFNOSUPPORT;
4432 		break;
4433 	}
4434 	return (error);
4435 }
4436