xref: /openbsd-src/sys/netinet/tcp_input.c (revision 5b859c19fe53bbea08f5c342e0a4470e99f883e1)
1 /*	$OpenBSD: tcp_input.c,v 1.284 2014/11/20 11:05:19 mpi Exp $	*/
2 /*	$NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
33  *
34  * NRL grants permission for redistribution and use in source and binary
35  * forms, with or without modification, of the software and documentation
36  * created at NRL provided that the following conditions are met:
37  *
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgements:
45  * 	This product includes software developed by the University of
46  * 	California, Berkeley and its contributors.
47  * 	This product includes software developed at the Information
48  * 	Technology Division, US Naval Research Laboratory.
49  * 4. Neither the name of the NRL nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
54  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
56  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
57  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
58  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
59  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
60  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
61  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
62  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
63  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64  *
65  * The views and conclusions contained in the software and documentation
66  * are those of the authors and should not be interpreted as representing
67  * official policies, either expressed or implied, of the US Naval
68  * Research Laboratory (NRL).
69  */
70 
71 #include "pf.h"
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/mbuf.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/timeout.h>
80 #include <sys/kernel.h>
81 #include <sys/pool.h>
82 
83 #include <net/if.h>
84 #include <net/route.h>
85 
86 #include <netinet/in.h>
87 #include <netinet/ip.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp.h>
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_seq.h>
93 #include <netinet/tcp_timer.h>
94 #include <netinet/tcp_var.h>
95 #include <netinet/tcpip.h>
96 #include <netinet/tcp_debug.h>
97 
98 #if NPF > 0
99 #include <net/pfvar.h>
100 #endif
101 
102 struct	tcpiphdr tcp_saveti;
103 
104 int tcp_mss_adv(struct ifnet *, int);
105 int tcp_flush_queue(struct tcpcb *);
106 
107 #ifdef INET6
108 #include <netinet6/in6_var.h>
109 #include <netinet6/nd6.h>
110 
111 struct  tcpipv6hdr tcp_saveti6;
112 
113 /* for the packet header length in the mbuf */
114 #define M_PH_LEN(m)      (((struct mbuf *)(m))->m_pkthdr.len)
115 #define M_V6_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip6_hdr))
116 #define M_V4_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip))
117 #endif /* INET6 */
118 
119 int	tcprexmtthresh = 3;
120 int	tcptv_keep_init = TCPTV_KEEP_INIT;
121 
122 int tcp_rst_ppslim = 100;		/* 100pps */
123 int tcp_rst_ppslim_count = 0;
124 struct timeval tcp_rst_ppslim_last;
125 
126 int tcp_ackdrop_ppslim = 100;		/* 100pps */
127 int tcp_ackdrop_ppslim_count = 0;
128 struct timeval tcp_ackdrop_ppslim_last;
129 
130 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
131 
132 /* for modulo comparisons of timestamps */
133 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
134 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
135 
136 /* for TCP SACK comparisons */
137 #define	SEQ_MIN(a,b)	(SEQ_LT(a,b) ? (a) : (b))
138 #define	SEQ_MAX(a,b)	(SEQ_GT(a,b) ? (a) : (b))
139 
140 /*
141  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
142  */
143 #ifdef INET6
144 #define ND6_HINT(tp) \
145 do { \
146 	if (tp && tp->t_inpcb && (tp->t_inpcb->inp_flags & INP_IPV6) && \
147 	    tp->t_inpcb->inp_route6.ro_rt) { \
148 		nd6_nud_hint(tp->t_inpcb->inp_route6.ro_rt, NULL, 0, \
149 		    tp->t_inpcb->inp_rtableid); \
150 	} \
151 } while (0)
152 #else
153 #define ND6_HINT(tp)
154 #endif
155 
156 #ifdef TCP_ECN
157 /*
158  * ECN (Explicit Congestion Notification) support based on RFC3168
159  * implementation note:
160  *   snd_last is used to track a recovery phase.
161  *   when cwnd is reduced, snd_last is set to snd_max.
162  *   while snd_last > snd_una, the sender is in a recovery phase and
163  *   its cwnd should not be reduced again.
164  *   snd_last follows snd_una when not in a recovery phase.
165  */
166 #endif
167 
168 /*
169  * Macro to compute ACK transmission behavior.  Delay the ACK unless
170  * we have already delayed an ACK (must send an ACK every two segments).
171  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
172  * option is enabled or when the packet is coming from a loopback
173  * interface.
174  */
175 #define	TCP_SETUP_ACK(tp, tiflags, m) \
176 do { \
177 	if ((tp)->t_flags & TF_DELACK || \
178 	    (tcp_ack_on_push && (tiflags) & TH_PUSH) || \
179 	    (m && (m->m_flags & M_PKTHDR) && m->m_pkthdr.rcvif && \
180 	    (m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK))) \
181 		tp->t_flags |= TF_ACKNOW; \
182 	else \
183 		TCP_SET_DELACK(tp); \
184 } while (0)
185 
186 void syn_cache_put(struct syn_cache *);
187 void syn_cache_rm(struct syn_cache *);
188 
189 /*
190  * Insert segment ti into reassembly queue of tcp with
191  * control block tp.  Return TH_FIN if reassembly now includes
192  * a segment with FIN.  The macro form does the common case inline
193  * (segment is the next to be received on an established connection,
194  * and the queue is empty), avoiding linkage into and removal
195  * from the queue and repetition of various conversions.
196  * Set DELACK for segments received in order, but ack immediately
197  * when segments are out of order (so fast retransmit can work).
198  */
199 
200 int
201 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
202 {
203 	struct tcpqent *p, *q, *nq, *tiqe;
204 
205 	/*
206 	 * Allocate a new queue entry, before we throw away any data.
207 	 * If we can't, just drop the packet.  XXX
208 	 */
209 	tiqe = pool_get(&tcpqe_pool, PR_NOWAIT);
210 	if (tiqe == NULL) {
211 		tiqe = TAILQ_LAST(&tp->t_segq, tcpqehead);
212 		if (tiqe != NULL && th->th_seq == tp->rcv_nxt) {
213 			/* Reuse last entry since new segment fills a hole */
214 			m_freem(tiqe->tcpqe_m);
215 			TAILQ_REMOVE(&tp->t_segq, tiqe, tcpqe_q);
216 		}
217 		if (tiqe == NULL || th->th_seq != tp->rcv_nxt) {
218 			/* Flush segment queue for this connection */
219 			tcp_freeq(tp);
220 			tcpstat.tcps_rcvmemdrop++;
221 			m_freem(m);
222 			return (0);
223 		}
224 	}
225 
226 	/*
227 	 * Find a segment which begins after this one does.
228 	 */
229 	for (p = NULL, q = TAILQ_FIRST(&tp->t_segq); q != NULL;
230 	    p = q, q = TAILQ_NEXT(q, tcpqe_q))
231 		if (SEQ_GT(q->tcpqe_tcp->th_seq, th->th_seq))
232 			break;
233 
234 	/*
235 	 * If there is a preceding segment, it may provide some of
236 	 * our data already.  If so, drop the data from the incoming
237 	 * segment.  If it provides all of our data, drop us.
238 	 */
239 	if (p != NULL) {
240 		struct tcphdr *phdr = p->tcpqe_tcp;
241 		int i;
242 
243 		/* conversion to int (in i) handles seq wraparound */
244 		i = phdr->th_seq + phdr->th_reseqlen - th->th_seq;
245 		if (i > 0) {
246 		        if (i >= *tlen) {
247 				tcpstat.tcps_rcvduppack++;
248 				tcpstat.tcps_rcvdupbyte += *tlen;
249 				m_freem(m);
250 				pool_put(&tcpqe_pool, tiqe);
251 				return (0);
252 			}
253 			m_adj(m, i);
254 			*tlen -= i;
255 			th->th_seq += i;
256 		}
257 	}
258 	tcpstat.tcps_rcvoopack++;
259 	tcpstat.tcps_rcvoobyte += *tlen;
260 
261 	/*
262 	 * While we overlap succeeding segments trim them or,
263 	 * if they are completely covered, dequeue them.
264 	 */
265 	for (; q != NULL; q = nq) {
266 		struct tcphdr *qhdr = q->tcpqe_tcp;
267 		int i = (th->th_seq + *tlen) - qhdr->th_seq;
268 
269 		if (i <= 0)
270 			break;
271 		if (i < qhdr->th_reseqlen) {
272 			qhdr->th_seq += i;
273 			qhdr->th_reseqlen -= i;
274 			m_adj(q->tcpqe_m, i);
275 			break;
276 		}
277 		nq = TAILQ_NEXT(q, tcpqe_q);
278 		m_freem(q->tcpqe_m);
279 		TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q);
280 		pool_put(&tcpqe_pool, q);
281 	}
282 
283 	/* Insert the new segment queue entry into place. */
284 	tiqe->tcpqe_m = m;
285 	th->th_reseqlen = *tlen;
286 	tiqe->tcpqe_tcp = th;
287 	if (p == NULL) {
288 		TAILQ_INSERT_HEAD(&tp->t_segq, tiqe, tcpqe_q);
289 	} else {
290 		TAILQ_INSERT_AFTER(&tp->t_segq, p, tiqe, tcpqe_q);
291 	}
292 
293 	if (th->th_seq != tp->rcv_nxt)
294 		return (0);
295 
296 	return (tcp_flush_queue(tp));
297 }
298 
299 int
300 tcp_flush_queue(struct tcpcb *tp)
301 {
302 	struct socket *so = tp->t_inpcb->inp_socket;
303 	struct tcpqent *q, *nq;
304 	int flags;
305 
306 	/*
307 	 * Present data to user, advancing rcv_nxt through
308 	 * completed sequence space.
309 	 */
310 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
311 		return (0);
312 	q = TAILQ_FIRST(&tp->t_segq);
313 	if (q == NULL || q->tcpqe_tcp->th_seq != tp->rcv_nxt)
314 		return (0);
315 	if (tp->t_state == TCPS_SYN_RECEIVED && q->tcpqe_tcp->th_reseqlen)
316 		return (0);
317 	do {
318 		tp->rcv_nxt += q->tcpqe_tcp->th_reseqlen;
319 		flags = q->tcpqe_tcp->th_flags & TH_FIN;
320 
321 		nq = TAILQ_NEXT(q, tcpqe_q);
322 		TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q);
323 		ND6_HINT(tp);
324 		if (so->so_state & SS_CANTRCVMORE)
325 			m_freem(q->tcpqe_m);
326 		else
327 			sbappendstream(&so->so_rcv, q->tcpqe_m);
328 		pool_put(&tcpqe_pool, q);
329 		q = nq;
330 	} while (q != NULL && q->tcpqe_tcp->th_seq == tp->rcv_nxt);
331 	tp->t_flags |= TF_BLOCKOUTPUT;
332 	sorwakeup(so);
333 	tp->t_flags &= ~TF_BLOCKOUTPUT;
334 	return (flags);
335 }
336 
337 #ifdef INET6
338 int
339 tcp6_input(struct mbuf **mp, int *offp, int proto)
340 {
341 	struct mbuf *m = *mp;
342 
343 	tcp_input(m, *offp, proto);
344 	return IPPROTO_DONE;
345 }
346 #endif
347 
348 /*
349  * TCP input routine, follows pages 65-76 of the
350  * protocol specification dated September, 1981 very closely.
351  */
352 void
353 tcp_input(struct mbuf *m, ...)
354 {
355 	struct ip *ip;
356 	struct inpcb *inp = NULL;
357 	u_int8_t *optp = NULL;
358 	int optlen = 0;
359 	int tlen, off;
360 	struct tcpcb *tp = NULL;
361 	int tiflags;
362 	struct socket *so = NULL;
363 	int todrop, acked, ourfinisacked;
364 	int hdroptlen = 0;
365 	short ostate = 0;
366 	tcp_seq iss, *reuse = NULL;
367 	u_long tiwin;
368 	struct tcp_opt_info opti;
369 	int iphlen;
370 	va_list ap;
371 	struct tcphdr *th;
372 #ifdef INET6
373 	struct ip6_hdr *ip6 = NULL;
374 #endif /* INET6 */
375 #ifdef IPSEC
376 	struct m_tag *mtag;
377 	struct tdb_ident *tdbi;
378 	struct tdb *tdb;
379 	int error;
380 #endif /* IPSEC */
381 	int af;
382 #ifdef TCP_ECN
383 	u_char iptos;
384 #endif
385 
386 	va_start(ap, m);
387 	iphlen = va_arg(ap, int);
388 	va_end(ap);
389 
390 	tcpstat.tcps_rcvtotal++;
391 
392 	opti.ts_present = 0;
393 	opti.maxseg = 0;
394 
395 	/*
396 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
397 	 */
398 	if (m->m_flags & (M_BCAST|M_MCAST))
399 		goto drop;
400 
401 	/*
402 	 * Before we do ANYTHING, we have to figure out if it's TCP/IPv6 or
403 	 * TCP/IPv4.
404 	 */
405 	switch (mtod(m, struct ip *)->ip_v) {
406 #ifdef INET6
407 	case 6:
408 		af = AF_INET6;
409 		break;
410 #endif
411 	case 4:
412 		af = AF_INET;
413 		break;
414 	default:
415 		m_freem(m);
416 		return;	/*EAFNOSUPPORT*/
417 	}
418 
419 	/*
420 	 * Get IP and TCP header together in first mbuf.
421 	 * Note: IP leaves IP header in first mbuf.
422 	 */
423 	switch (af) {
424 	case AF_INET:
425 #ifdef DIAGNOSTIC
426 		if (iphlen < sizeof(struct ip)) {
427 			m_freem(m);
428 			return;
429 		}
430 #endif /* DIAGNOSTIC */
431 		break;
432 #ifdef INET6
433 	case AF_INET6:
434 #ifdef DIAGNOSTIC
435 		if (iphlen < sizeof(struct ip6_hdr)) {
436 			m_freem(m);
437 			return;
438 		}
439 #endif /* DIAGNOSTIC */
440 		break;
441 #endif
442 	default:
443 		m_freem(m);
444 		return;
445 	}
446 
447 	IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, sizeof(*th));
448 	if (!th) {
449 		tcpstat.tcps_rcvshort++;
450 		return;
451 	}
452 
453 	tlen = m->m_pkthdr.len - iphlen;
454 	ip = NULL;
455 #ifdef INET6
456 	ip6 = NULL;
457 #endif
458 	switch (af) {
459 	case AF_INET:
460 		ip = mtod(m, struct ip *);
461 #ifdef TCP_ECN
462 		/* save ip_tos before clearing it for checksum */
463 		iptos = ip->ip_tos;
464 #endif
465 		break;
466 #ifdef INET6
467 	case AF_INET6:
468 		ip6 = mtod(m, struct ip6_hdr *);
469 #ifdef TCP_ECN
470 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
471 #endif
472 
473 		/* Be proactive about malicious use of IPv4 mapped address */
474 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
475 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
476 			/* XXX stat */
477 			goto drop;
478 		}
479 
480 		/*
481 		 * Be proactive about unspecified IPv6 address in source.
482 		 * As we use all-zero to indicate unbounded/unconnected pcb,
483 		 * unspecified IPv6 address can be used to confuse us.
484 		 *
485 		 * Note that packets with unspecified IPv6 destination is
486 		 * already dropped in ip6_input.
487 		 */
488 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
489 			/* XXX stat */
490 			goto drop;
491 		}
492 
493 		/* Discard packets to multicast */
494 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
495 			/* XXX stat */
496 			goto drop;
497 		}
498 		break;
499 #endif
500 	}
501 
502 	/*
503 	 * Checksum extended TCP header and data.
504 	 */
505 	if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_OK) == 0) {
506 		int sum;
507 
508 		if (m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_BAD) {
509 			tcpstat.tcps_rcvbadsum++;
510 			goto drop;
511 		}
512 		tcpstat.tcps_inswcsum++;
513 		switch (af) {
514 		case AF_INET:
515 			sum = in4_cksum(m, IPPROTO_TCP, iphlen, tlen);
516 			break;
517 #ifdef INET6
518 		case AF_INET6:
519 			sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
520 			    tlen);
521 			break;
522 #endif
523 		}
524 		if (sum != 0) {
525 			tcpstat.tcps_rcvbadsum++;
526 			goto drop;
527 		}
528 	}
529 
530 	/*
531 	 * Check that TCP offset makes sense,
532 	 * pull out TCP options and adjust length.		XXX
533 	 */
534 	off = th->th_off << 2;
535 	if (off < sizeof(struct tcphdr) || off > tlen) {
536 		tcpstat.tcps_rcvbadoff++;
537 		goto drop;
538 	}
539 	tlen -= off;
540 	if (off > sizeof(struct tcphdr)) {
541 		IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, off);
542 		if (!th) {
543 			tcpstat.tcps_rcvshort++;
544 			return;
545 		}
546 		optlen = off - sizeof(struct tcphdr);
547 		optp = (u_int8_t *)(th + 1);
548 		/*
549 		 * Do quick retrieval of timestamp options ("options
550 		 * prediction?").  If timestamp is the only option and it's
551 		 * formatted as recommended in RFC 1323 appendix A, we
552 		 * quickly get the values now and not bother calling
553 		 * tcp_dooptions(), etc.
554 		 */
555 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
556 		     (optlen > TCPOLEN_TSTAMP_APPA &&
557 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
558 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
559 		     (th->th_flags & TH_SYN) == 0) {
560 			opti.ts_present = 1;
561 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
562 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
563 			optp = NULL;	/* we've parsed the options */
564 		}
565 	}
566 	tiflags = th->th_flags;
567 
568 	/*
569 	 * Convert TCP protocol specific fields to host format.
570 	 */
571 	NTOHL(th->th_seq);
572 	NTOHL(th->th_ack);
573 	NTOHS(th->th_win);
574 	NTOHS(th->th_urp);
575 
576 	/*
577 	 * Locate pcb for segment.
578 	 */
579 #if NPF > 0
580 	if (m->m_pkthdr.pf.statekey) {
581 		inp = m->m_pkthdr.pf.statekey->inp;
582 		if (inp && inp->inp_pf_sk)
583 			KASSERT(m->m_pkthdr.pf.statekey == inp->inp_pf_sk);
584 	}
585 #endif
586 findpcb:
587 	if (inp == NULL) {
588 		switch (af) {
589 #ifdef INET6
590 		case AF_INET6:
591 			inp = in6_pcbhashlookup(&tcbtable, &ip6->ip6_src,
592 			    th->th_sport, &ip6->ip6_dst, th->th_dport,
593 			    m->m_pkthdr.ph_rtableid);
594 			break;
595 #endif
596 		case AF_INET:
597 			inp = in_pcbhashlookup(&tcbtable, ip->ip_src,
598 			    th->th_sport, ip->ip_dst, th->th_dport,
599 			    m->m_pkthdr.ph_rtableid);
600 			break;
601 		}
602 #if NPF > 0
603 		if (m->m_pkthdr.pf.statekey && inp) {
604 			m->m_pkthdr.pf.statekey->inp = inp;
605 			inp->inp_pf_sk = m->m_pkthdr.pf.statekey;
606 		}
607 #endif
608 	}
609 	if (inp == NULL) {
610 		int	inpl_reverse = 0;
611 		if (m->m_pkthdr.pf.flags & PF_TAG_TRANSLATE_LOCALHOST)
612 			inpl_reverse = 1;
613 		++tcpstat.tcps_pcbhashmiss;
614 		switch (af) {
615 #ifdef INET6
616 		case AF_INET6:
617 			inp = in6_pcblookup_listen(&tcbtable,
618 			    &ip6->ip6_dst, th->th_dport, inpl_reverse, m,
619 			    m->m_pkthdr.ph_rtableid);
620 			break;
621 #endif /* INET6 */
622 		case AF_INET:
623 			inp = in_pcblookup_listen(&tcbtable,
624 			    ip->ip_dst, th->th_dport, inpl_reverse, m,
625 			    m->m_pkthdr.ph_rtableid);
626 			break;
627 		}
628 		/*
629 		 * If the state is CLOSED (i.e., TCB does not exist) then
630 		 * all data in the incoming segment is discarded.
631 		 * If the TCB exists but is in CLOSED state, it is embryonic,
632 		 * but should either do a listen or a connect soon.
633 		 */
634 		if (inp == 0) {
635 			++tcpstat.tcps_noport;
636 			goto dropwithreset_ratelim;
637 		}
638 	}
639 	KASSERT(sotoinpcb(inp->inp_socket) == inp);
640 	KASSERT(intotcpcb(inp)->t_inpcb == inp);
641 
642 	/* Check the minimum TTL for socket. */
643 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl)
644 		goto drop;
645 
646 	tp = intotcpcb(inp);
647 	if (tp == 0)
648 		goto dropwithreset_ratelim;
649 	if (tp->t_state == TCPS_CLOSED)
650 		goto drop;
651 
652 	/* Unscale the window into a 32-bit value. */
653 	if ((tiflags & TH_SYN) == 0)
654 		tiwin = th->th_win << tp->snd_scale;
655 	else
656 		tiwin = th->th_win;
657 
658 	so = inp->inp_socket;
659 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
660 		union syn_cache_sa src;
661 		union syn_cache_sa dst;
662 
663 		bzero(&src, sizeof(src));
664 		bzero(&dst, sizeof(dst));
665 		switch (af) {
666 #ifdef INET
667 		case AF_INET:
668 			src.sin.sin_len = sizeof(struct sockaddr_in);
669 			src.sin.sin_family = AF_INET;
670 			src.sin.sin_addr = ip->ip_src;
671 			src.sin.sin_port = th->th_sport;
672 
673 			dst.sin.sin_len = sizeof(struct sockaddr_in);
674 			dst.sin.sin_family = AF_INET;
675 			dst.sin.sin_addr = ip->ip_dst;
676 			dst.sin.sin_port = th->th_dport;
677 			break;
678 #endif
679 #ifdef INET6
680 		case AF_INET6:
681 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
682 			src.sin6.sin6_family = AF_INET6;
683 			src.sin6.sin6_addr = ip6->ip6_src;
684 			src.sin6.sin6_port = th->th_sport;
685 
686 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
687 			dst.sin6.sin6_family = AF_INET6;
688 			dst.sin6.sin6_addr = ip6->ip6_dst;
689 			dst.sin6.sin6_port = th->th_dport;
690 			break;
691 #endif /* INET6 */
692 		default:
693 			goto badsyn;	/*sanity*/
694 		}
695 
696 		if (so->so_options & SO_DEBUG) {
697 			ostate = tp->t_state;
698 			switch (af) {
699 #ifdef INET6
700 			case AF_INET6:
701 				bcopy(ip6, &tcp_saveti6.ti6_i, sizeof(*ip6));
702 				bcopy(th, &tcp_saveti6.ti6_t, sizeof(*th));
703 				break;
704 #endif
705 			case AF_INET:
706 				bcopy(ip, &tcp_saveti.ti_i, sizeof(*ip));
707 				bcopy(th, &tcp_saveti.ti_t, sizeof(*th));
708 				break;
709 			}
710 		}
711 		if (so->so_options & SO_ACCEPTCONN) {
712 			switch (tiflags & (TH_RST|TH_SYN|TH_ACK)) {
713 
714 			case TH_SYN|TH_ACK|TH_RST:
715 			case TH_SYN|TH_RST:
716 			case TH_ACK|TH_RST:
717 			case TH_RST:
718 				syn_cache_reset(&src.sa, &dst.sa, th,
719 				    inp->inp_rtableid);
720 				goto drop;
721 
722 			case TH_SYN|TH_ACK:
723 				/*
724 				 * Received a SYN,ACK.  This should
725 				 * never happen while we are in
726 				 * LISTEN.  Send an RST.
727 				 */
728 				goto badsyn;
729 
730 			case TH_ACK:
731 				so = syn_cache_get(&src.sa, &dst.sa,
732 					th, iphlen, tlen, so, m);
733 				if (so == NULL) {
734 					/*
735 					 * We don't have a SYN for
736 					 * this ACK; send an RST.
737 					 */
738 					goto badsyn;
739 				} else if (so == (struct socket *)(-1)) {
740 					/*
741 					 * We were unable to create
742 					 * the connection.  If the
743 					 * 3-way handshake was
744 					 * completed, and RST has
745 					 * been sent to the peer.
746 					 * Since the mbuf might be
747 					 * in use for the reply,
748 					 * do not free it.
749 					 */
750 					m = NULL;
751 					goto drop;
752 				} else {
753 					/*
754 					 * We have created a
755 					 * full-blown connection.
756 					 */
757 					tp = NULL;
758 					inp = sotoinpcb(so);
759 					tp = intotcpcb(inp);
760 					if (tp == NULL)
761 						goto badsyn;	/*XXX*/
762 
763 				}
764 				break;
765 
766 			default:
767 				/*
768 				 * None of RST, SYN or ACK was set.
769 				 * This is an invalid packet for a
770 				 * TCB in LISTEN state.  Send a RST.
771 				 */
772 				goto badsyn;
773 
774 			case TH_SYN:
775 				/*
776 				 * Received a SYN.
777 				 */
778 #ifdef INET6
779 				/*
780 				 * If deprecated address is forbidden, we do
781 				 * not accept SYN to deprecated interface
782 				 * address to prevent any new inbound
783 				 * connection from getting established.
784 				 * When we do not accept SYN, we send a TCP
785 				 * RST, with deprecated source address (instead
786 				 * of dropping it).  We compromise it as it is
787 				 * much better for peer to send a RST, and
788 				 * RST will be the final packet for the
789 				 * exchange.
790 				 *
791 				 * If we do not forbid deprecated addresses, we
792 				 * accept the SYN packet.  RFC2462 does not
793 				 * suggest dropping SYN in this case.
794 				 * If we decipher RFC2462 5.5.4, it says like
795 				 * this:
796 				 * 1. use of deprecated addr with existing
797 				 *    communication is okay - "SHOULD continue
798 				 *    to be used"
799 				 * 2. use of it with new communication:
800 				 *   (2a) "SHOULD NOT be used if alternate
801 				 *        address with sufficient scope is
802 				 *        available"
803 				 *   (2b) nothing mentioned otherwise.
804 				 * Here we fall into (2b) case as we have no
805 				 * choice in our source address selection - we
806 				 * must obey the peer.
807 				 *
808 				 * The wording in RFC2462 is confusing, and
809 				 * there are multiple description text for
810 				 * deprecated address handling - worse, they
811 				 * are not exactly the same.  I believe 5.5.4
812 				 * is the best one, so we follow 5.5.4.
813 				 */
814 				if (ip6 && !ip6_use_deprecated) {
815 					struct in6_ifaddr *ia6;
816 
817 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
818 					    &ip6->ip6_dst)) &&
819 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
820 						tp = NULL;
821 						goto dropwithreset;
822 					}
823 				}
824 #endif
825 
826 				/*
827 				 * LISTEN socket received a SYN
828 				 * from itself?  This can't possibly
829 				 * be valid; drop the packet.
830 				 */
831 				if (th->th_dport == th->th_sport) {
832 					switch (af) {
833 #ifdef INET6
834 					case AF_INET6:
835 						if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
836 						    &ip6->ip6_dst)) {
837 							tcpstat.tcps_badsyn++;
838 							goto drop;
839 						}
840 						break;
841 #endif /* INET6 */
842 					case AF_INET:
843 						if (ip->ip_dst.s_addr == ip->ip_src.s_addr) {
844 							tcpstat.tcps_badsyn++;
845 							goto drop;
846 						}
847 						break;
848 					}
849 				}
850 
851 				/*
852 				 * SYN looks ok; create compressed TCP
853 				 * state for it.
854 				 */
855 				if (so->so_qlen > so->so_qlimit ||
856 				    syn_cache_add(&src.sa, &dst.sa, th, iphlen,
857 				    so, m, optp, optlen, &opti, reuse) == -1)
858 					goto drop;
859 				return;
860 			}
861 		}
862 	}
863 
864 #ifdef DIAGNOSTIC
865 	/*
866 	 * Should not happen now that all embryonic connections
867 	 * are handled with compressed state.
868 	 */
869 	if (tp->t_state == TCPS_LISTEN)
870 		panic("tcp_input: TCPS_LISTEN");
871 #endif
872 
873 #if NPF > 0
874 	if (m->m_pkthdr.pf.statekey && !m->m_pkthdr.pf.statekey->inp &&
875 	    !inp->inp_pf_sk) {
876 		m->m_pkthdr.pf.statekey->inp = inp;
877 		inp->inp_pf_sk = m->m_pkthdr.pf.statekey;
878 	}
879 	/* The statekey has finished finding the inp, it is no longer needed. */
880 	m->m_pkthdr.pf.statekey = NULL;
881 #endif
882 
883 #ifdef IPSEC
884 	/* Find most recent IPsec tag */
885 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
886 	if (mtag != NULL) {
887 		tdbi = (struct tdb_ident *)(mtag + 1);
888 	        tdb = gettdb(tdbi->rdomain, tdbi->spi,
889 		    &tdbi->dst, tdbi->proto);
890 	} else
891 		tdb = NULL;
892 	ipsp_spd_lookup(m, af, iphlen, &error, IPSP_DIRECTION_IN,
893 	    tdb, inp, 0);
894 	if (error) {
895 		tcpstat.tcps_rcvnosec++;
896 		goto drop;
897 	}
898 
899 	/* Latch SA */
900 	if (inp->inp_tdb_in != tdb) {
901 		if (tdb) {
902 		        tdb_add_inp(tdb, inp, 1);
903 			if (inp->inp_ipo == NULL) {
904 				inp->inp_ipo = ipsec_add_policy(inp, af,
905 				    IPSP_DIRECTION_OUT);
906 				if (inp->inp_ipo == NULL) {
907 					goto drop;
908 				}
909 			}
910 			if (inp->inp_ipo->ipo_dstid == NULL &&
911 			    tdb->tdb_srcid != NULL) {
912 				inp->inp_ipo->ipo_dstid = tdb->tdb_srcid;
913 				tdb->tdb_srcid->ref_count++;
914 			}
915 			if (inp->inp_ipsec_remotecred == NULL &&
916 			    tdb->tdb_remote_cred != NULL) {
917 				inp->inp_ipsec_remotecred =
918 				    tdb->tdb_remote_cred;
919 				tdb->tdb_remote_cred->ref_count++;
920 			}
921 			if (inp->inp_ipsec_remoteauth == NULL &&
922 			    tdb->tdb_remote_auth != NULL) {
923 				inp->inp_ipsec_remoteauth =
924 				    tdb->tdb_remote_auth;
925 				tdb->tdb_remote_auth->ref_count++;
926 			}
927 		} else { /* Just reset */
928 		        TAILQ_REMOVE(&inp->inp_tdb_in->tdb_inp_in, inp,
929 				     inp_tdb_in_next);
930 			inp->inp_tdb_in = NULL;
931 		}
932 	}
933 #endif /* IPSEC */
934 
935 	/*
936 	 * Segment received on connection.
937 	 * Reset idle time and keep-alive timer.
938 	 */
939 	tp->t_rcvtime = tcp_now;
940 	if (TCPS_HAVEESTABLISHED(tp->t_state))
941 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
942 
943 #ifdef TCP_SACK
944 	if (tp->sack_enable)
945 		tcp_del_sackholes(tp, th); /* Delete stale SACK holes */
946 #endif /* TCP_SACK */
947 
948 	/*
949 	 * Process options.
950 	 */
951 #ifdef TCP_SIGNATURE
952 	if (optp || (tp->t_flags & TF_SIGNATURE))
953 #else
954 	if (optp)
955 #endif
956 		if (tcp_dooptions(tp, optp, optlen, th, m, iphlen, &opti,
957 		    m->m_pkthdr.ph_rtableid))
958 			goto drop;
959 
960 	if (opti.ts_present && opti.ts_ecr) {
961 		int rtt_test;
962 
963 		/* subtract out the tcp timestamp modulator */
964 		opti.ts_ecr -= tp->ts_modulate;
965 
966 		/* make sure ts_ecr is sensible */
967 		rtt_test = tcp_now - opti.ts_ecr;
968 		if (rtt_test < 0 || rtt_test > TCP_RTT_MAX)
969 			opti.ts_ecr = 0;
970 	}
971 
972 #ifdef TCP_ECN
973 	/* if congestion experienced, set ECE bit in subsequent packets. */
974 	if ((iptos & IPTOS_ECN_MASK) == IPTOS_ECN_CE) {
975 		tp->t_flags |= TF_RCVD_CE;
976 		tcpstat.tcps_ecn_rcvce++;
977 	}
978 #endif
979 	/*
980 	 * Header prediction: check for the two common cases
981 	 * of a uni-directional data xfer.  If the packet has
982 	 * no control flags, is in-sequence, the window didn't
983 	 * change and we're not retransmitting, it's a
984 	 * candidate.  If the length is zero and the ack moved
985 	 * forward, we're the sender side of the xfer.  Just
986 	 * free the data acked & wake any higher level process
987 	 * that was blocked waiting for space.  If the length
988 	 * is non-zero and the ack didn't move, we're the
989 	 * receiver side.  If we're getting packets in-order
990 	 * (the reassembly queue is empty), add the data to
991 	 * the socket buffer and note that we need a delayed ack.
992 	 */
993 	if (tp->t_state == TCPS_ESTABLISHED &&
994 #ifdef TCP_ECN
995 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK)) == TH_ACK &&
996 #else
997 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
998 #endif
999 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1000 	    th->th_seq == tp->rcv_nxt &&
1001 	    tiwin && tiwin == tp->snd_wnd &&
1002 	    tp->snd_nxt == tp->snd_max) {
1003 
1004 		/*
1005 		 * If last ACK falls within this segment's sequence numbers,
1006 		 *  record the timestamp.
1007 		 * Fix from Braden, see Stevens p. 870
1008 		 */
1009 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1010 			tp->ts_recent_age = tcp_now;
1011 			tp->ts_recent = opti.ts_val;
1012 		}
1013 
1014 		if (tlen == 0) {
1015 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1016 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1017 			    tp->snd_cwnd >= tp->snd_wnd &&
1018 			    tp->t_dupacks == 0) {
1019 				/*
1020 				 * this is a pure ack for outstanding data.
1021 				 */
1022 				++tcpstat.tcps_predack;
1023 				if (opti.ts_present && opti.ts_ecr)
1024 					tcp_xmit_timer(tp, tcp_now - opti.ts_ecr);
1025 				else if (tp->t_rtttime &&
1026 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1027 					tcp_xmit_timer(tp,
1028 					    tcp_now - tp->t_rtttime);
1029 				acked = th->th_ack - tp->snd_una;
1030 				tcpstat.tcps_rcvackpack++;
1031 				tcpstat.tcps_rcvackbyte += acked;
1032 				ND6_HINT(tp);
1033 				sbdrop(&so->so_snd, acked);
1034 
1035 				/*
1036 				 * If we had a pending ICMP message that
1037 				 * referres to data that have just been
1038 				 * acknowledged, disregard the recorded ICMP
1039 				 * message.
1040 				 */
1041 				if ((tp->t_flags & TF_PMTUD_PEND) &&
1042 				    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
1043 					tp->t_flags &= ~TF_PMTUD_PEND;
1044 
1045 				/*
1046 				 * Keep track of the largest chunk of data
1047 				 * acknowledged since last PMTU update
1048 				 */
1049 				if (tp->t_pmtud_mss_acked < acked)
1050 					tp->t_pmtud_mss_acked = acked;
1051 
1052 				tp->snd_una = th->th_ack;
1053 #if defined(TCP_SACK) || defined(TCP_ECN)
1054 				/*
1055 				 * We want snd_last to track snd_una so
1056 				 * as to avoid sequence wraparound problems
1057 				 * for very large transfers.
1058 				 */
1059 #ifdef TCP_ECN
1060 				if (SEQ_GT(tp->snd_una, tp->snd_last))
1061 #endif
1062 				tp->snd_last = tp->snd_una;
1063 #endif /* TCP_SACK */
1064 #if defined(TCP_SACK) && defined(TCP_FACK)
1065 				tp->snd_fack = tp->snd_una;
1066 				tp->retran_data = 0;
1067 #endif /* TCP_FACK */
1068 				m_freem(m);
1069 
1070 				/*
1071 				 * If all outstanding data are acked, stop
1072 				 * retransmit timer, otherwise restart timer
1073 				 * using current (possibly backed-off) value.
1074 				 * If process is waiting for space,
1075 				 * wakeup/selwakeup/signal.  If data
1076 				 * are ready to send, let tcp_output
1077 				 * decide between more output or persist.
1078 				 */
1079 				if (tp->snd_una == tp->snd_max)
1080 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1081 				else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1082 					TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1083 
1084 				tcp_update_sndspace(tp);
1085 				if (sb_notify(&so->so_snd)) {
1086 					tp->t_flags |= TF_BLOCKOUTPUT;
1087 					sowwakeup(so);
1088 					tp->t_flags &= ~TF_BLOCKOUTPUT;
1089 				}
1090 				if (so->so_snd.sb_cc ||
1091 				    tp->t_flags & TF_NEEDOUTPUT)
1092 					(void) tcp_output(tp);
1093 				return;
1094 			}
1095 		} else if (th->th_ack == tp->snd_una &&
1096 		    TAILQ_EMPTY(&tp->t_segq) &&
1097 		    tlen <= sbspace(&so->so_rcv)) {
1098 			/*
1099 			 * This is a pure, in-sequence data packet
1100 			 * with nothing on the reassembly queue and
1101 			 * we have enough buffer space to take it.
1102 			 */
1103 #ifdef TCP_SACK
1104 			/* Clean receiver SACK report if present */
1105 			if (tp->sack_enable && tp->rcv_numsacks)
1106 				tcp_clean_sackreport(tp);
1107 #endif /* TCP_SACK */
1108 			++tcpstat.tcps_preddat;
1109 			tp->rcv_nxt += tlen;
1110 			tcpstat.tcps_rcvpack++;
1111 			tcpstat.tcps_rcvbyte += tlen;
1112 			ND6_HINT(tp);
1113 
1114 			TCP_SETUP_ACK(tp, tiflags, m);
1115 			/*
1116 			 * Drop TCP, IP headers and TCP options then add data
1117 			 * to socket buffer.
1118 			 */
1119 			if (so->so_state & SS_CANTRCVMORE)
1120 				m_freem(m);
1121 			else {
1122 				if (opti.ts_present && opti.ts_ecr) {
1123 					if (tp->rfbuf_ts < opti.ts_ecr &&
1124 					    opti.ts_ecr - tp->rfbuf_ts < hz) {
1125 						tcp_update_rcvspace(tp);
1126 						/* Start over with next RTT. */
1127 						tp->rfbuf_cnt = 0;
1128 						tp->rfbuf_ts = 0;
1129 					} else
1130 						tp->rfbuf_cnt += tlen;
1131 				}
1132 				m_adj(m, iphlen + off);
1133 				sbappendstream(&so->so_rcv, m);
1134 			}
1135 			tp->t_flags |= TF_BLOCKOUTPUT;
1136 			sorwakeup(so);
1137 			tp->t_flags &= ~TF_BLOCKOUTPUT;
1138 			if (tp->t_flags & (TF_ACKNOW|TF_NEEDOUTPUT))
1139 				(void) tcp_output(tp);
1140 			return;
1141 		}
1142 	}
1143 
1144 	/*
1145 	 * Compute mbuf offset to TCP data segment.
1146 	 */
1147 	hdroptlen = iphlen + off;
1148 
1149 	/*
1150 	 * Calculate amount of space in receive window,
1151 	 * and then do TCP input processing.
1152 	 * Receive window is amount of space in rcv queue,
1153 	 * but not less than advertised window.
1154 	 */
1155 	{ int win;
1156 
1157 	win = sbspace(&so->so_rcv);
1158 	if (win < 0)
1159 		win = 0;
1160 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1161 	}
1162 
1163 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
1164 	tp->rfbuf_cnt = 0;
1165 	tp->rfbuf_ts = 0;
1166 
1167 	switch (tp->t_state) {
1168 
1169 	/*
1170 	 * If the state is SYN_RECEIVED:
1171 	 * 	if seg contains SYN/ACK, send an RST.
1172 	 *	if seg contains an ACK, but not for our SYN/ACK, send an RST
1173 	 */
1174 
1175 	case TCPS_SYN_RECEIVED:
1176 		if (tiflags & TH_ACK) {
1177 			if (tiflags & TH_SYN) {
1178 				tcpstat.tcps_badsyn++;
1179 				goto dropwithreset;
1180 			}
1181 			if (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1182 			    SEQ_GT(th->th_ack, tp->snd_max))
1183 				goto dropwithreset;
1184 		}
1185 		break;
1186 
1187 	/*
1188 	 * If the state is SYN_SENT:
1189 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1190 	 *	if seg contains a RST, then drop the connection.
1191 	 *	if seg does not contain SYN, then drop it.
1192 	 * Otherwise this is an acceptable SYN segment
1193 	 *	initialize tp->rcv_nxt and tp->irs
1194 	 *	if seg contains ack then advance tp->snd_una
1195 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1196 	 *	arrange for segment to be acked (eventually)
1197 	 *	continue processing rest of data/controls, beginning with URG
1198 	 */
1199 	case TCPS_SYN_SENT:
1200 		if ((tiflags & TH_ACK) &&
1201 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1202 		     SEQ_GT(th->th_ack, tp->snd_max)))
1203 			goto dropwithreset;
1204 		if (tiflags & TH_RST) {
1205 #ifdef TCP_ECN
1206 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1207 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1208 				goto drop;
1209 #endif
1210 			if (tiflags & TH_ACK)
1211 				tp = tcp_drop(tp, ECONNREFUSED);
1212 			goto drop;
1213 		}
1214 		if ((tiflags & TH_SYN) == 0)
1215 			goto drop;
1216 		if (tiflags & TH_ACK) {
1217 			tp->snd_una = th->th_ack;
1218 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1219 				tp->snd_nxt = tp->snd_una;
1220 		}
1221 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
1222 		tp->irs = th->th_seq;
1223 		tcp_mss(tp, opti.maxseg);
1224 		/* Reset initial window to 1 segment for retransmit */
1225 		if (tp->t_rxtshift > 0)
1226 			tp->snd_cwnd = tp->t_maxseg;
1227 		tcp_rcvseqinit(tp);
1228 		tp->t_flags |= TF_ACKNOW;
1229 #ifdef TCP_SACK
1230                 /*
1231                  * If we've sent a SACK_PERMITTED option, and the peer
1232                  * also replied with one, then TF_SACK_PERMIT should have
1233                  * been set in tcp_dooptions().  If it was not, disable SACKs.
1234                  */
1235 		if (tp->sack_enable)
1236 			tp->sack_enable = tp->t_flags & TF_SACK_PERMIT;
1237 #endif
1238 #ifdef TCP_ECN
1239 		/*
1240 		 * if ECE is set but CWR is not set for SYN-ACK, or
1241 		 * both ECE and CWR are set for simultaneous open,
1242 		 * peer is ECN capable.
1243 		 */
1244 		if (tcp_do_ecn) {
1245 			switch (tiflags & (TH_ACK|TH_ECE|TH_CWR)) {
1246 			case TH_ACK|TH_ECE:
1247 			case TH_ECE|TH_CWR:
1248 				tp->t_flags |= TF_ECN_PERMIT;
1249 				tiflags &= ~(TH_ECE|TH_CWR);
1250 				tcpstat.tcps_ecn_accepts++;
1251 			}
1252 		}
1253 #endif
1254 
1255 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
1256 			tcpstat.tcps_connects++;
1257 			soisconnected(so);
1258 			tp->t_state = TCPS_ESTABLISHED;
1259 			TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1260 			/* Do window scaling on this connection? */
1261 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1262 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1263 				tp->snd_scale = tp->requested_s_scale;
1264 				tp->rcv_scale = tp->request_r_scale;
1265 			}
1266 			tcp_flush_queue(tp);
1267 
1268 			/*
1269 			 * if we didn't have to retransmit the SYN,
1270 			 * use its rtt as our initial srtt & rtt var.
1271 			 */
1272 			if (tp->t_rtttime)
1273 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1274 			/*
1275 			 * Since new data was acked (the SYN), open the
1276 			 * congestion window by one MSS.  We do this
1277 			 * here, because we won't go through the normal
1278 			 * ACK processing below.  And since this is the
1279 			 * start of the connection, we know we are in
1280 			 * the exponential phase of slow-start.
1281 			 */
1282 			tp->snd_cwnd += tp->t_maxseg;
1283 		} else
1284 			tp->t_state = TCPS_SYN_RECEIVED;
1285 
1286 #if 0
1287 trimthenstep6:
1288 #endif
1289 		/*
1290 		 * Advance th->th_seq to correspond to first data byte.
1291 		 * If data, trim to stay within window,
1292 		 * dropping FIN if necessary.
1293 		 */
1294 		th->th_seq++;
1295 		if (tlen > tp->rcv_wnd) {
1296 			todrop = tlen - tp->rcv_wnd;
1297 			m_adj(m, -todrop);
1298 			tlen = tp->rcv_wnd;
1299 			tiflags &= ~TH_FIN;
1300 			tcpstat.tcps_rcvpackafterwin++;
1301 			tcpstat.tcps_rcvbyteafterwin += todrop;
1302 		}
1303 		tp->snd_wl1 = th->th_seq - 1;
1304 		tp->rcv_up = th->th_seq;
1305 		goto step6;
1306 	/*
1307 	 * If a new connection request is received while in TIME_WAIT,
1308 	 * drop the old connection and start over if the if the
1309 	 * timestamp or the sequence numbers are above the previous
1310 	 * ones.
1311 	 */
1312 	case TCPS_TIME_WAIT:
1313 		if (((tiflags & (TH_SYN|TH_ACK)) == TH_SYN) &&
1314 		    ((opti.ts_present &&
1315 		    TSTMP_LT(tp->ts_recent, opti.ts_val)) ||
1316 		    SEQ_GT(th->th_seq, tp->rcv_nxt))) {
1317 #if NPF > 0
1318 			/*
1319 			 * The socket will be recreated but the new state
1320 			 * has already been linked to the socket.  Remove the
1321 			 * link between old socket and new state.
1322 			 */
1323 			if (inp->inp_pf_sk) {
1324 				inp->inp_pf_sk->inp = NULL;
1325 				inp->inp_pf_sk = NULL;
1326 			}
1327 #endif
1328 			/*
1329 			* Advance the iss by at least 32768, but
1330 			* clear the msb in order to make sure
1331 			* that SEG_LT(snd_nxt, iss).
1332 			*/
1333 			iss = tp->snd_nxt +
1334 			    ((arc4random() & 0x7fffffff) | 0x8000);
1335 			reuse = &iss;
1336 			tp = tcp_close(tp);
1337 			inp = NULL;
1338 			goto findpcb;
1339 		}
1340 	}
1341 
1342 	/*
1343 	 * States other than LISTEN or SYN_SENT.
1344 	 * First check timestamp, if present.
1345 	 * Then check that at least some bytes of segment are within
1346 	 * receive window.  If segment begins before rcv_nxt,
1347 	 * drop leading data (and SYN); if nothing left, just ack.
1348 	 *
1349 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1350 	 * and it's less than opti.ts_recent, drop it.
1351 	 */
1352 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1353 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1354 
1355 		/* Check to see if ts_recent is over 24 days old.  */
1356 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1357 			/*
1358 			 * Invalidate ts_recent.  If this segment updates
1359 			 * ts_recent, the age will be reset later and ts_recent
1360 			 * will get a valid value.  If it does not, setting
1361 			 * ts_recent to zero will at least satisfy the
1362 			 * requirement that zero be placed in the timestamp
1363 			 * echo reply when ts_recent isn't valid.  The
1364 			 * age isn't reset until we get a valid ts_recent
1365 			 * because we don't want out-of-order segments to be
1366 			 * dropped when ts_recent is old.
1367 			 */
1368 			tp->ts_recent = 0;
1369 		} else {
1370 			tcpstat.tcps_rcvduppack++;
1371 			tcpstat.tcps_rcvdupbyte += tlen;
1372 			tcpstat.tcps_pawsdrop++;
1373 			goto dropafterack;
1374 		}
1375 	}
1376 
1377 	todrop = tp->rcv_nxt - th->th_seq;
1378 	if (todrop > 0) {
1379 		if (tiflags & TH_SYN) {
1380 			tiflags &= ~TH_SYN;
1381 			th->th_seq++;
1382 			if (th->th_urp > 1)
1383 				th->th_urp--;
1384 			else
1385 				tiflags &= ~TH_URG;
1386 			todrop--;
1387 		}
1388 		if (todrop > tlen ||
1389 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1390 			/*
1391 			 * Any valid FIN must be to the left of the
1392 			 * window.  At this point, FIN must be a
1393 			 * duplicate or out-of-sequence, so drop it.
1394 			 */
1395 			tiflags &= ~TH_FIN;
1396 			/*
1397 			 * Send ACK to resynchronize, and drop any data,
1398 			 * but keep on processing for RST or ACK.
1399 			 */
1400 			tp->t_flags |= TF_ACKNOW;
1401 			tcpstat.tcps_rcvdupbyte += todrop = tlen;
1402 			tcpstat.tcps_rcvduppack++;
1403 		} else {
1404 			tcpstat.tcps_rcvpartduppack++;
1405 			tcpstat.tcps_rcvpartdupbyte += todrop;
1406 		}
1407 		hdroptlen += todrop;	/* drop from head afterwards */
1408 		th->th_seq += todrop;
1409 		tlen -= todrop;
1410 		if (th->th_urp > todrop)
1411 			th->th_urp -= todrop;
1412 		else {
1413 			tiflags &= ~TH_URG;
1414 			th->th_urp = 0;
1415 		}
1416 	}
1417 
1418 	/*
1419 	 * If new data are received on a connection after the
1420 	 * user processes are gone, then RST the other end.
1421 	 */
1422 	if ((so->so_state & SS_NOFDREF) &&
1423 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1424 		tp = tcp_close(tp);
1425 		tcpstat.tcps_rcvafterclose++;
1426 		goto dropwithreset;
1427 	}
1428 
1429 	/*
1430 	 * If segment ends after window, drop trailing data
1431 	 * (and PUSH and FIN); if nothing left, just ACK.
1432 	 */
1433 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1434 	if (todrop > 0) {
1435 		tcpstat.tcps_rcvpackafterwin++;
1436 		if (todrop >= tlen) {
1437 			tcpstat.tcps_rcvbyteafterwin += tlen;
1438 			/*
1439 			 * If window is closed can only take segments at
1440 			 * window edge, and have to drop data and PUSH from
1441 			 * incoming segments.  Continue processing, but
1442 			 * remember to ack.  Otherwise, drop segment
1443 			 * and ack.
1444 			 */
1445 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1446 				tp->t_flags |= TF_ACKNOW;
1447 				tcpstat.tcps_rcvwinprobe++;
1448 			} else
1449 				goto dropafterack;
1450 		} else
1451 			tcpstat.tcps_rcvbyteafterwin += todrop;
1452 		m_adj(m, -todrop);
1453 		tlen -= todrop;
1454 		tiflags &= ~(TH_PUSH|TH_FIN);
1455 	}
1456 
1457 	/*
1458 	 * If last ACK falls within this segment's sequence numbers,
1459 	 * record its timestamp if it's more recent.
1460 	 * Cf fix from Braden, see Stevens p. 870
1461 	 */
1462 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1463 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1464 		if (SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1465 		    ((tiflags & (TH_SYN|TH_FIN)) != 0)))
1466 			tp->ts_recent = opti.ts_val;
1467 		else
1468 			tp->ts_recent = 0;
1469 		tp->ts_recent_age = tcp_now;
1470 	}
1471 
1472 	/*
1473 	 * If the RST bit is set examine the state:
1474 	 *    SYN_RECEIVED STATE:
1475 	 *	If passive open, return to LISTEN state.
1476 	 *	If active open, inform user that connection was refused.
1477 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1478 	 *	Inform user that connection was reset, and close tcb.
1479 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1480 	 *	Close the tcb.
1481 	 */
1482 	if (tiflags & TH_RST) {
1483 		if (th->th_seq != tp->last_ack_sent &&
1484 		    th->th_seq != tp->rcv_nxt &&
1485 		    th->th_seq != (tp->rcv_nxt + 1))
1486 			goto drop;
1487 
1488 		switch (tp->t_state) {
1489 		case TCPS_SYN_RECEIVED:
1490 #ifdef TCP_ECN
1491 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1492 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1493 				goto drop;
1494 #endif
1495 			so->so_error = ECONNREFUSED;
1496 			goto close;
1497 
1498 		case TCPS_ESTABLISHED:
1499 		case TCPS_FIN_WAIT_1:
1500 		case TCPS_FIN_WAIT_2:
1501 		case TCPS_CLOSE_WAIT:
1502 			so->so_error = ECONNRESET;
1503 		close:
1504 			tp->t_state = TCPS_CLOSED;
1505 			tcpstat.tcps_drops++;
1506 			tp = tcp_close(tp);
1507 			goto drop;
1508 		case TCPS_CLOSING:
1509 		case TCPS_LAST_ACK:
1510 		case TCPS_TIME_WAIT:
1511 			tp = tcp_close(tp);
1512 			goto drop;
1513 		}
1514 	}
1515 
1516 	/*
1517 	 * If a SYN is in the window, then this is an
1518 	 * error and we ACK and drop the packet.
1519 	 */
1520 	if (tiflags & TH_SYN)
1521 		goto dropafterack_ratelim;
1522 
1523 	/*
1524 	 * If the ACK bit is off we drop the segment and return.
1525 	 */
1526 	if ((tiflags & TH_ACK) == 0) {
1527 		if (tp->t_flags & TF_ACKNOW)
1528 			goto dropafterack;
1529 		else
1530 			goto drop;
1531 	}
1532 
1533 	/*
1534 	 * Ack processing.
1535 	 */
1536 	switch (tp->t_state) {
1537 
1538 	/*
1539 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1540 	 * ESTABLISHED state and continue processing.
1541 	 * The ACK was checked above.
1542 	 */
1543 	case TCPS_SYN_RECEIVED:
1544 		tcpstat.tcps_connects++;
1545 		soisconnected(so);
1546 		tp->t_state = TCPS_ESTABLISHED;
1547 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1548 		/* Do window scaling? */
1549 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1550 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1551 			tp->snd_scale = tp->requested_s_scale;
1552 			tp->rcv_scale = tp->request_r_scale;
1553 			tiwin = th->th_win << tp->snd_scale;
1554 		}
1555 		tcp_flush_queue(tp);
1556 		tp->snd_wl1 = th->th_seq - 1;
1557 		/* fall into ... */
1558 
1559 	/*
1560 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1561 	 * ACKs.  If the ack is in the range
1562 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1563 	 * then advance tp->snd_una to th->th_ack and drop
1564 	 * data from the retransmission queue.  If this ACK reflects
1565 	 * more up to date window information we update our window information.
1566 	 */
1567 	case TCPS_ESTABLISHED:
1568 	case TCPS_FIN_WAIT_1:
1569 	case TCPS_FIN_WAIT_2:
1570 	case TCPS_CLOSE_WAIT:
1571 	case TCPS_CLOSING:
1572 	case TCPS_LAST_ACK:
1573 	case TCPS_TIME_WAIT:
1574 #ifdef TCP_ECN
1575 		/*
1576 		 * if we receive ECE and are not already in recovery phase,
1577 		 * reduce cwnd by half but don't slow-start.
1578 		 * advance snd_last to snd_max not to reduce cwnd again
1579 		 * until all outstanding packets are acked.
1580 		 */
1581 		if (tcp_do_ecn && (tiflags & TH_ECE)) {
1582 			if ((tp->t_flags & TF_ECN_PERMIT) &&
1583 			    SEQ_GEQ(tp->snd_una, tp->snd_last)) {
1584 				u_int win;
1585 
1586 				win = min(tp->snd_wnd, tp->snd_cwnd) / tp->t_maxseg;
1587 				if (win > 1) {
1588 					tp->snd_ssthresh = win / 2 * tp->t_maxseg;
1589 					tp->snd_cwnd = tp->snd_ssthresh;
1590 					tp->snd_last = tp->snd_max;
1591 					tp->t_flags |= TF_SEND_CWR;
1592 					tcpstat.tcps_cwr_ecn++;
1593 				}
1594 			}
1595 			tcpstat.tcps_ecn_rcvece++;
1596 		}
1597 		/*
1598 		 * if we receive CWR, we know that the peer has reduced
1599 		 * its congestion window.  stop sending ecn-echo.
1600 		 */
1601 		if ((tiflags & TH_CWR)) {
1602 			tp->t_flags &= ~TF_RCVD_CE;
1603 			tcpstat.tcps_ecn_rcvcwr++;
1604 		}
1605 #endif /* TCP_ECN */
1606 
1607 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1608 			/*
1609 			 * Duplicate/old ACK processing.
1610 			 * Increments t_dupacks:
1611 			 *	Pure duplicate (same seq/ack/window, no data)
1612 			 * Doesn't affect t_dupacks:
1613 			 *	Data packets.
1614 			 *	Normal window updates (window opens)
1615 			 * Resets t_dupacks:
1616 			 *	New data ACKed.
1617 			 *	Window shrinks
1618 			 *	Old ACK
1619 			 */
1620 			if (tlen) {
1621 				/* Drop very old ACKs unless th_seq matches */
1622 				if (th->th_seq != tp->rcv_nxt &&
1623 				   SEQ_LT(th->th_ack,
1624 				   tp->snd_una - tp->max_sndwnd)) {
1625 					tcpstat.tcps_rcvacktooold++;
1626 					goto drop;
1627 				}
1628 				break;
1629 			}
1630 			/*
1631 			 * If we get an old ACK, there is probably packet
1632 			 * reordering going on.  Be conservative and reset
1633 			 * t_dupacks so that we are less aggressive in
1634 			 * doing a fast retransmit.
1635 			 */
1636 			if (th->th_ack != tp->snd_una) {
1637 				tp->t_dupacks = 0;
1638 				break;
1639 			}
1640 			if (tiwin == tp->snd_wnd) {
1641 				tcpstat.tcps_rcvdupack++;
1642 				/*
1643 				 * If we have outstanding data (other than
1644 				 * a window probe), this is a completely
1645 				 * duplicate ack (ie, window info didn't
1646 				 * change), the ack is the biggest we've
1647 				 * seen and we've seen exactly our rexmt
1648 				 * threshold of them, assume a packet
1649 				 * has been dropped and retransmit it.
1650 				 * Kludge snd_nxt & the congestion
1651 				 * window so we send only this one
1652 				 * packet.
1653 				 *
1654 				 * We know we're losing at the current
1655 				 * window size so do congestion avoidance
1656 				 * (set ssthresh to half the current window
1657 				 * and pull our congestion window back to
1658 				 * the new ssthresh).
1659 				 *
1660 				 * Dup acks mean that packets have left the
1661 				 * network (they're now cached at the receiver)
1662 				 * so bump cwnd by the amount in the receiver
1663 				 * to keep a constant cwnd packets in the
1664 				 * network.
1665 				 */
1666 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0)
1667 					tp->t_dupacks = 0;
1668 #if defined(TCP_SACK) && defined(TCP_FACK)
1669 				/*
1670 				 * In FACK, can enter fast rec. if the receiver
1671 				 * reports a reass. queue longer than 3 segs.
1672 				 */
1673 				else if (++tp->t_dupacks == tcprexmtthresh ||
1674 				    ((SEQ_GT(tp->snd_fack, tcprexmtthresh *
1675 				    tp->t_maxseg + tp->snd_una)) &&
1676 				    SEQ_GT(tp->snd_una, tp->snd_last))) {
1677 #else
1678 				else if (++tp->t_dupacks == tcprexmtthresh) {
1679 #endif /* TCP_FACK */
1680 					tcp_seq onxt = tp->snd_nxt;
1681 					u_long win =
1682 					    ulmin(tp->snd_wnd, tp->snd_cwnd) /
1683 						2 / tp->t_maxseg;
1684 
1685 #if defined(TCP_SACK) || defined(TCP_ECN)
1686 					if (SEQ_LT(th->th_ack, tp->snd_last)){
1687 					    	/*
1688 						 * False fast retx after
1689 						 * timeout.  Do not cut window.
1690 						 */
1691 						tp->t_dupacks = 0;
1692 						goto drop;
1693 					}
1694 #endif
1695 					if (win < 2)
1696 						win = 2;
1697 					tp->snd_ssthresh = win * tp->t_maxseg;
1698 #ifdef TCP_SACK
1699 					tp->snd_last = tp->snd_max;
1700                     			if (tp->sack_enable) {
1701 						TCP_TIMER_DISARM(tp, TCPT_REXMT);
1702 						tp->t_rtttime = 0;
1703 #ifdef TCP_ECN
1704 						tp->t_flags |= TF_SEND_CWR;
1705 #endif
1706 						tcpstat.tcps_cwr_frecovery++;
1707 						tcpstat.tcps_sack_recovery_episode++;
1708 #if defined(TCP_SACK) && defined(TCP_FACK)
1709 						tp->t_dupacks = tcprexmtthresh;
1710 						(void) tcp_output(tp);
1711 						/*
1712 						 * During FR, snd_cwnd is held
1713 						 * constant for FACK.
1714 						 */
1715 						tp->snd_cwnd = tp->snd_ssthresh;
1716 #else
1717 						/*
1718 						 * tcp_output() will send
1719 						 * oldest SACK-eligible rtx.
1720 						 */
1721 						(void) tcp_output(tp);
1722 						tp->snd_cwnd = tp->snd_ssthresh+
1723 					           tp->t_maxseg * tp->t_dupacks;
1724 #endif /* TCP_FACK */
1725 						goto drop;
1726 					}
1727 #endif /* TCP_SACK */
1728 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1729 					tp->t_rtttime = 0;
1730 					tp->snd_nxt = th->th_ack;
1731 					tp->snd_cwnd = tp->t_maxseg;
1732 #ifdef TCP_ECN
1733 					tp->t_flags |= TF_SEND_CWR;
1734 #endif
1735 					tcpstat.tcps_cwr_frecovery++;
1736 					tcpstat.tcps_sndrexmitfast++;
1737 					(void) tcp_output(tp);
1738 
1739 					tp->snd_cwnd = tp->snd_ssthresh +
1740 					    tp->t_maxseg * tp->t_dupacks;
1741 					if (SEQ_GT(onxt, tp->snd_nxt))
1742 						tp->snd_nxt = onxt;
1743 					goto drop;
1744 				} else if (tp->t_dupacks > tcprexmtthresh) {
1745 #if defined(TCP_SACK) && defined(TCP_FACK)
1746 					/*
1747 					 * while (awnd < cwnd)
1748 					 *         sendsomething();
1749 					 */
1750 					if (tp->sack_enable) {
1751 						if (tp->snd_awnd < tp->snd_cwnd)
1752 							tcp_output(tp);
1753 						goto drop;
1754 					}
1755 #endif /* TCP_FACK */
1756 					tp->snd_cwnd += tp->t_maxseg;
1757 					(void) tcp_output(tp);
1758 					goto drop;
1759 				}
1760 			} else if (tiwin < tp->snd_wnd) {
1761 				/*
1762 				 * The window was retracted!  Previous dup
1763 				 * ACKs may have been due to packets arriving
1764 				 * after the shrunken window, not a missing
1765 				 * packet, so play it safe and reset t_dupacks
1766 				 */
1767 				tp->t_dupacks = 0;
1768 			}
1769 			break;
1770 		}
1771 		/*
1772 		 * If the congestion window was inflated to account
1773 		 * for the other side's cached packets, retract it.
1774 		 */
1775 #if defined(TCP_SACK)
1776 		if (tp->sack_enable) {
1777 			if (tp->t_dupacks >= tcprexmtthresh) {
1778 				/* Check for a partial ACK */
1779 				if (tcp_sack_partialack(tp, th)) {
1780 #if defined(TCP_SACK) && defined(TCP_FACK)
1781 					/* Force call to tcp_output */
1782 					if (tp->snd_awnd < tp->snd_cwnd)
1783 						tp->t_flags |= TF_NEEDOUTPUT;
1784 #else
1785 					tp->snd_cwnd += tp->t_maxseg;
1786 					tp->t_flags |= TF_NEEDOUTPUT;
1787 #endif /* TCP_FACK */
1788 				} else {
1789 					/* Out of fast recovery */
1790 					tp->snd_cwnd = tp->snd_ssthresh;
1791 					if (tcp_seq_subtract(tp->snd_max,
1792 					    th->th_ack) < tp->snd_ssthresh)
1793 						tp->snd_cwnd =
1794 						   tcp_seq_subtract(tp->snd_max,
1795 					           th->th_ack);
1796 					tp->t_dupacks = 0;
1797 #if defined(TCP_SACK) && defined(TCP_FACK)
1798 					if (SEQ_GT(th->th_ack, tp->snd_fack))
1799 						tp->snd_fack = th->th_ack;
1800 #endif /* TCP_FACK */
1801 				}
1802 			}
1803 		} else {
1804 			if (tp->t_dupacks >= tcprexmtthresh &&
1805 			    !tcp_newreno(tp, th)) {
1806 				/* Out of fast recovery */
1807 				tp->snd_cwnd = tp->snd_ssthresh;
1808 				if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
1809 			  	    tp->snd_ssthresh)
1810 					tp->snd_cwnd =
1811 					    tcp_seq_subtract(tp->snd_max,
1812 					    th->th_ack);
1813 				tp->t_dupacks = 0;
1814 			}
1815 		}
1816 		if (tp->t_dupacks < tcprexmtthresh)
1817 			tp->t_dupacks = 0;
1818 #else /* else no TCP_SACK */
1819 		if (tp->t_dupacks >= tcprexmtthresh &&
1820 		    tp->snd_cwnd > tp->snd_ssthresh)
1821 			tp->snd_cwnd = tp->snd_ssthresh;
1822 		tp->t_dupacks = 0;
1823 #endif
1824 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1825 			tcpstat.tcps_rcvacktoomuch++;
1826 			goto dropafterack_ratelim;
1827 		}
1828 		acked = th->th_ack - tp->snd_una;
1829 		tcpstat.tcps_rcvackpack++;
1830 		tcpstat.tcps_rcvackbyte += acked;
1831 
1832 		/*
1833 		 * If we have a timestamp reply, update smoothed
1834 		 * round trip time.  If no timestamp is present but
1835 		 * transmit timer is running and timed sequence
1836 		 * number was acked, update smoothed round trip time.
1837 		 * Since we now have an rtt measurement, cancel the
1838 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1839 		 * Recompute the initial retransmit timer.
1840 		 */
1841 		if (opti.ts_present && opti.ts_ecr)
1842 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr);
1843 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1844 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1845 
1846 		/*
1847 		 * If all outstanding data is acked, stop retransmit
1848 		 * timer and remember to restart (more output or persist).
1849 		 * If there is more data to be acked, restart retransmit
1850 		 * timer, using current (possibly backed-off) value.
1851 		 */
1852 		if (th->th_ack == tp->snd_max) {
1853 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1854 			tp->t_flags |= TF_NEEDOUTPUT;
1855 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1856 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1857 		/*
1858 		 * When new data is acked, open the congestion window.
1859 		 * If the window gives us less than ssthresh packets
1860 		 * in flight, open exponentially (maxseg per packet).
1861 		 * Otherwise open linearly: maxseg per window
1862 		 * (maxseg^2 / cwnd per packet).
1863 		 */
1864 		{
1865 		u_int cw = tp->snd_cwnd;
1866 		u_int incr = tp->t_maxseg;
1867 
1868 		if (cw > tp->snd_ssthresh)
1869 			incr = incr * incr / cw;
1870 #if defined (TCP_SACK)
1871 		if (tp->t_dupacks < tcprexmtthresh)
1872 #endif
1873 		tp->snd_cwnd = ulmin(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1874 		}
1875 		ND6_HINT(tp);
1876 		if (acked > so->so_snd.sb_cc) {
1877 			tp->snd_wnd -= so->so_snd.sb_cc;
1878 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1879 			ourfinisacked = 1;
1880 		} else {
1881 			sbdrop(&so->so_snd, acked);
1882 			tp->snd_wnd -= acked;
1883 			ourfinisacked = 0;
1884 		}
1885 
1886 		tcp_update_sndspace(tp);
1887 		if (sb_notify(&so->so_snd)) {
1888 			tp->t_flags |= TF_BLOCKOUTPUT;
1889 			sowwakeup(so);
1890 			tp->t_flags &= ~TF_BLOCKOUTPUT;
1891 		}
1892 
1893 		/*
1894 		 * If we had a pending ICMP message that referred to data
1895 		 * that have just been acknowledged, disregard the recorded
1896 		 * ICMP message.
1897 		 */
1898 		if ((tp->t_flags & TF_PMTUD_PEND) &&
1899 		    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
1900 			tp->t_flags &= ~TF_PMTUD_PEND;
1901 
1902 		/*
1903 		 * Keep track of the largest chunk of data acknowledged
1904 		 * since last PMTU update
1905 		 */
1906 		if (tp->t_pmtud_mss_acked < acked)
1907 			tp->t_pmtud_mss_acked = acked;
1908 
1909 		tp->snd_una = th->th_ack;
1910 #ifdef TCP_ECN
1911 		/* sync snd_last with snd_una */
1912 		if (SEQ_GT(tp->snd_una, tp->snd_last))
1913 			tp->snd_last = tp->snd_una;
1914 #endif
1915 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1916 			tp->snd_nxt = tp->snd_una;
1917 #if defined (TCP_SACK) && defined (TCP_FACK)
1918 		if (SEQ_GT(tp->snd_una, tp->snd_fack)) {
1919 			tp->snd_fack = tp->snd_una;
1920 			/* Update snd_awnd for partial ACK
1921 			 * without any SACK blocks.
1922 			 */
1923 			tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt,
1924 				tp->snd_fack) + tp->retran_data;
1925 		}
1926 #endif
1927 
1928 		switch (tp->t_state) {
1929 
1930 		/*
1931 		 * In FIN_WAIT_1 STATE in addition to the processing
1932 		 * for the ESTABLISHED state if our FIN is now acknowledged
1933 		 * then enter FIN_WAIT_2.
1934 		 */
1935 		case TCPS_FIN_WAIT_1:
1936 			if (ourfinisacked) {
1937 				/*
1938 				 * If we can't receive any more
1939 				 * data, then closing user can proceed.
1940 				 * Starting the timer is contrary to the
1941 				 * specification, but if we don't get a FIN
1942 				 * we'll hang forever.
1943 				 */
1944 				if (so->so_state & SS_CANTRCVMORE) {
1945 					soisdisconnected(so);
1946 					TCP_TIMER_ARM(tp, TCPT_2MSL, tcp_maxidle);
1947 				}
1948 				tp->t_state = TCPS_FIN_WAIT_2;
1949 			}
1950 			break;
1951 
1952 		/*
1953 		 * In CLOSING STATE in addition to the processing for
1954 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1955 		 * then enter the TIME-WAIT state, otherwise ignore
1956 		 * the segment.
1957 		 */
1958 		case TCPS_CLOSING:
1959 			if (ourfinisacked) {
1960 				tp->t_state = TCPS_TIME_WAIT;
1961 				tcp_canceltimers(tp);
1962 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1963 				soisdisconnected(so);
1964 			}
1965 			break;
1966 
1967 		/*
1968 		 * In LAST_ACK, we may still be waiting for data to drain
1969 		 * and/or to be acked, as well as for the ack of our FIN.
1970 		 * If our FIN is now acknowledged, delete the TCB,
1971 		 * enter the closed state and return.
1972 		 */
1973 		case TCPS_LAST_ACK:
1974 			if (ourfinisacked) {
1975 				tp = tcp_close(tp);
1976 				goto drop;
1977 			}
1978 			break;
1979 
1980 		/*
1981 		 * In TIME_WAIT state the only thing that should arrive
1982 		 * is a retransmission of the remote FIN.  Acknowledge
1983 		 * it and restart the finack timer.
1984 		 */
1985 		case TCPS_TIME_WAIT:
1986 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1987 			goto dropafterack;
1988 		}
1989 	}
1990 
1991 step6:
1992 	/*
1993 	 * Update window information.
1994 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1995 	 */
1996 	if ((tiflags & TH_ACK) &&
1997 	    (SEQ_LT(tp->snd_wl1, th->th_seq) || (tp->snd_wl1 == th->th_seq &&
1998 	    (SEQ_LT(tp->snd_wl2, th->th_ack) ||
1999 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2000 		/* keep track of pure window updates */
2001 		if (tlen == 0 &&
2002 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2003 			tcpstat.tcps_rcvwinupd++;
2004 		tp->snd_wnd = tiwin;
2005 		tp->snd_wl1 = th->th_seq;
2006 		tp->snd_wl2 = th->th_ack;
2007 		if (tp->snd_wnd > tp->max_sndwnd)
2008 			tp->max_sndwnd = tp->snd_wnd;
2009 		tp->t_flags |= TF_NEEDOUTPUT;
2010 	}
2011 
2012 	/*
2013 	 * Process segments with URG.
2014 	 */
2015 	if ((tiflags & TH_URG) && th->th_urp &&
2016 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2017 		/*
2018 		 * This is a kludge, but if we receive and accept
2019 		 * random urgent pointers, we'll crash in
2020 		 * soreceive.  It's hard to imagine someone
2021 		 * actually wanting to send this much urgent data.
2022 		 */
2023 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2024 			th->th_urp = 0;			/* XXX */
2025 			tiflags &= ~TH_URG;		/* XXX */
2026 			goto dodata;			/* XXX */
2027 		}
2028 		/*
2029 		 * If this segment advances the known urgent pointer,
2030 		 * then mark the data stream.  This should not happen
2031 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2032 		 * a FIN has been received from the remote side.
2033 		 * In these states we ignore the URG.
2034 		 *
2035 		 * According to RFC961 (Assigned Protocols),
2036 		 * the urgent pointer points to the last octet
2037 		 * of urgent data.  We continue, however,
2038 		 * to consider it to indicate the first octet
2039 		 * of data past the urgent section as the original
2040 		 * spec states (in one of two places).
2041 		 */
2042 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2043 			tp->rcv_up = th->th_seq + th->th_urp;
2044 			so->so_oobmark = so->so_rcv.sb_cc +
2045 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2046 			if (so->so_oobmark == 0)
2047 				so->so_state |= SS_RCVATMARK;
2048 			sohasoutofband(so);
2049 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2050 		}
2051 		/*
2052 		 * Remove out of band data so doesn't get presented to user.
2053 		 * This can happen independent of advancing the URG pointer,
2054 		 * but if two URG's are pending at once, some out-of-band
2055 		 * data may creep in... ick.
2056 		 */
2057 		if (th->th_urp <= (u_int16_t) tlen &&
2058 		    (so->so_options & SO_OOBINLINE) == 0)
2059 		        tcp_pulloutofband(so, th->th_urp, m, hdroptlen);
2060 	} else
2061 		/*
2062 		 * If no out of band data is expected,
2063 		 * pull receive urgent pointer along
2064 		 * with the receive window.
2065 		 */
2066 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2067 			tp->rcv_up = tp->rcv_nxt;
2068 dodata:							/* XXX */
2069 
2070 	/*
2071 	 * Process the segment text, merging it into the TCP sequencing queue,
2072 	 * and arranging for acknowledgment of receipt if necessary.
2073 	 * This process logically involves adjusting tp->rcv_wnd as data
2074 	 * is presented to the user (this happens in tcp_usrreq.c,
2075 	 * case PRU_RCVD).  If a FIN has already been received on this
2076 	 * connection then we just ignore the text.
2077 	 */
2078 	if ((tlen || (tiflags & TH_FIN)) &&
2079 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2080 #ifdef TCP_SACK
2081 		tcp_seq laststart = th->th_seq;
2082 		tcp_seq lastend = th->th_seq + tlen;
2083 #endif
2084 		if (th->th_seq == tp->rcv_nxt && TAILQ_EMPTY(&tp->t_segq) &&
2085 		    tp->t_state == TCPS_ESTABLISHED) {
2086 			TCP_SETUP_ACK(tp, tiflags, m);
2087 			tp->rcv_nxt += tlen;
2088 			tiflags = th->th_flags & TH_FIN;
2089 			tcpstat.tcps_rcvpack++;
2090 			tcpstat.tcps_rcvbyte += tlen;
2091 			ND6_HINT(tp);
2092 			if (so->so_state & SS_CANTRCVMORE)
2093 				m_freem(m);
2094 			else {
2095 				m_adj(m, hdroptlen);
2096 				sbappendstream(&so->so_rcv, m);
2097 			}
2098 			tp->t_flags |= TF_BLOCKOUTPUT;
2099 			sorwakeup(so);
2100 			tp->t_flags &= ~TF_BLOCKOUTPUT;
2101 		} else {
2102 			m_adj(m, hdroptlen);
2103 			tiflags = tcp_reass(tp, th, m, &tlen);
2104 			tp->t_flags |= TF_ACKNOW;
2105 		}
2106 #ifdef TCP_SACK
2107 		if (tp->sack_enable)
2108 			tcp_update_sack_list(tp, laststart, lastend);
2109 #endif
2110 
2111 		/*
2112 		 * variable len never referenced again in modern BSD,
2113 		 * so why bother computing it ??
2114 		 */
2115 #if 0
2116 		/*
2117 		 * Note the amount of data that peer has sent into
2118 		 * our window, in order to estimate the sender's
2119 		 * buffer size.
2120 		 */
2121 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2122 #endif /* 0 */
2123 	} else {
2124 		m_freem(m);
2125 		tiflags &= ~TH_FIN;
2126 	}
2127 
2128 	/*
2129 	 * If FIN is received ACK the FIN and let the user know
2130 	 * that the connection is closing.  Ignore a FIN received before
2131 	 * the connection is fully established.
2132 	 */
2133 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2134 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2135 			socantrcvmore(so);
2136 			tp->t_flags |= TF_ACKNOW;
2137 			tp->rcv_nxt++;
2138 		}
2139 		switch (tp->t_state) {
2140 
2141 		/*
2142 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2143 		 */
2144 		case TCPS_ESTABLISHED:
2145 			tp->t_state = TCPS_CLOSE_WAIT;
2146 			break;
2147 
2148 		/*
2149 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2150 		 * enter the CLOSING state.
2151 		 */
2152 		case TCPS_FIN_WAIT_1:
2153 			tp->t_state = TCPS_CLOSING;
2154 			break;
2155 
2156 		/*
2157 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2158 		 * starting the time-wait timer, turning off the other
2159 		 * standard timers.
2160 		 */
2161 		case TCPS_FIN_WAIT_2:
2162 			tp->t_state = TCPS_TIME_WAIT;
2163 			tcp_canceltimers(tp);
2164 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2165 			soisdisconnected(so);
2166 			break;
2167 
2168 		/*
2169 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2170 		 */
2171 		case TCPS_TIME_WAIT:
2172 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2173 			break;
2174 		}
2175 	}
2176 	if (so->so_options & SO_DEBUG) {
2177 		switch (tp->pf) {
2178 #ifdef INET6
2179 		case PF_INET6:
2180 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti6,
2181 			    0, tlen);
2182 			break;
2183 #endif /* INET6 */
2184 		case PF_INET:
2185 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti,
2186 			    0, tlen);
2187 			break;
2188 		}
2189 	}
2190 
2191 	/*
2192 	 * Return any desired output.
2193 	 */
2194 	if (tp->t_flags & (TF_ACKNOW|TF_NEEDOUTPUT))
2195 		(void) tcp_output(tp);
2196 	return;
2197 
2198 badsyn:
2199 	/*
2200 	 * Received a bad SYN.  Increment counters and dropwithreset.
2201 	 */
2202 	tcpstat.tcps_badsyn++;
2203 	tp = NULL;
2204 	goto dropwithreset;
2205 
2206 dropafterack_ratelim:
2207 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2208 	    tcp_ackdrop_ppslim) == 0) {
2209 		/* XXX stat */
2210 		goto drop;
2211 	}
2212 	/* ...fall into dropafterack... */
2213 
2214 dropafterack:
2215 	/*
2216 	 * Generate an ACK dropping incoming segment if it occupies
2217 	 * sequence space, where the ACK reflects our state.
2218 	 */
2219 	if (tiflags & TH_RST)
2220 		goto drop;
2221 	m_freem(m);
2222 	tp->t_flags |= TF_ACKNOW;
2223 	(void) tcp_output(tp);
2224 	return;
2225 
2226 dropwithreset_ratelim:
2227 	/*
2228 	 * We may want to rate-limit RSTs in certain situations,
2229 	 * particularly if we are sending an RST in response to
2230 	 * an attempt to connect to or otherwise communicate with
2231 	 * a port for which we have no socket.
2232 	 */
2233 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2234 	    tcp_rst_ppslim) == 0) {
2235 		/* XXX stat */
2236 		goto drop;
2237 	}
2238 	/* ...fall into dropwithreset... */
2239 
2240 dropwithreset:
2241 	/*
2242 	 * Generate a RST, dropping incoming segment.
2243 	 * Make ACK acceptable to originator of segment.
2244 	 * Don't bother to respond to RST.
2245 	 */
2246 	if (tiflags & TH_RST)
2247 		goto drop;
2248 	if (tiflags & TH_ACK) {
2249 		tcp_respond(tp, mtod(m, caddr_t), th, (tcp_seq)0, th->th_ack,
2250 		    TH_RST, m->m_pkthdr.ph_rtableid);
2251 	} else {
2252 		if (tiflags & TH_SYN)
2253 			tlen++;
2254 		tcp_respond(tp, mtod(m, caddr_t), th, th->th_seq + tlen,
2255 		    (tcp_seq)0, TH_RST|TH_ACK, m->m_pkthdr.ph_rtableid);
2256 	}
2257 	m_freem(m);
2258 	return;
2259 
2260 drop:
2261 	/*
2262 	 * Drop space held by incoming segment and return.
2263 	 */
2264 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
2265 		switch (tp->pf) {
2266 #ifdef INET6
2267 		case PF_INET6:
2268 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti6,
2269 			    0, tlen);
2270 			break;
2271 #endif /* INET6 */
2272 		case PF_INET:
2273 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti,
2274 			    0, tlen);
2275 			break;
2276 		}
2277 	}
2278 
2279 	m_freem(m);
2280 	return;
2281 }
2282 
2283 int
2284 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2285     struct mbuf *m, int iphlen, struct tcp_opt_info *oi,
2286     u_int rtableid)
2287 {
2288 	u_int16_t mss = 0;
2289 	int opt, optlen;
2290 #ifdef TCP_SIGNATURE
2291 	caddr_t sigp = NULL;
2292 	struct tdb *tdb = NULL;
2293 #endif /* TCP_SIGNATURE */
2294 
2295 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2296 		opt = cp[0];
2297 		if (opt == TCPOPT_EOL)
2298 			break;
2299 		if (opt == TCPOPT_NOP)
2300 			optlen = 1;
2301 		else {
2302 			if (cnt < 2)
2303 				break;
2304 			optlen = cp[1];
2305 			if (optlen < 2 || optlen > cnt)
2306 				break;
2307 		}
2308 		switch (opt) {
2309 
2310 		default:
2311 			continue;
2312 
2313 		case TCPOPT_MAXSEG:
2314 			if (optlen != TCPOLEN_MAXSEG)
2315 				continue;
2316 			if (!(th->th_flags & TH_SYN))
2317 				continue;
2318 			if (TCPS_HAVERCVDSYN(tp->t_state))
2319 				continue;
2320 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
2321 			NTOHS(mss);
2322 			oi->maxseg = mss;
2323 			break;
2324 
2325 		case TCPOPT_WINDOW:
2326 			if (optlen != TCPOLEN_WINDOW)
2327 				continue;
2328 			if (!(th->th_flags & TH_SYN))
2329 				continue;
2330 			if (TCPS_HAVERCVDSYN(tp->t_state))
2331 				continue;
2332 			tp->t_flags |= TF_RCVD_SCALE;
2333 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2334 			break;
2335 
2336 		case TCPOPT_TIMESTAMP:
2337 			if (optlen != TCPOLEN_TIMESTAMP)
2338 				continue;
2339 			oi->ts_present = 1;
2340 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2341 			NTOHL(oi->ts_val);
2342 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2343 			NTOHL(oi->ts_ecr);
2344 
2345 			if (!(th->th_flags & TH_SYN))
2346 				continue;
2347 			if (TCPS_HAVERCVDSYN(tp->t_state))
2348 				continue;
2349 			/*
2350 			 * A timestamp received in a SYN makes
2351 			 * it ok to send timestamp requests and replies.
2352 			 */
2353 			tp->t_flags |= TF_RCVD_TSTMP;
2354 			tp->ts_recent = oi->ts_val;
2355 			tp->ts_recent_age = tcp_now;
2356 			break;
2357 
2358 #ifdef TCP_SACK
2359 		case TCPOPT_SACK_PERMITTED:
2360 			if (!tp->sack_enable || optlen!=TCPOLEN_SACK_PERMITTED)
2361 				continue;
2362 			if (!(th->th_flags & TH_SYN))
2363 				continue;
2364 			if (TCPS_HAVERCVDSYN(tp->t_state))
2365 				continue;
2366 			/* MUST only be set on SYN */
2367 			tp->t_flags |= TF_SACK_PERMIT;
2368 			break;
2369 		case TCPOPT_SACK:
2370 			tcp_sack_option(tp, th, cp, optlen);
2371 			break;
2372 #endif
2373 #ifdef TCP_SIGNATURE
2374 		case TCPOPT_SIGNATURE:
2375 			if (optlen != TCPOLEN_SIGNATURE)
2376 				continue;
2377 
2378 			if (sigp && timingsafe_bcmp(sigp, cp + 2, 16))
2379 				return (-1);
2380 
2381 			sigp = cp + 2;
2382 			break;
2383 #endif /* TCP_SIGNATURE */
2384 		}
2385 	}
2386 
2387 #ifdef TCP_SIGNATURE
2388 	if (tp->t_flags & TF_SIGNATURE) {
2389 		union sockaddr_union src, dst;
2390 
2391 		memset(&src, 0, sizeof(union sockaddr_union));
2392 		memset(&dst, 0, sizeof(union sockaddr_union));
2393 
2394 		switch (tp->pf) {
2395 		case 0:
2396 #ifdef INET
2397 		case AF_INET:
2398 			src.sa.sa_len = sizeof(struct sockaddr_in);
2399 			src.sa.sa_family = AF_INET;
2400 			src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
2401 			dst.sa.sa_len = sizeof(struct sockaddr_in);
2402 			dst.sa.sa_family = AF_INET;
2403 			dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
2404 			break;
2405 #endif
2406 #ifdef INET6
2407 		case AF_INET6:
2408 			src.sa.sa_len = sizeof(struct sockaddr_in6);
2409 			src.sa.sa_family = AF_INET6;
2410 			src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
2411 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
2412 			dst.sa.sa_family = AF_INET6;
2413 			dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
2414 			break;
2415 #endif /* INET6 */
2416 		}
2417 
2418 		tdb = gettdbbysrcdst(rtable_l2(rtableid),
2419 		    0, &src, &dst, IPPROTO_TCP);
2420 
2421 		/*
2422 		 * We don't have an SA for this peer, so we turn off
2423 		 * TF_SIGNATURE on the listen socket
2424 		 */
2425 		if (tdb == NULL && tp->t_state == TCPS_LISTEN)
2426 			tp->t_flags &= ~TF_SIGNATURE;
2427 
2428 	}
2429 
2430 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2431 		tcpstat.tcps_rcvbadsig++;
2432 		return (-1);
2433 	}
2434 
2435 	if (sigp) {
2436 		char sig[16];
2437 
2438 		if (tdb == NULL) {
2439 			tcpstat.tcps_rcvbadsig++;
2440 			return (-1);
2441 		}
2442 
2443 		if (tcp_signature(tdb, tp->pf, m, th, iphlen, 1, sig) < 0)
2444 			return (-1);
2445 
2446 		if (timingsafe_bcmp(sig, sigp, 16)) {
2447 			tcpstat.tcps_rcvbadsig++;
2448 			return (-1);
2449 		}
2450 
2451 		tcpstat.tcps_rcvgoodsig++;
2452 	}
2453 #endif /* TCP_SIGNATURE */
2454 
2455 	return (0);
2456 }
2457 
2458 #if defined(TCP_SACK)
2459 u_long
2460 tcp_seq_subtract(u_long a, u_long b)
2461 {
2462 	return ((long)(a - b));
2463 }
2464 #endif
2465 
2466 
2467 #ifdef TCP_SACK
2468 /*
2469  * This function is called upon receipt of new valid data (while not in header
2470  * prediction mode), and it updates the ordered list of sacks.
2471  */
2472 void
2473 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_laststart,
2474     tcp_seq rcv_lastend)
2475 {
2476 	/*
2477 	 * First reported block MUST be the most recent one.  Subsequent
2478 	 * blocks SHOULD be in the order in which they arrived at the
2479 	 * receiver.  These two conditions make the implementation fully
2480 	 * compliant with RFC 2018.
2481 	 */
2482 	int i, j = 0, count = 0, lastpos = -1;
2483 	struct sackblk sack, firstsack, temp[MAX_SACK_BLKS];
2484 
2485 	/* First clean up current list of sacks */
2486 	for (i = 0; i < tp->rcv_numsacks; i++) {
2487 		sack = tp->sackblks[i];
2488 		if (sack.start == 0 && sack.end == 0) {
2489 			count++; /* count = number of blocks to be discarded */
2490 			continue;
2491 		}
2492 		if (SEQ_LEQ(sack.end, tp->rcv_nxt)) {
2493 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2494 			count++;
2495 		} else {
2496 			temp[j].start = tp->sackblks[i].start;
2497 			temp[j++].end = tp->sackblks[i].end;
2498 		}
2499 	}
2500 	tp->rcv_numsacks -= count;
2501 	if (tp->rcv_numsacks == 0) { /* no sack blocks currently (fast path) */
2502 		tcp_clean_sackreport(tp);
2503 		if (SEQ_LT(tp->rcv_nxt, rcv_laststart)) {
2504 			/* ==> need first sack block */
2505 			tp->sackblks[0].start = rcv_laststart;
2506 			tp->sackblks[0].end = rcv_lastend;
2507 			tp->rcv_numsacks = 1;
2508 		}
2509 		return;
2510 	}
2511 	/* Otherwise, sack blocks are already present. */
2512 	for (i = 0; i < tp->rcv_numsacks; i++)
2513 		tp->sackblks[i] = temp[i]; /* first copy back sack list */
2514 	if (SEQ_GEQ(tp->rcv_nxt, rcv_lastend))
2515 		return;     /* sack list remains unchanged */
2516 	/*
2517 	 * From here, segment just received should be (part of) the 1st sack.
2518 	 * Go through list, possibly coalescing sack block entries.
2519 	 */
2520 	firstsack.start = rcv_laststart;
2521 	firstsack.end = rcv_lastend;
2522 	for (i = 0; i < tp->rcv_numsacks; i++) {
2523 		sack = tp->sackblks[i];
2524 		if (SEQ_LT(sack.end, firstsack.start) ||
2525 		    SEQ_GT(sack.start, firstsack.end))
2526 			continue; /* no overlap */
2527 		if (sack.start == firstsack.start && sack.end == firstsack.end){
2528 			/*
2529 			 * identical block; delete it here since we will
2530 			 * move it to the front of the list.
2531 			 */
2532 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2533 			lastpos = i;    /* last posn with a zero entry */
2534 			continue;
2535 		}
2536 		if (SEQ_LEQ(sack.start, firstsack.start))
2537 			firstsack.start = sack.start; /* merge blocks */
2538 		if (SEQ_GEQ(sack.end, firstsack.end))
2539 			firstsack.end = sack.end;     /* merge blocks */
2540 		tp->sackblks[i].start = tp->sackblks[i].end = 0;
2541 		lastpos = i;    /* last posn with a zero entry */
2542 	}
2543 	if (lastpos != -1) {    /* at least one merge */
2544 		for (i = 0, j = 1; i < tp->rcv_numsacks; i++) {
2545 			sack = tp->sackblks[i];
2546 			if (sack.start == 0 && sack.end == 0)
2547 				continue;
2548 			temp[j++] = sack;
2549 		}
2550 		tp->rcv_numsacks = j; /* including first blk (added later) */
2551 		for (i = 1; i < tp->rcv_numsacks; i++) /* now copy back */
2552 			tp->sackblks[i] = temp[i];
2553 	} else {        /* no merges -- shift sacks by 1 */
2554 		if (tp->rcv_numsacks < MAX_SACK_BLKS)
2555 			tp->rcv_numsacks++;
2556 		for (i = tp->rcv_numsacks-1; i > 0; i--)
2557 			tp->sackblks[i] = tp->sackblks[i-1];
2558 	}
2559 	tp->sackblks[0] = firstsack;
2560 	return;
2561 }
2562 
2563 /*
2564  * Process the TCP SACK option.  tp->snd_holes is an ordered list
2565  * of holes (oldest to newest, in terms of the sequence space).
2566  */
2567 void
2568 tcp_sack_option(struct tcpcb *tp, struct tcphdr *th, u_char *cp, int optlen)
2569 {
2570 	int tmp_olen;
2571 	u_char *tmp_cp;
2572 	struct sackhole *cur, *p, *temp;
2573 
2574 	if (!tp->sack_enable)
2575 		return;
2576 	/* SACK without ACK doesn't make sense. */
2577 	if ((th->th_flags & TH_ACK) == 0)
2578 	       return;
2579 	/* Make sure the ACK on this segment is in [snd_una, snd_max]. */
2580 	if (SEQ_LT(th->th_ack, tp->snd_una) ||
2581 	    SEQ_GT(th->th_ack, tp->snd_max))
2582 		return;
2583 	/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2584 	if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2585 		return;
2586 	/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2587 	tmp_cp = cp + 2;
2588 	tmp_olen = optlen - 2;
2589 	tcpstat.tcps_sack_rcv_opts++;
2590 	if (tp->snd_numholes < 0)
2591 		tp->snd_numholes = 0;
2592 	if (tp->t_maxseg == 0)
2593 		panic("tcp_sack_option"); /* Should never happen */
2594 	while (tmp_olen > 0) {
2595 		struct sackblk sack;
2596 
2597 		bcopy(tmp_cp, (char *) &(sack.start), sizeof(tcp_seq));
2598 		NTOHL(sack.start);
2599 		bcopy(tmp_cp + sizeof(tcp_seq),
2600 		    (char *) &(sack.end), sizeof(tcp_seq));
2601 		NTOHL(sack.end);
2602 		tmp_olen -= TCPOLEN_SACK;
2603 		tmp_cp += TCPOLEN_SACK;
2604 		if (SEQ_LEQ(sack.end, sack.start))
2605 			continue; /* bad SACK fields */
2606 		if (SEQ_LEQ(sack.end, tp->snd_una))
2607 			continue; /* old block */
2608 #if defined(TCP_SACK) && defined(TCP_FACK)
2609 		/* Updates snd_fack.  */
2610 		if (SEQ_GT(sack.end, tp->snd_fack))
2611 			tp->snd_fack = sack.end;
2612 #endif /* TCP_FACK */
2613 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
2614 			if (SEQ_LT(sack.start, th->th_ack))
2615 				continue;
2616 		}
2617 		if (SEQ_GT(sack.end, tp->snd_max))
2618 			continue;
2619 		if (tp->snd_holes == NULL) { /* first hole */
2620 			tp->snd_holes = (struct sackhole *)
2621 			    pool_get(&sackhl_pool, PR_NOWAIT);
2622 			if (tp->snd_holes == NULL) {
2623 				/* ENOBUFS, so ignore SACKed block for now*/
2624 				goto done;
2625 			}
2626 			cur = tp->snd_holes;
2627 			cur->start = th->th_ack;
2628 			cur->end = sack.start;
2629 			cur->rxmit = cur->start;
2630 			cur->next = NULL;
2631 			tp->snd_numholes = 1;
2632 			tp->rcv_lastsack = sack.end;
2633 			/*
2634 			 * dups is at least one.  If more data has been
2635 			 * SACKed, it can be greater than one.
2636 			 */
2637 			cur->dups = min(tcprexmtthresh,
2638 			    ((sack.end - cur->end)/tp->t_maxseg));
2639 			if (cur->dups < 1)
2640 				cur->dups = 1;
2641 			continue; /* with next sack block */
2642 		}
2643 		/* Go thru list of holes:  p = previous,  cur = current */
2644 		p = cur = tp->snd_holes;
2645 		while (cur) {
2646 			if (SEQ_LEQ(sack.end, cur->start))
2647 				/* SACKs data before the current hole */
2648 				break; /* no use going through more holes */
2649 			if (SEQ_GEQ(sack.start, cur->end)) {
2650 				/* SACKs data beyond the current hole */
2651 				cur->dups++;
2652 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2653 				    tcprexmtthresh)
2654 					cur->dups = tcprexmtthresh;
2655 				p = cur;
2656 				cur = cur->next;
2657 				continue;
2658 			}
2659 			if (SEQ_LEQ(sack.start, cur->start)) {
2660 				/* Data acks at least the beginning of hole */
2661 #if defined(TCP_SACK) && defined(TCP_FACK)
2662 				if (SEQ_GT(sack.end, cur->rxmit))
2663 					tp->retran_data -=
2664 				    	    tcp_seq_subtract(cur->rxmit,
2665 					    cur->start);
2666 				else
2667 					tp->retran_data -=
2668 					    tcp_seq_subtract(sack.end,
2669 					    cur->start);
2670 #endif /* TCP_FACK */
2671 				if (SEQ_GEQ(sack.end, cur->end)) {
2672 					/* Acks entire hole, so delete hole */
2673 					if (p != cur) {
2674 						p->next = cur->next;
2675 						pool_put(&sackhl_pool, cur);
2676 						cur = p->next;
2677 					} else {
2678 						cur = cur->next;
2679 						pool_put(&sackhl_pool, p);
2680 						p = cur;
2681 						tp->snd_holes = p;
2682 					}
2683 					tp->snd_numholes--;
2684 					continue;
2685 				}
2686 				/* otherwise, move start of hole forward */
2687 				cur->start = sack.end;
2688 				cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
2689 				p = cur;
2690 				cur = cur->next;
2691 				continue;
2692 			}
2693 			/* move end of hole backward */
2694 			if (SEQ_GEQ(sack.end, cur->end)) {
2695 #if defined(TCP_SACK) && defined(TCP_FACK)
2696 				if (SEQ_GT(cur->rxmit, sack.start))
2697 					tp->retran_data -=
2698 					    tcp_seq_subtract(cur->rxmit,
2699 					    sack.start);
2700 #endif /* TCP_FACK */
2701 				cur->end = sack.start;
2702 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
2703 				cur->dups++;
2704 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2705 				    tcprexmtthresh)
2706 					cur->dups = tcprexmtthresh;
2707 				p = cur;
2708 				cur = cur->next;
2709 				continue;
2710 			}
2711 			if (SEQ_LT(cur->start, sack.start) &&
2712 			    SEQ_GT(cur->end, sack.end)) {
2713 				/*
2714 				 * ACKs some data in middle of a hole; need to
2715 				 * split current hole
2716 				 */
2717 				temp = (struct sackhole *)
2718 				    pool_get(&sackhl_pool, PR_NOWAIT);
2719 				if (temp == NULL)
2720 					goto done; /* ENOBUFS */
2721 #if defined(TCP_SACK) && defined(TCP_FACK)
2722 				if (SEQ_GT(cur->rxmit, sack.end))
2723 					tp->retran_data -=
2724 					    tcp_seq_subtract(sack.end,
2725 					    sack.start);
2726 				else if (SEQ_GT(cur->rxmit, sack.start))
2727 					tp->retran_data -=
2728 					    tcp_seq_subtract(cur->rxmit,
2729 					    sack.start);
2730 #endif /* TCP_FACK */
2731 				temp->next = cur->next;
2732 				temp->start = sack.end;
2733 				temp->end = cur->end;
2734 				temp->dups = cur->dups;
2735 				temp->rxmit = SEQ_MAX(cur->rxmit, temp->start);
2736 				cur->end = sack.start;
2737 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
2738 				cur->dups++;
2739 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2740 					tcprexmtthresh)
2741 					cur->dups = tcprexmtthresh;
2742 				cur->next = temp;
2743 				p = temp;
2744 				cur = p->next;
2745 				tp->snd_numholes++;
2746 			}
2747 		}
2748 		/* At this point, p points to the last hole on the list */
2749 		if (SEQ_LT(tp->rcv_lastsack, sack.start)) {
2750 			/*
2751 			 * Need to append new hole at end.
2752 			 * Last hole is p (and it's not NULL).
2753 			 */
2754 			temp = (struct sackhole *)
2755 			    pool_get(&sackhl_pool, PR_NOWAIT);
2756 			if (temp == NULL)
2757 				goto done; /* ENOBUFS */
2758 			temp->start = tp->rcv_lastsack;
2759 			temp->end = sack.start;
2760 			temp->dups = min(tcprexmtthresh,
2761 			    ((sack.end - sack.start)/tp->t_maxseg));
2762 			if (temp->dups < 1)
2763 				temp->dups = 1;
2764 			temp->rxmit = temp->start;
2765 			temp->next = 0;
2766 			p->next = temp;
2767 			tp->rcv_lastsack = sack.end;
2768 			tp->snd_numholes++;
2769 		}
2770 	}
2771 done:
2772 #if defined(TCP_SACK) && defined(TCP_FACK)
2773 	/*
2774 	 * Update retran_data and snd_awnd.  Go through the list of
2775 	 * holes.   Increment retran_data by (hole->rxmit - hole->start).
2776 	 */
2777 	tp->retran_data = 0;
2778 	cur = tp->snd_holes;
2779 	while (cur) {
2780 		tp->retran_data += cur->rxmit - cur->start;
2781 		cur = cur->next;
2782 	}
2783 	tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt, tp->snd_fack) +
2784 	    tp->retran_data;
2785 #endif /* TCP_FACK */
2786 
2787 	return;
2788 }
2789 
2790 /*
2791  * Delete stale (i.e, cumulatively ack'd) holes.  Hole is deleted only if
2792  * it is completely acked; otherwise, tcp_sack_option(), called from
2793  * tcp_dooptions(), will fix up the hole.
2794  */
2795 void
2796 tcp_del_sackholes(struct tcpcb *tp, struct tcphdr *th)
2797 {
2798 	if (tp->sack_enable && tp->t_state != TCPS_LISTEN) {
2799 		/* max because this could be an older ack just arrived */
2800 		tcp_seq lastack = SEQ_GT(th->th_ack, tp->snd_una) ?
2801 			th->th_ack : tp->snd_una;
2802 		struct sackhole *cur = tp->snd_holes;
2803 		struct sackhole *prev;
2804 		while (cur)
2805 			if (SEQ_LEQ(cur->end, lastack)) {
2806 				prev = cur;
2807 				cur = cur->next;
2808 				pool_put(&sackhl_pool, prev);
2809 				tp->snd_numholes--;
2810 			} else if (SEQ_LT(cur->start, lastack)) {
2811 				cur->start = lastack;
2812 				if (SEQ_LT(cur->rxmit, cur->start))
2813 					cur->rxmit = cur->start;
2814 				break;
2815 			} else
2816 				break;
2817 		tp->snd_holes = cur;
2818 	}
2819 }
2820 
2821 /*
2822  * Delete all receiver-side SACK information.
2823  */
2824 void
2825 tcp_clean_sackreport(struct tcpcb *tp)
2826 {
2827 	int i;
2828 
2829 	tp->rcv_numsacks = 0;
2830 	for (i = 0; i < MAX_SACK_BLKS; i++)
2831 		tp->sackblks[i].start = tp->sackblks[i].end=0;
2832 
2833 }
2834 
2835 /*
2836  * Checks for partial ack.  If partial ack arrives, turn off retransmission
2837  * timer, deflate the window, do not clear tp->t_dupacks, and return 1.
2838  * If the ack advances at least to tp->snd_last, return 0.
2839  */
2840 int
2841 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
2842 {
2843 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
2844 		/* Turn off retx. timer (will start again next segment) */
2845 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2846 		tp->t_rtttime = 0;
2847 #ifndef TCP_FACK
2848 		/*
2849 		 * Partial window deflation.  This statement relies on the
2850 		 * fact that tp->snd_una has not been updated yet.  In FACK
2851 		 * hold snd_cwnd constant during fast recovery.
2852 		 */
2853 		if (tp->snd_cwnd > (th->th_ack - tp->snd_una)) {
2854 			tp->snd_cwnd -= th->th_ack - tp->snd_una;
2855 			tp->snd_cwnd += tp->t_maxseg;
2856 		} else
2857 			tp->snd_cwnd = tp->t_maxseg;
2858 #endif
2859 		return (1);
2860 	}
2861 	return (0);
2862 }
2863 #endif /* TCP_SACK */
2864 
2865 /*
2866  * Pull out of band byte out of a segment so
2867  * it doesn't appear in the user's data queue.
2868  * It is still reflected in the segment length for
2869  * sequencing purposes.
2870  */
2871 void
2872 tcp_pulloutofband(struct socket *so, u_int urgent, struct mbuf *m, int off)
2873 {
2874         int cnt = off + urgent - 1;
2875 
2876 	while (cnt >= 0) {
2877 		if (m->m_len > cnt) {
2878 			char *cp = mtod(m, caddr_t) + cnt;
2879 			struct tcpcb *tp = sototcpcb(so);
2880 
2881 			tp->t_iobc = *cp;
2882 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2883 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2884 			m->m_len--;
2885 			return;
2886 		}
2887 		cnt -= m->m_len;
2888 		m = m->m_next;
2889 		if (m == 0)
2890 			break;
2891 	}
2892 	panic("tcp_pulloutofband");
2893 }
2894 
2895 /*
2896  * Collect new round-trip time estimate
2897  * and update averages and current timeout.
2898  */
2899 void
2900 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2901 {
2902 	short delta;
2903 	short rttmin;
2904 
2905 	if (rtt < 0)
2906 		rtt = 0;
2907 	else if (rtt > TCP_RTT_MAX)
2908 		rtt = TCP_RTT_MAX;
2909 
2910 	tcpstat.tcps_rttupdated++;
2911 	if (tp->t_srtt != 0) {
2912 		/*
2913 		 * delta is fixed point with 2 (TCP_RTT_BASE_SHIFT) bits
2914 		 * after the binary point (scaled by 4), whereas
2915 		 * srtt is stored as fixed point with 5 bits after the
2916 		 * binary point (i.e., scaled by 32).  The following magic
2917 		 * is equivalent to the smoothing algorithm in rfc793 with
2918 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2919 		 * point).
2920 		 */
2921 		delta = (rtt << TCP_RTT_BASE_SHIFT) -
2922 		    (tp->t_srtt >> TCP_RTT_SHIFT);
2923 		if ((tp->t_srtt += delta) <= 0)
2924 			tp->t_srtt = 1 << TCP_RTT_BASE_SHIFT;
2925 		/*
2926 		 * We accumulate a smoothed rtt variance (actually, a
2927 		 * smoothed mean difference), then set the retransmit
2928 		 * timer to smoothed rtt + 4 times the smoothed variance.
2929 		 * rttvar is stored as fixed point with 4 bits after the
2930 		 * binary point (scaled by 16).  The following is
2931 		 * equivalent to rfc793 smoothing with an alpha of .75
2932 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2933 		 * rfc793's wired-in beta.
2934 		 */
2935 		if (delta < 0)
2936 			delta = -delta;
2937 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2938 		if ((tp->t_rttvar += delta) <= 0)
2939 			tp->t_rttvar = 1 << TCP_RTT_BASE_SHIFT;
2940 	} else {
2941 		/*
2942 		 * No rtt measurement yet - use the unsmoothed rtt.
2943 		 * Set the variance to half the rtt (so our first
2944 		 * retransmit happens at 3*rtt).
2945 		 */
2946 		tp->t_srtt = (rtt + 1) << (TCP_RTT_SHIFT + TCP_RTT_BASE_SHIFT);
2947 		tp->t_rttvar = (rtt + 1) <<
2948 		    (TCP_RTTVAR_SHIFT + TCP_RTT_BASE_SHIFT - 1);
2949 	}
2950 	tp->t_rtttime = 0;
2951 	tp->t_rxtshift = 0;
2952 
2953 	/*
2954 	 * the retransmit should happen at rtt + 4 * rttvar.
2955 	 * Because of the way we do the smoothing, srtt and rttvar
2956 	 * will each average +1/2 tick of bias.  When we compute
2957 	 * the retransmit timer, we want 1/2 tick of rounding and
2958 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2959 	 * firing of the timer.  The bias will give us exactly the
2960 	 * 1.5 tick we need.  But, because the bias is
2961 	 * statistical, we have to test that we don't drop below
2962 	 * the minimum feasible timer (which is 2 ticks).
2963 	 */
2964 	rttmin = min(max(rtt + 2, tp->t_rttmin), TCPTV_REXMTMAX);
2965 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2966 
2967 	/*
2968 	 * We received an ack for a packet that wasn't retransmitted;
2969 	 * it is probably safe to discard any error indications we've
2970 	 * received recently.  This isn't quite right, but close enough
2971 	 * for now (a route might have failed after we sent a segment,
2972 	 * and the return path might not be symmetrical).
2973 	 */
2974 	tp->t_softerror = 0;
2975 }
2976 
2977 /*
2978  * Determine a reasonable value for maxseg size.
2979  * If the route is known, check route for mtu.
2980  * If none, use an mss that can be handled on the outgoing
2981  * interface without forcing IP to fragment; if bigger than
2982  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2983  * to utilize large mbufs.  If no route is found, route has no mtu,
2984  * or the destination isn't local, use a default, hopefully conservative
2985  * size (usually 512 or the default IP max size, but no more than the mtu
2986  * of the interface), as we can't discover anything about intervening
2987  * gateways or networks.  We also initialize the congestion/slow start
2988  * window to be a single segment if the destination isn't local.
2989  * While looking at the routing entry, we also initialize other path-dependent
2990  * parameters from pre-set or cached values in the routing entry.
2991  *
2992  * Also take into account the space needed for options that we
2993  * send regularly.  Make maxseg shorter by that amount to assure
2994  * that we can send maxseg amount of data even when the options
2995  * are present.  Store the upper limit of the length of options plus
2996  * data in maxopd.
2997  *
2998  * NOTE: offer == -1 indicates that the maxseg size changed due to
2999  * Path MTU discovery.
3000  */
3001 int
3002 tcp_mss(struct tcpcb *tp, int offer)
3003 {
3004 	struct rtentry *rt;
3005 	struct ifnet *ifp;
3006 	int mss, mssopt;
3007 	int iphlen;
3008 	struct inpcb *inp;
3009 
3010 	inp = tp->t_inpcb;
3011 
3012 	mssopt = mss = tcp_mssdflt;
3013 
3014 	rt = in_pcbrtentry(inp);
3015 
3016 	if (rt == NULL)
3017 		goto out;
3018 
3019 	ifp = rt->rt_ifp;
3020 
3021 	switch (tp->pf) {
3022 #ifdef INET6
3023 	case AF_INET6:
3024 		iphlen = sizeof(struct ip6_hdr);
3025 		break;
3026 #endif
3027 	case AF_INET:
3028 		iphlen = sizeof(struct ip);
3029 		break;
3030 	default:
3031 		/* the family does not support path MTU discovery */
3032 		goto out;
3033 	}
3034 
3035 	/*
3036 	 * if there's an mtu associated with the route and we support
3037 	 * path MTU discovery for the underlying protocol family, use it.
3038 	 */
3039 	if (rt->rt_rmx.rmx_mtu) {
3040 		/*
3041 		 * One may wish to lower MSS to take into account options,
3042 		 * especially security-related options.
3043 		 */
3044 		if (tp->pf == AF_INET6 && rt->rt_rmx.rmx_mtu < IPV6_MMTU) {
3045 			/*
3046 			 * RFC2460 section 5, last paragraph: if path MTU is
3047 			 * smaller than 1280, use 1280 as packet size and
3048 			 * attach fragment header.
3049 			 */
3050 			mss = IPV6_MMTU - iphlen - sizeof(struct ip6_frag) -
3051 			    sizeof(struct tcphdr);
3052 		} else {
3053 			mss = rt->rt_rmx.rmx_mtu - iphlen -
3054 			    sizeof(struct tcphdr);
3055 		}
3056 	} else if (!ifp) {
3057 		/*
3058 		 * ifp may be null and rmx_mtu may be zero in certain
3059 		 * v6 cases (e.g., if ND wasn't able to resolve the
3060 		 * destination host.
3061 		 */
3062 		goto out;
3063 	} else if (ifp->if_flags & IFF_LOOPBACK) {
3064 		mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3065 	} else if (tp->pf == AF_INET) {
3066 		if (ip_mtudisc)
3067 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3068 	}
3069 #ifdef INET6
3070 	else if (tp->pf == AF_INET6) {
3071 		/*
3072 		 * for IPv6, path MTU discovery is always turned on,
3073 		 * or the node must use packet size <= 1280.
3074 		 */
3075 		mss = IN6_LINKMTU(ifp) - iphlen - sizeof(struct tcphdr);
3076 	}
3077 #endif /* INET6 */
3078 
3079 	/* Calculate the value that we offer in TCPOPT_MAXSEG */
3080 	if (offer != -1) {
3081 #ifndef INET6
3082 		mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3083 #else
3084 		if (tp->pf == AF_INET6)
3085 			mssopt = IN6_LINKMTU(ifp) - iphlen -
3086 			    sizeof(struct tcphdr);
3087 		else
3088 			mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3089 #endif
3090 
3091 		mssopt = max(tcp_mssdflt, mssopt);
3092 	}
3093 
3094  out:
3095 	/*
3096 	 * The current mss, t_maxseg, is initialized to the default value.
3097 	 * If we compute a smaller value, reduce the current mss.
3098 	 * If we compute a larger value, return it for use in sending
3099 	 * a max seg size option, but don't store it for use
3100 	 * unless we received an offer at least that large from peer.
3101 	 *
3102 	 * However, do not accept offers lower than the minimum of
3103 	 * the interface MTU and 216.
3104 	 */
3105 	if (offer > 0)
3106 		tp->t_peermss = offer;
3107 	if (tp->t_peermss)
3108 		mss = min(mss, max(tp->t_peermss, 216));
3109 
3110 	/* sanity - at least max opt. space */
3111 	mss = max(mss, 64);
3112 
3113 	/*
3114 	 * maxopd stores the maximum length of data AND options
3115 	 * in a segment; maxseg is the amount of data in a normal
3116 	 * segment.  We need to store this value (maxopd) apart
3117 	 * from maxseg, because now every segment carries options
3118 	 * and thus we normally have somewhat less data in segments.
3119 	 */
3120 	tp->t_maxopd = mss;
3121 
3122 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3123 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
3124 		mss -= TCPOLEN_TSTAMP_APPA;
3125 #ifdef TCP_SIGNATURE
3126 	if (tp->t_flags & TF_SIGNATURE)
3127 		mss -= TCPOLEN_SIGLEN;
3128 #endif
3129 
3130 	if (offer == -1) {
3131 		/* mss changed due to Path MTU discovery */
3132 		tp->t_flags &= ~TF_PMTUD_PEND;
3133 		tp->t_pmtud_mtu_sent = 0;
3134 		tp->t_pmtud_mss_acked = 0;
3135 		if (mss < tp->t_maxseg) {
3136 			/*
3137 			 * Follow suggestion in RFC 2414 to reduce the
3138 			 * congestion window by the ratio of the old
3139 			 * segment size to the new segment size.
3140 			 */
3141 			tp->snd_cwnd = ulmax((tp->snd_cwnd / tp->t_maxseg) *
3142 					     mss, mss);
3143 		}
3144 	} else if (tcp_do_rfc3390 == 2) {
3145 		/* increase initial window  */
3146 		tp->snd_cwnd = ulmin(10 * mss, ulmax(2 * mss, 14600));
3147 	} else if (tcp_do_rfc3390) {
3148 		/* increase initial window  */
3149 		tp->snd_cwnd = ulmin(4 * mss, ulmax(2 * mss, 4380));
3150 	} else
3151 		tp->snd_cwnd = mss;
3152 
3153 	tp->t_maxseg = mss;
3154 
3155 	return (offer != -1 ? mssopt : mss);
3156 }
3157 
3158 u_int
3159 tcp_hdrsz(struct tcpcb *tp)
3160 {
3161 	u_int hlen;
3162 
3163 	switch (tp->pf) {
3164 #ifdef INET6
3165 	case AF_INET6:
3166 		hlen = sizeof(struct ip6_hdr);
3167 		break;
3168 #endif
3169 	case AF_INET:
3170 		hlen = sizeof(struct ip);
3171 		break;
3172 	default:
3173 		hlen = 0;
3174 		break;
3175 	}
3176 	hlen += sizeof(struct tcphdr);
3177 
3178 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3179 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
3180 		hlen += TCPOLEN_TSTAMP_APPA;
3181 #ifdef TCP_SIGNATURE
3182 	if (tp->t_flags & TF_SIGNATURE)
3183 		hlen += TCPOLEN_SIGLEN;
3184 #endif
3185 	return (hlen);
3186 }
3187 
3188 /*
3189  * Set connection variables based on the effective MSS.
3190  * We are passed the TCPCB for the actual connection.  If we
3191  * are the server, we are called by the compressed state engine
3192  * when the 3-way handshake is complete.  If we are the client,
3193  * we are called when we receive the SYN,ACK from the server.
3194  *
3195  * NOTE: The t_maxseg value must be initialized in the TCPCB
3196  * before this routine is called!
3197  */
3198 void
3199 tcp_mss_update(struct tcpcb *tp)
3200 {
3201 	int mss;
3202 	u_long bufsize;
3203 	struct rtentry *rt;
3204 	struct socket *so;
3205 
3206 	so = tp->t_inpcb->inp_socket;
3207 	mss = tp->t_maxseg;
3208 
3209 	rt = in_pcbrtentry(tp->t_inpcb);
3210 
3211 	if (rt == NULL)
3212 		return;
3213 
3214 	bufsize = so->so_snd.sb_hiwat;
3215 	if (bufsize < mss) {
3216 		mss = bufsize;
3217 		/* Update t_maxseg and t_maxopd */
3218 		tcp_mss(tp, mss);
3219 	} else {
3220 		bufsize = roundup(bufsize, mss);
3221 		if (bufsize > sb_max)
3222 			bufsize = sb_max;
3223 		(void)sbreserve(&so->so_snd, bufsize);
3224 	}
3225 
3226 	bufsize = so->so_rcv.sb_hiwat;
3227 	if (bufsize > mss) {
3228 		bufsize = roundup(bufsize, mss);
3229 		if (bufsize > sb_max)
3230 			bufsize = sb_max;
3231 		(void)sbreserve(&so->so_rcv, bufsize);
3232 	}
3233 
3234 }
3235 
3236 #if defined (TCP_SACK)
3237 /*
3238  * Checks for partial ack.  If partial ack arrives, force the retransmission
3239  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
3240  * 1.  By setting snd_nxt to ti_ack, this forces retransmission timer to
3241  * be started again.  If the ack advances at least to tp->snd_last, return 0.
3242  */
3243 int
3244 tcp_newreno(struct tcpcb *tp, struct tcphdr *th)
3245 {
3246 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
3247 		/*
3248 		 * snd_una has not been updated and the socket send buffer
3249 		 * not yet drained of the acked data, so we have to leave
3250 		 * snd_una as it was to get the correct data offset in
3251 		 * tcp_output().
3252 		 */
3253 		tcp_seq onxt = tp->snd_nxt;
3254 		u_long  ocwnd = tp->snd_cwnd;
3255 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
3256 		tp->t_rtttime = 0;
3257 		tp->snd_nxt = th->th_ack;
3258 		/*
3259 		 * Set snd_cwnd to one segment beyond acknowledged offset
3260 		 * (tp->snd_una not yet updated when this function is called)
3261 		 */
3262 		tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3263 		(void) tcp_output(tp);
3264 		tp->snd_cwnd = ocwnd;
3265 		if (SEQ_GT(onxt, tp->snd_nxt))
3266 			tp->snd_nxt = onxt;
3267 		/*
3268 		 * Partial window deflation.  Relies on fact that tp->snd_una
3269 		 * not updated yet.
3270 		 */
3271 		if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3272 			tp->snd_cwnd -= th->th_ack - tp->snd_una;
3273 		else
3274 			tp->snd_cwnd = 0;
3275 		tp->snd_cwnd += tp->t_maxseg;
3276 
3277 		return 1;
3278 	}
3279 	return 0;
3280 }
3281 #endif /* TCP_SACK */
3282 
3283 int
3284 tcp_mss_adv(struct ifnet *ifp, int af)
3285 {
3286 	int mss = 0;
3287 	int iphlen;
3288 
3289 	switch (af) {
3290 	case AF_INET:
3291 		if (ifp != NULL)
3292 			mss = ifp->if_mtu;
3293 		iphlen = sizeof(struct ip);
3294 		break;
3295 #ifdef INET6
3296 	case AF_INET6:
3297 		if (ifp != NULL)
3298 			mss = IN6_LINKMTU(ifp);
3299 		iphlen = sizeof(struct ip6_hdr);
3300 		break;
3301 #endif
3302 	}
3303 	mss = mss - iphlen - sizeof(struct tcphdr);
3304 	return (max(mss, tcp_mssdflt));
3305 }
3306 
3307 /*
3308  * TCP compressed state engine.  Currently used to hold compressed
3309  * state for SYN_RECEIVED.
3310  */
3311 
3312 u_long	syn_cache_count;
3313 u_int32_t syn_hash1, syn_hash2;
3314 
3315 #define SYN_HASH(sa, sp, dp) \
3316 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3317 				     ((u_int32_t)(sp)))^syn_hash2)))
3318 #ifndef INET6
3319 #define	SYN_HASHALL(hash, src, dst) \
3320 do {									\
3321 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
3322 		((struct sockaddr_in *)(src))->sin_port,		\
3323 		((struct sockaddr_in *)(dst))->sin_port);		\
3324 } while (/*CONSTCOND*/ 0)
3325 #else
3326 #define SYN_HASH6(sa, sp, dp) \
3327 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3328 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3329 	 & 0x7fffffff)
3330 
3331 #define SYN_HASHALL(hash, src, dst) \
3332 do {									\
3333 	switch ((src)->sa_family) {					\
3334 	case AF_INET:							\
3335 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3336 			((struct sockaddr_in *)(src))->sin_port,	\
3337 			((struct sockaddr_in *)(dst))->sin_port);	\
3338 		break;							\
3339 	case AF_INET6:							\
3340 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3341 			((struct sockaddr_in6 *)(src))->sin6_port,	\
3342 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
3343 		break;							\
3344 	default:							\
3345 		hash = 0;						\
3346 	}								\
3347 } while (/*CONSTCOND*/0)
3348 #endif /* INET6 */
3349 
3350 void
3351 syn_cache_rm(struct syn_cache *sc)
3352 {
3353 	sc->sc_flags |= SCF_DEAD;
3354 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3355 	    sc, sc_bucketq);
3356 	sc->sc_tp = NULL;
3357 	LIST_REMOVE(sc, sc_tpq);
3358 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3359 	timeout_del(&sc->sc_timer);
3360 	syn_cache_count--;
3361 }
3362 
3363 void
3364 syn_cache_put(struct syn_cache *sc)
3365 {
3366 	if (sc->sc_ipopts)
3367 		(void) m_free(sc->sc_ipopts);
3368 	if (sc->sc_route4.ro_rt != NULL) {
3369 		rtfree(sc->sc_route4.ro_rt);
3370 		sc->sc_route4.ro_rt = NULL;
3371 	}
3372 	timeout_set(&sc->sc_timer, syn_cache_reaper, sc);
3373 	timeout_add(&sc->sc_timer, 0);
3374 }
3375 
3376 struct pool syn_cache_pool;
3377 
3378 /*
3379  * We don't estimate RTT with SYNs, so each packet starts with the default
3380  * RTT and each timer step has a fixed timeout value.
3381  */
3382 #define	SYN_CACHE_TIMER_ARM(sc)						\
3383 do {									\
3384 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3385 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3386 	    TCPTV_REXMTMAX);						\
3387 	if (!timeout_initialized(&(sc)->sc_timer))			\
3388 		timeout_set(&(sc)->sc_timer, syn_cache_timer, (sc));	\
3389 	timeout_add(&(sc)->sc_timer, (sc)->sc_rxtcur * (hz / PR_SLOWHZ)); \
3390 } while (/*CONSTCOND*/0)
3391 
3392 #define	SYN_CACHE_TIMESTAMP(sc)	tcp_now + (sc)->sc_modulate
3393 
3394 void
3395 syn_cache_init()
3396 {
3397 	int i;
3398 
3399 	/* Initialize the hash buckets. */
3400 	for (i = 0; i < tcp_syn_cache_size; i++)
3401 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3402 
3403 	/* Initialize the syn cache pool. */
3404 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3405 	    "syncache", NULL);
3406 }
3407 
3408 void
3409 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3410 {
3411 	struct syn_cache_head *scp;
3412 	struct syn_cache *sc2;
3413 	int s;
3414 
3415 	/*
3416 	 * If there are no entries in the hash table, reinitialize
3417 	 * the hash secrets.
3418 	 */
3419 	if (syn_cache_count == 0) {
3420 		syn_hash1 = arc4random();
3421 		syn_hash2 = arc4random();
3422 	}
3423 
3424 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3425 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3426 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3427 
3428 	/*
3429 	 * Make sure that we don't overflow the per-bucket
3430 	 * limit or the total cache size limit.
3431 	 */
3432 	s = splsoftnet();
3433 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3434 		tcpstat.tcps_sc_bucketoverflow++;
3435 		/*
3436 		 * The bucket is full.  Toss the oldest element in the
3437 		 * bucket.  This will be the first entry in the bucket.
3438 		 */
3439 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3440 #ifdef DIAGNOSTIC
3441 		/*
3442 		 * This should never happen; we should always find an
3443 		 * entry in our bucket.
3444 		 */
3445 		if (sc2 == NULL)
3446 			panic("syn_cache_insert: bucketoverflow: impossible");
3447 #endif
3448 		syn_cache_rm(sc2);
3449 		syn_cache_put(sc2);
3450 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3451 		struct syn_cache_head *scp2, *sce;
3452 
3453 		tcpstat.tcps_sc_overflowed++;
3454 		/*
3455 		 * The cache is full.  Toss the oldest entry in the
3456 		 * first non-empty bucket we can find.
3457 		 *
3458 		 * XXX We would really like to toss the oldest
3459 		 * entry in the cache, but we hope that this
3460 		 * condition doesn't happen very often.
3461 		 */
3462 		scp2 = scp;
3463 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3464 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3465 			for (++scp2; scp2 != scp; scp2++) {
3466 				if (scp2 >= sce)
3467 					scp2 = &tcp_syn_cache[0];
3468 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3469 					break;
3470 			}
3471 #ifdef DIAGNOSTIC
3472 			/*
3473 			 * This should never happen; we should always find a
3474 			 * non-empty bucket.
3475 			 */
3476 			if (scp2 == scp)
3477 				panic("syn_cache_insert: cacheoverflow: "
3478 				    "impossible");
3479 #endif
3480 		}
3481 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3482 		syn_cache_rm(sc2);
3483 		syn_cache_put(sc2);
3484 	}
3485 
3486 	/*
3487 	 * Initialize the entry's timer.
3488 	 */
3489 	sc->sc_rxttot = 0;
3490 	sc->sc_rxtshift = 0;
3491 	SYN_CACHE_TIMER_ARM(sc);
3492 
3493 	/* Link it from tcpcb entry */
3494 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3495 
3496 	/* Put it into the bucket. */
3497 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3498 	scp->sch_length++;
3499 	syn_cache_count++;
3500 
3501 	tcpstat.tcps_sc_added++;
3502 	splx(s);
3503 }
3504 
3505 /*
3506  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3507  * If we have retransmitted an entry the maximum number of times, expire
3508  * that entry.
3509  */
3510 void
3511 syn_cache_timer(void *arg)
3512 {
3513 	struct syn_cache *sc = arg;
3514 	int s;
3515 
3516 	s = splsoftnet();
3517 	if (sc->sc_flags & SCF_DEAD) {
3518 		splx(s);
3519 		return;
3520 	}
3521 
3522 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3523 		/* Drop it -- too many retransmissions. */
3524 		goto dropit;
3525 	}
3526 
3527 	/*
3528 	 * Compute the total amount of time this entry has
3529 	 * been on a queue.  If this entry has been on longer
3530 	 * than the keep alive timer would allow, expire it.
3531 	 */
3532 	sc->sc_rxttot += sc->sc_rxtcur;
3533 	if (sc->sc_rxttot >= tcptv_keep_init)
3534 		goto dropit;
3535 
3536 	tcpstat.tcps_sc_retransmitted++;
3537 	(void) syn_cache_respond(sc, NULL);
3538 
3539 	/* Advance the timer back-off. */
3540 	sc->sc_rxtshift++;
3541 	SYN_CACHE_TIMER_ARM(sc);
3542 
3543 	splx(s);
3544 	return;
3545 
3546  dropit:
3547 	tcpstat.tcps_sc_timed_out++;
3548 	syn_cache_rm(sc);
3549 	syn_cache_put(sc);
3550 	splx(s);
3551 }
3552 
3553 void
3554 syn_cache_reaper(void *arg)
3555 {
3556 	struct syn_cache *sc = arg;
3557 	int s;
3558 
3559 	s = splsoftnet();
3560 	pool_put(&syn_cache_pool, (sc));
3561 	splx(s);
3562 	return;
3563 }
3564 
3565 /*
3566  * Remove syn cache created by the specified tcb entry,
3567  * because this does not make sense to keep them
3568  * (if there's no tcb entry, syn cache entry will never be used)
3569  */
3570 void
3571 syn_cache_cleanup(struct tcpcb *tp)
3572 {
3573 	struct syn_cache *sc, *nsc;
3574 	int s;
3575 
3576 	s = splsoftnet();
3577 
3578 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3579 		nsc = LIST_NEXT(sc, sc_tpq);
3580 
3581 #ifdef DIAGNOSTIC
3582 		if (sc->sc_tp != tp)
3583 			panic("invalid sc_tp in syn_cache_cleanup");
3584 #endif
3585 		syn_cache_rm(sc);
3586 		syn_cache_put(sc);
3587 	}
3588 	/* just for safety */
3589 	LIST_INIT(&tp->t_sc);
3590 
3591 	splx(s);
3592 }
3593 
3594 /*
3595  * Find an entry in the syn cache.
3596  */
3597 struct syn_cache *
3598 syn_cache_lookup(struct sockaddr *src, struct sockaddr *dst,
3599     struct syn_cache_head **headp, u_int rtableid)
3600 {
3601 	struct syn_cache *sc;
3602 	struct syn_cache_head *scp;
3603 	u_int32_t hash;
3604 	int s;
3605 
3606 	SYN_HASHALL(hash, src, dst);
3607 
3608 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3609 	*headp = scp;
3610 	s = splsoftnet();
3611 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3612 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3613 		if (sc->sc_hash != hash)
3614 			continue;
3615 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3616 		    !bcmp(&sc->sc_dst, dst, dst->sa_len) &&
3617 		    rtable_l2(rtableid) == rtable_l2(sc->sc_rtableid)) {
3618 			splx(s);
3619 			return (sc);
3620 		}
3621 	}
3622 	splx(s);
3623 	return (NULL);
3624 }
3625 
3626 /*
3627  * This function gets called when we receive an ACK for a
3628  * socket in the LISTEN state.  We look up the connection
3629  * in the syn cache, and if its there, we pull it out of
3630  * the cache and turn it into a full-blown connection in
3631  * the SYN-RECEIVED state.
3632  *
3633  * The return values may not be immediately obvious, and their effects
3634  * can be subtle, so here they are:
3635  *
3636  *	NULL	SYN was not found in cache; caller should drop the
3637  *		packet and send an RST.
3638  *
3639  *	-1	We were unable to create the new connection, and are
3640  *		aborting it.  An ACK,RST is being sent to the peer
3641  *		(unless we got screwey sequence numbners; see below),
3642  *		because the 3-way handshake has been completed.  Caller
3643  *		should not free the mbuf, since we may be using it.  If
3644  *		we are not, we will free it.
3645  *
3646  *	Otherwise, the return value is a pointer to the new socket
3647  *	associated with the connection.
3648  */
3649 struct socket *
3650 syn_cache_get(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3651     u_int hlen, u_int tlen, struct socket *so, struct mbuf *m)
3652 {
3653 	struct syn_cache *sc;
3654 	struct syn_cache_head *scp;
3655 	struct inpcb *inp = NULL;
3656 	struct tcpcb *tp = NULL;
3657 	struct mbuf *am;
3658 	int s;
3659 	struct socket *oso;
3660 #if NPF > 0
3661 	struct pf_divert *divert = NULL;
3662 #endif
3663 
3664 	s = splsoftnet();
3665 	if ((sc = syn_cache_lookup(src, dst, &scp,
3666 	    sotoinpcb(so)->inp_rtableid)) == NULL) {
3667 		splx(s);
3668 		return (NULL);
3669 	}
3670 
3671 	/*
3672 	 * Verify the sequence and ack numbers.  Try getting the correct
3673 	 * response again.
3674 	 */
3675 	if ((th->th_ack != sc->sc_iss + 1) ||
3676 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3677 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3678 		(void) syn_cache_respond(sc, m);
3679 		splx(s);
3680 		return ((struct socket *)(-1));
3681 	}
3682 
3683 	/* Remove this cache entry */
3684 	syn_cache_rm(sc);
3685 	splx(s);
3686 
3687 	/*
3688 	 * Ok, create the full blown connection, and set things up
3689 	 * as they would have been set up if we had created the
3690 	 * connection when the SYN arrived.  If we can't create
3691 	 * the connection, abort it.
3692 	 */
3693 	oso = so;
3694 	so = sonewconn(so, SS_ISCONNECTED);
3695 	if (so == NULL)
3696 		goto resetandabort;
3697 
3698 	inp = sotoinpcb(oso);
3699 
3700 #ifdef IPSEC
3701 	/*
3702 	 * We need to copy the required security levels
3703 	 * from the old pcb. Ditto for any other
3704 	 * IPsec-related information.
3705 	 */
3706 	{
3707 	  struct inpcb *newinp = sotoinpcb(so);
3708 	  bcopy(inp->inp_seclevel, newinp->inp_seclevel,
3709 		sizeof(inp->inp_seclevel));
3710 	  newinp->inp_secrequire = inp->inp_secrequire;
3711 	  if (inp->inp_ipo != NULL) {
3712 		  newinp->inp_ipo = inp->inp_ipo;
3713 		  inp->inp_ipo->ipo_ref_count++;
3714 	  }
3715 	  if (inp->inp_ipsec_remotecred != NULL) {
3716 		  newinp->inp_ipsec_remotecred = inp->inp_ipsec_remotecred;
3717 		  inp->inp_ipsec_remotecred->ref_count++;
3718 	  }
3719 	  if (inp->inp_ipsec_remoteauth != NULL) {
3720 		  newinp->inp_ipsec_remoteauth
3721 		      = inp->inp_ipsec_remoteauth;
3722 		  inp->inp_ipsec_remoteauth->ref_count++;
3723 	  }
3724 	}
3725 #endif /* IPSEC */
3726 #ifdef INET6
3727 	/*
3728 	 * inp still has the OLD in_pcb stuff, set the
3729 	 * v6-related flags on the new guy, too.
3730 	 */
3731 	{
3732 	  int flags = inp->inp_flags;
3733 	  struct inpcb *oldinpcb = inp;
3734 
3735 	  inp = sotoinpcb(so);
3736 	  inp->inp_flags |= (flags & INP_IPV6);
3737 	  if ((inp->inp_flags & INP_IPV6) != 0) {
3738 	    inp->inp_ipv6.ip6_hlim =
3739 	      oldinpcb->inp_ipv6.ip6_hlim;
3740 	  }
3741 	}
3742 #else /* INET6 */
3743 	inp = sotoinpcb(so);
3744 #endif /* INET6 */
3745 
3746 #if NPF > 0
3747 	if (m && m->m_pkthdr.pf.flags & PF_TAG_DIVERTED &&
3748 	    (divert = pf_find_divert(m)) != NULL)
3749 		inp->inp_rtableid = divert->rdomain;
3750 	else
3751 #endif
3752 	/* inherit rtable from listening socket */
3753 	inp->inp_rtableid = sc->sc_rtableid;
3754 
3755 	inp->inp_lport = th->th_dport;
3756 	switch (src->sa_family) {
3757 #ifdef INET6
3758 	case AF_INET6:
3759 		inp->inp_laddr6 = ((struct sockaddr_in6 *)dst)->sin6_addr;
3760 		break;
3761 #endif /* INET6 */
3762 	case AF_INET:
3763 
3764 		inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3765 		inp->inp_options = ip_srcroute(m);
3766 		if (inp->inp_options == NULL) {
3767 			inp->inp_options = sc->sc_ipopts;
3768 			sc->sc_ipopts = NULL;
3769 		}
3770 		break;
3771 	}
3772 	in_pcbrehash(inp);
3773 
3774 	/*
3775 	 * Give the new socket our cached route reference.
3776 	 */
3777 	if (src->sa_family == AF_INET)
3778 		inp->inp_route = sc->sc_route4;         /* struct assignment */
3779 #ifdef INET6
3780 	else
3781 		inp->inp_route6 = sc->sc_route6;
3782 #endif
3783 	sc->sc_route4.ro_rt = NULL;
3784 
3785 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3786 	if (am == NULL)
3787 		goto resetandabort;
3788 	am->m_len = src->sa_len;
3789 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3790 
3791 	switch (src->sa_family) {
3792 	case AF_INET:
3793 		/* drop IPv4 packet to AF_INET6 socket */
3794 		if (inp->inp_flags & INP_IPV6) {
3795 			(void) m_free(am);
3796 			goto resetandabort;
3797 		}
3798 		if (in_pcbconnect(inp, am)) {
3799 			(void) m_free(am);
3800 			goto resetandabort;
3801 		}
3802 		break;
3803 #ifdef INET6
3804 	case AF_INET6:
3805 		if (in6_pcbconnect(inp, am)) {
3806 			(void) m_free(am);
3807 			goto resetandabort;
3808 		}
3809 		break;
3810 #endif
3811 	}
3812 	(void) m_free(am);
3813 
3814 	tp = intotcpcb(inp);
3815 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3816 	if (sc->sc_request_r_scale != 15) {
3817 		tp->requested_s_scale = sc->sc_requested_s_scale;
3818 		tp->request_r_scale = sc->sc_request_r_scale;
3819 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3820 	}
3821 	if (sc->sc_flags & SCF_TIMESTAMP)
3822 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3823 
3824 	tp->t_template = tcp_template(tp);
3825 	if (tp->t_template == 0) {
3826 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3827 		so = NULL;
3828 		m_freem(m);
3829 		goto abort;
3830 	}
3831 #ifdef TCP_SACK
3832 	tp->sack_enable = sc->sc_flags & SCF_SACK_PERMIT;
3833 #endif
3834 
3835 	tp->ts_modulate = sc->sc_modulate;
3836 	tp->ts_recent = sc->sc_timestamp;
3837 	tp->iss = sc->sc_iss;
3838 	tp->irs = sc->sc_irs;
3839 	tcp_sendseqinit(tp);
3840 #if defined (TCP_SACK) || defined(TCP_ECN)
3841 	tp->snd_last = tp->snd_una;
3842 #endif /* TCP_SACK */
3843 #if defined(TCP_SACK) && defined(TCP_FACK)
3844 	tp->snd_fack = tp->snd_una;
3845 	tp->retran_data = 0;
3846 	tp->snd_awnd = 0;
3847 #endif /* TCP_FACK */
3848 #ifdef TCP_ECN
3849 	if (sc->sc_flags & SCF_ECN_PERMIT) {
3850 		tp->t_flags |= TF_ECN_PERMIT;
3851 		tcpstat.tcps_ecn_accepts++;
3852 	}
3853 #endif
3854 #ifdef TCP_SACK
3855 	if (sc->sc_flags & SCF_SACK_PERMIT)
3856 		tp->t_flags |= TF_SACK_PERMIT;
3857 #endif
3858 #ifdef TCP_SIGNATURE
3859 	if (sc->sc_flags & SCF_SIGNATURE)
3860 		tp->t_flags |= TF_SIGNATURE;
3861 #endif
3862 	tcp_rcvseqinit(tp);
3863 	tp->t_state = TCPS_SYN_RECEIVED;
3864 	tp->t_rcvtime = tcp_now;
3865 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcptv_keep_init);
3866 	tcpstat.tcps_accepts++;
3867 
3868 	tcp_mss(tp, sc->sc_peermaxseg);	 /* sets t_maxseg */
3869 	if (sc->sc_peermaxseg)
3870 		tcp_mss_update(tp);
3871 	/* Reset initial window to 1 segment for retransmit */
3872 	if (sc->sc_rxtshift > 0)
3873 		tp->snd_cwnd = tp->t_maxseg;
3874 	tp->snd_wl1 = sc->sc_irs;
3875 	tp->rcv_up = sc->sc_irs + 1;
3876 
3877 	/*
3878 	 * This is what whould have happened in tcp_output() when
3879 	 * the SYN,ACK was sent.
3880 	 */
3881 	tp->snd_up = tp->snd_una;
3882 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3883 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3884 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3885 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3886 	tp->last_ack_sent = tp->rcv_nxt;
3887 
3888 	tcpstat.tcps_sc_completed++;
3889 	syn_cache_put(sc);
3890 	return (so);
3891 
3892 resetandabort:
3893 	tcp_respond(NULL, mtod(m, caddr_t), th, (tcp_seq)0, th->th_ack, TH_RST,
3894 	    m->m_pkthdr.ph_rtableid);
3895 	m_freem(m);
3896 abort:
3897 	if (so != NULL)
3898 		(void) soabort(so);
3899 	syn_cache_put(sc);
3900 	tcpstat.tcps_sc_aborted++;
3901 	return ((struct socket *)(-1));
3902 }
3903 
3904 /*
3905  * This function is called when we get a RST for a
3906  * non-existent connection, so that we can see if the
3907  * connection is in the syn cache.  If it is, zap it.
3908  */
3909 
3910 void
3911 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3912     u_int rtableid)
3913 {
3914 	struct syn_cache *sc;
3915 	struct syn_cache_head *scp;
3916 	int s = splsoftnet();
3917 
3918 	if ((sc = syn_cache_lookup(src, dst, &scp, rtableid)) == NULL) {
3919 		splx(s);
3920 		return;
3921 	}
3922 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3923 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3924 		splx(s);
3925 		return;
3926 	}
3927 	syn_cache_rm(sc);
3928 	splx(s);
3929 	tcpstat.tcps_sc_reset++;
3930 	syn_cache_put(sc);
3931 }
3932 
3933 void
3934 syn_cache_unreach(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3935     u_int rtableid)
3936 {
3937 	struct syn_cache *sc;
3938 	struct syn_cache_head *scp;
3939 	int s;
3940 
3941 	s = splsoftnet();
3942 	if ((sc = syn_cache_lookup(src, dst, &scp, rtableid)) == NULL) {
3943 		splx(s);
3944 		return;
3945 	}
3946 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3947 	if (ntohl (th->th_seq) != sc->sc_iss) {
3948 		splx(s);
3949 		return;
3950 	}
3951 
3952 	/*
3953 	 * If we've retransmitted 3 times and this is our second error,
3954 	 * we remove the entry.  Otherwise, we allow it to continue on.
3955 	 * This prevents us from incorrectly nuking an entry during a
3956 	 * spurious network outage.
3957 	 *
3958 	 * See tcp_notify().
3959 	 */
3960 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3961 		sc->sc_flags |= SCF_UNREACH;
3962 		splx(s);
3963 		return;
3964 	}
3965 
3966 	syn_cache_rm(sc);
3967 	splx(s);
3968 	tcpstat.tcps_sc_unreach++;
3969 	syn_cache_put(sc);
3970 }
3971 
3972 /*
3973  * Given a LISTEN socket and an inbound SYN request, add
3974  * this to the syn cache, and send back a segment:
3975  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3976  * to the source.
3977  *
3978  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3979  * Doing so would require that we hold onto the data and deliver it
3980  * to the application.  However, if we are the target of a SYN-flood
3981  * DoS attack, an attacker could send data which would eventually
3982  * consume all available buffer space if it were ACKed.  By not ACKing
3983  * the data, we avoid this DoS scenario.
3984  */
3985 
3986 int
3987 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3988     u_int iphlen, struct socket *so, struct mbuf *m, u_char *optp, int optlen,
3989     struct tcp_opt_info *oi, tcp_seq *issp)
3990 {
3991 	struct tcpcb tb, *tp;
3992 	long win;
3993 	struct syn_cache *sc;
3994 	struct syn_cache_head *scp;
3995 	struct mbuf *ipopts;
3996 
3997 	tp = sototcpcb(so);
3998 
3999 	/*
4000 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4001 	 *
4002 	 * Note this check is performed in tcp_input() very early on.
4003 	 */
4004 
4005 	/*
4006 	 * Initialize some local state.
4007 	 */
4008 	win = sbspace(&so->so_rcv);
4009 	if (win > TCP_MAXWIN)
4010 		win = TCP_MAXWIN;
4011 
4012 	bzero(&tb, sizeof(tb));
4013 #ifdef TCP_SIGNATURE
4014 	if (optp || (tp->t_flags & TF_SIGNATURE)) {
4015 #else
4016 	if (optp) {
4017 #endif
4018 		tb.pf = tp->pf;
4019 #ifdef TCP_SACK
4020 		tb.sack_enable = tp->sack_enable;
4021 #endif
4022 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4023 #ifdef TCP_SIGNATURE
4024 		if (tp->t_flags & TF_SIGNATURE)
4025 			tb.t_flags |= TF_SIGNATURE;
4026 #endif
4027 		tb.t_state = TCPS_LISTEN;
4028 		if (tcp_dooptions(&tb, optp, optlen, th, m, iphlen, oi,
4029 		    sotoinpcb(so)->inp_rtableid))
4030 			return (-1);
4031 	}
4032 
4033 	switch (src->sa_family) {
4034 #ifdef INET
4035 	case AF_INET:
4036 		/*
4037 		 * Remember the IP options, if any.
4038 		 */
4039 		ipopts = ip_srcroute(m);
4040 		break;
4041 #endif
4042 	default:
4043 		ipopts = NULL;
4044 	}
4045 
4046 	/*
4047 	 * See if we already have an entry for this connection.
4048 	 * If we do, resend the SYN,ACK.  We do not count this
4049 	 * as a retransmission (XXX though maybe we should).
4050 	 */
4051 	if ((sc = syn_cache_lookup(src, dst, &scp, sotoinpcb(so)->inp_rtableid))
4052 	    != NULL) {
4053 		tcpstat.tcps_sc_dupesyn++;
4054 		if (ipopts) {
4055 			/*
4056 			 * If we were remembering a previous source route,
4057 			 * forget it and use the new one we've been given.
4058 			 */
4059 			if (sc->sc_ipopts)
4060 				(void) m_free(sc->sc_ipopts);
4061 			sc->sc_ipopts = ipopts;
4062 		}
4063 		sc->sc_timestamp = tb.ts_recent;
4064 		if (syn_cache_respond(sc, m) == 0) {
4065 			tcpstat.tcps_sndacks++;
4066 			tcpstat.tcps_sndtotal++;
4067 		}
4068 		return (0);
4069 	}
4070 
4071 	sc = pool_get(&syn_cache_pool, PR_NOWAIT|PR_ZERO);
4072 	if (sc == NULL) {
4073 		if (ipopts)
4074 			(void) m_free(ipopts);
4075 		return (-1);
4076 	}
4077 
4078 	/*
4079 	 * Fill in the cache, and put the necessary IP and TCP
4080 	 * options into the reply.
4081 	 */
4082 	bcopy(src, &sc->sc_src, src->sa_len);
4083 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4084 	sc->sc_rtableid = sotoinpcb(so)->inp_rtableid;
4085 	sc->sc_flags = 0;
4086 	sc->sc_ipopts = ipopts;
4087 	sc->sc_irs = th->th_seq;
4088 
4089 	sc->sc_iss = issp ? *issp : arc4random();
4090 	sc->sc_peermaxseg = oi->maxseg;
4091 	sc->sc_ourmaxseg = tcp_mss_adv(m->m_flags & M_PKTHDR ?
4092 	    m->m_pkthdr.rcvif : NULL, sc->sc_src.sa.sa_family);
4093 	sc->sc_win = win;
4094 	sc->sc_timestamp = tb.ts_recent;
4095 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4096 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP)) {
4097 		sc->sc_flags |= SCF_TIMESTAMP;
4098 		sc->sc_modulate = arc4random();
4099 	}
4100 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4101 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4102 		sc->sc_requested_s_scale = tb.requested_s_scale;
4103 		sc->sc_request_r_scale = 0;
4104 		/*
4105 		 * Pick the smallest possible scaling factor that
4106 		 * will still allow us to scale up to sb_max.
4107 		 *
4108 		 * We do this because there are broken firewalls that
4109 		 * will corrupt the window scale option, leading to
4110 		 * the other endpoint believing that our advertised
4111 		 * window is unscaled.  At scale factors larger than
4112 		 * 5 the unscaled window will drop below 1500 bytes,
4113 		 * leading to serious problems when traversing these
4114 		 * broken firewalls.
4115 		 *
4116 		 * With the default sbmax of 256K, a scale factor
4117 		 * of 3 will be chosen by this algorithm.  Those who
4118 		 * choose a larger sbmax should watch out
4119 		 * for the compatiblity problems mentioned above.
4120 		 *
4121 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4122 		 * or <SYN,ACK>) segment itself is never scaled.
4123 		 */
4124 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4125 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4126 			sc->sc_request_r_scale++;
4127 	} else {
4128 		sc->sc_requested_s_scale = 15;
4129 		sc->sc_request_r_scale = 15;
4130 	}
4131 #ifdef TCP_ECN
4132 	/*
4133 	 * if both ECE and CWR flag bits are set, peer is ECN capable.
4134 	 */
4135 	if (tcp_do_ecn &&
4136 	    (th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR))
4137 		sc->sc_flags |= SCF_ECN_PERMIT;
4138 #endif
4139 #ifdef TCP_SACK
4140 	/*
4141 	 * Set SCF_SACK_PERMIT if peer did send a SACK_PERMITTED option
4142 	 * (i.e., if tcp_dooptions() did set TF_SACK_PERMIT).
4143 	 */
4144 	if (tb.sack_enable && (tb.t_flags & TF_SACK_PERMIT))
4145 		sc->sc_flags |= SCF_SACK_PERMIT;
4146 #endif
4147 #ifdef TCP_SIGNATURE
4148 	if (tb.t_flags & TF_SIGNATURE)
4149 		sc->sc_flags |= SCF_SIGNATURE;
4150 #endif
4151 	sc->sc_tp = tp;
4152 	if (syn_cache_respond(sc, m) == 0) {
4153 		syn_cache_insert(sc, tp);
4154 		tcpstat.tcps_sndacks++;
4155 		tcpstat.tcps_sndtotal++;
4156 	} else {
4157 		syn_cache_put(sc);
4158 		tcpstat.tcps_sc_dropped++;
4159 	}
4160 
4161 	return (0);
4162 }
4163 
4164 int
4165 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4166 {
4167 	struct route *ro;
4168 	u_int8_t *optp;
4169 	int optlen, error;
4170 	u_int16_t tlen;
4171 	struct ip *ip = NULL;
4172 #ifdef INET6
4173 	struct ip6_hdr *ip6 = NULL;
4174 #endif
4175 	struct tcphdr *th;
4176 	u_int hlen;
4177 	struct inpcb *inp;
4178 
4179 	switch (sc->sc_src.sa.sa_family) {
4180 	case AF_INET:
4181 		hlen = sizeof(struct ip);
4182 		ro = &sc->sc_route4;
4183 		break;
4184 #ifdef INET6
4185 	case AF_INET6:
4186 		hlen = sizeof(struct ip6_hdr);
4187 		ro = (struct route *)&sc->sc_route6;
4188 		break;
4189 #endif
4190 	default:
4191 		if (m)
4192 			m_freem(m);
4193 		return (EAFNOSUPPORT);
4194 	}
4195 
4196 	/* Compute the size of the TCP options. */
4197 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4198 #ifdef TCP_SACK
4199 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? 4 : 0) +
4200 #endif
4201 #ifdef TCP_SIGNATURE
4202 	    ((sc->sc_flags & SCF_SIGNATURE) ? TCPOLEN_SIGLEN : 0) +
4203 #endif
4204 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4205 
4206 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4207 
4208 	/*
4209 	 * Create the IP+TCP header from scratch.
4210 	 */
4211 	if (m)
4212 		m_freem(m);
4213 #ifdef DIAGNOSTIC
4214 	if (max_linkhdr + tlen > MCLBYTES)
4215 		return (ENOBUFS);
4216 #endif
4217 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4218 	if (m && max_linkhdr + tlen > MHLEN) {
4219 		MCLGET(m, M_DONTWAIT);
4220 		if ((m->m_flags & M_EXT) == 0) {
4221 			m_freem(m);
4222 			m = NULL;
4223 		}
4224 	}
4225 	if (m == NULL)
4226 		return (ENOBUFS);
4227 
4228 	/* Fixup the mbuf. */
4229 	m->m_data += max_linkhdr;
4230 	m->m_len = m->m_pkthdr.len = tlen;
4231 	m->m_pkthdr.rcvif = NULL;
4232 	m->m_pkthdr.ph_rtableid = sc->sc_rtableid;
4233 	memset(mtod(m, u_char *), 0, tlen);
4234 
4235 	switch (sc->sc_src.sa.sa_family) {
4236 	case AF_INET:
4237 		ip = mtod(m, struct ip *);
4238 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4239 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4240 		ip->ip_p = IPPROTO_TCP;
4241 		th = (struct tcphdr *)(ip + 1);
4242 		th->th_dport = sc->sc_src.sin.sin_port;
4243 		th->th_sport = sc->sc_dst.sin.sin_port;
4244 		break;
4245 #ifdef INET6
4246 	case AF_INET6:
4247 		ip6 = mtod(m, struct ip6_hdr *);
4248 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4249 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4250 		ip6->ip6_nxt = IPPROTO_TCP;
4251 		/* ip6_plen will be updated in ip6_output() */
4252 		th = (struct tcphdr *)(ip6 + 1);
4253 		th->th_dport = sc->sc_src.sin6.sin6_port;
4254 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4255 		break;
4256 #endif
4257 	default:
4258 		th = NULL;
4259 	}
4260 
4261 	th->th_seq = htonl(sc->sc_iss);
4262 	th->th_ack = htonl(sc->sc_irs + 1);
4263 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4264 	th->th_flags = TH_SYN|TH_ACK;
4265 #ifdef TCP_ECN
4266 	/* Set ECE for SYN-ACK if peer supports ECN. */
4267 	if (tcp_do_ecn && (sc->sc_flags & SCF_ECN_PERMIT))
4268 		th->th_flags |= TH_ECE;
4269 #endif
4270 	th->th_win = htons(sc->sc_win);
4271 	/* th_sum already 0 */
4272 	/* th_urp already 0 */
4273 
4274 	/* Tack on the TCP options. */
4275 	optp = (u_int8_t *)(th + 1);
4276 	*optp++ = TCPOPT_MAXSEG;
4277 	*optp++ = 4;
4278 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4279 	*optp++ = sc->sc_ourmaxseg & 0xff;
4280 
4281 #ifdef TCP_SACK
4282 	/* Include SACK_PERMIT_HDR option if peer has already done so. */
4283 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4284 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMIT_HDR);
4285 		optp += 4;
4286 	}
4287 #endif
4288 
4289 	if (sc->sc_request_r_scale != 15) {
4290 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4291 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4292 		    sc->sc_request_r_scale);
4293 		optp += 4;
4294 	}
4295 
4296 	if (sc->sc_flags & SCF_TIMESTAMP) {
4297 		u_int32_t *lp = (u_int32_t *)(optp);
4298 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4299 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4300 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4301 		*lp   = htonl(sc->sc_timestamp);
4302 		optp += TCPOLEN_TSTAMP_APPA;
4303 	}
4304 
4305 #ifdef TCP_SIGNATURE
4306 	if (sc->sc_flags & SCF_SIGNATURE) {
4307 		union sockaddr_union src, dst;
4308 		struct tdb *tdb;
4309 
4310 		bzero(&src, sizeof(union sockaddr_union));
4311 		bzero(&dst, sizeof(union sockaddr_union));
4312 		src.sa.sa_len = sc->sc_src.sa.sa_len;
4313 		src.sa.sa_family = sc->sc_src.sa.sa_family;
4314 		dst.sa.sa_len = sc->sc_dst.sa.sa_len;
4315 		dst.sa.sa_family = sc->sc_dst.sa.sa_family;
4316 
4317 		switch (sc->sc_src.sa.sa_family) {
4318 		case 0:	/*default to PF_INET*/
4319 #ifdef INET
4320 		case AF_INET:
4321 			src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
4322 			dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
4323 			break;
4324 #endif /* INET */
4325 #ifdef INET6
4326 		case AF_INET6:
4327 			src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
4328 			dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
4329 			break;
4330 #endif /* INET6 */
4331 		}
4332 
4333 		tdb = gettdbbysrcdst(rtable_l2(sc->sc_rtableid),
4334 		    0, &src, &dst, IPPROTO_TCP);
4335 		if (tdb == NULL) {
4336 			if (m)
4337 				m_freem(m);
4338 			return (EPERM);
4339 		}
4340 
4341 		/* Send signature option */
4342 		*(optp++) = TCPOPT_SIGNATURE;
4343 		*(optp++) = TCPOLEN_SIGNATURE;
4344 
4345 		if (tcp_signature(tdb, sc->sc_src.sa.sa_family, m, th,
4346 		    hlen, 0, optp) < 0) {
4347 			if (m)
4348 				m_freem(m);
4349 			return (EINVAL);
4350 		}
4351 		optp += 16;
4352 
4353 		/* Pad options list to the next 32 bit boundary and
4354 		 * terminate it.
4355 		 */
4356 		*optp++ = TCPOPT_NOP;
4357 		*optp++ = TCPOPT_EOL;
4358 	}
4359 #endif /* TCP_SIGNATURE */
4360 
4361 	/* Compute the packet's checksum. */
4362 	switch (sc->sc_src.sa.sa_family) {
4363 	case AF_INET:
4364 		ip->ip_len = htons(tlen - hlen);
4365 		th->th_sum = 0;
4366 		th->th_sum = in_cksum(m, tlen);
4367 		break;
4368 #ifdef INET6
4369 	case AF_INET6:
4370 		ip6->ip6_plen = htons(tlen - hlen);
4371 		th->th_sum = 0;
4372 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4373 		break;
4374 #endif
4375 	}
4376 
4377 	/* use IPsec policy and ttl from listening socket, on SYN ACK */
4378 	inp = sc->sc_tp ? sc->sc_tp->t_inpcb : NULL;
4379 
4380 	/*
4381 	 * Fill in some straggling IP bits.  Note the stack expects
4382 	 * ip_len to be in host order, for convenience.
4383 	 */
4384 	switch (sc->sc_src.sa.sa_family) {
4385 #ifdef INET
4386 	case AF_INET:
4387 		ip->ip_len = htons(tlen);
4388 		ip->ip_ttl = inp ? inp->inp_ip.ip_ttl : ip_defttl;
4389 		if (inp != NULL)
4390 			ip->ip_tos = inp->inp_ip.ip_tos;
4391 		break;
4392 #endif
4393 #ifdef INET6
4394 	case AF_INET6:
4395 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4396 		ip6->ip6_vfc |= IPV6_VERSION;
4397 		ip6->ip6_plen = htons(tlen - hlen);
4398 		/* ip6_hlim will be initialized afterwards */
4399 		/* leave flowlabel = 0, it is legal and require no state mgmt */
4400 		break;
4401 #endif
4402 	}
4403 
4404 	switch (sc->sc_src.sa.sa_family) {
4405 #ifdef INET
4406 	case AF_INET:
4407 		error = ip_output(m, sc->sc_ipopts, ro,
4408 		    (ip_mtudisc ? IP_MTUDISC : 0),  NULL, inp, 0);
4409 		break;
4410 #endif
4411 #ifdef INET6
4412 	case AF_INET6:
4413 		ip6->ip6_hlim = in6_selecthlim(NULL,
4414 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4415 
4416 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4417 		    NULL, NULL, NULL);
4418 		break;
4419 #endif
4420 	default:
4421 		error = EAFNOSUPPORT;
4422 		break;
4423 	}
4424 	return (error);
4425 }
4426