xref: /openbsd-src/sys/netinet/tcp_input.c (revision 8500990981f885cbe5e6a4958549cacc238b5ae6)
1 /*	$OpenBSD: tcp_input.c,v 1.134 2003/11/04 21:43:16 markus Exp $	*/
2 /*	$NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
33  *
34  * NRL grants permission for redistribution and use in source and binary
35  * forms, with or without modification, of the software and documentation
36  * created at NRL provided that the following conditions are met:
37  *
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgements:
45  * 	This product includes software developed by the University of
46  * 	California, Berkeley and its contributors.
47  * 	This product includes software developed at the Information
48  * 	Technology Division, US Naval Research Laboratory.
49  * 4. Neither the name of the NRL nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
54  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
56  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
57  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
58  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
59  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
60  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
61  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
62  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
63  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64  *
65  * The views and conclusions contained in the software and documentation
66  * are those of the authors and should not be interpreted as representing
67  * official policies, either expressed or implied, of the US Naval
68  * Research Laboratory (NRL).
69  */
70 
71 #ifndef TUBA_INCLUDE
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/mbuf.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/kernel.h>
79 
80 #include <net/if.h>
81 #include <net/route.h>
82 
83 #include <netinet/in.h>
84 #include <netinet/in_systm.h>
85 #include <netinet/ip.h>
86 #include <netinet/in_pcb.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/tcp.h>
89 #include <netinet/tcp_fsm.h>
90 #include <netinet/tcp_seq.h>
91 #include <netinet/tcp_timer.h>
92 #include <netinet/tcp_var.h>
93 #include <netinet/tcpip.h>
94 #include <netinet/tcp_debug.h>
95 
96 #ifdef INET6
97 #include <netinet6/in6_var.h>
98 #include <netinet6/nd6.h>
99 
100 struct	tcpiphdr tcp_saveti;
101 struct  tcpipv6hdr tcp_saveti6;
102 
103 /* for the packet header length in the mbuf */
104 #define M_PH_LEN(m)      (((struct mbuf *)(m))->m_pkthdr.len)
105 #define M_V6_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip6_hdr))
106 #define M_V4_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip))
107 #endif /* INET6 */
108 
109 int	tcprexmtthresh = 3;
110 struct	tcpiphdr tcp_saveti;
111 int	tcptv_keep_init = TCPTV_KEEP_INIT;
112 
113 extern u_long sb_max;
114 
115 int tcp_rst_ppslim = 100;		/* 100pps */
116 int tcp_rst_ppslim_count = 0;
117 struct timeval tcp_rst_ppslim_last;
118 
119 #endif /* TUBA_INCLUDE */
120 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
121 
122 /* for modulo comparisons of timestamps */
123 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
124 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
125 
126 /*
127  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
128  */
129 #ifdef INET6
130 #define ND6_HINT(tp) \
131 do { \
132 	if (tp && tp->t_inpcb && (tp->t_inpcb->inp_flags & INP_IPV6) && \
133 	    tp->t_inpcb->inp_route6.ro_rt) { \
134 		nd6_nud_hint(tp->t_inpcb->inp_route6.ro_rt, NULL, 0); \
135 	} \
136 } while (0)
137 #else
138 #define ND6_HINT(tp)
139 #endif
140 
141 #ifdef TCP_ECN
142 /*
143  * ECN (Explicit Congestion Notification) support based on RFC3168
144  * implementation note:
145  *   snd_last is used to track a recovery phase.
146  *   when cwnd is reduced, snd_last is set to snd_max.
147  *   while snd_last > snd_una, the sender is in a recovery phase and
148  *   its cwnd should not be reduced again.
149  *   snd_last follows snd_una when not in a recovery phase.
150  */
151 #endif
152 
153 /*
154  * Macro to compute ACK transmission behavior.  Delay the ACK unless
155  * we have already delayed an ACK (must send an ACK every two segments).
156  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
157  * option is enabled.
158  */
159 #define	TCP_SETUP_ACK(tp, tiflags) \
160 do { \
161 	if ((tp)->t_flags & TF_DELACK || \
162 	    (tcp_ack_on_push && (tiflags) & TH_PUSH)) \
163 		tp->t_flags |= TF_ACKNOW; \
164 	else \
165 		TCP_SET_DELACK(tp); \
166 } while (0)
167 
168 /*
169  * Insert segment ti into reassembly queue of tcp with
170  * control block tp.  Return TH_FIN if reassembly now includes
171  * a segment with FIN.  The macro form does the common case inline
172  * (segment is the next to be received on an established connection,
173  * and the queue is empty), avoiding linkage into and removal
174  * from the queue and repetition of various conversions.
175  * Set DELACK for segments received in order, but ack immediately
176  * when segments are out of order (so fast retransmit can work).
177  */
178 
179 #ifndef TUBA_INCLUDE
180 
181 int
182 tcp_reass(tp, th, m, tlen)
183 	struct tcpcb *tp;
184 	struct tcphdr *th;
185 	struct mbuf *m;
186 	int *tlen;
187 {
188 	struct ipqent *p, *q, *nq, *tiqe;
189 	struct socket *so = tp->t_inpcb->inp_socket;
190 	int flags;
191 
192 	/*
193 	 * Call with th==0 after become established to
194 	 * force pre-ESTABLISHED data up to user socket.
195 	 */
196 	if (th == 0)
197 		goto present;
198 
199 	/*
200 	 * Allocate a new queue entry, before we throw away any data.
201 	 * If we can't, just drop the packet.  XXX
202 	 */
203 	tiqe =  pool_get(&ipqent_pool, PR_NOWAIT);
204 	if (tiqe == NULL) {
205 		tcpstat.tcps_rcvmemdrop++;
206 		m_freem(m);
207 		return (0);
208 	}
209 
210 	/*
211 	 * Find a segment which begins after this one does.
212 	 */
213 	for (p = NULL, q = tp->segq.lh_first; q != NULL;
214 	    p = q, q = q->ipqe_q.le_next)
215 		if (SEQ_GT(q->ipqe_tcp->th_seq, th->th_seq))
216 			break;
217 
218 	/*
219 	 * If there is a preceding segment, it may provide some of
220 	 * our data already.  If so, drop the data from the incoming
221 	 * segment.  If it provides all of our data, drop us.
222 	 */
223 	if (p != NULL) {
224 		struct tcphdr *phdr = p->ipqe_tcp;
225 		int i;
226 
227 		/* conversion to int (in i) handles seq wraparound */
228 		i = phdr->th_seq + phdr->th_reseqlen - th->th_seq;
229 		if (i > 0) {
230 		        if (i >= *tlen) {
231 				tcpstat.tcps_rcvduppack++;
232 				tcpstat.tcps_rcvdupbyte += *tlen;
233 				m_freem(m);
234 				pool_put(&ipqent_pool, tiqe);
235 				return (0);
236 			}
237 			m_adj(m, i);
238 			*tlen -= i;
239 			th->th_seq += i;
240 		}
241 	}
242 	tcpstat.tcps_rcvoopack++;
243 	tcpstat.tcps_rcvoobyte += *tlen;
244 
245 	/*
246 	 * While we overlap succeeding segments trim them or,
247 	 * if they are completely covered, dequeue them.
248 	 */
249 	for (; q != NULL; q = nq) {
250 		struct tcphdr *qhdr = q->ipqe_tcp;
251 		int i = (th->th_seq + *tlen) - qhdr->th_seq;
252 
253 		if (i <= 0)
254 			break;
255 		if (i < qhdr->th_reseqlen) {
256 			qhdr->th_seq += i;
257 			qhdr->th_reseqlen -= i;
258 			m_adj(q->ipqe_m, i);
259 			break;
260 		}
261 		nq = q->ipqe_q.le_next;
262 		m_freem(q->ipqe_m);
263 		LIST_REMOVE(q, ipqe_q);
264 		pool_put(&ipqent_pool, q);
265 	}
266 
267 	/* Insert the new fragment queue entry into place. */
268 	tiqe->ipqe_m = m;
269 	th->th_reseqlen = *tlen;
270 	tiqe->ipqe_tcp = th;
271 	if (p == NULL) {
272 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
273 	} else {
274 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
275 	}
276 
277 present:
278 	/*
279 	 * Present data to user, advancing rcv_nxt through
280 	 * completed sequence space.
281 	 */
282 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
283 		return (0);
284 	q = tp->segq.lh_first;
285 	if (q == NULL || q->ipqe_tcp->th_seq != tp->rcv_nxt)
286 		return (0);
287 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->th_reseqlen)
288 		return (0);
289 	do {
290 		tp->rcv_nxt += q->ipqe_tcp->th_reseqlen;
291 		flags = q->ipqe_tcp->th_flags & TH_FIN;
292 
293 		nq = q->ipqe_q.le_next;
294 		LIST_REMOVE(q, ipqe_q);
295 		ND6_HINT(tp);
296 		if (so->so_state & SS_CANTRCVMORE)
297 			m_freem(q->ipqe_m);
298 		else
299 			sbappendstream(&so->so_rcv, q->ipqe_m);
300 		pool_put(&ipqent_pool, q);
301 		q = nq;
302 	} while (q != NULL && q->ipqe_tcp->th_seq == tp->rcv_nxt);
303 	sorwakeup(so);
304 	return (flags);
305 }
306 
307 /*
308  * First check for a port-specific bomb. We do not want to drop half-opens
309  * for other ports if this is the only port being bombed.  We only check
310  * the bottom 40 half open connections, to avoid wasting too much time.
311  *
312  * Or, otherwise it is more likely a generic syn bomb, so delete the oldest
313  * half-open connection.
314  */
315 void
316 tcpdropoldhalfopen(avoidtp, port)
317 	struct tcpcb *avoidtp;
318 	u_int16_t port;
319 {
320 	struct inpcb *inp;
321 	struct tcpcb *tp;
322 	int ncheck = 40;
323 	int s;
324 
325 	s = splnet();
326 	inp = tcbtable.inpt_queue.cqh_first;
327 	if (inp)						/* XXX */
328 	for (; inp != (struct inpcb *)&tcbtable.inpt_queue && --ncheck;
329 	    inp = inp->inp_queue.cqe_prev) {
330 		if ((tp = (struct tcpcb *)inp->inp_ppcb) &&
331 		    tp != avoidtp &&
332 		    tp->t_state == TCPS_SYN_RECEIVED &&
333 		    port == inp->inp_lport) {
334 			tcp_close(tp);
335 			goto done;
336 		}
337 	}
338 
339 	inp = tcbtable.inpt_queue.cqh_first;
340 	if (inp)						/* XXX */
341 	for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
342 	    inp = inp->inp_queue.cqe_prev) {
343 		if ((tp = (struct tcpcb *)inp->inp_ppcb) &&
344 		    tp != avoidtp &&
345 		    tp->t_state == TCPS_SYN_RECEIVED) {
346 			tcp_close(tp);
347 			goto done;
348 		}
349 	}
350 done:
351 	splx(s);
352 }
353 
354 #ifdef INET6
355 int
356 tcp6_input(mp, offp, proto)
357 	struct mbuf **mp;
358 	int *offp, proto;
359 {
360 	struct mbuf *m = *mp;
361 
362 #if defined(NFAITH) && 0 < NFAITH
363 	if (m->m_pkthdr.rcvif) {
364 		if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
365 			/* XXX send icmp6 host/port unreach? */
366 			m_freem(m);
367 			return IPPROTO_DONE;
368 		}
369 	}
370 #endif
371 
372 	/*
373 	 * draft-itojun-ipv6-tcp-to-anycast
374 	 * better place to put this in?
375 	 */
376 	if (m->m_flags & M_ANYCAST6) {
377 		if (m->m_len >= sizeof(struct ip6_hdr)) {
378 			struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
379 			icmp6_error(m, ICMP6_DST_UNREACH,
380 				ICMP6_DST_UNREACH_ADDR,
381 				(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
382 		} else
383 			m_freem(m);
384 		return IPPROTO_DONE;
385 	}
386 
387 	tcp_input(m, *offp, proto);
388 	return IPPROTO_DONE;
389 }
390 #endif
391 
392 /*
393  * TCP input routine, follows pages 65-76 of the
394  * protocol specification dated September, 1981 very closely.
395  */
396 void
397 tcp_input(struct mbuf *m, ...)
398 {
399 	struct ip *ip;
400 	struct inpcb *inp;
401 	u_int8_t *optp = NULL;
402 	int optlen = 0;
403 	int len, tlen, off;
404 	struct tcpcb *tp = 0;
405 	int tiflags;
406 	struct socket *so = NULL;
407 	int todrop, acked, ourfinisacked, needoutput = 0;
408 	int hdroptlen = 0;
409 	short ostate = 0;
410 	struct in_addr laddr;
411 	int dropsocket = 0;
412 	int iss = 0;
413 	u_long tiwin;
414 	u_int32_t ts_val, ts_ecr;
415 	int ts_present = 0;
416 	int iphlen;
417 	va_list ap;
418 	struct tcphdr *th;
419 #ifdef INET6
420 	struct in6_addr laddr6;
421 	struct ip6_hdr *ip6 = NULL;
422 #endif /* INET6 */
423 #ifdef IPSEC
424 	struct m_tag *mtag;
425 	struct tdb_ident *tdbi;
426 	struct tdb *tdb;
427 	int error, s;
428 #endif /* IPSEC */
429 	int af;
430 #ifdef TCP_ECN
431 	u_char iptos;
432 #endif
433 
434 	va_start(ap, m);
435 	iphlen = va_arg(ap, int);
436 	va_end(ap);
437 
438 	tcpstat.tcps_rcvtotal++;
439 
440 	/*
441 	 * Before we do ANYTHING, we have to figure out if it's TCP/IPv6 or
442 	 * TCP/IPv4.
443 	 */
444 	switch (mtod(m, struct ip *)->ip_v) {
445 #ifdef INET6
446 	case 6:
447 		af = AF_INET6;
448 		break;
449 #endif
450 	case 4:
451 		af = AF_INET;
452 		break;
453 	default:
454 		m_freem(m);
455 		return;	/*EAFNOSUPPORT*/
456 	}
457 
458 	/*
459 	 * Get IP and TCP header together in first mbuf.
460 	 * Note: IP leaves IP header in first mbuf.
461 	 */
462 	switch (af) {
463 	case AF_INET:
464 #ifdef DIAGNOSTIC
465 		if (iphlen < sizeof(struct ip)) {
466 			m_freem(m);
467 			return;
468 		}
469 #endif /* DIAGNOSTIC */
470 		if (iphlen > sizeof(struct ip)) {
471 #if 0	/*XXX*/
472 			ip_stripoptions(m, (struct mbuf *)0);
473 			iphlen = sizeof(struct ip);
474 #else
475 			m_freem(m);
476 			return;
477 #endif
478 		}
479 		break;
480 #ifdef INET6
481 	case AF_INET6:
482 #ifdef DIAGNOSTIC
483 		if (iphlen < sizeof(struct ip6_hdr)) {
484 			m_freem(m);
485 			return;
486 		}
487 #endif /* DIAGNOSTIC */
488 		if (iphlen > sizeof(struct ip6_hdr)) {
489 #if 0 /*XXX*/
490 			ipv6_stripoptions(m, iphlen);
491 			iphlen = sizeof(struct ip6_hdr);
492 #else
493 			m_freem(m);
494 			return;
495 #endif
496 		}
497 		break;
498 #endif
499 	default:
500 		m_freem(m);
501 		return;
502 	}
503 
504 	if (m->m_len < iphlen + sizeof(struct tcphdr)) {
505 		m = m_pullup2(m, iphlen + sizeof(struct tcphdr));
506 		if (m == NULL) {
507 			tcpstat.tcps_rcvshort++;
508 			return;
509 		}
510 	}
511 
512 	ip = NULL;
513 #ifdef INET6
514 	ip6 = NULL;
515 #endif
516 	switch (af) {
517 	case AF_INET:
518 	    {
519 		struct tcpiphdr *ti;
520 
521 		ip = mtod(m, struct ip *);
522 		tlen = m->m_pkthdr.len - iphlen;
523 		ti = mtod(m, struct tcpiphdr *);
524 
525 #ifdef TCP_ECN
526 		/* save ip_tos before clearing it for checksum */
527 		iptos = ip->ip_tos;
528 #endif
529 		/*
530 		 * Checksum extended TCP header and data.
531 		 */
532 		len = sizeof(struct ip) + tlen;
533 		bzero(ti->ti_x1, sizeof ti->ti_x1);
534 		ti->ti_len = (u_int16_t)tlen;
535 		HTONS(ti->ti_len);
536 		if ((m->m_pkthdr.csum & M_TCP_CSUM_IN_OK) == 0) {
537 			if (m->m_pkthdr.csum & M_TCP_CSUM_IN_BAD) {
538 				tcpstat.tcps_inhwcsum++;
539 				tcpstat.tcps_rcvbadsum++;
540 				goto drop;
541 			}
542 			if ((ti->ti_sum = in_cksum(m, len)) != 0) {
543 				tcpstat.tcps_rcvbadsum++;
544 				goto drop;
545 			}
546 		} else {
547 			m->m_pkthdr.csum &= ~M_TCP_CSUM_IN_OK;
548 			tcpstat.tcps_inhwcsum++;
549 		}
550 		break;
551 	    }
552 #ifdef INET6
553 	case AF_INET6:
554 		ip6 = mtod(m, struct ip6_hdr *);
555 		tlen = m->m_pkthdr.len - iphlen;
556 #ifdef TCP_ECN
557 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
558 #endif
559 
560 		/* Be proactive about malicious use of IPv4 mapped address */
561 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
562 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
563 			/* XXX stat */
564 			goto drop;
565 		}
566 
567 		/*
568 		 * Be proactive about unspecified IPv6 address in source.
569 		 * As we use all-zero to indicate unbounded/unconnected pcb,
570 		 * unspecified IPv6 address can be used to confuse us.
571 		 *
572 		 * Note that packets with unspecified IPv6 destination is
573 		 * already dropped in ip6_input.
574 		 */
575 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
576 			/* XXX stat */
577 			goto drop;
578 		}
579 
580 		/*
581 		 * Checksum extended TCP header and data.
582 		 */
583 		if (in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr), tlen)) {
584 			tcpstat.tcps_rcvbadsum++;
585 			goto drop;
586 		}
587 		break;
588 #endif
589 	}
590 #endif /* TUBA_INCLUDE */
591 
592 	th = (struct tcphdr *)(mtod(m, caddr_t) + iphlen);
593 
594 	/*
595 	 * Check that TCP offset makes sense,
596 	 * pull out TCP options and adjust length.		XXX
597 	 */
598 	off = th->th_off << 2;
599 	if (off < sizeof(struct tcphdr) || off > tlen) {
600 		tcpstat.tcps_rcvbadoff++;
601 		goto drop;
602 	}
603 	tlen -= off;
604 	if (off > sizeof(struct tcphdr)) {
605 		if (m->m_len < iphlen + off) {
606 			if ((m = m_pullup2(m, iphlen + off)) == NULL) {
607 				tcpstat.tcps_rcvshort++;
608 				return;
609 			}
610 			switch (af) {
611 			case AF_INET:
612 				ip = mtod(m, struct ip *);
613 				break;
614 #ifdef INET6
615 			case AF_INET6:
616 				ip6 = mtod(m, struct ip6_hdr *);
617 				break;
618 #endif
619 			}
620 			th = (struct tcphdr *)(mtod(m, caddr_t) + iphlen);
621 		}
622 		optlen = off - sizeof(struct tcphdr);
623 		optp = mtod(m, u_int8_t *) + iphlen + sizeof(struct tcphdr);
624 		/*
625 		 * Do quick retrieval of timestamp options ("options
626 		 * prediction?").  If timestamp is the only option and it's
627 		 * formatted as recommended in RFC 1323 appendix A, we
628 		 * quickly get the values now and not bother calling
629 		 * tcp_dooptions(), etc.
630 		 */
631 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
632 		     (optlen > TCPOLEN_TSTAMP_APPA &&
633 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
634 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
635 		     (th->th_flags & TH_SYN) == 0) {
636 			ts_present = 1;
637 			ts_val = ntohl(*(u_int32_t *)(optp + 4));
638 			ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
639 			optp = NULL;	/* we've parsed the options */
640 		}
641 	}
642 	tiflags = th->th_flags;
643 
644 	/*
645 	 * Convert TCP protocol specific fields to host format.
646 	 */
647 	NTOHL(th->th_seq);
648 	NTOHL(th->th_ack);
649 	NTOHS(th->th_win);
650 	NTOHS(th->th_urp);
651 
652 	/*
653 	 * Locate pcb for segment.
654 	 */
655 findpcb:
656 	switch (af) {
657 #ifdef INET6
658 	case AF_INET6:
659 		inp = in6_pcbhashlookup(&tcbtable, &ip6->ip6_src, th->th_sport,
660 		    &ip6->ip6_dst, th->th_dport);
661 		break;
662 #endif
663 	case AF_INET:
664 		inp = in_pcbhashlookup(&tcbtable, ip->ip_src, th->th_sport,
665 		    ip->ip_dst, th->th_dport);
666 		break;
667 	}
668 	if (inp == 0) {
669 		++tcpstat.tcps_pcbhashmiss;
670 		switch (af) {
671 #ifdef INET6
672 		case AF_INET6:
673 			inp = in6_pcblookup_listen(&tcbtable,
674 			    &ip6->ip6_dst, th->th_dport);
675 			break;
676 #endif /* INET6 */
677 		case AF_INET:
678 			inp = in_pcblookup_listen(&tcbtable,
679 			    ip->ip_dst, th->th_dport);
680 			break;
681 		}
682 		/*
683 		 * If the state is CLOSED (i.e., TCB does not exist) then
684 		 * all data in the incoming segment is discarded.
685 		 * If the TCB exists but is in CLOSED state, it is embryonic,
686 		 * but should either do a listen or a connect soon.
687 		 */
688 		if (inp == 0) {
689 			++tcpstat.tcps_noport;
690 			goto dropwithreset_ratelim;
691 		}
692 	}
693 
694 	tp = intotcpcb(inp);
695 	if (tp == 0)
696 		goto dropwithreset_ratelim;
697 	if (tp->t_state == TCPS_CLOSED)
698 		goto drop;
699 
700 	/* Unscale the window into a 32-bit value. */
701 	if ((tiflags & TH_SYN) == 0)
702 		tiwin = th->th_win << tp->snd_scale;
703 	else
704 		tiwin = th->th_win;
705 
706 	so = inp->inp_socket;
707 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
708 		if (so->so_options & SO_DEBUG) {
709 			ostate = tp->t_state;
710 			switch (af) {
711 #ifdef INET6
712 			case AF_INET6:
713 				tcp_saveti6 = *(mtod(m, struct tcpipv6hdr *));
714 				break;
715 #endif
716 			case AF_INET:
717 				tcp_saveti = *(mtod(m, struct tcpiphdr *));
718 				break;
719 			}
720 		}
721 		if (so->so_options & SO_ACCEPTCONN) {
722 			struct socket *so1;
723 
724 #ifdef INET6
725 			/*
726 			 * If deprecated address is forbidden,
727 			 * we do not accept SYN to deprecated interface
728 			 * address to prevent any new inbound connection from
729 			 * getting established.  So drop the SYN packet.
730 			 * When we do not accept SYN, we send a TCP RST,
731 			 * with deprecated source address (instead of dropping
732 			 * it).  We compromise it as it is much better for peer
733 			 * to send a RST, and RST will be the final packet
734 			 * for the exchange.
735 			 *
736 			 * If we do not forbid deprecated addresses, we accept
737 			 * the SYN packet.  RFC2462 does not suggest dropping
738 			 * SYN in this case.
739 			 * If we decipher RFC2462 5.5.4, it says like this:
740 			 * 1. use of deprecated addr with existing
741 			 *    communication is okay - "SHOULD continue to be
742 			 *    used"
743 			 * 2. use of it with new communication:
744 			 *   (2a) "SHOULD NOT be used if alternate address
745 			 *        with sufficient scope is available"
746 			 *   (2b) nothing mentioned otherwise.
747 			 * Here we fall into (2b) case as we have no choice in
748 			 * our source address selection - we must obey the peer.
749 			 *
750 			 * The wording in RFC2462 is confusing, and there are
751 			 * multiple description text for deprecated address
752 			 * handling - worse, they are not exactly the same.
753 			 * I believe 5.5.4 is the best one, so we follow 5.5.4.
754 			 */
755 			if (ip6 && !ip6_use_deprecated) {
756 				struct in6_ifaddr *ia6;
757 
758 				if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif, &ip6->ip6_dst)) &&
759 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
760 					tp = NULL;
761 					goto dropwithreset;
762 				}
763 			}
764 #endif
765 
766 			so1 = sonewconn(so, 0);
767 			if (so1 == NULL) {
768 				tcpdropoldhalfopen(tp, th->th_dport);
769 				so1 = sonewconn(so, 0);
770 				if (so1 == NULL)
771 					goto drop;
772 			}
773 			so = so1;
774 			/*
775 			 * This is ugly, but ....
776 			 *
777 			 * Mark socket as temporary until we're
778 			 * committed to keeping it.  The code at
779 			 * ``drop'' and ``dropwithreset'' check the
780 			 * flag dropsocket to see if the temporary
781 			 * socket created here should be discarded.
782 			 * We mark the socket as discardable until
783 			 * we're committed to it below in TCPS_LISTEN.
784 			 */
785 			dropsocket++;
786 #ifdef IPSEC
787 			/*
788 			 * We need to copy the required security levels
789 			 * from the old pcb. Ditto for any other
790 			 * IPsec-related information.
791 			 */
792 			{
793 			  struct inpcb *newinp = (struct inpcb *)so->so_pcb;
794 			  bcopy(inp->inp_seclevel, newinp->inp_seclevel,
795 				sizeof(inp->inp_seclevel));
796 			  newinp->inp_secrequire = inp->inp_secrequire;
797 			  if (inp->inp_ipo != NULL) {
798 				  newinp->inp_ipo = inp->inp_ipo;
799 				  inp->inp_ipo->ipo_ref_count++;
800 			  }
801 			  if (inp->inp_ipsec_remotecred != NULL) {
802 				  newinp->inp_ipsec_remotecred = inp->inp_ipsec_remotecred;
803 				  inp->inp_ipsec_remotecred->ref_count++;
804 			  }
805 			  if (inp->inp_ipsec_remoteauth != NULL) {
806 				  newinp->inp_ipsec_remoteauth
807 				      = inp->inp_ipsec_remoteauth;
808 				  inp->inp_ipsec_remoteauth->ref_count++;
809 			  }
810 			}
811 #endif /* IPSEC */
812 #ifdef INET6
813 			/*
814 			 * inp still has the OLD in_pcb stuff, set the
815 			 * v6-related flags on the new guy, too.   This is
816 			 * done particularly for the case where an AF_INET6
817 			 * socket is bound only to a port, and a v4 connection
818 			 * comes in on that port.
819 			 * we also copy the flowinfo from the original pcb
820 			 * to the new one.
821 			 */
822 			{
823 			  int flags = inp->inp_flags;
824 			  struct inpcb *oldinpcb = inp;
825 
826 			  inp = (struct inpcb *)so->so_pcb;
827 			  inp->inp_flags |= (flags & INP_IPV6);
828 			  if ((inp->inp_flags & INP_IPV6) != 0) {
829 			    inp->inp_ipv6.ip6_hlim =
830 			      oldinpcb->inp_ipv6.ip6_hlim;
831 			  }
832 			}
833 #else /* INET6 */
834 			inp = (struct inpcb *)so->so_pcb;
835 #endif /* INET6 */
836 			inp->inp_lport = th->th_dport;
837 			switch (af) {
838 #ifdef INET6
839 			case AF_INET6:
840 				inp->inp_laddr6 = ip6->ip6_dst;
841 
842 				/*inp->inp_options = ip6_srcroute();*/ /* soon. */
843 				/*
844 				 * still need to tweak outbound options
845 				 * processing to include this mbuf in
846 				 * the right place and put the correct
847 				 * NextHdr values in the right places.
848 				 * XXX  rja
849 				 */
850 				break;
851 #endif /* INET6 */
852 			case AF_INET:
853 				inp->inp_laddr = ip->ip_dst;
854 				inp->inp_options = ip_srcroute();
855 				break;
856 			}
857 			in_pcbrehash(inp);
858 			tp = intotcpcb(inp);
859 			tp->t_state = TCPS_LISTEN;
860 
861 			/* Compute proper scaling value from buffer space */
862 			tcp_rscale(tp, so->so_rcv.sb_hiwat);
863 		}
864 	}
865 
866 #ifdef IPSEC
867 	/* Find most recent IPsec tag */
868 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
869         s = splnet();
870 	if (mtag != NULL) {
871 		tdbi = (struct tdb_ident *)(mtag + 1);
872 	        tdb = gettdb(tdbi->spi, &tdbi->dst, tdbi->proto);
873 	} else
874 		tdb = NULL;
875 	ipsp_spd_lookup(m, af, iphlen, &error, IPSP_DIRECTION_IN,
876 	    tdb, inp);
877 	if (error) {
878 		splx(s);
879 		goto drop;
880 	}
881 
882 	/* Latch SA */
883 	if (inp->inp_tdb_in != tdb) {
884 		if (tdb) {
885 		        tdb_add_inp(tdb, inp, 1);
886 			if (inp->inp_ipo == NULL) {
887 				inp->inp_ipo = ipsec_add_policy(inp, af,
888 				    IPSP_DIRECTION_OUT);
889 				if (inp->inp_ipo == NULL) {
890 					splx(s);
891 					goto drop;
892 				}
893 			}
894 			if (inp->inp_ipo->ipo_dstid == NULL &&
895 			    tdb->tdb_srcid != NULL) {
896 				inp->inp_ipo->ipo_dstid = tdb->tdb_srcid;
897 				tdb->tdb_srcid->ref_count++;
898 			}
899 			if (inp->inp_ipsec_remotecred == NULL &&
900 			    tdb->tdb_remote_cred != NULL) {
901 				inp->inp_ipsec_remotecred =
902 				    tdb->tdb_remote_cred;
903 				tdb->tdb_remote_cred->ref_count++;
904 			}
905 			if (inp->inp_ipsec_remoteauth == NULL &&
906 			    tdb->tdb_remote_auth != NULL) {
907 				inp->inp_ipsec_remoteauth =
908 				    tdb->tdb_remote_auth;
909 				tdb->tdb_remote_auth->ref_count++;
910 			}
911 		} else { /* Just reset */
912 		        TAILQ_REMOVE(&inp->inp_tdb_in->tdb_inp_in, inp,
913 				     inp_tdb_in_next);
914 			inp->inp_tdb_in = NULL;
915 		}
916 	}
917         splx(s);
918 #endif /* IPSEC */
919 
920 	/*
921 	 * Segment received on connection.
922 	 * Reset idle time and keep-alive timer.
923 	 */
924 	tp->t_rcvtime = tcp_now;
925 	if (tp->t_state != TCPS_SYN_RECEIVED)
926 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
927 
928 #ifdef TCP_SACK
929 	if (!tp->sack_disable)
930 		tcp_del_sackholes(tp, th); /* Delete stale SACK holes */
931 #endif /* TCP_SACK */
932 
933 	/*
934 	 * Process options if not in LISTEN state,
935 	 * else do it below (after getting remote address).
936 	 */
937 	if (optp && tp->t_state != TCPS_LISTEN)
938 		tcp_dooptions(tp, optp, optlen, th,
939 			&ts_present, &ts_val, &ts_ecr);
940 
941 #ifdef TCP_SACK
942 	if (!tp->sack_disable) {
943 		tp->rcv_laststart = th->th_seq; /* last rec'vd segment*/
944 		tp->rcv_lastend = th->th_seq + tlen;
945 	}
946 #endif /* TCP_SACK */
947 #ifdef TCP_ECN
948 	/* if congestion experienced, set ECE bit in subsequent packets. */
949 	if ((iptos & IPTOS_ECN_MASK) == IPTOS_ECN_CE) {
950 		tp->t_flags |= TF_RCVD_CE;
951 		tcpstat.tcps_ecn_rcvce++;
952 	}
953 #endif
954 	/*
955 	 * Header prediction: check for the two common cases
956 	 * of a uni-directional data xfer.  If the packet has
957 	 * no control flags, is in-sequence, the window didn't
958 	 * change and we're not retransmitting, it's a
959 	 * candidate.  If the length is zero and the ack moved
960 	 * forward, we're the sender side of the xfer.  Just
961 	 * free the data acked & wake any higher level process
962 	 * that was blocked waiting for space.  If the length
963 	 * is non-zero and the ack didn't move, we're the
964 	 * receiver side.  If we're getting packets in-order
965 	 * (the reassembly queue is empty), add the data to
966 	 * the socket buffer and note that we need a delayed ack.
967 	 */
968 	if (tp->t_state == TCPS_ESTABLISHED &&
969 #ifdef TCP_ECN
970 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK)) == TH_ACK &&
971 #else
972 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
973 #endif
974 	    (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) &&
975 	    th->th_seq == tp->rcv_nxt &&
976 	    tiwin && tiwin == tp->snd_wnd &&
977 	    tp->snd_nxt == tp->snd_max) {
978 
979 		/*
980 		 * If last ACK falls within this segment's sequence numbers,
981 		 *  record the timestamp.
982 		 * Fix from Braden, see Stevens p. 870
983 		 */
984 		if (ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
985 			tp->ts_recent_age = tcp_now;
986 			tp->ts_recent = ts_val;
987 		}
988 
989 		if (tlen == 0) {
990 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
991 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
992 			    tp->snd_cwnd >= tp->snd_wnd &&
993 			    tp->t_dupacks == 0) {
994 				/*
995 				 * this is a pure ack for outstanding data.
996 				 */
997 				++tcpstat.tcps_predack;
998 				if (ts_present)
999 					tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
1000 				else if (tp->t_rtttime &&
1001 					    SEQ_GT(th->th_ack, tp->t_rtseq))
1002 					tcp_xmit_timer(tp,
1003 					    tcp_now - tp->t_rtttime);
1004 				acked = th->th_ack - tp->snd_una;
1005 				tcpstat.tcps_rcvackpack++;
1006 				tcpstat.tcps_rcvackbyte += acked;
1007 				ND6_HINT(tp);
1008 				sbdrop(&so->so_snd, acked);
1009 				tp->snd_una = th->th_ack;
1010 #if defined(TCP_SACK) || defined(TCP_ECN)
1011 				/*
1012 				 * We want snd_last to track snd_una so
1013 				 * as to avoid sequence wraparound problems
1014 				 * for very large transfers.
1015 				 */
1016 #ifdef TCP_ECN
1017 				if (SEQ_GT(tp->snd_una, tp->snd_last))
1018 #endif
1019 				tp->snd_last = tp->snd_una;
1020 #endif /* TCP_SACK */
1021 #if defined(TCP_SACK) && defined(TCP_FACK)
1022 				tp->snd_fack = tp->snd_una;
1023 				tp->retran_data = 0;
1024 #endif /* TCP_FACK */
1025 				m_freem(m);
1026 
1027 				/*
1028 				 * If all outstanding data are acked, stop
1029 				 * retransmit timer, otherwise restart timer
1030 				 * using current (possibly backed-off) value.
1031 				 * If process is waiting for space,
1032 				 * wakeup/selwakeup/signal.  If data
1033 				 * are ready to send, let tcp_output
1034 				 * decide between more output or persist.
1035 				 */
1036 				if (tp->snd_una == tp->snd_max)
1037 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1038 				else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1039 					TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1040 
1041 				if (sb_notify(&so->so_snd))
1042 					sowwakeup(so);
1043 				if (so->so_snd.sb_cc)
1044 					(void) tcp_output(tp);
1045 				return;
1046 			}
1047 		} else if (th->th_ack == tp->snd_una &&
1048 		    tp->segq.lh_first == NULL &&
1049 		    tlen <= sbspace(&so->so_rcv)) {
1050 			/*
1051 			 * This is a pure, in-sequence data packet
1052 			 * with nothing on the reassembly queue and
1053 			 * we have enough buffer space to take it.
1054 			 */
1055 #ifdef TCP_SACK
1056 			/* Clean receiver SACK report if present */
1057 			if (!tp->sack_disable && tp->rcv_numsacks)
1058 				tcp_clean_sackreport(tp);
1059 #endif /* TCP_SACK */
1060 			++tcpstat.tcps_preddat;
1061 			tp->rcv_nxt += tlen;
1062 			tcpstat.tcps_rcvpack++;
1063 			tcpstat.tcps_rcvbyte += tlen;
1064 			ND6_HINT(tp);
1065 			/*
1066 			 * Drop TCP, IP headers and TCP options then add data
1067 			 * to socket buffer.
1068 			 */
1069 			if (so->so_state & SS_CANTRCVMORE)
1070 				m_freem(m);
1071 			else {
1072 				m_adj(m, iphlen + off);
1073 				sbappendstream(&so->so_rcv, m);
1074 			}
1075 			sorwakeup(so);
1076 			TCP_SETUP_ACK(tp, tiflags);
1077 			if (tp->t_flags & TF_ACKNOW)
1078 				(void) tcp_output(tp);
1079 			return;
1080 		}
1081 	}
1082 
1083 	/*
1084 	 * Compute mbuf offset to TCP data segment.
1085 	 */
1086 	hdroptlen = iphlen + off;
1087 
1088 	/*
1089 	 * Calculate amount of space in receive window,
1090 	 * and then do TCP input processing.
1091 	 * Receive window is amount of space in rcv queue,
1092 	 * but not less than advertised window.
1093 	 */
1094 	{ int win;
1095 
1096 	win = sbspace(&so->so_rcv);
1097 	if (win < 0)
1098 		win = 0;
1099 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1100 	}
1101 
1102 	switch (tp->t_state) {
1103 
1104 	/*
1105 	 * If the state is LISTEN then ignore segment if it contains an RST.
1106 	 * If the segment contains an ACK then it is bad and send a RST.
1107 	 * If it does not contain a SYN then it is not interesting; drop it.
1108 	 * If it is from this socket, drop it, it must be forged.
1109 	 * Don't bother responding if the destination was a broadcast.
1110 	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
1111 	 * tp->iss, and send a segment:
1112 	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1113 	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
1114 	 * Fill in remote peer address fields if not previously specified.
1115 	 * Enter SYN_RECEIVED state, and process any other fields of this
1116 	 * segment in this state.
1117 	 */
1118 	case TCPS_LISTEN: {
1119 		struct mbuf *am;
1120 		struct sockaddr_in *sin;
1121 #ifdef INET6
1122 		struct sockaddr_in6 *sin6;
1123 #endif /* INET6 */
1124 
1125 		if (tiflags & TH_RST)
1126 			goto drop;
1127 		if (tiflags & TH_ACK)
1128 			goto dropwithreset;
1129 		if ((tiflags & TH_SYN) == 0)
1130 			goto drop;
1131 		if (th->th_dport == th->th_sport) {
1132 			switch (af) {
1133 #ifdef INET6
1134 			case AF_INET6:
1135 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1136 				    &ip6->ip6_dst))
1137 					goto drop;
1138 				break;
1139 #endif /* INET6 */
1140 			case AF_INET:
1141 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1142 					goto drop;
1143 				break;
1144 			}
1145 		}
1146 
1147 		/*
1148 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1149 		 */
1150 		if (m->m_flags & (M_BCAST|M_MCAST))
1151 			goto drop;
1152 		switch (af) {
1153 #ifdef INET6
1154 		case AF_INET6:
1155 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1156 				goto drop;
1157 			break;
1158 #endif /* INET6 */
1159 		case AF_INET:
1160 			if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1161 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1162 				goto drop;
1163 			break;
1164 		}
1165 		am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
1166 		if (am == NULL)
1167 			goto drop;
1168 		switch (af) {
1169 #ifdef INET6
1170 		case AF_INET6:
1171 			/*
1172 			 * This is probably the place to set the tp->pf value.
1173 			 * (Don't forget to do it in the v4 code as well!)
1174 			 *
1175 			 * Also, remember to blank out things like flowlabel, or
1176 			 * set flowlabel for accepted sockets in v6.
1177 			 *
1178 			 * FURTHERMORE, this is PROBABLY the place where the
1179 			 * whole business of key munging is set up for passive
1180 			 * connections.
1181 			 */
1182 			am->m_len = sizeof(struct sockaddr_in6);
1183 			sin6 = mtod(am, struct sockaddr_in6 *);
1184 			bzero(sin6, sizeof(*sin6));
1185 			sin6->sin6_family = AF_INET6;
1186 			sin6->sin6_len = sizeof(struct sockaddr_in6);
1187 			sin6->sin6_addr = ip6->ip6_src;
1188 			sin6->sin6_port = th->th_sport;
1189 			sin6->sin6_flowinfo =
1190 			    ip6->ip6_flow & IPV6_FLOWINFO_MASK;
1191 			laddr6 = inp->inp_laddr6;
1192 			if (IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6))
1193 				inp->inp_laddr6 = ip6->ip6_dst;
1194 			/* This is a good optimization. */
1195 			if (in6_pcbconnect(inp, am)) {
1196 				inp->inp_laddr6 = laddr6;
1197 				(void) m_free(am);
1198 				goto drop;
1199 			}
1200 			break;
1201 #endif
1202 		case AF_INET:
1203 			/* drop IPv4 packet to AF_INET6 socket */
1204 			if (inp->inp_flags & INP_IPV6) {
1205 				(void) m_free(am);
1206 				goto drop;
1207 			}
1208 			am->m_len = sizeof(struct sockaddr_in);
1209 			sin = mtod(am, struct sockaddr_in *);
1210 			bzero(sin, sizeof(*sin));
1211 			sin->sin_family = AF_INET;
1212 			sin->sin_len = sizeof(*sin);
1213 			sin->sin_addr = ip->ip_src;
1214 			sin->sin_port = th->th_sport;
1215 			bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
1216 			laddr = inp->inp_laddr;
1217 			if (inp->inp_laddr.s_addr == INADDR_ANY)
1218 				inp->inp_laddr = ip->ip_dst;
1219 			if (in_pcbconnect(inp, am)) {
1220 				inp->inp_laddr = laddr;
1221 				(void) m_free(am);
1222 				goto drop;
1223 			}
1224 			break;
1225 		}
1226 		(void) m_free(am);
1227 		tp->t_template = tcp_template(tp);
1228 		if (tp->t_template == 0) {
1229 			tp = tcp_drop(tp, ENOBUFS);
1230 			dropsocket = 0;		/* socket is already gone */
1231 			goto drop;
1232 		}
1233 		if (optp)
1234 			tcp_dooptions(tp, optp, optlen, th,
1235 				&ts_present, &ts_val, &ts_ecr);
1236 #ifdef TCP_SACK
1237 		/*
1238 		 * If peer did not send a SACK_PERMITTED option (i.e., if
1239 		 * tcp_dooptions() did not set TF_SACK_PERMIT), set
1240                  * sack_disable to 1 if it is currently 0.
1241                  */
1242                 if (!tp->sack_disable)
1243                         if ((tp->t_flags & TF_SACK_PERMIT) == 0)
1244                                 tp->sack_disable = 1;
1245 #endif
1246 
1247 		if (iss)
1248 			tp->iss = iss;
1249 		else {
1250 #ifdef TCP_COMPAT_42
1251 			tcp_iss += TCP_ISSINCR/2;
1252 			tp->iss = tcp_iss;
1253 #else /* TCP_COMPAT_42 */
1254 			tp->iss = tcp_rndiss_next();
1255 #endif /* !TCP_COMPAT_42 */
1256 		}
1257 		tp->irs = th->th_seq;
1258 		tcp_sendseqinit(tp);
1259 #if defined (TCP_SACK) || defined(TCP_ECN)
1260 		tp->snd_last = tp->snd_una;
1261 #endif /* TCP_SACK */
1262 #if defined(TCP_SACK) && defined(TCP_FACK)
1263 		tp->snd_fack = tp->snd_una;
1264 		tp->retran_data = 0;
1265 		tp->snd_awnd = 0;
1266 #endif /* TCP_FACK */
1267 #ifdef TCP_ECN
1268 		/*
1269 		 * if both ECE and CWR flag bits are set, peer is ECN capable.
1270 		 */
1271 		if (tcp_do_ecn &&
1272 		    (tiflags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
1273 			tp->t_flags |= TF_ECN_PERMIT;
1274 			tcpstat.tcps_ecn_accepts++;
1275 		}
1276 #endif
1277 		tcp_rcvseqinit(tp);
1278 		tp->t_flags |= TF_ACKNOW;
1279 		tp->t_state = TCPS_SYN_RECEIVED;
1280 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcptv_keep_init);
1281 		dropsocket = 0;		/* committed to socket */
1282 		tcpstat.tcps_accepts++;
1283 		goto trimthenstep6;
1284 		}
1285 
1286 	/*
1287 	 * If the state is SYN_RECEIVED:
1288 	 * 	if seg contains SYN/ACK, send an RST.
1289 	 *	if seg contains an ACK, but not for our SYN/ACK, send an RST
1290 	 */
1291 
1292 	case TCPS_SYN_RECEIVED:
1293 		if (tiflags & TH_ACK) {
1294 			if (tiflags & TH_SYN) {
1295 				tcpstat.tcps_badsyn++;
1296 				goto dropwithreset;
1297 			}
1298 			if (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1299 			    SEQ_GT(th->th_ack, tp->snd_max))
1300 				goto dropwithreset;
1301 		}
1302 		break;
1303 
1304 	/*
1305 	 * If the state is SYN_SENT:
1306 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1307 	 *	if seg contains a RST, then drop the connection.
1308 	 *	if seg does not contain SYN, then drop it.
1309 	 * Otherwise this is an acceptable SYN segment
1310 	 *	initialize tp->rcv_nxt and tp->irs
1311 	 *	if seg contains ack then advance tp->snd_una
1312 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1313 	 *	arrange for segment to be acked (eventually)
1314 	 *	continue processing rest of data/controls, beginning with URG
1315 	 */
1316 	case TCPS_SYN_SENT:
1317 		if ((tiflags & TH_ACK) &&
1318 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1319 		     SEQ_GT(th->th_ack, tp->snd_max)))
1320 			goto dropwithreset;
1321 		if (tiflags & TH_RST) {
1322 #ifdef TCP_ECN
1323 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1324 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1325 				goto drop;
1326 #endif
1327 			if (tiflags & TH_ACK)
1328 				tp = tcp_drop(tp, ECONNREFUSED);
1329 			goto drop;
1330 		}
1331 		if ((tiflags & TH_SYN) == 0)
1332 			goto drop;
1333 		if (tiflags & TH_ACK) {
1334 			tp->snd_una = th->th_ack;
1335 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1336 				tp->snd_nxt = tp->snd_una;
1337 		}
1338 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
1339 		tp->irs = th->th_seq;
1340 		tcp_rcvseqinit(tp);
1341 		tp->t_flags |= TF_ACKNOW;
1342 #ifdef TCP_SACK
1343                 /*
1344                  * If we've sent a SACK_PERMITTED option, and the peer
1345                  * also replied with one, then TF_SACK_PERMIT should have
1346                  * been set in tcp_dooptions().  If it was not, disable SACKs.
1347                  */
1348                 if (!tp->sack_disable)
1349                         if ((tp->t_flags & TF_SACK_PERMIT) == 0)
1350                                 tp->sack_disable = 1;
1351 #endif
1352 #ifdef TCP_ECN
1353 		/*
1354 		 * if ECE is set but CWR is not set for SYN-ACK, or
1355 		 * both ECE and CWR are set for simultaneous open,
1356 		 * peer is ECN capable.
1357 		 */
1358 		if (tcp_do_ecn) {
1359 			if ((tiflags & (TH_ACK|TH_ECE|TH_CWR))
1360 			    == (TH_ACK|TH_ECE) ||
1361 			    (tiflags & (TH_ACK|TH_ECE|TH_CWR))
1362 			    == (TH_ECE|TH_CWR)) {
1363 				tp->t_flags |= TF_ECN_PERMIT;
1364 				tiflags &= ~(TH_ECE|TH_CWR);
1365 				tcpstat.tcps_ecn_accepts++;
1366 			}
1367 		}
1368 #endif
1369 
1370 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
1371 			tcpstat.tcps_connects++;
1372 			soisconnected(so);
1373 			tp->t_state = TCPS_ESTABLISHED;
1374 			/* Do window scaling on this connection? */
1375 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1376 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1377 				tp->snd_scale = tp->requested_s_scale;
1378 				tp->rcv_scale = tp->request_r_scale;
1379 			}
1380 			(void) tcp_reass(tp, (struct tcphdr *)0,
1381 				(struct mbuf *)0, &tlen);
1382 			/*
1383 			 * if we didn't have to retransmit the SYN,
1384 			 * use its rtt as our initial srtt & rtt var.
1385 			 */
1386 			if (tp->t_rtttime)
1387 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1388 			/*
1389 			 * Since new data was acked (the SYN), open the
1390 			 * congestion window by one MSS.  We do this
1391 			 * here, because we won't go through the normal
1392 			 * ACK processing below.  And since this is the
1393 			 * start of the connection, we know we are in
1394 			 * the exponential phase of slow-start.
1395 			 */
1396 			tp->snd_cwnd += tp->t_maxseg;
1397 		} else
1398 			tp->t_state = TCPS_SYN_RECEIVED;
1399 
1400 trimthenstep6:
1401 		/*
1402 		 * Advance th->th_seq to correspond to first data byte.
1403 		 * If data, trim to stay within window,
1404 		 * dropping FIN if necessary.
1405 		 */
1406 		th->th_seq++;
1407 		if (tlen > tp->rcv_wnd) {
1408 			todrop = tlen - tp->rcv_wnd;
1409 			m_adj(m, -todrop);
1410 			tlen = tp->rcv_wnd;
1411 			tiflags &= ~TH_FIN;
1412 			tcpstat.tcps_rcvpackafterwin++;
1413 			tcpstat.tcps_rcvbyteafterwin += todrop;
1414 		}
1415 		tp->snd_wl1 = th->th_seq - 1;
1416 		tp->rcv_up = th->th_seq;
1417 		goto step6;
1418 	}
1419 
1420 	/*
1421 	 * States other than LISTEN or SYN_SENT.
1422 	 * First check timestamp, if present.
1423 	 * Then check that at least some bytes of segment are within
1424 	 * receive window.  If segment begins before rcv_nxt,
1425 	 * drop leading data (and SYN); if nothing left, just ack.
1426 	 *
1427 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1428 	 * and it's less than ts_recent, drop it.
1429 	 */
1430 	if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1431 	    TSTMP_LT(ts_val, tp->ts_recent)) {
1432 
1433 		/* Check to see if ts_recent is over 24 days old.  */
1434 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1435 			/*
1436 			 * Invalidate ts_recent.  If this segment updates
1437 			 * ts_recent, the age will be reset later and ts_recent
1438 			 * will get a valid value.  If it does not, setting
1439 			 * ts_recent to zero will at least satisfy the
1440 			 * requirement that zero be placed in the timestamp
1441 			 * echo reply when ts_recent isn't valid.  The
1442 			 * age isn't reset until we get a valid ts_recent
1443 			 * because we don't want out-of-order segments to be
1444 			 * dropped when ts_recent is old.
1445 			 */
1446 			tp->ts_recent = 0;
1447 		} else {
1448 			tcpstat.tcps_rcvduppack++;
1449 			tcpstat.tcps_rcvdupbyte += tlen;
1450 			tcpstat.tcps_pawsdrop++;
1451 			goto dropafterack;
1452 		}
1453 	}
1454 
1455 	todrop = tp->rcv_nxt - th->th_seq;
1456 	if (todrop > 0) {
1457 		if (tiflags & TH_SYN) {
1458 			tiflags &= ~TH_SYN;
1459 			th->th_seq++;
1460 			if (th->th_urp > 1)
1461 				th->th_urp--;
1462 			else
1463 				tiflags &= ~TH_URG;
1464 			todrop--;
1465 		}
1466 		if (todrop > tlen ||
1467 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1468 			/*
1469 			 * Any valid FIN must be to the left of the
1470 			 * window.  At this point, FIN must be a
1471 			 * duplicate or out-of-sequence, so drop it.
1472 			 */
1473 			tiflags &= ~TH_FIN;
1474 			/*
1475 			 * Send ACK to resynchronize, and drop any data,
1476 			 * but keep on processing for RST or ACK.
1477 			 */
1478 			tp->t_flags |= TF_ACKNOW;
1479 			tcpstat.tcps_rcvdupbyte += todrop = tlen;
1480 			tcpstat.tcps_rcvduppack++;
1481 		} else {
1482 			tcpstat.tcps_rcvpartduppack++;
1483 			tcpstat.tcps_rcvpartdupbyte += todrop;
1484 		}
1485 		hdroptlen += todrop;	/* drop from head afterwards */
1486 		th->th_seq += todrop;
1487 		tlen -= todrop;
1488 		if (th->th_urp > todrop)
1489 			th->th_urp -= todrop;
1490 		else {
1491 			tiflags &= ~TH_URG;
1492 			th->th_urp = 0;
1493 		}
1494 	}
1495 
1496 	/*
1497 	 * If new data are received on a connection after the
1498 	 * user processes are gone, then RST the other end.
1499 	 */
1500 	if ((so->so_state & SS_NOFDREF) &&
1501 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1502 		tp = tcp_close(tp);
1503 		tcpstat.tcps_rcvafterclose++;
1504 		goto dropwithreset;
1505 	}
1506 
1507 	/*
1508 	 * If segment ends after window, drop trailing data
1509 	 * (and PUSH and FIN); if nothing left, just ACK.
1510 	 */
1511 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1512 	if (todrop > 0) {
1513 		tcpstat.tcps_rcvpackafterwin++;
1514 		if (todrop >= tlen) {
1515 			tcpstat.tcps_rcvbyteafterwin += tlen;
1516 			/*
1517 			 * If a new connection request is received
1518 			 * while in TIME_WAIT, drop the old connection
1519 			 * and start over if the sequence numbers
1520 			 * are above the previous ones.
1521 			 */
1522 			if (tiflags & TH_SYN &&
1523 			    tp->t_state == TCPS_TIME_WAIT &&
1524 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1525 				iss = tp->snd_nxt + TCP_ISSINCR;
1526 				tp = tcp_close(tp);
1527 				goto findpcb;
1528 			}
1529 			/*
1530 			 * If window is closed can only take segments at
1531 			 * window edge, and have to drop data and PUSH from
1532 			 * incoming segments.  Continue processing, but
1533 			 * remember to ack.  Otherwise, drop segment
1534 			 * and ack.
1535 			 */
1536 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1537 				tp->t_flags |= TF_ACKNOW;
1538 				tcpstat.tcps_rcvwinprobe++;
1539 			} else
1540 				goto dropafterack;
1541 		} else
1542 			tcpstat.tcps_rcvbyteafterwin += todrop;
1543 		m_adj(m, -todrop);
1544 		tlen -= todrop;
1545 		tiflags &= ~(TH_PUSH|TH_FIN);
1546 	}
1547 
1548 	/*
1549 	 * If last ACK falls within this segment's sequence numbers,
1550 	 * record its timestamp.
1551 	 * Fix from Braden, see Stevens p. 870
1552 	 */
1553 	if (ts_present && TSTMP_GEQ(ts_val, tp->ts_recent) &&
1554 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1555 		tp->ts_recent_age = tcp_now;
1556 		tp->ts_recent = ts_val;
1557 	}
1558 
1559 	/*
1560 	 * If the RST bit is set examine the state:
1561 	 *    SYN_RECEIVED STATE:
1562 	 *	If passive open, return to LISTEN state.
1563 	 *	If active open, inform user that connection was refused.
1564 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1565 	 *	Inform user that connection was reset, and close tcb.
1566 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1567 	 *	Close the tcb.
1568 	 */
1569 	if (tiflags & TH_RST) {
1570 		if (th->th_seq != tp->last_ack_sent)
1571 			goto drop;
1572 
1573 		switch (tp->t_state) {
1574 		case TCPS_SYN_RECEIVED:
1575 #ifdef TCP_ECN
1576 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1577 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1578 				goto drop;
1579 #endif
1580 			so->so_error = ECONNREFUSED;
1581 			goto close;
1582 
1583 		case TCPS_ESTABLISHED:
1584 		case TCPS_FIN_WAIT_1:
1585 		case TCPS_FIN_WAIT_2:
1586 		case TCPS_CLOSE_WAIT:
1587 			so->so_error = ECONNRESET;
1588 		close:
1589 			tp->t_state = TCPS_CLOSED;
1590 			tcpstat.tcps_drops++;
1591 			tp = tcp_close(tp);
1592 			goto drop;
1593 		case TCPS_CLOSING:
1594 		case TCPS_LAST_ACK:
1595 		case TCPS_TIME_WAIT:
1596 			tp = tcp_close(tp);
1597 			goto drop;
1598 		}
1599 	}
1600 
1601 	/*
1602 	 * If a SYN is in the window, then this is an
1603 	 * error and we send an RST and drop the connection.
1604 	 */
1605 	if (tiflags & TH_SYN) {
1606 		tp = tcp_drop(tp, ECONNRESET);
1607 		goto dropwithreset;
1608 	}
1609 
1610 	/*
1611 	 * If the ACK bit is off we drop the segment and return.
1612 	 */
1613 	if ((tiflags & TH_ACK) == 0) {
1614 		if (tp->t_flags & TF_ACKNOW)
1615 			goto dropafterack;
1616 		else
1617 			goto drop;
1618 	}
1619 
1620 	/*
1621 	 * Ack processing.
1622 	 */
1623 	switch (tp->t_state) {
1624 
1625 	/*
1626 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1627 	 * ESTABLISHED state and continue processing.
1628 	 * The ACK was checked above.
1629 	 */
1630 	case TCPS_SYN_RECEIVED:
1631 		tcpstat.tcps_connects++;
1632 		soisconnected(so);
1633 		tp->t_state = TCPS_ESTABLISHED;
1634 		/* Do window scaling? */
1635 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1636 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1637 			tp->snd_scale = tp->requested_s_scale;
1638 			tp->rcv_scale = tp->request_r_scale;
1639 		}
1640 		(void) tcp_reass(tp, (struct tcphdr *)0, (struct mbuf *)0,
1641 				 &tlen);
1642 		tp->snd_wl1 = th->th_seq - 1;
1643 		/* fall into ... */
1644 
1645 	/*
1646 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1647 	 * ACKs.  If the ack is in the range
1648 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1649 	 * then advance tp->snd_una to th->th_ack and drop
1650 	 * data from the retransmission queue.  If this ACK reflects
1651 	 * more up to date window information we update our window information.
1652 	 */
1653 	case TCPS_ESTABLISHED:
1654 	case TCPS_FIN_WAIT_1:
1655 	case TCPS_FIN_WAIT_2:
1656 	case TCPS_CLOSE_WAIT:
1657 	case TCPS_CLOSING:
1658 	case TCPS_LAST_ACK:
1659 	case TCPS_TIME_WAIT:
1660 #ifdef TCP_ECN
1661 		/*
1662 		 * if we receive ECE and are not already in recovery phase,
1663 		 * reduce cwnd by half but don't slow-start.
1664 		 * advance snd_last to snd_max not to reduce cwnd again
1665 		 * until all outstanding packets are acked.
1666 		 */
1667 		if (tcp_do_ecn && (tiflags & TH_ECE)) {
1668 			if ((tp->t_flags & TF_ECN_PERMIT) &&
1669 			    SEQ_GEQ(tp->snd_una, tp->snd_last)) {
1670 				u_int win;
1671 
1672 				win = min(tp->snd_wnd, tp->snd_cwnd) / tp->t_maxseg;
1673 				if (win > 1) {
1674 					tp->snd_ssthresh = win / 2 * tp->t_maxseg;
1675 					tp->snd_cwnd = tp->snd_ssthresh;
1676 					tp->snd_last = tp->snd_max;
1677 					tp->t_flags |= TF_SEND_CWR;
1678 					tcpstat.tcps_cwr_ecn++;
1679 				}
1680 			}
1681 			tcpstat.tcps_ecn_rcvece++;
1682 		}
1683 		/*
1684 		 * if we receive CWR, we know that the peer has reduced
1685 		 * its congestion window.  stop sending ecn-echo.
1686 		 */
1687 		if ((tiflags & TH_CWR)) {
1688 			tp->t_flags &= ~TF_RCVD_CE;
1689 			tcpstat.tcps_ecn_rcvcwr++;
1690 		}
1691 #endif /* TCP_ECN */
1692 
1693 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1694 			/*
1695 			 * Duplicate/old ACK processing.
1696 			 * Increments t_dupacks:
1697 			 *	Pure duplicate (same seq/ack/window, no data)
1698 			 * Doesn't affect t_dupacks:
1699 			 *	Data packets.
1700 			 *	Normal window updates (window opens)
1701 			 * Resets t_dupacks:
1702 			 *	New data ACKed.
1703 			 *	Window shrinks
1704 			 *	Old ACK
1705 			 */
1706 			if (tlen)
1707 				break;
1708 			/*
1709 			 * If we get an old ACK, there is probably packet
1710 			 * reordering going on.  Be conservative and reset
1711 			 * t_dupacks so that we are less agressive in
1712 			 * doing a fast retransmit.
1713 			 */
1714 			if (th->th_ack != tp->snd_una) {
1715 				tp->t_dupacks = 0;
1716 				break;
1717 			}
1718 			if (tiwin == tp->snd_wnd) {
1719 				tcpstat.tcps_rcvdupack++;
1720 				/*
1721 				 * If we have outstanding data (other than
1722 				 * a window probe), this is a completely
1723 				 * duplicate ack (ie, window info didn't
1724 				 * change), the ack is the biggest we've
1725 				 * seen and we've seen exactly our rexmt
1726 				 * threshhold of them, assume a packet
1727 				 * has been dropped and retransmit it.
1728 				 * Kludge snd_nxt & the congestion
1729 				 * window so we send only this one
1730 				 * packet.
1731 				 *
1732 				 * We know we're losing at the current
1733 				 * window size so do congestion avoidance
1734 				 * (set ssthresh to half the current window
1735 				 * and pull our congestion window back to
1736 				 * the new ssthresh).
1737 				 *
1738 				 * Dup acks mean that packets have left the
1739 				 * network (they're now cached at the receiver)
1740 				 * so bump cwnd by the amount in the receiver
1741 				 * to keep a constant cwnd packets in the
1742 				 * network.
1743 				 */
1744 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0)
1745 					tp->t_dupacks = 0;
1746 #if defined(TCP_SACK) && defined(TCP_FACK)
1747 				/*
1748 				 * In FACK, can enter fast rec. if the receiver
1749 				 * reports a reass. queue longer than 3 segs.
1750 				 */
1751 				else if (++tp->t_dupacks == tcprexmtthresh ||
1752 				    ((SEQ_GT(tp->snd_fack, tcprexmtthresh *
1753 				    tp->t_maxseg + tp->snd_una)) &&
1754 				    SEQ_GT(tp->snd_una, tp->snd_last))) {
1755 #else
1756 				else if (++tp->t_dupacks == tcprexmtthresh) {
1757 #endif /* TCP_FACK */
1758 					tcp_seq onxt = tp->snd_nxt;
1759 					u_long win =
1760 					    ulmin(tp->snd_wnd, tp->snd_cwnd) /
1761 						2 / tp->t_maxseg;
1762 
1763 #if defined(TCP_SACK) || defined(TCP_ECN)
1764 					if (SEQ_LT(th->th_ack, tp->snd_last)){
1765 					    	/*
1766 						 * False fast retx after
1767 						 * timeout.  Do not cut window.
1768 						 */
1769 						tp->t_dupacks = 0;
1770 						goto drop;
1771 					}
1772 #endif
1773 					if (win < 2)
1774 						win = 2;
1775 					tp->snd_ssthresh = win * tp->t_maxseg;
1776 #if defined(TCP_SACK)
1777 					tp->snd_last = tp->snd_max;
1778 #endif
1779 #ifdef TCP_SACK
1780                     			if (!tp->sack_disable) {
1781 						TCP_TIMER_DISARM(tp, TCPT_REXMT);
1782 						tp->t_rtttime = 0;
1783 #ifdef TCP_ECN
1784 						tp->t_flags |= TF_SEND_CWR;
1785 #endif
1786 #if 1 /* TCP_ECN */
1787 						tcpstat.tcps_cwr_frecovery++;
1788 #endif
1789 						tcpstat.tcps_sndrexmitfast++;
1790 #if defined(TCP_SACK) && defined(TCP_FACK)
1791 						tp->t_dupacks = tcprexmtthresh;
1792 						(void) tcp_output(tp);
1793 						/*
1794 						 * During FR, snd_cwnd is held
1795 						 * constant for FACK.
1796 						 */
1797 						tp->snd_cwnd = tp->snd_ssthresh;
1798 #else
1799 						/*
1800 						 * tcp_output() will send
1801 						 * oldest SACK-eligible rtx.
1802 						 */
1803 						(void) tcp_output(tp);
1804 						tp->snd_cwnd = tp->snd_ssthresh+
1805 					           tp->t_maxseg * tp->t_dupacks;
1806 #endif /* TCP_FACK */
1807 						goto drop;
1808 					}
1809 #endif /* TCP_SACK */
1810 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1811 					tp->t_rtttime = 0;
1812 					tp->snd_nxt = th->th_ack;
1813 					tp->snd_cwnd = tp->t_maxseg;
1814 #ifdef TCP_ECN
1815 					tp->t_flags |= TF_SEND_CWR;
1816 #endif
1817 #if 1 /* TCP_ECN */
1818 					tcpstat.tcps_cwr_frecovery++;
1819 #endif
1820 					tcpstat.tcps_sndrexmitfast++;
1821 					(void) tcp_output(tp);
1822 
1823 					tp->snd_cwnd = tp->snd_ssthresh +
1824 					    tp->t_maxseg * tp->t_dupacks;
1825 					if (SEQ_GT(onxt, tp->snd_nxt))
1826 						tp->snd_nxt = onxt;
1827 					goto drop;
1828 				} else if (tp->t_dupacks > tcprexmtthresh) {
1829 #if defined(TCP_SACK) && defined(TCP_FACK)
1830 					/*
1831 					 * while (awnd < cwnd)
1832 					 *         sendsomething();
1833 					 */
1834 					if (!tp->sack_disable) {
1835 						if (tp->snd_awnd < tp->snd_cwnd)
1836 							tcp_output(tp);
1837 						goto drop;
1838 					}
1839 #endif /* TCP_FACK */
1840 					tp->snd_cwnd += tp->t_maxseg;
1841 					(void) tcp_output(tp);
1842 					goto drop;
1843 				}
1844 			} else if (tiwin < tp->snd_wnd) {
1845 				/*
1846 				 * The window was retracted!  Previous dup
1847 				 * ACKs may have been due to packets arriving
1848 				 * after the shrunken window, not a missing
1849 				 * packet, so play it safe and reset t_dupacks
1850 				 */
1851 				tp->t_dupacks = 0;
1852 			}
1853 			break;
1854 		}
1855 		/*
1856 		 * If the congestion window was inflated to account
1857 		 * for the other side's cached packets, retract it.
1858 		 */
1859 #if defined(TCP_SACK)
1860 		if (!tp->sack_disable) {
1861 			if (tp->t_dupacks >= tcprexmtthresh) {
1862 				/* Check for a partial ACK */
1863 				if (tcp_sack_partialack(tp, th)) {
1864 #if defined(TCP_SACK) && defined(TCP_FACK)
1865 					/* Force call to tcp_output */
1866 					if (tp->snd_awnd < tp->snd_cwnd)
1867 						needoutput = 1;
1868 #else
1869 					tp->snd_cwnd += tp->t_maxseg;
1870 					needoutput = 1;
1871 #endif /* TCP_FACK */
1872 				} else {
1873 					/* Out of fast recovery */
1874 					tp->snd_cwnd = tp->snd_ssthresh;
1875 					if (tcp_seq_subtract(tp->snd_max,
1876 					    th->th_ack) < tp->snd_ssthresh)
1877 						tp->snd_cwnd =
1878 						   tcp_seq_subtract(tp->snd_max,
1879 					           th->th_ack);
1880 					tp->t_dupacks = 0;
1881 #if defined(TCP_SACK) && defined(TCP_FACK)
1882 					if (SEQ_GT(th->th_ack, tp->snd_fack))
1883 						tp->snd_fack = th->th_ack;
1884 #endif /* TCP_FACK */
1885 				}
1886 			}
1887 		} else {
1888 			if (tp->t_dupacks >= tcprexmtthresh &&
1889 			    !tcp_newreno(tp, th)) {
1890 				/* Out of fast recovery */
1891 				tp->snd_cwnd = tp->snd_ssthresh;
1892 				if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
1893 			  	    tp->snd_ssthresh)
1894 					tp->snd_cwnd =
1895 					    tcp_seq_subtract(tp->snd_max,
1896 					    th->th_ack);
1897 				tp->t_dupacks = 0;
1898 			}
1899 		}
1900 		if (tp->t_dupacks < tcprexmtthresh)
1901 			tp->t_dupacks = 0;
1902 #else /* else no TCP_SACK */
1903 		if (tp->t_dupacks >= tcprexmtthresh &&
1904 		    tp->snd_cwnd > tp->snd_ssthresh)
1905 			tp->snd_cwnd = tp->snd_ssthresh;
1906 		tp->t_dupacks = 0;
1907 #endif
1908 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1909 			tcpstat.tcps_rcvacktoomuch++;
1910 			goto dropafterack;
1911 		}
1912 		acked = th->th_ack - tp->snd_una;
1913 		tcpstat.tcps_rcvackpack++;
1914 		tcpstat.tcps_rcvackbyte += acked;
1915 
1916 		/*
1917 		 * If we have a timestamp reply, update smoothed
1918 		 * round trip time.  If no timestamp is present but
1919 		 * transmit timer is running and timed sequence
1920 		 * number was acked, update smoothed round trip time.
1921 		 * Since we now have an rtt measurement, cancel the
1922 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1923 		 * Recompute the initial retransmit timer.
1924 		 */
1925 		if (ts_present)
1926 			tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
1927 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1928 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1929 
1930 		/*
1931 		 * If all outstanding data is acked, stop retransmit
1932 		 * timer and remember to restart (more output or persist).
1933 		 * If there is more data to be acked, restart retransmit
1934 		 * timer, using current (possibly backed-off) value.
1935 		 */
1936 		if (th->th_ack == tp->snd_max) {
1937 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1938 			needoutput = 1;
1939 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1940 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1941 		/*
1942 		 * When new data is acked, open the congestion window.
1943 		 * If the window gives us less than ssthresh packets
1944 		 * in flight, open exponentially (maxseg per packet).
1945 		 * Otherwise open linearly: maxseg per window
1946 		 * (maxseg^2 / cwnd per packet).
1947 		 */
1948 		{
1949 		u_int cw = tp->snd_cwnd;
1950 		u_int incr = tp->t_maxseg;
1951 
1952 		if (cw > tp->snd_ssthresh)
1953 			incr = incr * incr / cw;
1954 #if defined (TCP_SACK)
1955 		if (tp->t_dupacks < tcprexmtthresh)
1956 #endif
1957 		tp->snd_cwnd = ulmin(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1958 		}
1959 		ND6_HINT(tp);
1960 		if (acked > so->so_snd.sb_cc) {
1961 			tp->snd_wnd -= so->so_snd.sb_cc;
1962 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1963 			ourfinisacked = 1;
1964 		} else {
1965 			sbdrop(&so->so_snd, acked);
1966 			tp->snd_wnd -= acked;
1967 			ourfinisacked = 0;
1968 		}
1969 		if (sb_notify(&so->so_snd))
1970 			sowwakeup(so);
1971 		tp->snd_una = th->th_ack;
1972 #ifdef TCP_ECN
1973 		/* sync snd_last with snd_una */
1974 		if (SEQ_GT(tp->snd_una, tp->snd_last))
1975 			tp->snd_last = tp->snd_una;
1976 #endif
1977 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1978 			tp->snd_nxt = tp->snd_una;
1979 #if defined (TCP_SACK) && defined (TCP_FACK)
1980 		if (SEQ_GT(tp->snd_una, tp->snd_fack)) {
1981 			tp->snd_fack = tp->snd_una;
1982 			/* Update snd_awnd for partial ACK
1983 			 * without any SACK blocks.
1984 			 */
1985 			tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt,
1986 				tp->snd_fack) + tp->retran_data;
1987 		}
1988 #endif
1989 
1990 		switch (tp->t_state) {
1991 
1992 		/*
1993 		 * In FIN_WAIT_1 STATE in addition to the processing
1994 		 * for the ESTABLISHED state if our FIN is now acknowledged
1995 		 * then enter FIN_WAIT_2.
1996 		 */
1997 		case TCPS_FIN_WAIT_1:
1998 			if (ourfinisacked) {
1999 				/*
2000 				 * If we can't receive any more
2001 				 * data, then closing user can proceed.
2002 				 * Starting the timer is contrary to the
2003 				 * specification, but if we don't get a FIN
2004 				 * we'll hang forever.
2005 				 */
2006 				if (so->so_state & SS_CANTRCVMORE) {
2007 					soisdisconnected(so);
2008 					TCP_TIMER_ARM(tp, TCPT_2MSL, tcp_maxidle);
2009 				}
2010 				tp->t_state = TCPS_FIN_WAIT_2;
2011 			}
2012 			break;
2013 
2014 		/*
2015 		 * In CLOSING STATE in addition to the processing for
2016 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2017 		 * then enter the TIME-WAIT state, otherwise ignore
2018 		 * the segment.
2019 		 */
2020 		case TCPS_CLOSING:
2021 			if (ourfinisacked) {
2022 				tp->t_state = TCPS_TIME_WAIT;
2023 				tcp_canceltimers(tp);
2024 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2025 				soisdisconnected(so);
2026 			}
2027 			break;
2028 
2029 		/*
2030 		 * In LAST_ACK, we may still be waiting for data to drain
2031 		 * and/or to be acked, as well as for the ack of our FIN.
2032 		 * If our FIN is now acknowledged, delete the TCB,
2033 		 * enter the closed state and return.
2034 		 */
2035 		case TCPS_LAST_ACK:
2036 			if (ourfinisacked) {
2037 				tp = tcp_close(tp);
2038 				goto drop;
2039 			}
2040 			break;
2041 
2042 		/*
2043 		 * In TIME_WAIT state the only thing that should arrive
2044 		 * is a retransmission of the remote FIN.  Acknowledge
2045 		 * it and restart the finack timer.
2046 		 */
2047 		case TCPS_TIME_WAIT:
2048 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2049 			goto dropafterack;
2050 		}
2051 	}
2052 
2053 step6:
2054 	/*
2055 	 * Update window information.
2056 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2057 	 */
2058 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2059 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2060 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2061 		/* keep track of pure window updates */
2062 		if (tlen == 0 &&
2063 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2064 			tcpstat.tcps_rcvwinupd++;
2065 		tp->snd_wnd = tiwin;
2066 		tp->snd_wl1 = th->th_seq;
2067 		tp->snd_wl2 = th->th_ack;
2068 		if (tp->snd_wnd > tp->max_sndwnd)
2069 			tp->max_sndwnd = tp->snd_wnd;
2070 		needoutput = 1;
2071 	}
2072 
2073 	/*
2074 	 * Process segments with URG.
2075 	 */
2076 	if ((tiflags & TH_URG) && th->th_urp &&
2077 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2078 		/*
2079 		 * This is a kludge, but if we receive and accept
2080 		 * random urgent pointers, we'll crash in
2081 		 * soreceive.  It's hard to imagine someone
2082 		 * actually wanting to send this much urgent data.
2083 		 */
2084 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2085 			th->th_urp = 0;			/* XXX */
2086 			tiflags &= ~TH_URG;		/* XXX */
2087 			goto dodata;			/* XXX */
2088 		}
2089 		/*
2090 		 * If this segment advances the known urgent pointer,
2091 		 * then mark the data stream.  This should not happen
2092 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2093 		 * a FIN has been received from the remote side.
2094 		 * In these states we ignore the URG.
2095 		 *
2096 		 * According to RFC961 (Assigned Protocols),
2097 		 * the urgent pointer points to the last octet
2098 		 * of urgent data.  We continue, however,
2099 		 * to consider it to indicate the first octet
2100 		 * of data past the urgent section as the original
2101 		 * spec states (in one of two places).
2102 		 */
2103 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2104 			tp->rcv_up = th->th_seq + th->th_urp;
2105 			so->so_oobmark = so->so_rcv.sb_cc +
2106 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2107 			if (so->so_oobmark == 0)
2108 				so->so_state |= SS_RCVATMARK;
2109 			sohasoutofband(so);
2110 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2111 		}
2112 		/*
2113 		 * Remove out of band data so doesn't get presented to user.
2114 		 * This can happen independent of advancing the URG pointer,
2115 		 * but if two URG's are pending at once, some out-of-band
2116 		 * data may creep in... ick.
2117 		 */
2118 		if (th->th_urp <= (u_int16_t) tlen
2119 #ifdef SO_OOBINLINE
2120 		     && (so->so_options & SO_OOBINLINE) == 0
2121 #endif
2122 		     )
2123 		        tcp_pulloutofband(so, th->th_urp, m, hdroptlen);
2124 	} else
2125 		/*
2126 		 * If no out of band data is expected,
2127 		 * pull receive urgent pointer along
2128 		 * with the receive window.
2129 		 */
2130 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2131 			tp->rcv_up = tp->rcv_nxt;
2132 dodata:							/* XXX */
2133 
2134 	/*
2135 	 * Process the segment text, merging it into the TCP sequencing queue,
2136 	 * and arranging for acknowledgment of receipt if necessary.
2137 	 * This process logically involves adjusting tp->rcv_wnd as data
2138 	 * is presented to the user (this happens in tcp_usrreq.c,
2139 	 * case PRU_RCVD).  If a FIN has already been received on this
2140 	 * connection then we just ignore the text.
2141 	 */
2142 	if ((tlen || (tiflags & TH_FIN)) &&
2143 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2144 		if (th->th_seq == tp->rcv_nxt && tp->segq.lh_first == NULL &&
2145 		    tp->t_state == TCPS_ESTABLISHED) {
2146 			TCP_SETUP_ACK(tp, tiflags);
2147 			tp->rcv_nxt += tlen;
2148 			tiflags = th->th_flags & TH_FIN;
2149 			tcpstat.tcps_rcvpack++;
2150 			tcpstat.tcps_rcvbyte += tlen;
2151 			ND6_HINT(tp);
2152 			if (so->so_state & SS_CANTRCVMORE)
2153 				m_freem(m);
2154 			else {
2155 				m_adj(m, hdroptlen);
2156 				sbappendstream(&so->so_rcv, m);
2157 			}
2158 			sorwakeup(so);
2159 		} else {
2160 			m_adj(m, hdroptlen);
2161 			tiflags = tcp_reass(tp, th, m, &tlen);
2162 			tp->t_flags |= TF_ACKNOW;
2163 		}
2164 #ifdef TCP_SACK
2165 		if (!tp->sack_disable)
2166 			tcp_update_sack_list(tp);
2167 #endif
2168 
2169 		/*
2170 		 * variable len never referenced again in modern BSD,
2171 		 * so why bother computing it ??
2172 		 */
2173 #if 0
2174 		/*
2175 		 * Note the amount of data that peer has sent into
2176 		 * our window, in order to estimate the sender's
2177 		 * buffer size.
2178 		 */
2179 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2180 #endif /* 0 */
2181 	} else {
2182 		m_freem(m);
2183 		tiflags &= ~TH_FIN;
2184 	}
2185 
2186 	/*
2187 	 * If FIN is received ACK the FIN and let the user know
2188 	 * that the connection is closing.  Ignore a FIN received before
2189 	 * the connection is fully established.
2190 	 */
2191 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2192 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2193 			socantrcvmore(so);
2194 			tp->t_flags |= TF_ACKNOW;
2195 			tp->rcv_nxt++;
2196 		}
2197 		switch (tp->t_state) {
2198 
2199 		/*
2200 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2201 		 */
2202 		case TCPS_ESTABLISHED:
2203 			tp->t_state = TCPS_CLOSE_WAIT;
2204 			break;
2205 
2206 		/*
2207 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2208 		 * enter the CLOSING state.
2209 		 */
2210 		case TCPS_FIN_WAIT_1:
2211 			tp->t_state = TCPS_CLOSING;
2212 			break;
2213 
2214 		/*
2215 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2216 		 * starting the time-wait timer, turning off the other
2217 		 * standard timers.
2218 		 */
2219 		case TCPS_FIN_WAIT_2:
2220 			tp->t_state = TCPS_TIME_WAIT;
2221 			tcp_canceltimers(tp);
2222 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2223 			soisdisconnected(so);
2224 			break;
2225 
2226 		/*
2227 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2228 		 */
2229 		case TCPS_TIME_WAIT:
2230 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2231 			break;
2232 		}
2233 	}
2234 	if (so->so_options & SO_DEBUG) {
2235 		switch (tp->pf) {
2236 #ifdef INET6
2237 		case PF_INET6:
2238 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti6,
2239 			    0, tlen);
2240 			break;
2241 #endif /* INET6 */
2242 		case PF_INET:
2243 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti,
2244 			    0, tlen);
2245 			break;
2246 		}
2247 	}
2248 
2249 	/*
2250 	 * Return any desired output.
2251 	 */
2252 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2253 		(void) tcp_output(tp);
2254 	}
2255 	return;
2256 
2257 dropafterack:
2258 	/*
2259 	 * Generate an ACK dropping incoming segment if it occupies
2260 	 * sequence space, where the ACK reflects our state.
2261 	 */
2262 	if (tiflags & TH_RST)
2263 		goto drop;
2264 	m_freem(m);
2265 	tp->t_flags |= TF_ACKNOW;
2266 	(void) tcp_output(tp);
2267 	return;
2268 
2269 dropwithreset_ratelim:
2270 	/*
2271 	 * We may want to rate-limit RSTs in certain situations,
2272 	 * particularly if we are sending an RST in response to
2273 	 * an attempt to connect to or otherwise communicate with
2274 	 * a port for which we have no socket.
2275 	 */
2276 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2277 	    tcp_rst_ppslim) == 0) {
2278 		/* XXX stat */
2279 		goto drop;
2280 	}
2281 	/* ...fall into dropwithreset... */
2282 
2283 dropwithreset:
2284 	/*
2285 	 * Generate a RST, dropping incoming segment.
2286 	 * Make ACK acceptable to originator of segment.
2287 	 * Don't bother to respond if destination was broadcast/multicast.
2288 	 */
2289 	if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2290 		goto drop;
2291 	switch (af) {
2292 #ifdef INET6
2293 	case AF_INET6:
2294 		/* For following calls to tcp_respond */
2295 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2296 			goto drop;
2297 		break;
2298 #endif /* INET6 */
2299 	case AF_INET:
2300 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2301 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2302 			goto drop;
2303 	}
2304 	if (tiflags & TH_ACK) {
2305 		tcp_respond(tp, mtod(m, caddr_t), m, (tcp_seq)0, th->th_ack,
2306 		    TH_RST);
2307 	} else {
2308 		if (tiflags & TH_SYN)
2309 			tlen++;
2310 		tcp_respond(tp, mtod(m, caddr_t), m, th->th_seq + tlen,
2311 		    (tcp_seq)0, TH_RST|TH_ACK);
2312 	}
2313 	/* destroy temporarily created socket */
2314 	if (dropsocket)
2315 		(void) soabort(so);
2316 	return;
2317 
2318 drop:
2319 	/*
2320 	 * Drop space held by incoming segment and return.
2321 	 */
2322 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
2323 		switch (tp->pf) {
2324 #ifdef INET6
2325 		case PF_INET6:
2326 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti6,
2327 			    0, tlen);
2328 			break;
2329 #endif /* INET6 */
2330 		case PF_INET:
2331 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti,
2332 			    0, tlen);
2333 			break;
2334 		}
2335 	}
2336 
2337 	m_freem(m);
2338 	/* destroy temporarily created socket */
2339 	if (dropsocket)
2340 		(void) soabort(so);
2341 	return;
2342 #ifndef TUBA_INCLUDE
2343 }
2344 
2345 void
2346 tcp_dooptions(tp, cp, cnt, th, ts_present, ts_val, ts_ecr)
2347 	struct tcpcb *tp;
2348 	u_char *cp;
2349 	int cnt;
2350 	struct tcphdr *th;
2351 	int *ts_present;
2352 	u_int32_t *ts_val, *ts_ecr;
2353 {
2354 	u_int16_t mss = 0;
2355 	int opt, optlen;
2356 
2357 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2358 		opt = cp[0];
2359 		if (opt == TCPOPT_EOL)
2360 			break;
2361 		if (opt == TCPOPT_NOP)
2362 			optlen = 1;
2363 		else {
2364 			if (cnt < 2)
2365 				break;
2366 			optlen = cp[1];
2367 			if (optlen < 2 || optlen > cnt)
2368 				break;
2369 		}
2370 		switch (opt) {
2371 
2372 		default:
2373 			continue;
2374 
2375 		case TCPOPT_MAXSEG:
2376 			if (optlen != TCPOLEN_MAXSEG)
2377 				continue;
2378 			if (!(th->th_flags & TH_SYN))
2379 				continue;
2380 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
2381 			NTOHS(mss);
2382 			break;
2383 
2384 		case TCPOPT_WINDOW:
2385 			if (optlen != TCPOLEN_WINDOW)
2386 				continue;
2387 			if (!(th->th_flags & TH_SYN))
2388 				continue;
2389 			tp->t_flags |= TF_RCVD_SCALE;
2390 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2391 			break;
2392 
2393 		case TCPOPT_TIMESTAMP:
2394 			if (optlen != TCPOLEN_TIMESTAMP)
2395 				continue;
2396 			*ts_present = 1;
2397 			bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val));
2398 			NTOHL(*ts_val);
2399 			bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
2400 			NTOHL(*ts_ecr);
2401 
2402 			/*
2403 			 * A timestamp received in a SYN makes
2404 			 * it ok to send timestamp requests and replies.
2405 			 */
2406 			if (th->th_flags & TH_SYN) {
2407 				tp->t_flags |= TF_RCVD_TSTMP;
2408 				tp->ts_recent = *ts_val;
2409 				tp->ts_recent_age = tcp_now;
2410 			}
2411 			break;
2412 
2413 #ifdef TCP_SACK
2414 		case TCPOPT_SACK_PERMITTED:
2415 			if (tp->sack_disable || optlen!=TCPOLEN_SACK_PERMITTED)
2416 				continue;
2417 			if (th->th_flags & TH_SYN)
2418 				/* MUST only be set on SYN */
2419 				tp->t_flags |= TF_SACK_PERMIT;
2420 			break;
2421 		case TCPOPT_SACK:
2422 			if (tcp_sack_option(tp, th, cp, optlen))
2423 				continue;
2424 			break;
2425 #endif
2426 		}
2427 	}
2428 	/* Update t_maxopd and t_maxseg after all options are processed */
2429 	if (th->th_flags & TH_SYN) {
2430 		(void) tcp_mss(tp, mss);	/* sets t_maxseg */
2431 
2432 		if (mss)
2433 			tcp_mss_update(tp);
2434 	}
2435 }
2436 
2437 #if defined(TCP_SACK)
2438 u_long
2439 tcp_seq_subtract(a, b)
2440 	u_long a, b;
2441 {
2442 	return ((long)(a - b));
2443 }
2444 #endif
2445 
2446 
2447 #ifdef TCP_SACK
2448 /*
2449  * This function is called upon receipt of new valid data (while not in header
2450  * prediction mode), and it updates the ordered list of sacks.
2451  */
2452 void
2453 tcp_update_sack_list(tp)
2454 	struct tcpcb *tp;
2455 {
2456 	/*
2457 	 * First reported block MUST be the most recent one.  Subsequent
2458 	 * blocks SHOULD be in the order in which they arrived at the
2459 	 * receiver.  These two conditions make the implementation fully
2460 	 * compliant with RFC 2018.
2461 	 */
2462 	int i, j = 0, count = 0, lastpos = -1;
2463 	struct sackblk sack, firstsack, temp[MAX_SACK_BLKS];
2464 
2465 	/* First clean up current list of sacks */
2466 	for (i = 0; i < tp->rcv_numsacks; i++) {
2467 		sack = tp->sackblks[i];
2468 		if (sack.start == 0 && sack.end == 0) {
2469 			count++; /* count = number of blocks to be discarded */
2470 			continue;
2471 		}
2472 		if (SEQ_LEQ(sack.end, tp->rcv_nxt)) {
2473 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2474 			count++;
2475 		} else {
2476 			temp[j].start = tp->sackblks[i].start;
2477 			temp[j++].end = tp->sackblks[i].end;
2478 		}
2479 	}
2480 	tp->rcv_numsacks -= count;
2481 	if (tp->rcv_numsacks == 0) { /* no sack blocks currently (fast path) */
2482 		tcp_clean_sackreport(tp);
2483 		if (SEQ_LT(tp->rcv_nxt, tp->rcv_laststart)) {
2484 			/* ==> need first sack block */
2485 			tp->sackblks[0].start = tp->rcv_laststart;
2486 			tp->sackblks[0].end = tp->rcv_lastend;
2487 			tp->rcv_numsacks = 1;
2488 		}
2489 		return;
2490 	}
2491 	/* Otherwise, sack blocks are already present. */
2492 	for (i = 0; i < tp->rcv_numsacks; i++)
2493 		tp->sackblks[i] = temp[i]; /* first copy back sack list */
2494 	if (SEQ_GEQ(tp->rcv_nxt, tp->rcv_lastend))
2495 		return;     /* sack list remains unchanged */
2496 	/*
2497 	 * From here, segment just received should be (part of) the 1st sack.
2498 	 * Go through list, possibly coalescing sack block entries.
2499 	 */
2500 	firstsack.start = tp->rcv_laststart;
2501 	firstsack.end = tp->rcv_lastend;
2502 	for (i = 0; i < tp->rcv_numsacks; i++) {
2503 		sack = tp->sackblks[i];
2504 		if (SEQ_LT(sack.end, firstsack.start) ||
2505 		    SEQ_GT(sack.start, firstsack.end))
2506 			continue; /* no overlap */
2507 		if (sack.start == firstsack.start && sack.end == firstsack.end){
2508 			/*
2509 			 * identical block; delete it here since we will
2510 			 * move it to the front of the list.
2511 			 */
2512 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2513 			lastpos = i;    /* last posn with a zero entry */
2514 			continue;
2515 		}
2516 		if (SEQ_LEQ(sack.start, firstsack.start))
2517 			firstsack.start = sack.start; /* merge blocks */
2518 		if (SEQ_GEQ(sack.end, firstsack.end))
2519 			firstsack.end = sack.end;     /* merge blocks */
2520 		tp->sackblks[i].start = tp->sackblks[i].end = 0;
2521 		lastpos = i;    /* last posn with a zero entry */
2522 	}
2523 	if (lastpos != -1) {    /* at least one merge */
2524 		for (i = 0, j = 1; i < tp->rcv_numsacks; i++) {
2525 			sack = tp->sackblks[i];
2526 			if (sack.start == 0 && sack.end == 0)
2527 				continue;
2528 			temp[j++] = sack;
2529 		}
2530 		tp->rcv_numsacks = j; /* including first blk (added later) */
2531 		for (i = 1; i < tp->rcv_numsacks; i++) /* now copy back */
2532 			tp->sackblks[i] = temp[i];
2533 	} else {        /* no merges -- shift sacks by 1 */
2534 		if (tp->rcv_numsacks < MAX_SACK_BLKS)
2535 			tp->rcv_numsacks++;
2536 		for (i = tp->rcv_numsacks-1; i > 0; i--)
2537 			tp->sackblks[i] = tp->sackblks[i-1];
2538 	}
2539 	tp->sackblks[0] = firstsack;
2540 	return;
2541 }
2542 
2543 /*
2544  * Process the TCP SACK option.  Returns 1 if tcp_dooptions() should continue,
2545  * and 0 otherwise, if the option was fine.  tp->snd_holes is an ordered list
2546  * of holes (oldest to newest, in terms of the sequence space).
2547  */
2548 int
2549 tcp_sack_option(struct tcpcb *tp, struct tcphdr *th, u_char *cp, int optlen)
2550 {
2551 	int tmp_olen;
2552 	u_char *tmp_cp;
2553 	struct sackhole *cur, *p, *temp;
2554 
2555 	if (tp->sack_disable)
2556 		return (1);
2557 
2558 	/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2559 	if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2560 		return (1);
2561 	tmp_cp = cp + 2;
2562 	tmp_olen = optlen - 2;
2563 	if (tp->snd_numholes < 0)
2564 		tp->snd_numholes = 0;
2565 	if (tp->t_maxseg == 0)
2566 		panic("tcp_sack_option"); /* Should never happen */
2567 	while (tmp_olen > 0) {
2568 		struct sackblk sack;
2569 
2570 		bcopy(tmp_cp, (char *) &(sack.start), sizeof(tcp_seq));
2571 		NTOHL(sack.start);
2572 		bcopy(tmp_cp + sizeof(tcp_seq),
2573 		    (char *) &(sack.end), sizeof(tcp_seq));
2574 		NTOHL(sack.end);
2575 		tmp_olen -= TCPOLEN_SACK;
2576 		tmp_cp += TCPOLEN_SACK;
2577 		if (SEQ_LEQ(sack.end, sack.start))
2578 			continue; /* bad SACK fields */
2579 		if (SEQ_LEQ(sack.end, tp->snd_una))
2580 			continue; /* old block */
2581 #if defined(TCP_SACK) && defined(TCP_FACK)
2582 		/* Updates snd_fack.  */
2583 		if (SEQ_GT(sack.end, tp->snd_fack))
2584 			tp->snd_fack = sack.end;
2585 #endif /* TCP_FACK */
2586 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
2587 			if (SEQ_LT(sack.start, th->th_ack))
2588 				continue;
2589 		}
2590 		if (SEQ_GT(sack.end, tp->snd_max))
2591 			continue;
2592 		if (tp->snd_holes == NULL) { /* first hole */
2593 			tp->snd_holes = (struct sackhole *)
2594 			    pool_get(&sackhl_pool, PR_NOWAIT);
2595 			if (tp->snd_holes == NULL) {
2596 				/* ENOBUFS, so ignore SACKed block for now*/
2597 				continue;
2598 			}
2599 			cur = tp->snd_holes;
2600 			cur->start = th->th_ack;
2601 			cur->end = sack.start;
2602 			cur->rxmit = cur->start;
2603 			cur->next = NULL;
2604 			tp->snd_numholes = 1;
2605 			tp->rcv_lastsack = sack.end;
2606 			/*
2607 			 * dups is at least one.  If more data has been
2608 			 * SACKed, it can be greater than one.
2609 			 */
2610 			cur->dups = min(tcprexmtthresh,
2611 			    ((sack.end - cur->end)/tp->t_maxseg));
2612 			if (cur->dups < 1)
2613 				cur->dups = 1;
2614 			continue; /* with next sack block */
2615 		}
2616 		/* Go thru list of holes:  p = previous,  cur = current */
2617 		p = cur = tp->snd_holes;
2618 		while (cur) {
2619 			if (SEQ_LEQ(sack.end, cur->start))
2620 				/* SACKs data before the current hole */
2621 				break; /* no use going through more holes */
2622 			if (SEQ_GEQ(sack.start, cur->end)) {
2623 				/* SACKs data beyond the current hole */
2624 				cur->dups++;
2625 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2626 				    tcprexmtthresh)
2627 					cur->dups = tcprexmtthresh;
2628 				p = cur;
2629 				cur = cur->next;
2630 				continue;
2631 			}
2632 			if (SEQ_LEQ(sack.start, cur->start)) {
2633 				/* Data acks at least the beginning of hole */
2634 #if defined(TCP_SACK) && defined(TCP_FACK)
2635 				if (SEQ_GT(sack.end, cur->rxmit))
2636 					tp->retran_data -=
2637 				    	    tcp_seq_subtract(cur->rxmit,
2638 					    cur->start);
2639 				else
2640 					tp->retran_data -=
2641 					    tcp_seq_subtract(sack.end,
2642 					    cur->start);
2643 #endif /* TCP_FACK */
2644 				if (SEQ_GEQ(sack.end, cur->end)) {
2645 					/* Acks entire hole, so delete hole */
2646 					if (p != cur) {
2647 						p->next = cur->next;
2648 						pool_put(&sackhl_pool, cur);
2649 						cur = p->next;
2650 					} else {
2651 						cur = cur->next;
2652 						pool_put(&sackhl_pool, p);
2653 						p = cur;
2654 						tp->snd_holes = p;
2655 					}
2656 					tp->snd_numholes--;
2657 					continue;
2658 				}
2659 				/* otherwise, move start of hole forward */
2660 				cur->start = sack.end;
2661 				cur->rxmit = max (cur->rxmit, cur->start);
2662 				p = cur;
2663 				cur = cur->next;
2664 				continue;
2665 			}
2666 			/* move end of hole backward */
2667 			if (SEQ_GEQ(sack.end, cur->end)) {
2668 #if defined(TCP_SACK) && defined(TCP_FACK)
2669 				if (SEQ_GT(cur->rxmit, sack.start))
2670 					tp->retran_data -=
2671 					    tcp_seq_subtract(cur->rxmit,
2672 					    sack.start);
2673 #endif /* TCP_FACK */
2674 				cur->end = sack.start;
2675 				cur->rxmit = min(cur->rxmit, cur->end);
2676 				cur->dups++;
2677 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2678 				    tcprexmtthresh)
2679 					cur->dups = tcprexmtthresh;
2680 				p = cur;
2681 				cur = cur->next;
2682 				continue;
2683 			}
2684 			if (SEQ_LT(cur->start, sack.start) &&
2685 			    SEQ_GT(cur->end, sack.end)) {
2686 				/*
2687 				 * ACKs some data in middle of a hole; need to
2688 				 * split current hole
2689 				 */
2690 				temp = (struct sackhole *)
2691 				    pool_get(&sackhl_pool, PR_NOWAIT);
2692 				if (temp == NULL)
2693 					continue; /* ENOBUFS */
2694 #if defined(TCP_SACK) && defined(TCP_FACK)
2695 				if (SEQ_GT(cur->rxmit, sack.end))
2696 					tp->retran_data -=
2697 					    tcp_seq_subtract(sack.end,
2698 					    sack.start);
2699 				else if (SEQ_GT(cur->rxmit, sack.start))
2700 					tp->retran_data -=
2701 					    tcp_seq_subtract(cur->rxmit,
2702 					    sack.start);
2703 #endif /* TCP_FACK */
2704 				temp->next = cur->next;
2705 				temp->start = sack.end;
2706 				temp->end = cur->end;
2707 				temp->dups = cur->dups;
2708 				temp->rxmit = max(cur->rxmit, temp->start);
2709 				cur->end = sack.start;
2710 				cur->rxmit = min(cur->rxmit, cur->end);
2711 				cur->dups++;
2712 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2713 					tcprexmtthresh)
2714 					cur->dups = tcprexmtthresh;
2715 				cur->next = temp;
2716 				p = temp;
2717 				cur = p->next;
2718 				tp->snd_numholes++;
2719 			}
2720 		}
2721 		/* At this point, p points to the last hole on the list */
2722 		if (SEQ_LT(tp->rcv_lastsack, sack.start)) {
2723 			/*
2724 			 * Need to append new hole at end.
2725 			 * Last hole is p (and it's not NULL).
2726 			 */
2727 			temp = (struct sackhole *)
2728 			    pool_get(&sackhl_pool, PR_NOWAIT);
2729 			if (temp == NULL)
2730 				continue; /* ENOBUFS */
2731 			temp->start = tp->rcv_lastsack;
2732 			temp->end = sack.start;
2733 			temp->dups = min(tcprexmtthresh,
2734 			    ((sack.end - sack.start)/tp->t_maxseg));
2735 			if (temp->dups < 1)
2736 				temp->dups = 1;
2737 			temp->rxmit = temp->start;
2738 			temp->next = 0;
2739 			p->next = temp;
2740 			tp->rcv_lastsack = sack.end;
2741 			tp->snd_numholes++;
2742 		}
2743 	}
2744 #if defined(TCP_SACK) && defined(TCP_FACK)
2745 	/*
2746 	 * Update retran_data and snd_awnd.  Go through the list of
2747 	 * holes.   Increment retran_data by (hole->rxmit - hole->start).
2748 	 */
2749 	tp->retran_data = 0;
2750 	cur = tp->snd_holes;
2751 	while (cur) {
2752 		tp->retran_data += cur->rxmit - cur->start;
2753 		cur = cur->next;
2754 	}
2755 	tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt, tp->snd_fack) +
2756 	    tp->retran_data;
2757 #endif /* TCP_FACK */
2758 
2759 	return (0);
2760 }
2761 
2762 /*
2763  * Delete stale (i.e, cumulatively ack'd) holes.  Hole is deleted only if
2764  * it is completely acked; otherwise, tcp_sack_option(), called from
2765  * tcp_dooptions(), will fix up the hole.
2766  */
2767 void
2768 tcp_del_sackholes(tp, th)
2769 	struct tcpcb *tp;
2770 	struct tcphdr *th;
2771 {
2772 	if (!tp->sack_disable && tp->t_state != TCPS_LISTEN) {
2773 		/* max because this could be an older ack just arrived */
2774 		tcp_seq lastack = SEQ_GT(th->th_ack, tp->snd_una) ?
2775 			th->th_ack : tp->snd_una;
2776 		struct sackhole *cur = tp->snd_holes;
2777 		struct sackhole *prev;
2778 		while (cur)
2779 			if (SEQ_LEQ(cur->end, lastack)) {
2780 				prev = cur;
2781 				cur = cur->next;
2782 				pool_put(&sackhl_pool, prev);
2783 				tp->snd_numholes--;
2784 			} else if (SEQ_LT(cur->start, lastack)) {
2785 				cur->start = lastack;
2786 				if (SEQ_LT(cur->rxmit, cur->start))
2787 					cur->rxmit = cur->start;
2788 				break;
2789 			} else
2790 				break;
2791 		tp->snd_holes = cur;
2792 	}
2793 }
2794 
2795 /*
2796  * Delete all receiver-side SACK information.
2797  */
2798 void
2799 tcp_clean_sackreport(tp)
2800 	struct tcpcb *tp;
2801 {
2802 	int i;
2803 
2804 	tp->rcv_numsacks = 0;
2805 	for (i = 0; i < MAX_SACK_BLKS; i++)
2806 		tp->sackblks[i].start = tp->sackblks[i].end=0;
2807 
2808 }
2809 
2810 /*
2811  * Checks for partial ack.  If partial ack arrives, turn off retransmission
2812  * timer, deflate the window, do not clear tp->t_dupacks, and return 1.
2813  * If the ack advances at least to tp->snd_last, return 0.
2814  */
2815 int
2816 tcp_sack_partialack(tp, th)
2817 	struct tcpcb *tp;
2818 	struct tcphdr *th;
2819 {
2820 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
2821 		/* Turn off retx. timer (will start again next segment) */
2822 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2823 		tp->t_rtttime = 0;
2824 #ifndef TCP_FACK
2825 		/*
2826 		 * Partial window deflation.  This statement relies on the
2827 		 * fact that tp->snd_una has not been updated yet.  In FACK
2828 		 * hold snd_cwnd constant during fast recovery.
2829 		 */
2830 		if (tp->snd_cwnd > (th->th_ack - tp->snd_una)) {
2831 			tp->snd_cwnd -= th->th_ack - tp->snd_una;
2832 			tp->snd_cwnd += tp->t_maxseg;
2833 		} else
2834 			tp->snd_cwnd = tp->t_maxseg;
2835 #endif
2836 		return (1);
2837 	}
2838 	return (0);
2839 }
2840 #endif /* TCP_SACK */
2841 
2842 /*
2843  * Pull out of band byte out of a segment so
2844  * it doesn't appear in the user's data queue.
2845  * It is still reflected in the segment length for
2846  * sequencing purposes.
2847  */
2848 void
2849 tcp_pulloutofband(so, urgent, m, off)
2850 	struct socket *so;
2851 	u_int urgent;
2852 	struct mbuf *m;
2853 	int off;
2854 {
2855         int cnt = off + urgent - 1;
2856 
2857 	while (cnt >= 0) {
2858 		if (m->m_len > cnt) {
2859 			char *cp = mtod(m, caddr_t) + cnt;
2860 			struct tcpcb *tp = sototcpcb(so);
2861 
2862 			tp->t_iobc = *cp;
2863 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2864 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2865 			m->m_len--;
2866 			return;
2867 		}
2868 		cnt -= m->m_len;
2869 		m = m->m_next;
2870 		if (m == 0)
2871 			break;
2872 	}
2873 	panic("tcp_pulloutofband");
2874 }
2875 
2876 /*
2877  * Collect new round-trip time estimate
2878  * and update averages and current timeout.
2879  */
2880 void
2881 tcp_xmit_timer(tp, rtt)
2882 	struct tcpcb *tp;
2883 	short rtt;
2884 {
2885 	short delta;
2886 	short rttmin;
2887 
2888 	tcpstat.tcps_rttupdated++;
2889 	--rtt;
2890 	if (tp->t_srtt != 0) {
2891 		/*
2892 		 * srtt is stored as fixed point with 3 bits after the
2893 		 * binary point (i.e., scaled by 8).  The following magic
2894 		 * is equivalent to the smoothing algorithm in rfc793 with
2895 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2896 		 * point).  Adjust rtt to origin 0.
2897 		 */
2898 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2899 		if ((tp->t_srtt += delta) <= 0)
2900 			tp->t_srtt = 1;
2901 		/*
2902 		 * We accumulate a smoothed rtt variance (actually, a
2903 		 * smoothed mean difference), then set the retransmit
2904 		 * timer to smoothed rtt + 4 times the smoothed variance.
2905 		 * rttvar is stored as fixed point with 2 bits after the
2906 		 * binary point (scaled by 4).  The following is
2907 		 * equivalent to rfc793 smoothing with an alpha of .75
2908 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2909 		 * rfc793's wired-in beta.
2910 		 */
2911 		if (delta < 0)
2912 			delta = -delta;
2913 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2914 		if ((tp->t_rttvar += delta) <= 0)
2915 			tp->t_rttvar = 1;
2916 	} else {
2917 		/*
2918 		 * No rtt measurement yet - use the unsmoothed rtt.
2919 		 * Set the variance to half the rtt (so our first
2920 		 * retransmit happens at 3*rtt).
2921 		 */
2922 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2923 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2924 	}
2925 	tp->t_rtttime = 0;
2926 	tp->t_rxtshift = 0;
2927 
2928 	/*
2929 	 * the retransmit should happen at rtt + 4 * rttvar.
2930 	 * Because of the way we do the smoothing, srtt and rttvar
2931 	 * will each average +1/2 tick of bias.  When we compute
2932 	 * the retransmit timer, we want 1/2 tick of rounding and
2933 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2934 	 * firing of the timer.  The bias will give us exactly the
2935 	 * 1.5 tick we need.  But, because the bias is
2936 	 * statistical, we have to test that we don't drop below
2937 	 * the minimum feasible timer (which is 2 ticks).
2938 	 */
2939 	if (tp->t_rttmin > rtt + 2)
2940 		rttmin = tp->t_rttmin;
2941 	else
2942 		rttmin = rtt + 2;
2943 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2944 
2945 	/*
2946 	 * We received an ack for a packet that wasn't retransmitted;
2947 	 * it is probably safe to discard any error indications we've
2948 	 * received recently.  This isn't quite right, but close enough
2949 	 * for now (a route might have failed after we sent a segment,
2950 	 * and the return path might not be symmetrical).
2951 	 */
2952 	tp->t_softerror = 0;
2953 }
2954 
2955 /*
2956  * Determine a reasonable value for maxseg size.
2957  * If the route is known, check route for mtu.
2958  * If none, use an mss that can be handled on the outgoing
2959  * interface without forcing IP to fragment; if bigger than
2960  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2961  * to utilize large mbufs.  If no route is found, route has no mtu,
2962  * or the destination isn't local, use a default, hopefully conservative
2963  * size (usually 512 or the default IP max size, but no more than the mtu
2964  * of the interface), as we can't discover anything about intervening
2965  * gateways or networks.  We also initialize the congestion/slow start
2966  * window to be a single segment if the destination isn't local.
2967  * While looking at the routing entry, we also initialize other path-dependent
2968  * parameters from pre-set or cached values in the routing entry.
2969  *
2970  * Also take into account the space needed for options that we
2971  * send regularly.  Make maxseg shorter by that amount to assure
2972  * that we can send maxseg amount of data even when the options
2973  * are present.  Store the upper limit of the length of options plus
2974  * data in maxopd.
2975  *
2976  * NOTE: offer == -1 indicates that the maxseg size changed due to
2977  * Path MTU discovery.
2978  */
2979 int
2980 tcp_mss(tp, offer)
2981 	struct tcpcb *tp;
2982 	int offer;
2983 {
2984 	struct rtentry *rt;
2985 	struct ifnet *ifp;
2986 	int mss, mssopt;
2987 	int iphlen;
2988 	struct inpcb *inp;
2989 
2990 	inp = tp->t_inpcb;
2991 
2992 	mssopt = mss = tcp_mssdflt;
2993 
2994 	rt = in_pcbrtentry(inp);
2995 
2996 	if (rt == NULL)
2997 		goto out;
2998 
2999 	ifp = rt->rt_ifp;
3000 
3001 	switch (tp->pf) {
3002 #ifdef INET6
3003 	case AF_INET6:
3004 		iphlen = sizeof(struct ip6_hdr);
3005 		break;
3006 #endif
3007 	case AF_INET:
3008 		iphlen = sizeof(struct ip);
3009 		break;
3010 	default:
3011 		/* the family does not support path MTU discovery */
3012 		goto out;
3013 	}
3014 
3015 #ifdef RTV_MTU
3016 	/*
3017 	 * if there's an mtu associated with the route and we support
3018 	 * path MTU discovery for the underlying protocol family, use it.
3019 	 */
3020 	if (rt->rt_rmx.rmx_mtu) {
3021 		/*
3022 		 * One may wish to lower MSS to take into account options,
3023 		 * especially security-related options.
3024 		 */
3025 		mss = rt->rt_rmx.rmx_mtu - iphlen - sizeof(struct tcphdr);
3026 	} else
3027 #endif /* RTV_MTU */
3028 	if (!ifp)
3029 		/*
3030 		 * ifp may be null and rmx_mtu may be zero in certain
3031 		 * v6 cases (e.g., if ND wasn't able to resolve the
3032 		 * destination host.
3033 		 */
3034 		goto out;
3035 	else if (ifp->if_flags & IFF_LOOPBACK)
3036 		mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3037 	else if (tp->pf == AF_INET) {
3038 		if (ip_mtudisc)
3039 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3040 		else if (inp && in_localaddr(inp->inp_faddr))
3041 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3042 	}
3043 #ifdef INET6
3044 	else if (tp->pf == AF_INET6) {
3045 		/*
3046 		 * for IPv6, path MTU discovery is always turned on,
3047 		 * or the node must use packet size <= 1280.
3048 		 */
3049 		mss = IN6_LINKMTU(ifp) - iphlen - sizeof(struct tcphdr);
3050 	}
3051 #endif /* INET6 */
3052 
3053 	/* Calculate the value that we offer in TCPOPT_MAXSEG */
3054 	if (offer != -1) {
3055 #ifndef INET6
3056 		mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3057 #else
3058 		if (tp->pf == AF_INET)
3059 			mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3060 		else
3061 			mssopt = IN6_LINKMTU(ifp) - iphlen -
3062 			    sizeof(struct tcphdr);
3063 #endif
3064 
3065 		mssopt = max(tcp_mssdflt, mssopt);
3066 	}
3067 
3068  out:
3069 	/*
3070 	 * The current mss, t_maxseg, is initialized to the default value.
3071 	 * If we compute a smaller value, reduce the current mss.
3072 	 * If we compute a larger value, return it for use in sending
3073 	 * a max seg size option, but don't store it for use
3074 	 * unless we received an offer at least that large from peer.
3075 	 * However, do not accept offers under 64 bytes.
3076 	 */
3077 	if (offer > 0)
3078 		tp->t_peermss = offer;
3079 	if (tp->t_peermss)
3080 		mss = min(mss, tp->t_peermss);
3081 	mss = max(mss, 64);		/* sanity - at least max opt. space */
3082 
3083 	/*
3084 	 * maxopd stores the maximum length of data AND options
3085 	 * in a segment; maxseg is the amount of data in a normal
3086 	 * segment.  We need to store this value (maxopd) apart
3087 	 * from maxseg, because now every segment carries options
3088 	 * and thus we normally have somewhat less data in segments.
3089 	 */
3090 	tp->t_maxopd = mss;
3091 
3092 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3093 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
3094 		mss -= TCPOLEN_TSTAMP_APPA;
3095 
3096 	if (offer == -1) {
3097 		/* mss changed due to Path MTU discovery */
3098 		if (mss < tp->t_maxseg) {
3099 			/*
3100 			 * Follow suggestion in RFC 2414 to reduce the
3101 			 * congestion window by the ratio of the old
3102 			 * segment size to the new segment size.
3103 			 */
3104 			tp->snd_cwnd = ulmax((tp->snd_cwnd / tp->t_maxseg) *
3105 					     mss, mss);
3106 		}
3107 	} else
3108 		tp->snd_cwnd = mss;
3109 
3110 	tp->t_maxseg = mss;
3111 
3112 	return (offer != -1 ? mssopt : mss);
3113 }
3114 
3115 /*
3116  * Set connection variables based on the effective MSS.
3117  * We are passed the TCPCB for the actual connection.  If we
3118  * are the server, we are called by the compressed state engine
3119  * when the 3-way handshake is complete.  If we are the client,
3120  * we are called when we receive the SYN,ACK from the server.
3121  *
3122  * NOTE: The t_maxseg value must be initialized in the TCPCB
3123  * before this routine is called!
3124  */
3125 void
3126 tcp_mss_update(tp)
3127 	struct tcpcb *tp;
3128 {
3129 	int mss, rtt;
3130 	u_long bufsize;
3131 	struct rtentry *rt;
3132 	struct socket *so;
3133 
3134 	so = tp->t_inpcb->inp_socket;
3135 	mss = tp->t_maxseg;
3136 
3137 	rt = in_pcbrtentry(tp->t_inpcb);
3138 
3139 	if (rt == NULL)
3140 		return;
3141 
3142 #ifdef RTV_MTU	/* if route characteristics exist ... */
3143 	/*
3144 	 * While we're here, check if there's an initial rtt
3145 	 * or rttvar.  Convert from the route-table units
3146 	 * to scaled multiples of the slow timeout timer.
3147 	 */
3148 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
3149 		/*
3150 		 * XXX the lock bit for MTU indicates that the value
3151 		 * is also a minimum value; this is subject to time.
3152 		 */
3153 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
3154 			TCPT_RANGESET(tp->t_rttmin,
3155 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
3156 			    TCPTV_MIN, TCPTV_REXMTMAX);
3157 		tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
3158 		if (rt->rt_rmx.rmx_rttvar)
3159 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
3160 			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
3161 		else
3162 			/* default variation is +- 1 rtt */
3163 			tp->t_rttvar =
3164 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3165 		TCPT_RANGESET((long) tp->t_rxtcur,
3166 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3167 		    tp->t_rttmin, TCPTV_REXMTMAX);
3168 	}
3169 #endif
3170 
3171 	/*
3172 	 * If there's a pipesize, change the socket buffer
3173 	 * to that size.  Make the socket buffers an integral
3174 	 * number of mss units; if the mss is larger than
3175 	 * the socket buffer, decrease the mss.
3176 	 */
3177 #ifdef RTV_SPIPE
3178 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3179 #endif
3180 		bufsize = so->so_snd.sb_hiwat;
3181 	if (bufsize < mss) {
3182 		mss = bufsize;
3183 		/* Update t_maxseg and t_maxopd */
3184 		tcp_mss(tp, mss);
3185 	} else {
3186 		bufsize = roundup(bufsize, mss);
3187 		if (bufsize > sb_max)
3188 			bufsize = sb_max;
3189 		(void)sbreserve(&so->so_snd, bufsize);
3190 	}
3191 
3192 #ifdef RTV_RPIPE
3193 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3194 #endif
3195 		bufsize = so->so_rcv.sb_hiwat;
3196 	if (bufsize > mss) {
3197 		bufsize = roundup(bufsize, mss);
3198 		if (bufsize > sb_max)
3199 			bufsize = sb_max;
3200 		(void)sbreserve(&so->so_rcv, bufsize);
3201 #ifdef RTV_RPIPE
3202 		if (rt->rt_rmx.rmx_recvpipe > 0)
3203 			tcp_rscale(tp, so->so_rcv.sb_hiwat);
3204 #endif
3205 	}
3206 
3207 #ifdef RTV_SSTHRESH
3208 	if (rt->rt_rmx.rmx_ssthresh) {
3209 		/*
3210 		 * There's some sort of gateway or interface
3211 		 * buffer limit on the path.  Use this to set
3212 		 * the slow start threshhold, but set the
3213 		 * threshold to no less than 2*mss.
3214 		 */
3215 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3216 	}
3217 #endif /* RTV_MTU */
3218 }
3219 #endif /* TUBA_INCLUDE */
3220 
3221 #if defined (TCP_SACK)
3222 /*
3223  * Checks for partial ack.  If partial ack arrives, force the retransmission
3224  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
3225  * 1.  By setting snd_nxt to ti_ack, this forces retransmission timer to
3226  * be started again.  If the ack advances at least to tp->snd_last, return 0.
3227  */
3228 int
3229 tcp_newreno(tp, th)
3230 	struct tcpcb *tp;
3231 	struct tcphdr *th;
3232 {
3233 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
3234 		/*
3235 		 * snd_una has not been updated and the socket send buffer
3236 		 * not yet drained of the acked data, so we have to leave
3237 		 * snd_una as it was to get the correct data offset in
3238 		 * tcp_output().
3239 		 */
3240 		tcp_seq onxt = tp->snd_nxt;
3241 		u_long  ocwnd = tp->snd_cwnd;
3242 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
3243 		tp->t_rtttime = 0;
3244 		tp->snd_nxt = th->th_ack;
3245 		/*
3246 		 * Set snd_cwnd to one segment beyond acknowledged offset
3247 		 * (tp->snd_una not yet updated when this function is called)
3248 		 */
3249 		tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3250 		(void) tcp_output(tp);
3251 		tp->snd_cwnd = ocwnd;
3252 		if (SEQ_GT(onxt, tp->snd_nxt))
3253 			tp->snd_nxt = onxt;
3254 		/*
3255 		 * Partial window deflation.  Relies on fact that tp->snd_una
3256 		 * not updated yet.
3257 		 */
3258 		tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
3259 		return 1;
3260 	}
3261 	return 0;
3262 }
3263 #endif /* TCP_SACK */
3264