xref: /openbsd-src/sys/netinet/tcp_input.c (revision 47911bd667ac77dc523b8a13ef40b012dbffa741)
1 /*	$OpenBSD: tcp_input.c,v 1.124 2002/09/11 03:27:03 itojun Exp $	*/
2 /*	$NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
37  *
38  * NRL grants permission for redistribution and use in source and binary
39  * forms, with or without modification, of the software and documentation
40  * created at NRL provided that the following conditions are met:
41  *
42  * 1. Redistributions of source code must retain the above copyright
43  *    notice, this list of conditions and the following disclaimer.
44  * 2. Redistributions in binary form must reproduce the above copyright
45  *    notice, this list of conditions and the following disclaimer in the
46  *    documentation and/or other materials provided with the distribution.
47  * 3. All advertising materials mentioning features or use of this software
48  *    must display the following acknowledgements:
49  * 	This product includes software developed by the University of
50  * 	California, Berkeley and its contributors.
51  * 	This product includes software developed at the Information
52  * 	Technology Division, US Naval Research Laboratory.
53  * 4. Neither the name of the NRL nor the names of its contributors
54  *    may be used to endorse or promote products derived from this software
55  *    without specific prior written permission.
56  *
57  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
58  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
60  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
61  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
62  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
63  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
64  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
65  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
66  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
67  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68  *
69  * The views and conclusions contained in the software and documentation
70  * are those of the authors and should not be interpreted as representing
71  * official policies, either expressed or implied, of the US Naval
72  * Research Laboratory (NRL).
73  */
74 
75 #ifndef TUBA_INCLUDE
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/mbuf.h>
79 #include <sys/protosw.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/kernel.h>
83 
84 #include <net/if.h>
85 #include <net/route.h>
86 
87 #include <netinet/in.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/ip.h>
90 #include <netinet/in_pcb.h>
91 #include <netinet/ip_var.h>
92 #include <netinet/tcp.h>
93 #include <netinet/tcp_fsm.h>
94 #include <netinet/tcp_seq.h>
95 #include <netinet/tcp_timer.h>
96 #include <netinet/tcp_var.h>
97 #include <netinet/tcpip.h>
98 #include <netinet/tcp_debug.h>
99 
100 #ifdef INET6
101 #include <netinet6/in6_var.h>
102 #include <netinet6/nd6.h>
103 
104 struct	tcpiphdr tcp_saveti;
105 struct  tcpipv6hdr tcp_saveti6;
106 
107 /* for the packet header length in the mbuf */
108 #define M_PH_LEN(m)      (((struct mbuf *)(m))->m_pkthdr.len)
109 #define M_V6_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip6_hdr))
110 #define M_V4_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip))
111 #endif /* INET6 */
112 
113 int	tcprexmtthresh = 3;
114 struct	tcpiphdr tcp_saveti;
115 int	tcptv_keep_init = TCPTV_KEEP_INIT;
116 
117 extern u_long sb_max;
118 
119 int tcp_rst_ppslim = 100;		/* 100pps */
120 int tcp_rst_ppslim_count = 0;
121 struct timeval tcp_rst_ppslim_last;
122 
123 #endif /* TUBA_INCLUDE */
124 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
125 
126 /* for modulo comparisons of timestamps */
127 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
128 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
129 
130 /*
131  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
132  */
133 #ifdef INET6
134 #define ND6_HINT(tp) \
135 do { \
136 	if (tp && tp->t_inpcb && (tp->t_inpcb->inp_flags & INP_IPV6) && \
137 	    tp->t_inpcb->inp_route6.ro_rt) { \
138 		nd6_nud_hint(tp->t_inpcb->inp_route6.ro_rt, NULL, 0); \
139 	} \
140 } while (0)
141 #else
142 #define ND6_HINT(tp)
143 #endif
144 
145 #ifdef TCP_ECN
146 /*
147  * ECN (Explicit Congestion Notification) support based on RFC3168
148  * implementation note:
149  *   snd_last is used to track a recovery phase.
150  *   when cwnd is reduced, snd_last is set to snd_max.
151  *   while snd_last > snd_una, the sender is in a recovery phase and
152  *   its cwnd should not be reduced again.
153  *   snd_last follows snd_una when not in a recovery phase.
154  */
155 #endif
156 
157 /*
158  * Macro to compute ACK transmission behavior.  Delay the ACK unless
159  * we have already delayed an ACK (must send an ACK every two segments).
160  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
161  * option is enabled.
162  */
163 #define	TCP_SETUP_ACK(tp, tiflags) \
164 do { \
165 	if ((tp)->t_flags & TF_DELACK || \
166 	    (tcp_ack_on_push && (tiflags) & TH_PUSH)) \
167 		tp->t_flags |= TF_ACKNOW; \
168 	else \
169 		TCP_SET_DELACK(tp); \
170 } while (0)
171 
172 /*
173  * Insert segment ti into reassembly queue of tcp with
174  * control block tp.  Return TH_FIN if reassembly now includes
175  * a segment with FIN.  The macro form does the common case inline
176  * (segment is the next to be received on an established connection,
177  * and the queue is empty), avoiding linkage into and removal
178  * from the queue and repetition of various conversions.
179  * Set DELACK for segments received in order, but ack immediately
180  * when segments are out of order (so fast retransmit can work).
181  */
182 
183 #ifndef TUBA_INCLUDE
184 
185 int
186 tcp_reass(tp, th, m, tlen)
187 	struct tcpcb *tp;
188 	struct tcphdr *th;
189 	struct mbuf *m;
190 	int *tlen;
191 {
192 	struct ipqent *p, *q, *nq, *tiqe;
193 	struct socket *so = tp->t_inpcb->inp_socket;
194 	int flags;
195 
196 	/*
197 	 * Call with th==0 after become established to
198 	 * force pre-ESTABLISHED data up to user socket.
199 	 */
200 	if (th == 0)
201 		goto present;
202 
203 	/*
204 	 * Allocate a new queue entry, before we throw away any data.
205 	 * If we can't, just drop the packet.  XXX
206 	 */
207 	tiqe =  pool_get(&ipqent_pool, PR_NOWAIT);
208 	if (tiqe == NULL) {
209 		tcpstat.tcps_rcvmemdrop++;
210 		m_freem(m);
211 		return (0);
212 	}
213 
214 	/*
215 	 * Find a segment which begins after this one does.
216 	 */
217 	for (p = NULL, q = tp->segq.lh_first; q != NULL;
218 	    p = q, q = q->ipqe_q.le_next)
219 		if (SEQ_GT(q->ipqe_tcp->th_seq, th->th_seq))
220 			break;
221 
222 	/*
223 	 * If there is a preceding segment, it may provide some of
224 	 * our data already.  If so, drop the data from the incoming
225 	 * segment.  If it provides all of our data, drop us.
226 	 */
227 	if (p != NULL) {
228 		struct tcphdr *phdr = p->ipqe_tcp;
229 		int i;
230 
231 		/* conversion to int (in i) handles seq wraparound */
232 		i = phdr->th_seq + phdr->th_reseqlen - th->th_seq;
233 		if (i > 0) {
234 		        if (i >= *tlen) {
235 				tcpstat.tcps_rcvduppack++;
236 				tcpstat.tcps_rcvdupbyte += *tlen;
237 				m_freem(m);
238 				pool_put(&ipqent_pool, tiqe);
239 				return (0);
240 			}
241 			m_adj(m, i);
242 			*tlen -= i;
243 			th->th_seq += i;
244 		}
245 	}
246 	tcpstat.tcps_rcvoopack++;
247 	tcpstat.tcps_rcvoobyte += *tlen;
248 
249 	/*
250 	 * While we overlap succeeding segments trim them or,
251 	 * if they are completely covered, dequeue them.
252 	 */
253 	for (; q != NULL; q = nq) {
254 		struct tcphdr *qhdr = q->ipqe_tcp;
255 		int i = (th->th_seq + *tlen) - qhdr->th_seq;
256 
257 		if (i <= 0)
258 			break;
259 		if (i < qhdr->th_reseqlen) {
260 			qhdr->th_seq += i;
261 			qhdr->th_reseqlen -= i;
262 			m_adj(q->ipqe_m, i);
263 			break;
264 		}
265 		nq = q->ipqe_q.le_next;
266 		m_freem(q->ipqe_m);
267 		LIST_REMOVE(q, ipqe_q);
268 		pool_put(&ipqent_pool, q);
269 	}
270 
271 	/* Insert the new fragment queue entry into place. */
272 	tiqe->ipqe_m = m;
273 	th->th_reseqlen = *tlen;
274 	tiqe->ipqe_tcp = th;
275 	if (p == NULL) {
276 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
277 	} else {
278 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
279 	}
280 
281 present:
282 	/*
283 	 * Present data to user, advancing rcv_nxt through
284 	 * completed sequence space.
285 	 */
286 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
287 		return (0);
288 	q = tp->segq.lh_first;
289 	if (q == NULL || q->ipqe_tcp->th_seq != tp->rcv_nxt)
290 		return (0);
291 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->th_reseqlen)
292 		return (0);
293 	do {
294 		tp->rcv_nxt += q->ipqe_tcp->th_reseqlen;
295 		flags = q->ipqe_tcp->th_flags & TH_FIN;
296 
297 		nq = q->ipqe_q.le_next;
298 		LIST_REMOVE(q, ipqe_q);
299 		ND6_HINT(tp);
300 		if (so->so_state & SS_CANTRCVMORE)
301 			m_freem(q->ipqe_m);
302 		else
303 			sbappendstream(&so->so_rcv, q->ipqe_m);
304 		pool_put(&ipqent_pool, q);
305 		q = nq;
306 	} while (q != NULL && q->ipqe_tcp->th_seq == tp->rcv_nxt);
307 	sorwakeup(so);
308 	return (flags);
309 }
310 
311 /*
312  * First check for a port-specific bomb. We do not want to drop half-opens
313  * for other ports if this is the only port being bombed.  We only check
314  * the bottom 40 half open connections, to avoid wasting too much time.
315  *
316  * Or, otherwise it is more likely a generic syn bomb, so delete the oldest
317  * half-open connection.
318  */
319 void
320 tcpdropoldhalfopen(avoidtp, port)
321 	struct tcpcb *avoidtp;
322 	u_int16_t port;
323 {
324 	struct inpcb *inp;
325 	struct tcpcb *tp;
326 	int ncheck = 40;
327 	int s;
328 
329 	s = splnet();
330 	inp = tcbtable.inpt_queue.cqh_first;
331 	if (inp)						/* XXX */
332 	for (; inp != (struct inpcb *)&tcbtable.inpt_queue && --ncheck;
333 	    inp = inp->inp_queue.cqe_prev) {
334 		if ((tp = (struct tcpcb *)inp->inp_ppcb) &&
335 		    tp != avoidtp &&
336 		    tp->t_state == TCPS_SYN_RECEIVED &&
337 		    port == inp->inp_lport) {
338 			tcp_close(tp);
339 			goto done;
340 		}
341 	}
342 
343 	inp = tcbtable.inpt_queue.cqh_first;
344 	if (inp)						/* XXX */
345 	for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
346 	    inp = inp->inp_queue.cqe_prev) {
347 		if ((tp = (struct tcpcb *)inp->inp_ppcb) &&
348 		    tp != avoidtp &&
349 		    tp->t_state == TCPS_SYN_RECEIVED) {
350 			tcp_close(tp);
351 			goto done;
352 		}
353 	}
354 done:
355 	splx(s);
356 }
357 
358 #ifdef INET6
359 int
360 tcp6_input(mp, offp, proto)
361 	struct mbuf **mp;
362 	int *offp, proto;
363 {
364 	struct mbuf *m = *mp;
365 
366 #if defined(NFAITH) && 0 < NFAITH
367 	if (m->m_pkthdr.rcvif) {
368 		if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
369 			/* XXX send icmp6 host/port unreach? */
370 			m_freem(m);
371 			return IPPROTO_DONE;
372 		}
373 	}
374 #endif
375 
376 	/*
377 	 * draft-itojun-ipv6-tcp-to-anycast
378 	 * better place to put this in?
379 	 */
380 	if (m->m_flags & M_ANYCAST6) {
381 		if (m->m_len >= sizeof(struct ip6_hdr)) {
382 			struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
383 			icmp6_error(m, ICMP6_DST_UNREACH,
384 				ICMP6_DST_UNREACH_ADDR,
385 				(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
386 		} else
387 			m_freem(m);
388 		return IPPROTO_DONE;
389 	}
390 
391 	tcp_input(m, *offp, proto);
392 	return IPPROTO_DONE;
393 }
394 #endif
395 
396 /*
397  * TCP input routine, follows pages 65-76 of the
398  * protocol specification dated September, 1981 very closely.
399  */
400 void
401 tcp_input(struct mbuf *m, ...)
402 {
403 	struct ip *ip;
404 	struct inpcb *inp;
405 	u_int8_t *optp = NULL;
406 	int optlen = 0;
407 	int len, tlen, off;
408 	struct tcpcb *tp = 0;
409 	int tiflags;
410 	struct socket *so = NULL;
411 	int todrop, acked, ourfinisacked, needoutput = 0;
412 	int hdroptlen = 0;
413 	short ostate = 0;
414 	struct in_addr laddr;
415 	int dropsocket = 0;
416 	int iss = 0;
417 	u_long tiwin;
418 	u_int32_t ts_val, ts_ecr;
419 	int ts_present = 0;
420 	int iphlen;
421 	va_list ap;
422 	struct tcphdr *th;
423 #ifdef INET6
424 	struct in6_addr laddr6;
425 	struct ip6_hdr *ip6 = NULL;
426 #endif /* INET6 */
427 #ifdef IPSEC
428 	struct m_tag *mtag;
429 	struct tdb_ident *tdbi;
430 	struct tdb *tdb;
431 	int error, s;
432 #endif /* IPSEC */
433 	int af;
434 #ifdef TCP_ECN
435 	u_char iptos;
436 #endif
437 
438 	va_start(ap, m);
439 	iphlen = va_arg(ap, int);
440 	va_end(ap);
441 
442 	tcpstat.tcps_rcvtotal++;
443 
444 	/*
445 	 * Before we do ANYTHING, we have to figure out if it's TCP/IPv6 or
446 	 * TCP/IPv4.
447 	 */
448 	switch (mtod(m, struct ip *)->ip_v) {
449 #ifdef INET6
450 	case 6:
451 		af = AF_INET6;
452 		break;
453 #endif
454 	case 4:
455 		af = AF_INET;
456 		break;
457 	default:
458 		m_freem(m);
459 		return;	/*EAFNOSUPPORT*/
460 	}
461 
462 	/*
463 	 * Get IP and TCP header together in first mbuf.
464 	 * Note: IP leaves IP header in first mbuf.
465 	 */
466 	switch (af) {
467 	case AF_INET:
468 #ifdef DIAGNOSTIC
469 		if (iphlen < sizeof(struct ip)) {
470 			m_freem(m);
471 			return;
472 		}
473 #endif /* DIAGNOSTIC */
474 		if (iphlen > sizeof(struct ip)) {
475 #if 0	/*XXX*/
476 			ip_stripoptions(m, (struct mbuf *)0);
477 			iphlen = sizeof(struct ip);
478 #else
479 			m_freem(m);
480 			return;
481 #endif
482 		}
483 		break;
484 #ifdef INET6
485 	case AF_INET6:
486 #ifdef DIAGNOSTIC
487 		if (iphlen < sizeof(struct ip6_hdr)) {
488 			m_freem(m);
489 			return;
490 		}
491 #endif /* DIAGNOSTIC */
492 		if (iphlen > sizeof(struct ip6_hdr)) {
493 #if 0 /*XXX*/
494 			ipv6_stripoptions(m, iphlen);
495 			iphlen = sizeof(struct ip6_hdr);
496 #else
497 			m_freem(m);
498 			return;
499 #endif
500 		}
501 		break;
502 #endif
503 	default:
504 		m_freem(m);
505 		return;
506 	}
507 
508 	if (m->m_len < iphlen + sizeof(struct tcphdr)) {
509 		m = m_pullup2(m, iphlen + sizeof(struct tcphdr));
510 		if (m == NULL) {
511 			tcpstat.tcps_rcvshort++;
512 			return;
513 		}
514 	}
515 
516 	ip = NULL;
517 #ifdef INET6
518 	ip6 = NULL;
519 #endif
520 	switch (af) {
521 	case AF_INET:
522 	    {
523 		struct tcpiphdr *ti;
524 
525 		ip = mtod(m, struct ip *);
526 #if 1
527 		tlen = m->m_pkthdr.len - iphlen;
528 #else
529 		tlen = ((struct ip *)ti)->ip_len;
530 #endif
531 		ti = mtod(m, struct tcpiphdr *);
532 
533 #ifdef TCP_ECN
534 		/* save ip_tos before clearing it for checksum */
535 		iptos = ip->ip_tos;
536 #endif
537 		/*
538 		 * Checksum extended TCP header and data.
539 		 */
540 		len = sizeof(struct ip) + tlen;
541 		bzero(ti->ti_x1, sizeof ti->ti_x1);
542 		ti->ti_len = (u_int16_t)tlen;
543 		HTONS(ti->ti_len);
544 		if ((m->m_pkthdr.csum & M_TCP_CSUM_IN_OK) == 0) {
545 			if (m->m_pkthdr.csum & M_TCP_CSUM_IN_BAD) {
546 				tcpstat.tcps_inhwcsum++;
547 				tcpstat.tcps_rcvbadsum++;
548 				goto drop;
549 			}
550 			if ((ti->ti_sum = in_cksum(m, len)) != 0) {
551 				tcpstat.tcps_rcvbadsum++;
552 				goto drop;
553 			}
554 		} else {
555 			m->m_pkthdr.csum &= ~M_TCP_CSUM_IN_OK;
556 			tcpstat.tcps_inhwcsum++;
557 		}
558 		break;
559 	    }
560 #ifdef INET6
561 	case AF_INET6:
562 		ip6 = mtod(m, struct ip6_hdr *);
563 		tlen = m->m_pkthdr.len - iphlen;
564 #ifdef TCP_ECN
565 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
566 #endif
567 
568 		/* Be proactive about malicious use of IPv4 mapped address */
569 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
570 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
571 			/* XXX stat */
572 			goto drop;
573 		}
574 
575 		/*
576 		 * Be proactive about unspecified IPv6 address in source.
577 		 * As we use all-zero to indicate unbounded/unconnected pcb,
578 		 * unspecified IPv6 address can be used to confuse us.
579 		 *
580 		 * Note that packets with unspecified IPv6 destination is
581 		 * already dropped in ip6_input.
582 		 */
583 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
584 			/* XXX stat */
585 			goto drop;
586 		}
587 
588 		/*
589 		 * Checksum extended TCP header and data.
590 		 */
591 		if (in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr), tlen)) {
592 			tcpstat.tcps_rcvbadsum++;
593 			goto drop;
594 		}
595 		break;
596 #endif
597 	}
598 #endif /* TUBA_INCLUDE */
599 
600 	th = (struct tcphdr *)(mtod(m, caddr_t) + iphlen);
601 
602 	/*
603 	 * Check that TCP offset makes sense,
604 	 * pull out TCP options and adjust length.		XXX
605 	 */
606 	off = th->th_off << 2;
607 	if (off < sizeof(struct tcphdr) || off > tlen) {
608 		tcpstat.tcps_rcvbadoff++;
609 		goto drop;
610 	}
611 	tlen -= off;
612 	if (off > sizeof(struct tcphdr)) {
613 		if (m->m_len < iphlen + off) {
614 			if ((m = m_pullup2(m, iphlen + off)) == NULL) {
615 				tcpstat.tcps_rcvshort++;
616 				return;
617 			}
618 			switch (af) {
619 			case AF_INET:
620 				ip = mtod(m, struct ip *);
621 				break;
622 #ifdef INET6
623 			case AF_INET6:
624 				ip6 = mtod(m, struct ip6_hdr *);
625 				break;
626 #endif
627 			}
628 			th = (struct tcphdr *)(mtod(m, caddr_t) + iphlen);
629 		}
630 		optlen = off - sizeof(struct tcphdr);
631 		optp = mtod(m, u_int8_t *) + iphlen + sizeof(struct tcphdr);
632 		/*
633 		 * Do quick retrieval of timestamp options ("options
634 		 * prediction?").  If timestamp is the only option and it's
635 		 * formatted as recommended in RFC 1323 appendix A, we
636 		 * quickly get the values now and not bother calling
637 		 * tcp_dooptions(), etc.
638 		 */
639 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
640 		     (optlen > TCPOLEN_TSTAMP_APPA &&
641 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
642 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
643 		     (th->th_flags & TH_SYN) == 0) {
644 			ts_present = 1;
645 			ts_val = ntohl(*(u_int32_t *)(optp + 4));
646 			ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
647 			optp = NULL;	/* we've parsed the options */
648 		}
649 	}
650 	tiflags = th->th_flags;
651 
652 	/*
653 	 * Convert TCP protocol specific fields to host format.
654 	 */
655 	NTOHL(th->th_seq);
656 	NTOHL(th->th_ack);
657 	NTOHS(th->th_win);
658 	NTOHS(th->th_urp);
659 
660 	/*
661 	 * Locate pcb for segment.
662 	 */
663 findpcb:
664 	switch (af) {
665 #ifdef INET6
666 	case AF_INET6:
667 		inp = in6_pcbhashlookup(&tcbtable, &ip6->ip6_src, th->th_sport,
668 		    &ip6->ip6_dst, th->th_dport);
669 		break;
670 #endif
671 	case AF_INET:
672 		inp = in_pcbhashlookup(&tcbtable, ip->ip_src, th->th_sport,
673 		    ip->ip_dst, th->th_dport);
674 		break;
675 	}
676 	if (inp == 0) {
677 		++tcpstat.tcps_pcbhashmiss;
678 		switch (af) {
679 #ifdef INET6
680 		case AF_INET6:
681 			inp = in_pcblookup(&tcbtable, &ip6->ip6_src,
682 			    th->th_sport, &ip6->ip6_dst, th->th_dport,
683 			    INPLOOKUP_WILDCARD | INPLOOKUP_IPV6);
684 			break;
685 #endif /* INET6 */
686 		case AF_INET:
687 			inp = in_pcblookup(&tcbtable, &ip->ip_src, th->th_sport,
688 			    &ip->ip_dst, th->th_dport, INPLOOKUP_WILDCARD);
689 			break;
690 		}
691 		/*
692 		 * If the state is CLOSED (i.e., TCB does not exist) then
693 		 * all data in the incoming segment is discarded.
694 		 * If the TCB exists but is in CLOSED state, it is embryonic,
695 		 * but should either do a listen or a connect soon.
696 		 */
697 		if (inp == 0) {
698 			++tcpstat.tcps_noport;
699 			goto dropwithreset_ratelim;
700 		}
701 	}
702 
703 	tp = intotcpcb(inp);
704 	if (tp == 0)
705 		goto dropwithreset_ratelim;
706 	if (tp->t_state == TCPS_CLOSED)
707 		goto drop;
708 
709 	/* Unscale the window into a 32-bit value. */
710 	if ((tiflags & TH_SYN) == 0)
711 		tiwin = th->th_win << tp->snd_scale;
712 	else
713 		tiwin = th->th_win;
714 
715 	so = inp->inp_socket;
716 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
717 		if (so->so_options & SO_DEBUG) {
718 			ostate = tp->t_state;
719 			switch (af) {
720 #ifdef INET6
721 			case AF_INET6:
722 				tcp_saveti6 = *(mtod(m, struct tcpipv6hdr *));
723 				break;
724 #endif
725 			case AF_INET:
726 				tcp_saveti = *(mtod(m, struct tcpiphdr *));
727 				break;
728 			}
729 		}
730 		if (so->so_options & SO_ACCEPTCONN) {
731 			struct socket *so1;
732 
733 #ifdef INET6
734 			/*
735 			 * If deprecated address is forbidden,
736 			 * we do not accept SYN to deprecated interface
737 			 * address to prevent any new inbound connection from
738 			 * getting established.  So drop the SYN packet.
739 			 * When we do not accept SYN, we send a TCP RST,
740 			 * with deprecated source address (instead of dropping
741 			 * it).  We compromise it as it is much better for peer
742 			 * to send a RST, and RST will be the final packet
743 			 * for the exchange.
744 			 *
745 			 * If we do not forbid deprecated addresses, we accept
746 			 * the SYN packet.  RFC2462 does not suggest dropping
747 			 * SYN in this case.
748 			 * If we decipher RFC2462 5.5.4, it says like this:
749 			 * 1. use of deprecated addr with existing
750 			 *    communication is okay - "SHOULD continue to be
751 			 *    used"
752 			 * 2. use of it with new communication:
753 			 *   (2a) "SHOULD NOT be used if alternate address
754 			 *        with sufficient scope is available"
755 			 *   (2b) nothing mentioned otherwise.
756 			 * Here we fall into (2b) case as we have no choice in
757 			 * our source address selection - we must obey the peer.
758 			 *
759 			 * The wording in RFC2462 is confusing, and there are
760 			 * multiple description text for deprecated address
761 			 * handling - worse, they are not exactly the same.
762 			 * I believe 5.5.4 is the best one, so we follow 5.5.4.
763 			 */
764 			if (ip6 && !ip6_use_deprecated) {
765 				struct in6_ifaddr *ia6;
766 
767 				if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif, &ip6->ip6_dst)) &&
768 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
769 					tp = NULL;
770 					goto dropwithreset;
771 				}
772 			}
773 #endif
774 
775 			so1 = sonewconn(so, 0);
776 			if (so1 == NULL) {
777 				tcpdropoldhalfopen(tp, th->th_dport);
778 				so1 = sonewconn(so, 0);
779 				if (so1 == NULL)
780 					goto drop;
781 			}
782 			so = so1;
783 			/*
784 			 * This is ugly, but ....
785 			 *
786 			 * Mark socket as temporary until we're
787 			 * committed to keeping it.  The code at
788 			 * ``drop'' and ``dropwithreset'' check the
789 			 * flag dropsocket to see if the temporary
790 			 * socket created here should be discarded.
791 			 * We mark the socket as discardable until
792 			 * we're committed to it below in TCPS_LISTEN.
793 			 */
794 			dropsocket++;
795 #ifdef IPSEC
796 			/*
797 			 * We need to copy the required security levels
798 			 * from the old pcb. Ditto for any other
799 			 * IPsec-related information.
800 			 */
801 			{
802 			  struct inpcb *newinp = (struct inpcb *)so->so_pcb;
803 			  bcopy(inp->inp_seclevel, newinp->inp_seclevel,
804 				sizeof(inp->inp_seclevel));
805 			  newinp->inp_secrequire = inp->inp_secrequire;
806 			  if (inp->inp_ipo != NULL) {
807 				  newinp->inp_ipo = inp->inp_ipo;
808 				  inp->inp_ipo->ipo_ref_count++;
809 			  }
810 			  if (inp->inp_ipsec_remotecred != NULL) {
811 				  newinp->inp_ipsec_remotecred = inp->inp_ipsec_remotecred;
812 				  inp->inp_ipsec_remotecred->ref_count++;
813 			  }
814 			  if (inp->inp_ipsec_remoteauth != NULL) {
815 				  newinp->inp_ipsec_remoteauth
816 				      = inp->inp_ipsec_remoteauth;
817 				  inp->inp_ipsec_remoteauth->ref_count++;
818 			  }
819 			}
820 #endif /* IPSEC */
821 #ifdef INET6
822 			/*
823 			 * inp still has the OLD in_pcb stuff, set the
824 			 * v6-related flags on the new guy, too.   This is
825 			 * done particularly for the case where an AF_INET6
826 			 * socket is bound only to a port, and a v4 connection
827 			 * comes in on that port.
828 			 * we also copy the flowinfo from the original pcb
829 			 * to the new one.
830 			 */
831 			{
832 			  int flags = inp->inp_flags;
833 			  struct inpcb *oldinpcb = inp;
834 
835 			  inp = (struct inpcb *)so->so_pcb;
836 			  inp->inp_flags |= (flags & INP_IPV6);
837 			  if ((inp->inp_flags & INP_IPV6) != 0) {
838 			    inp->inp_ipv6.ip6_hlim =
839 			      oldinpcb->inp_ipv6.ip6_hlim;
840 			    inp->inp_ipv6.ip6_flow =
841 			      oldinpcb->inp_ipv6.ip6_flow;
842 			  }
843 			}
844 #else /* INET6 */
845 			inp = (struct inpcb *)so->so_pcb;
846 #endif /* INET6 */
847 			inp->inp_lport = th->th_dport;
848 			switch (af) {
849 #ifdef INET6
850 			case AF_INET6:
851 				inp->inp_laddr6 = ip6->ip6_dst;
852 
853 				/*inp->inp_options = ip6_srcroute();*/ /* soon. */
854 				/*
855 				 * still need to tweak outbound options
856 				 * processing to include this mbuf in
857 				 * the right place and put the correct
858 				 * NextHdr values in the right places.
859 				 * XXX  rja
860 				 */
861 				break;
862 #endif /* INET6 */
863 			case AF_INET:
864 				inp->inp_laddr = ip->ip_dst;
865 				inp->inp_options = ip_srcroute();
866 				break;
867 			}
868 			in_pcbrehash(inp);
869 			tp = intotcpcb(inp);
870 			tp->t_state = TCPS_LISTEN;
871 
872 			/* Compute proper scaling value from buffer space */
873 			tcp_rscale(tp, so->so_rcv.sb_hiwat);
874 		}
875 	}
876 
877 #ifdef IPSEC
878 	/* Find most recent IPsec tag */
879 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
880         s = splnet();
881 	if (mtag != NULL) {
882 		tdbi = (struct tdb_ident *)(mtag + 1);
883 	        tdb = gettdb(tdbi->spi, &tdbi->dst, tdbi->proto);
884 	} else
885 		tdb = NULL;
886 	ipsp_spd_lookup(m, af, iphlen, &error, IPSP_DIRECTION_IN,
887 	    tdb, inp);
888 	if (error) {
889 		splx(s);
890 		goto drop;
891 	}
892 
893 	/* Latch SA */
894 	if (inp->inp_tdb_in != tdb) {
895 		if (tdb) {
896 		        tdb_add_inp(tdb, inp, 1);
897 			if (inp->inp_ipo == NULL) {
898 				inp->inp_ipo = ipsec_add_policy(inp, af,
899 				    IPSP_DIRECTION_OUT);
900 				if (inp->inp_ipo == NULL) {
901 					splx(s);
902 					goto drop;
903 				}
904 			}
905 			if (inp->inp_ipo->ipo_dstid == NULL &&
906 			    tdb->tdb_srcid != NULL) {
907 				inp->inp_ipo->ipo_dstid = tdb->tdb_srcid;
908 				tdb->tdb_srcid->ref_count++;
909 			}
910 			if (inp->inp_ipsec_remotecred == NULL &&
911 			    tdb->tdb_remote_cred != NULL) {
912 				inp->inp_ipsec_remotecred =
913 				    tdb->tdb_remote_cred;
914 				tdb->tdb_remote_cred->ref_count++;
915 			}
916 			if (inp->inp_ipsec_remoteauth == NULL &&
917 			    tdb->tdb_remote_auth != NULL) {
918 				inp->inp_ipsec_remoteauth =
919 				    tdb->tdb_remote_auth;
920 				tdb->tdb_remote_auth->ref_count++;
921 			}
922 		} else { /* Just reset */
923 		        TAILQ_REMOVE(&inp->inp_tdb_in->tdb_inp_in, inp,
924 				     inp_tdb_in_next);
925 			inp->inp_tdb_in = NULL;
926 		}
927 	}
928         splx(s);
929 #endif /* IPSEC */
930 
931 	/*
932 	 * Segment received on connection.
933 	 * Reset idle time and keep-alive timer.
934 	 */
935 	tp->t_rcvtime = tcp_now;
936 	if (tp->t_state != TCPS_SYN_RECEIVED)
937 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
938 
939 #ifdef TCP_SACK
940 	if (!tp->sack_disable)
941 		tcp_del_sackholes(tp, th); /* Delete stale SACK holes */
942 #endif /* TCP_SACK */
943 
944 	/*
945 	 * Process options if not in LISTEN state,
946 	 * else do it below (after getting remote address).
947 	 */
948 	if (optp && tp->t_state != TCPS_LISTEN)
949 		tcp_dooptions(tp, optp, optlen, th,
950 			&ts_present, &ts_val, &ts_ecr);
951 
952 #ifdef TCP_SACK
953 	if (!tp->sack_disable) {
954 		tp->rcv_laststart = th->th_seq; /* last rec'vd segment*/
955 		tp->rcv_lastend = th->th_seq + tlen;
956 	}
957 #endif /* TCP_SACK */
958 #ifdef TCP_ECN
959 	/* if congestion experienced, set ECE bit in subsequent packets. */
960 	if ((iptos & IPTOS_ECN_MASK) == IPTOS_ECN_CE) {
961 		tp->t_flags |= TF_RCVD_CE;
962 		tcpstat.tcps_ecn_rcvce++;
963 	}
964 #endif
965 	/*
966 	 * Header prediction: check for the two common cases
967 	 * of a uni-directional data xfer.  If the packet has
968 	 * no control flags, is in-sequence, the window didn't
969 	 * change and we're not retransmitting, it's a
970 	 * candidate.  If the length is zero and the ack moved
971 	 * forward, we're the sender side of the xfer.  Just
972 	 * free the data acked & wake any higher level process
973 	 * that was blocked waiting for space.  If the length
974 	 * is non-zero and the ack didn't move, we're the
975 	 * receiver side.  If we're getting packets in-order
976 	 * (the reassembly queue is empty), add the data to
977 	 * the socket buffer and note that we need a delayed ack.
978 	 */
979 	if (tp->t_state == TCPS_ESTABLISHED &&
980 #ifdef TCP_ECN
981 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK)) == TH_ACK &&
982 #else
983 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
984 #endif
985 	    (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) &&
986 	    th->th_seq == tp->rcv_nxt &&
987 	    tiwin && tiwin == tp->snd_wnd &&
988 	    tp->snd_nxt == tp->snd_max) {
989 
990 		/*
991 		 * If last ACK falls within this segment's sequence numbers,
992 		 *  record the timestamp.
993 		 * Fix from Braden, see Stevens p. 870
994 		 */
995 		if (ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
996 			tp->ts_recent_age = tcp_now;
997 			tp->ts_recent = ts_val;
998 		}
999 
1000 		if (tlen == 0) {
1001 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1002 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1003 			    tp->snd_cwnd >= tp->snd_wnd &&
1004 			    tp->t_dupacks == 0) {
1005 				/*
1006 				 * this is a pure ack for outstanding data.
1007 				 */
1008 				++tcpstat.tcps_predack;
1009 				if (ts_present)
1010 					tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
1011 				else if (tp->t_rtttime &&
1012 					    SEQ_GT(th->th_ack, tp->t_rtseq))
1013 					tcp_xmit_timer(tp,
1014 					    tcp_now - tp->t_rtttime);
1015 				acked = th->th_ack - tp->snd_una;
1016 				tcpstat.tcps_rcvackpack++;
1017 				tcpstat.tcps_rcvackbyte += acked;
1018 				ND6_HINT(tp);
1019 				sbdrop(&so->so_snd, acked);
1020 				tp->snd_una = th->th_ack;
1021 #if defined(TCP_SACK) || defined(TCP_ECN)
1022 				/*
1023 				 * We want snd_last to track snd_una so
1024 				 * as to avoid sequence wraparound problems
1025 				 * for very large transfers.
1026 				 */
1027 #ifdef TCP_ECN
1028 				if (SEQ_GT(tp->snd_una, tp->snd_last))
1029 #endif
1030 				tp->snd_last = tp->snd_una;
1031 #endif /* TCP_SACK */
1032 #if defined(TCP_SACK) && defined(TCP_FACK)
1033 				tp->snd_fack = tp->snd_una;
1034 				tp->retran_data = 0;
1035 #endif /* TCP_FACK */
1036 				m_freem(m);
1037 
1038 				/*
1039 				 * If all outstanding data are acked, stop
1040 				 * retransmit timer, otherwise restart timer
1041 				 * using current (possibly backed-off) value.
1042 				 * If process is waiting for space,
1043 				 * wakeup/selwakeup/signal.  If data
1044 				 * are ready to send, let tcp_output
1045 				 * decide between more output or persist.
1046 				 */
1047 				if (tp->snd_una == tp->snd_max)
1048 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1049 				else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1050 					TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1051 
1052 				if (sb_notify(&so->so_snd))
1053 					sowwakeup(so);
1054 				if (so->so_snd.sb_cc)
1055 					(void) tcp_output(tp);
1056 				return;
1057 			}
1058 		} else if (th->th_ack == tp->snd_una &&
1059 		    tp->segq.lh_first == NULL &&
1060 		    tlen <= sbspace(&so->so_rcv)) {
1061 			/*
1062 			 * This is a pure, in-sequence data packet
1063 			 * with nothing on the reassembly queue and
1064 			 * we have enough buffer space to take it.
1065 			 */
1066 #ifdef TCP_SACK
1067 			/* Clean receiver SACK report if present */
1068 			if (!tp->sack_disable && tp->rcv_numsacks)
1069 				tcp_clean_sackreport(tp);
1070 #endif /* TCP_SACK */
1071 			++tcpstat.tcps_preddat;
1072 			tp->rcv_nxt += tlen;
1073 			tcpstat.tcps_rcvpack++;
1074 			tcpstat.tcps_rcvbyte += tlen;
1075 			ND6_HINT(tp);
1076 			/*
1077 			 * Drop TCP, IP headers and TCP options then add data
1078 			 * to socket buffer.
1079 			 */
1080 			if (so->so_state & SS_CANTRCVMORE)
1081 				m_freem(m);
1082 			else {
1083 				m_adj(m, iphlen + off);
1084 				sbappendstream(&so->so_rcv, m);
1085 			}
1086 			sorwakeup(so);
1087 			TCP_SETUP_ACK(tp, tiflags);
1088 			if (tp->t_flags & TF_ACKNOW)
1089 				(void) tcp_output(tp);
1090 			return;
1091 		}
1092 	}
1093 
1094 	/*
1095 	 * Compute mbuf offset to TCP data segment.
1096 	 */
1097 	hdroptlen = iphlen + off;
1098 
1099 	/*
1100 	 * Calculate amount of space in receive window,
1101 	 * and then do TCP input processing.
1102 	 * Receive window is amount of space in rcv queue,
1103 	 * but not less than advertised window.
1104 	 */
1105 	{ int win;
1106 
1107 	win = sbspace(&so->so_rcv);
1108 	if (win < 0)
1109 		win = 0;
1110 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1111 	}
1112 
1113 	switch (tp->t_state) {
1114 
1115 	/*
1116 	 * If the state is LISTEN then ignore segment if it contains an RST.
1117 	 * If the segment contains an ACK then it is bad and send a RST.
1118 	 * If it does not contain a SYN then it is not interesting; drop it.
1119 	 * If it is from this socket, drop it, it must be forged.
1120 	 * Don't bother responding if the destination was a broadcast.
1121 	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
1122 	 * tp->iss, and send a segment:
1123 	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1124 	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
1125 	 * Fill in remote peer address fields if not previously specified.
1126 	 * Enter SYN_RECEIVED state, and process any other fields of this
1127 	 * segment in this state.
1128 	 */
1129 	case TCPS_LISTEN: {
1130 		struct mbuf *am;
1131 		struct sockaddr_in *sin;
1132 #ifdef INET6
1133 		struct sockaddr_in6 *sin6;
1134 #endif /* INET6 */
1135 
1136 		if (tiflags & TH_RST)
1137 			goto drop;
1138 		if (tiflags & TH_ACK)
1139 			goto dropwithreset;
1140 		if ((tiflags & TH_SYN) == 0)
1141 			goto drop;
1142 		if (th->th_dport == th->th_sport) {
1143 			switch (af) {
1144 #ifdef INET6
1145 			case AF_INET6:
1146 				if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1147 				    &ip6->ip6_dst))
1148 					goto drop;
1149 				break;
1150 #endif /* INET6 */
1151 			case AF_INET:
1152 				if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1153 					goto drop;
1154 				break;
1155 			}
1156 		}
1157 
1158 		/*
1159 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1160 		 */
1161 		if (m->m_flags & (M_BCAST|M_MCAST))
1162 			goto drop;
1163 		switch (af) {
1164 #ifdef INET6
1165 		case AF_INET6:
1166 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1167 				goto drop;
1168 			break;
1169 #endif /* INET6 */
1170 		case AF_INET:
1171 			if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1172 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1173 				goto drop;
1174 			break;
1175 		}
1176 		am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
1177 		if (am == NULL)
1178 			goto drop;
1179 		switch (af) {
1180 #ifdef INET6
1181 		case AF_INET6:
1182 			/*
1183 			 * This is probably the place to set the tp->pf value.
1184 			 * (Don't forget to do it in the v4 code as well!)
1185 			 *
1186 			 * Also, remember to blank out things like flowlabel, or
1187 			 * set flowlabel for accepted sockets in v6.
1188 			 *
1189 			 * FURTHERMORE, this is PROBABLY the place where the
1190 			 * whole business of key munging is set up for passive
1191 			 * connections.
1192 			 */
1193 			am->m_len = sizeof(struct sockaddr_in6);
1194 			sin6 = mtod(am, struct sockaddr_in6 *);
1195 			bzero(sin6, sizeof(*sin6));
1196 			sin6->sin6_family = AF_INET6;
1197 			sin6->sin6_len = sizeof(struct sockaddr_in6);
1198 			sin6->sin6_addr = ip6->ip6_src;
1199 			sin6->sin6_port = th->th_sport;
1200 			sin6->sin6_flowinfo = htonl(0x0fffffff) &
1201 				inp->inp_ipv6.ip6_flow;
1202 			laddr6 = inp->inp_laddr6;
1203 			if (IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6))
1204 				inp->inp_laddr6 = ip6->ip6_dst;
1205 			/* This is a good optimization. */
1206 			if (in6_pcbconnect(inp, am)) {
1207 				inp->inp_laddr6 = laddr6;
1208 				(void) m_free(am);
1209 				goto drop;
1210 			}
1211 			break;
1212 #endif
1213 		case AF_INET:
1214 			/* drop IPv4 packet to AF_INET6 socket */
1215 			if (inp->inp_flags & INP_IPV6) {
1216 				(void) m_free(am);
1217 				goto drop;
1218 			}
1219 			am->m_len = sizeof(struct sockaddr_in);
1220 			sin = mtod(am, struct sockaddr_in *);
1221 			bzero(sin, sizeof(*sin));
1222 			sin->sin_family = AF_INET;
1223 			sin->sin_len = sizeof(*sin);
1224 			sin->sin_addr = ip->ip_src;
1225 			sin->sin_port = th->th_sport;
1226 			bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
1227 			laddr = inp->inp_laddr;
1228 			if (inp->inp_laddr.s_addr == INADDR_ANY)
1229 				inp->inp_laddr = ip->ip_dst;
1230 			if (in_pcbconnect(inp, am)) {
1231 				inp->inp_laddr = laddr;
1232 				(void) m_free(am);
1233 				goto drop;
1234 			}
1235 			(void) m_free(am);
1236 			break;
1237 		}
1238 		tp->t_template = tcp_template(tp);
1239 		if (tp->t_template == 0) {
1240 			tp = tcp_drop(tp, ENOBUFS);
1241 			dropsocket = 0;		/* socket is already gone */
1242 			goto drop;
1243 		}
1244 		if (optp)
1245 			tcp_dooptions(tp, optp, optlen, th,
1246 				&ts_present, &ts_val, &ts_ecr);
1247 #ifdef TCP_SACK
1248 		/*
1249 		 * If peer did not send a SACK_PERMITTED option (i.e., if
1250 		 * tcp_dooptions() did not set TF_SACK_PERMIT), set
1251                  * sack_disable to 1 if it is currently 0.
1252                  */
1253                 if (!tp->sack_disable)
1254                         if ((tp->t_flags & TF_SACK_PERMIT) == 0)
1255                                 tp->sack_disable = 1;
1256 #endif
1257 
1258 		if (iss)
1259 			tp->iss = iss;
1260 		else {
1261 #ifdef TCP_COMPAT_42
1262 			tcp_iss += TCP_ISSINCR/2;
1263 			tp->iss = tcp_iss;
1264 #else /* TCP_COMPAT_42 */
1265 			tp->iss = tcp_rndiss_next();
1266 #endif /* !TCP_COMPAT_42 */
1267 		}
1268 		tp->irs = th->th_seq;
1269 		tcp_sendseqinit(tp);
1270 #if defined (TCP_SACK) || defined(TCP_ECN)
1271 		tp->snd_last = tp->snd_una;
1272 #endif /* TCP_SACK */
1273 #if defined(TCP_SACK) && defined(TCP_FACK)
1274 		tp->snd_fack = tp->snd_una;
1275 		tp->retran_data = 0;
1276 		tp->snd_awnd = 0;
1277 #endif /* TCP_FACK */
1278 #ifdef TCP_ECN
1279 		/*
1280 		 * if both ECE and CWR flag bits are set, peer is ECN capable.
1281 		 */
1282 		if (tcp_do_ecn &&
1283 		    (tiflags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR)) {
1284 			tp->t_flags |= TF_ECN_PERMIT;
1285 			tcpstat.tcps_ecn_accepts++;
1286 		}
1287 #endif
1288 		tcp_rcvseqinit(tp);
1289 		tp->t_flags |= TF_ACKNOW;
1290 		tp->t_state = TCPS_SYN_RECEIVED;
1291 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcptv_keep_init);
1292 		dropsocket = 0;		/* committed to socket */
1293 		tcpstat.tcps_accepts++;
1294 		goto trimthenstep6;
1295 		}
1296 
1297 	/*
1298 	 * If the state is SYN_RECEIVED:
1299 	 * 	if seg contains SYN/ACK, send an RST.
1300 	 *	if seg contains an ACK, but not for our SYN/ACK, send an RST
1301 	 */
1302 
1303 	case TCPS_SYN_RECEIVED:
1304 		if (tiflags & TH_ACK) {
1305 			if (tiflags & TH_SYN) {
1306 				tcpstat.tcps_badsyn++;
1307 				goto dropwithreset;
1308 			}
1309 			if (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1310 			    SEQ_GT(th->th_ack, tp->snd_max))
1311 				goto dropwithreset;
1312 		}
1313 		break;
1314 
1315 	/*
1316 	 * If the state is SYN_SENT:
1317 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1318 	 *	if seg contains a RST, then drop the connection.
1319 	 *	if seg does not contain SYN, then drop it.
1320 	 * Otherwise this is an acceptable SYN segment
1321 	 *	initialize tp->rcv_nxt and tp->irs
1322 	 *	if seg contains ack then advance tp->snd_una
1323 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1324 	 *	arrange for segment to be acked (eventually)
1325 	 *	continue processing rest of data/controls, beginning with URG
1326 	 */
1327 	case TCPS_SYN_SENT:
1328 		if ((tiflags & TH_ACK) &&
1329 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1330 		     SEQ_GT(th->th_ack, tp->snd_max)))
1331 			goto dropwithreset;
1332 		if (tiflags & TH_RST) {
1333 #ifdef TCP_ECN
1334 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1335 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1336 				goto drop;
1337 #endif
1338 			if (tiflags & TH_ACK)
1339 				tp = tcp_drop(tp, ECONNREFUSED);
1340 			goto drop;
1341 		}
1342 		if ((tiflags & TH_SYN) == 0)
1343 			goto drop;
1344 		if (tiflags & TH_ACK) {
1345 			tp->snd_una = th->th_ack;
1346 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1347 				tp->snd_nxt = tp->snd_una;
1348 		}
1349 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
1350 		tp->irs = th->th_seq;
1351 		tcp_rcvseqinit(tp);
1352 		tp->t_flags |= TF_ACKNOW;
1353 #ifdef TCP_SACK
1354                 /*
1355                  * If we've sent a SACK_PERMITTED option, and the peer
1356                  * also replied with one, then TF_SACK_PERMIT should have
1357                  * been set in tcp_dooptions().  If it was not, disable SACKs.
1358                  */
1359                 if (!tp->sack_disable)
1360                         if ((tp->t_flags & TF_SACK_PERMIT) == 0)
1361                                 tp->sack_disable = 1;
1362 #endif
1363 #ifdef TCP_ECN
1364 		/*
1365 		 * if ECE is set but CWR is not set for SYN-ACK, or
1366 		 * both ECE and CWR are set for simultaneous open,
1367 		 * peer is ECN capable.
1368 		 */
1369 		if (tcp_do_ecn) {
1370 			if ((tiflags & (TH_ACK|TH_ECE|TH_CWR))
1371 			    == (TH_ACK|TH_ECE) ||
1372 			    (tiflags & (TH_ACK|TH_ECE|TH_CWR))
1373 			    == (TH_ECE|TH_CWR)) {
1374 				tp->t_flags |= TF_ECN_PERMIT;
1375 				tiflags &= ~(TH_ECE|TH_CWR);
1376 				tcpstat.tcps_ecn_accepts++;
1377 			}
1378 		}
1379 #endif
1380 
1381 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
1382 			tcpstat.tcps_connects++;
1383 			soisconnected(so);
1384 			tp->t_state = TCPS_ESTABLISHED;
1385 			/* Do window scaling on this connection? */
1386 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1387 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1388 				tp->snd_scale = tp->requested_s_scale;
1389 				tp->rcv_scale = tp->request_r_scale;
1390 			}
1391 			(void) tcp_reass(tp, (struct tcphdr *)0,
1392 				(struct mbuf *)0, &tlen);
1393 			/*
1394 			 * if we didn't have to retransmit the SYN,
1395 			 * use its rtt as our initial srtt & rtt var.
1396 			 */
1397 			if (tp->t_rtttime)
1398 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1399 			/*
1400 			 * Since new data was acked (the SYN), open the
1401 			 * congestion window by one MSS.  We do this
1402 			 * here, because we won't go through the normal
1403 			 * ACK processing below.  And since this is the
1404 			 * start of the connection, we know we are in
1405 			 * the exponential phase of slow-start.
1406 			 */
1407 			tp->snd_cwnd += tp->t_maxseg;
1408 		} else
1409 			tp->t_state = TCPS_SYN_RECEIVED;
1410 
1411 trimthenstep6:
1412 		/*
1413 		 * Advance th->th_seq to correspond to first data byte.
1414 		 * If data, trim to stay within window,
1415 		 * dropping FIN if necessary.
1416 		 */
1417 		th->th_seq++;
1418 		if (tlen > tp->rcv_wnd) {
1419 			todrop = tlen - tp->rcv_wnd;
1420 			m_adj(m, -todrop);
1421 			tlen = tp->rcv_wnd;
1422 			tiflags &= ~TH_FIN;
1423 			tcpstat.tcps_rcvpackafterwin++;
1424 			tcpstat.tcps_rcvbyteafterwin += todrop;
1425 		}
1426 		tp->snd_wl1 = th->th_seq - 1;
1427 		tp->rcv_up = th->th_seq;
1428 		goto step6;
1429 	}
1430 
1431 	/*
1432 	 * States other than LISTEN or SYN_SENT.
1433 	 * First check timestamp, if present.
1434 	 * Then check that at least some bytes of segment are within
1435 	 * receive window.  If segment begins before rcv_nxt,
1436 	 * drop leading data (and SYN); if nothing left, just ack.
1437 	 *
1438 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1439 	 * and it's less than ts_recent, drop it.
1440 	 */
1441 	if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1442 	    TSTMP_LT(ts_val, tp->ts_recent)) {
1443 
1444 		/* Check to see if ts_recent is over 24 days old.  */
1445 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1446 			/*
1447 			 * Invalidate ts_recent.  If this segment updates
1448 			 * ts_recent, the age will be reset later and ts_recent
1449 			 * will get a valid value.  If it does not, setting
1450 			 * ts_recent to zero will at least satisfy the
1451 			 * requirement that zero be placed in the timestamp
1452 			 * echo reply when ts_recent isn't valid.  The
1453 			 * age isn't reset until we get a valid ts_recent
1454 			 * because we don't want out-of-order segments to be
1455 			 * dropped when ts_recent is old.
1456 			 */
1457 			tp->ts_recent = 0;
1458 		} else {
1459 			tcpstat.tcps_rcvduppack++;
1460 			tcpstat.tcps_rcvdupbyte += tlen;
1461 			tcpstat.tcps_pawsdrop++;
1462 			goto dropafterack;
1463 		}
1464 	}
1465 
1466 	todrop = tp->rcv_nxt - th->th_seq;
1467 	if (todrop > 0) {
1468 		if (tiflags & TH_SYN) {
1469 			tiflags &= ~TH_SYN;
1470 			th->th_seq++;
1471 			if (th->th_urp > 1)
1472 				th->th_urp--;
1473 			else
1474 				tiflags &= ~TH_URG;
1475 			todrop--;
1476 		}
1477 		if (todrop >= tlen ||
1478 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1479 			/*
1480 			 * Any valid FIN must be to the left of the
1481 			 * window.  At this point, FIN must be a
1482 			 * duplicate or out-of-sequence, so drop it.
1483 			 */
1484 			tiflags &= ~TH_FIN;
1485 			/*
1486 			 * Send ACK to resynchronize, and drop any data,
1487 			 * but keep on processing for RST or ACK.
1488 			 */
1489 			tp->t_flags |= TF_ACKNOW;
1490 			tcpstat.tcps_rcvdupbyte += todrop = tlen;
1491 			tcpstat.tcps_rcvduppack++;
1492 		} else {
1493 			tcpstat.tcps_rcvpartduppack++;
1494 			tcpstat.tcps_rcvpartdupbyte += todrop;
1495 		}
1496 		hdroptlen += todrop;	/* drop from head afterwards */
1497 		th->th_seq += todrop;
1498 		tlen -= todrop;
1499 		if (th->th_urp > todrop)
1500 			th->th_urp -= todrop;
1501 		else {
1502 			tiflags &= ~TH_URG;
1503 			th->th_urp = 0;
1504 		}
1505 	}
1506 
1507 	/*
1508 	 * If new data are received on a connection after the
1509 	 * user processes are gone, then RST the other end.
1510 	 */
1511 	if ((so->so_state & SS_NOFDREF) &&
1512 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1513 		tp = tcp_close(tp);
1514 		tcpstat.tcps_rcvafterclose++;
1515 		goto dropwithreset;
1516 	}
1517 
1518 	/*
1519 	 * If segment ends after window, drop trailing data
1520 	 * (and PUSH and FIN); if nothing left, just ACK.
1521 	 */
1522 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1523 	if (todrop > 0) {
1524 		tcpstat.tcps_rcvpackafterwin++;
1525 		if (todrop >= tlen) {
1526 			tcpstat.tcps_rcvbyteafterwin += tlen;
1527 			/*
1528 			 * If a new connection request is received
1529 			 * while in TIME_WAIT, drop the old connection
1530 			 * and start over if the sequence numbers
1531 			 * are above the previous ones.
1532 			 */
1533 			if (tiflags & TH_SYN &&
1534 			    tp->t_state == TCPS_TIME_WAIT &&
1535 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1536 				iss = tp->snd_nxt + TCP_ISSINCR;
1537 				tp = tcp_close(tp);
1538 				goto findpcb;
1539 			}
1540 			/*
1541 			 * If window is closed can only take segments at
1542 			 * window edge, and have to drop data and PUSH from
1543 			 * incoming segments.  Continue processing, but
1544 			 * remember to ack.  Otherwise, drop segment
1545 			 * and ack.
1546 			 */
1547 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1548 				tp->t_flags |= TF_ACKNOW;
1549 				tcpstat.tcps_rcvwinprobe++;
1550 			} else
1551 				goto dropafterack;
1552 		} else
1553 			tcpstat.tcps_rcvbyteafterwin += todrop;
1554 		m_adj(m, -todrop);
1555 		tlen -= todrop;
1556 		tiflags &= ~(TH_PUSH|TH_FIN);
1557 	}
1558 
1559 	/*
1560 	 * If last ACK falls within this segment's sequence numbers,
1561 	 * record its timestamp.
1562 	 * Fix from Braden, see Stevens p. 870
1563 	 */
1564 	if (ts_present && TSTMP_GEQ(ts_val, tp->ts_recent) &&
1565 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1566 		tp->ts_recent_age = tcp_now;
1567 		tp->ts_recent = ts_val;
1568 	}
1569 
1570 	/*
1571 	 * If the RST bit is set examine the state:
1572 	 *    SYN_RECEIVED STATE:
1573 	 *	If passive open, return to LISTEN state.
1574 	 *	If active open, inform user that connection was refused.
1575 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1576 	 *	Inform user that connection was reset, and close tcb.
1577 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1578 	 *	Close the tcb.
1579 	 */
1580 	if (tiflags & TH_RST) {
1581 		if (th->th_seq != tp->last_ack_sent)
1582 			goto drop;
1583 
1584 		switch (tp->t_state) {
1585 		case TCPS_SYN_RECEIVED:
1586 #ifdef TCP_ECN
1587 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1588 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1589 				goto drop;
1590 #endif
1591 			so->so_error = ECONNREFUSED;
1592 			goto close;
1593 
1594 		case TCPS_ESTABLISHED:
1595 		case TCPS_FIN_WAIT_1:
1596 		case TCPS_FIN_WAIT_2:
1597 		case TCPS_CLOSE_WAIT:
1598 			so->so_error = ECONNRESET;
1599 		close:
1600 			tp->t_state = TCPS_CLOSED;
1601 			tcpstat.tcps_drops++;
1602 			tp = tcp_close(tp);
1603 			goto drop;
1604 		case TCPS_CLOSING:
1605 		case TCPS_LAST_ACK:
1606 		case TCPS_TIME_WAIT:
1607 			tp = tcp_close(tp);
1608 			goto drop;
1609 		}
1610 	}
1611 
1612 	/*
1613 	 * If a SYN is in the window, then this is an
1614 	 * error and we send an RST and drop the connection.
1615 	 */
1616 	if (tiflags & TH_SYN) {
1617 		tp = tcp_drop(tp, ECONNRESET);
1618 		goto dropwithreset;
1619 	}
1620 
1621 	/*
1622 	 * If the ACK bit is off we drop the segment and return.
1623 	 */
1624 	if ((tiflags & TH_ACK) == 0) {
1625 		if (tp->t_flags & TF_ACKNOW)
1626 			goto dropafterack;
1627 		else
1628 			goto drop;
1629 	}
1630 
1631 	/*
1632 	 * Ack processing.
1633 	 */
1634 	switch (tp->t_state) {
1635 
1636 	/*
1637 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1638 	 * ESTABLISHED state and continue processing.
1639 	 * The ACK was checked above.
1640 	 */
1641 	case TCPS_SYN_RECEIVED:
1642 		tcpstat.tcps_connects++;
1643 		soisconnected(so);
1644 		tp->t_state = TCPS_ESTABLISHED;
1645 		/* Do window scaling? */
1646 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1647 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1648 			tp->snd_scale = tp->requested_s_scale;
1649 			tp->rcv_scale = tp->request_r_scale;
1650 		}
1651 		(void) tcp_reass(tp, (struct tcphdr *)0, (struct mbuf *)0,
1652 				 &tlen);
1653 		tp->snd_wl1 = th->th_seq - 1;
1654 		/* fall into ... */
1655 
1656 	/*
1657 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1658 	 * ACKs.  If the ack is in the range
1659 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1660 	 * then advance tp->snd_una to th->th_ack and drop
1661 	 * data from the retransmission queue.  If this ACK reflects
1662 	 * more up to date window information we update our window information.
1663 	 */
1664 	case TCPS_ESTABLISHED:
1665 	case TCPS_FIN_WAIT_1:
1666 	case TCPS_FIN_WAIT_2:
1667 	case TCPS_CLOSE_WAIT:
1668 	case TCPS_CLOSING:
1669 	case TCPS_LAST_ACK:
1670 	case TCPS_TIME_WAIT:
1671 #ifdef TCP_ECN
1672 		/*
1673 		 * if we receive ECE and are not already in recovery phase,
1674 		 * reduce cwnd by half but don't slow-start.
1675 		 * advance snd_last to snd_max not to reduce cwnd again
1676 		 * until all outstanding packets are acked.
1677 		 */
1678 		if (tcp_do_ecn && (tiflags & TH_ECE)) {
1679 			if ((tp->t_flags & TF_ECN_PERMIT) &&
1680 			    SEQ_GEQ(tp->snd_una, tp->snd_last)) {
1681 				u_int win;
1682 
1683 				win = min(tp->snd_wnd, tp->snd_cwnd) / tp->t_maxseg;
1684 				if (win > 1) {
1685 					tp->snd_ssthresh = win / 2 * tp->t_maxseg;
1686 					tp->snd_cwnd = tp->snd_ssthresh;
1687 					tp->snd_last = tp->snd_max;
1688 					tp->t_flags |= TF_SEND_CWR;
1689 					tcpstat.tcps_cwr_ecn++;
1690 				}
1691 			}
1692 			tcpstat.tcps_ecn_rcvece++;
1693 		}
1694 		/*
1695 		 * if we receive CWR, we know that the peer has reduced
1696 		 * its congestion window.  stop sending ecn-echo.
1697 		 */
1698 		if ((tiflags & TH_CWR)) {
1699 			tp->t_flags &= ~TF_RCVD_CE;
1700 			tcpstat.tcps_ecn_rcvcwr++;
1701 		}
1702 #endif /* TCP_ECN */
1703 
1704 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1705 			/*
1706 			 * Duplicate/old ACK processing.
1707 			 * Increments t_dupacks:
1708 			 *	Pure duplicate (same seq/ack/window, no data)
1709 			 * Doesn't affect t_dupacks:
1710 			 *	Data packets.
1711 			 *	Normal window updates (window opens)
1712 			 * Resets t_dupacks:
1713 			 *	New data ACKed.
1714 			 *	Window shrinks
1715 			 *	Old ACK
1716 			 */
1717 			if (tlen)
1718 				break;
1719 			/*
1720 			 * If we get an old ACK, there is probably packet
1721 			 * reordering going on.  Be conservative and reset
1722 			 * t_dupacks so that we are less agressive in
1723 			 * doing a fast retransmit.
1724 			 */
1725 			if (th->th_ack != tp->snd_una) {
1726 				tp->t_dupacks = 0;
1727 				break;
1728 			}
1729 			if (tiwin == tp->snd_wnd) {
1730 				tcpstat.tcps_rcvdupack++;
1731 				/*
1732 				 * If we have outstanding data (other than
1733 				 * a window probe), this is a completely
1734 				 * duplicate ack (ie, window info didn't
1735 				 * change), the ack is the biggest we've
1736 				 * seen and we've seen exactly our rexmt
1737 				 * threshhold of them, assume a packet
1738 				 * has been dropped and retransmit it.
1739 				 * Kludge snd_nxt & the congestion
1740 				 * window so we send only this one
1741 				 * packet.
1742 				 *
1743 				 * We know we're losing at the current
1744 				 * window size so do congestion avoidance
1745 				 * (set ssthresh to half the current window
1746 				 * and pull our congestion window back to
1747 				 * the new ssthresh).
1748 				 *
1749 				 * Dup acks mean that packets have left the
1750 				 * network (they're now cached at the receiver)
1751 				 * so bump cwnd by the amount in the receiver
1752 				 * to keep a constant cwnd packets in the
1753 				 * network.
1754 				 */
1755 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0)
1756 					tp->t_dupacks = 0;
1757 #if defined(TCP_SACK) && defined(TCP_FACK)
1758 				/*
1759 				 * In FACK, can enter fast rec. if the receiver
1760 				 * reports a reass. queue longer than 3 segs.
1761 				 */
1762 				else if (++tp->t_dupacks == tcprexmtthresh ||
1763 				    ((SEQ_GT(tp->snd_fack, tcprexmtthresh *
1764 				    tp->t_maxseg + tp->snd_una)) &&
1765 				    SEQ_GT(tp->snd_una, tp->snd_last))) {
1766 #else
1767 				else if (++tp->t_dupacks == tcprexmtthresh) {
1768 #endif /* TCP_FACK */
1769 					tcp_seq onxt = tp->snd_nxt;
1770 					u_long win =
1771 					    ulmin(tp->snd_wnd, tp->snd_cwnd) /
1772 						2 / tp->t_maxseg;
1773 
1774 #if defined(TCP_SACK) || defined(TCP_ECN)
1775 					if (SEQ_LT(th->th_ack, tp->snd_last)){
1776 					    	/*
1777 						 * False fast retx after
1778 						 * timeout.  Do not cut window.
1779 						 */
1780 						tp->t_dupacks = 0;
1781 						goto drop;
1782 					}
1783 #endif
1784 					if (win < 2)
1785 						win = 2;
1786 					tp->snd_ssthresh = win * tp->t_maxseg;
1787 #if defined(TCP_SACK)
1788 					tp->snd_last = tp->snd_max;
1789 #endif
1790 #ifdef TCP_SACK
1791                     			if (!tp->sack_disable) {
1792 						TCP_TIMER_DISARM(tp, TCPT_REXMT);
1793 						tp->t_rtttime = 0;
1794 #ifdef TCP_ECN
1795 						tp->t_flags |= TF_SEND_CWR;
1796 #endif
1797 #if 1 /* TCP_ECN */
1798 						tcpstat.tcps_cwr_frecovery++;
1799 #endif
1800 						tcpstat.tcps_sndrexmitfast++;
1801 #if defined(TCP_SACK) && defined(TCP_FACK)
1802 						tp->t_dupacks = tcprexmtthresh;
1803 						(void) tcp_output(tp);
1804 						/*
1805 						 * During FR, snd_cwnd is held
1806 						 * constant for FACK.
1807 						 */
1808 						tp->snd_cwnd = tp->snd_ssthresh;
1809 #else
1810 						/*
1811 						 * tcp_output() will send
1812 						 * oldest SACK-eligible rtx.
1813 						 */
1814 						(void) tcp_output(tp);
1815 						tp->snd_cwnd = tp->snd_ssthresh+
1816 					           tp->t_maxseg * tp->t_dupacks;
1817 #endif /* TCP_FACK */
1818 						goto drop;
1819 					}
1820 #endif /* TCP_SACK */
1821 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1822 					tp->t_rtttime = 0;
1823 					tp->snd_nxt = th->th_ack;
1824 					tp->snd_cwnd = tp->t_maxseg;
1825 #ifdef TCP_ECN
1826 					tp->t_flags |= TF_SEND_CWR;
1827 #endif
1828 #if 1 /* TCP_ECN */
1829 					tcpstat.tcps_cwr_frecovery++;
1830 #endif
1831 					tcpstat.tcps_sndrexmitfast++;
1832 					(void) tcp_output(tp);
1833 
1834 					tp->snd_cwnd = tp->snd_ssthresh +
1835 					    tp->t_maxseg * tp->t_dupacks;
1836 					if (SEQ_GT(onxt, tp->snd_nxt))
1837 						tp->snd_nxt = onxt;
1838 					goto drop;
1839 				} else if (tp->t_dupacks > tcprexmtthresh) {
1840 #if defined(TCP_SACK) && defined(TCP_FACK)
1841 					/*
1842 					 * while (awnd < cwnd)
1843 					 *         sendsomething();
1844 					 */
1845 					if (!tp->sack_disable) {
1846 						if (tp->snd_awnd < tp->snd_cwnd)
1847 							tcp_output(tp);
1848 						goto drop;
1849 					}
1850 #endif /* TCP_FACK */
1851 					tp->snd_cwnd += tp->t_maxseg;
1852 					(void) tcp_output(tp);
1853 					goto drop;
1854 				}
1855 			} else if (tiwin < tp->snd_wnd) {
1856 				/*
1857 				 * The window was retracted!  Previous dup
1858 				 * ACKs may have been due to packets arriving
1859 				 * after the shrunken window, not a missing
1860 				 * packet, so play it safe and reset t_dupacks
1861 				 */
1862 				tp->t_dupacks = 0;
1863 			}
1864 			break;
1865 		}
1866 		/*
1867 		 * If the congestion window was inflated to account
1868 		 * for the other side's cached packets, retract it.
1869 		 */
1870 #if defined(TCP_SACK)
1871 		if (!tp->sack_disable) {
1872 			if (tp->t_dupacks >= tcprexmtthresh) {
1873 				/* Check for a partial ACK */
1874 				if (tcp_sack_partialack(tp, th)) {
1875 #if defined(TCP_SACK) && defined(TCP_FACK)
1876 					/* Force call to tcp_output */
1877 					if (tp->snd_awnd < tp->snd_cwnd)
1878 						needoutput = 1;
1879 #else
1880 					tp->snd_cwnd += tp->t_maxseg;
1881 					needoutput = 1;
1882 #endif /* TCP_FACK */
1883 				} else {
1884 					/* Out of fast recovery */
1885 					tp->snd_cwnd = tp->snd_ssthresh;
1886 					if (tcp_seq_subtract(tp->snd_max,
1887 					    th->th_ack) < tp->snd_ssthresh)
1888 						tp->snd_cwnd =
1889 						   tcp_seq_subtract(tp->snd_max,
1890 					           th->th_ack);
1891 					tp->t_dupacks = 0;
1892 #if defined(TCP_SACK) && defined(TCP_FACK)
1893 					if (SEQ_GT(th->th_ack, tp->snd_fack))
1894 						tp->snd_fack = th->th_ack;
1895 #endif /* TCP_FACK */
1896 				}
1897 			}
1898 		} else {
1899 			if (tp->t_dupacks >= tcprexmtthresh &&
1900 			    !tcp_newreno(tp, th)) {
1901 				/* Out of fast recovery */
1902 				tp->snd_cwnd = tp->snd_ssthresh;
1903 				if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
1904 			  	    tp->snd_ssthresh)
1905 					tp->snd_cwnd =
1906 					    tcp_seq_subtract(tp->snd_max,
1907 					    th->th_ack);
1908 				tp->t_dupacks = 0;
1909 			}
1910 		}
1911 		if (tp->t_dupacks < tcprexmtthresh)
1912 			tp->t_dupacks = 0;
1913 #else /* else no TCP_SACK */
1914 		if (tp->t_dupacks >= tcprexmtthresh &&
1915 		    tp->snd_cwnd > tp->snd_ssthresh)
1916 			tp->snd_cwnd = tp->snd_ssthresh;
1917 		tp->t_dupacks = 0;
1918 #endif
1919 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1920 			tcpstat.tcps_rcvacktoomuch++;
1921 			goto dropafterack;
1922 		}
1923 		acked = th->th_ack - tp->snd_una;
1924 		tcpstat.tcps_rcvackpack++;
1925 		tcpstat.tcps_rcvackbyte += acked;
1926 
1927 		/*
1928 		 * If we have a timestamp reply, update smoothed
1929 		 * round trip time.  If no timestamp is present but
1930 		 * transmit timer is running and timed sequence
1931 		 * number was acked, update smoothed round trip time.
1932 		 * Since we now have an rtt measurement, cancel the
1933 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1934 		 * Recompute the initial retransmit timer.
1935 		 */
1936 		if (ts_present)
1937 			tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
1938 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1939 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1940 
1941 		/*
1942 		 * If all outstanding data is acked, stop retransmit
1943 		 * timer and remember to restart (more output or persist).
1944 		 * If there is more data to be acked, restart retransmit
1945 		 * timer, using current (possibly backed-off) value.
1946 		 */
1947 		if (th->th_ack == tp->snd_max) {
1948 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1949 			needoutput = 1;
1950 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1951 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1952 		/*
1953 		 * When new data is acked, open the congestion window.
1954 		 * If the window gives us less than ssthresh packets
1955 		 * in flight, open exponentially (maxseg per packet).
1956 		 * Otherwise open linearly: maxseg per window
1957 		 * (maxseg^2 / cwnd per packet).
1958 		 */
1959 		{
1960 		u_int cw = tp->snd_cwnd;
1961 		u_int incr = tp->t_maxseg;
1962 
1963 		if (cw > tp->snd_ssthresh)
1964 			incr = incr * incr / cw;
1965 #if defined (TCP_SACK)
1966 		if (tp->t_dupacks < tcprexmtthresh)
1967 #endif
1968 		tp->snd_cwnd = ulmin(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1969 		}
1970 		ND6_HINT(tp);
1971 		if (acked > so->so_snd.sb_cc) {
1972 			tp->snd_wnd -= so->so_snd.sb_cc;
1973 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1974 			ourfinisacked = 1;
1975 		} else {
1976 			sbdrop(&so->so_snd, acked);
1977 			tp->snd_wnd -= acked;
1978 			ourfinisacked = 0;
1979 		}
1980 		if (sb_notify(&so->so_snd))
1981 			sowwakeup(so);
1982 		tp->snd_una = th->th_ack;
1983 #ifdef TCP_ECN
1984 		/* sync snd_last with snd_una */
1985 		if (SEQ_GT(tp->snd_una, tp->snd_last))
1986 			tp->snd_last = tp->snd_una;
1987 #endif
1988 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1989 			tp->snd_nxt = tp->snd_una;
1990 #if defined (TCP_SACK) && defined (TCP_FACK)
1991 		if (SEQ_GT(tp->snd_una, tp->snd_fack)) {
1992 			tp->snd_fack = tp->snd_una;
1993 			/* Update snd_awnd for partial ACK
1994 			 * without any SACK blocks.
1995 			 */
1996 			tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt,
1997 				tp->snd_fack) + tp->retran_data;
1998 		}
1999 #endif
2000 
2001 		switch (tp->t_state) {
2002 
2003 		/*
2004 		 * In FIN_WAIT_1 STATE in addition to the processing
2005 		 * for the ESTABLISHED state if our FIN is now acknowledged
2006 		 * then enter FIN_WAIT_2.
2007 		 */
2008 		case TCPS_FIN_WAIT_1:
2009 			if (ourfinisacked) {
2010 				/*
2011 				 * If we can't receive any more
2012 				 * data, then closing user can proceed.
2013 				 * Starting the timer is contrary to the
2014 				 * specification, but if we don't get a FIN
2015 				 * we'll hang forever.
2016 				 */
2017 				if (so->so_state & SS_CANTRCVMORE) {
2018 					soisdisconnected(so);
2019 					TCP_TIMER_ARM(tp, TCPT_2MSL, tcp_maxidle);
2020 				}
2021 				tp->t_state = TCPS_FIN_WAIT_2;
2022 			}
2023 			break;
2024 
2025 		/*
2026 		 * In CLOSING STATE in addition to the processing for
2027 		 * the ESTABLISHED state if the ACK acknowledges our FIN
2028 		 * then enter the TIME-WAIT state, otherwise ignore
2029 		 * the segment.
2030 		 */
2031 		case TCPS_CLOSING:
2032 			if (ourfinisacked) {
2033 				tp->t_state = TCPS_TIME_WAIT;
2034 				tcp_canceltimers(tp);
2035 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2036 				soisdisconnected(so);
2037 			}
2038 			break;
2039 
2040 		/*
2041 		 * In LAST_ACK, we may still be waiting for data to drain
2042 		 * and/or to be acked, as well as for the ack of our FIN.
2043 		 * If our FIN is now acknowledged, delete the TCB,
2044 		 * enter the closed state and return.
2045 		 */
2046 		case TCPS_LAST_ACK:
2047 			if (ourfinisacked) {
2048 				tp = tcp_close(tp);
2049 				goto drop;
2050 			}
2051 			break;
2052 
2053 		/*
2054 		 * In TIME_WAIT state the only thing that should arrive
2055 		 * is a retransmission of the remote FIN.  Acknowledge
2056 		 * it and restart the finack timer.
2057 		 */
2058 		case TCPS_TIME_WAIT:
2059 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2060 			goto dropafterack;
2061 		}
2062 	}
2063 
2064 step6:
2065 	/*
2066 	 * Update window information.
2067 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2068 	 */
2069 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2070 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2071 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2072 		/* keep track of pure window updates */
2073 		if (tlen == 0 &&
2074 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2075 			tcpstat.tcps_rcvwinupd++;
2076 		tp->snd_wnd = tiwin;
2077 		tp->snd_wl1 = th->th_seq;
2078 		tp->snd_wl2 = th->th_ack;
2079 		if (tp->snd_wnd > tp->max_sndwnd)
2080 			tp->max_sndwnd = tp->snd_wnd;
2081 		needoutput = 1;
2082 	}
2083 
2084 	/*
2085 	 * Process segments with URG.
2086 	 */
2087 	if ((tiflags & TH_URG) && th->th_urp &&
2088 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2089 		/*
2090 		 * This is a kludge, but if we receive and accept
2091 		 * random urgent pointers, we'll crash in
2092 		 * soreceive.  It's hard to imagine someone
2093 		 * actually wanting to send this much urgent data.
2094 		 */
2095 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2096 			th->th_urp = 0;			/* XXX */
2097 			tiflags &= ~TH_URG;		/* XXX */
2098 			goto dodata;			/* XXX */
2099 		}
2100 		/*
2101 		 * If this segment advances the known urgent pointer,
2102 		 * then mark the data stream.  This should not happen
2103 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2104 		 * a FIN has been received from the remote side.
2105 		 * In these states we ignore the URG.
2106 		 *
2107 		 * According to RFC961 (Assigned Protocols),
2108 		 * the urgent pointer points to the last octet
2109 		 * of urgent data.  We continue, however,
2110 		 * to consider it to indicate the first octet
2111 		 * of data past the urgent section as the original
2112 		 * spec states (in one of two places).
2113 		 */
2114 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2115 			tp->rcv_up = th->th_seq + th->th_urp;
2116 			so->so_oobmark = so->so_rcv.sb_cc +
2117 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2118 			if (so->so_oobmark == 0)
2119 				so->so_state |= SS_RCVATMARK;
2120 			sohasoutofband(so);
2121 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2122 		}
2123 		/*
2124 		 * Remove out of band data so doesn't get presented to user.
2125 		 * This can happen independent of advancing the URG pointer,
2126 		 * but if two URG's are pending at once, some out-of-band
2127 		 * data may creep in... ick.
2128 		 */
2129 		if (th->th_urp <= (u_int16_t) tlen
2130 #ifdef SO_OOBINLINE
2131 		     && (so->so_options & SO_OOBINLINE) == 0
2132 #endif
2133 		     )
2134 		        tcp_pulloutofband(so, th->th_urp, m, hdroptlen);
2135 	} else
2136 		/*
2137 		 * If no out of band data is expected,
2138 		 * pull receive urgent pointer along
2139 		 * with the receive window.
2140 		 */
2141 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2142 			tp->rcv_up = tp->rcv_nxt;
2143 dodata:							/* XXX */
2144 
2145 	/*
2146 	 * Process the segment text, merging it into the TCP sequencing queue,
2147 	 * and arranging for acknowledgment of receipt if necessary.
2148 	 * This process logically involves adjusting tp->rcv_wnd as data
2149 	 * is presented to the user (this happens in tcp_usrreq.c,
2150 	 * case PRU_RCVD).  If a FIN has already been received on this
2151 	 * connection then we just ignore the text.
2152 	 */
2153 	if ((tlen || (tiflags & TH_FIN)) &&
2154 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2155 		if (th->th_seq == tp->rcv_nxt && tp->segq.lh_first == NULL &&
2156 		    tp->t_state == TCPS_ESTABLISHED) {
2157 			TCP_SETUP_ACK(tp, tiflags);
2158 			tp->rcv_nxt += tlen;
2159 			tiflags = th->th_flags & TH_FIN;
2160 			tcpstat.tcps_rcvpack++;
2161 			tcpstat.tcps_rcvbyte += tlen;
2162 			ND6_HINT(tp);
2163 			if (so->so_state & SS_CANTRCVMORE)
2164 				m_freem(m);
2165 			else {
2166 				m_adj(m, hdroptlen);
2167 				sbappendstream(&so->so_rcv, m);
2168 			}
2169 			sorwakeup(so);
2170 		} else {
2171 			m_adj(m, hdroptlen);
2172 			tiflags = tcp_reass(tp, th, m, &tlen);
2173 			tp->t_flags |= TF_ACKNOW;
2174 		}
2175 #ifdef TCP_SACK
2176 		if (!tp->sack_disable)
2177 			tcp_update_sack_list(tp);
2178 #endif
2179 
2180 		/*
2181 		 * variable len never referenced again in modern BSD,
2182 		 * so why bother computing it ??
2183 		 */
2184 #if 0
2185 		/*
2186 		 * Note the amount of data that peer has sent into
2187 		 * our window, in order to estimate the sender's
2188 		 * buffer size.
2189 		 */
2190 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2191 #endif /* 0 */
2192 	} else {
2193 		m_freem(m);
2194 		tiflags &= ~TH_FIN;
2195 	}
2196 
2197 	/*
2198 	 * If FIN is received ACK the FIN and let the user know
2199 	 * that the connection is closing.  Ignore a FIN received before
2200 	 * the connection is fully established.
2201 	 */
2202 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2203 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2204 			socantrcvmore(so);
2205 			tp->t_flags |= TF_ACKNOW;
2206 			tp->rcv_nxt++;
2207 		}
2208 		switch (tp->t_state) {
2209 
2210 		/*
2211 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2212 		 */
2213 		case TCPS_ESTABLISHED:
2214 			tp->t_state = TCPS_CLOSE_WAIT;
2215 			break;
2216 
2217 		/*
2218 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2219 		 * enter the CLOSING state.
2220 		 */
2221 		case TCPS_FIN_WAIT_1:
2222 			tp->t_state = TCPS_CLOSING;
2223 			break;
2224 
2225 		/*
2226 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2227 		 * starting the time-wait timer, turning off the other
2228 		 * standard timers.
2229 		 */
2230 		case TCPS_FIN_WAIT_2:
2231 			tp->t_state = TCPS_TIME_WAIT;
2232 			tcp_canceltimers(tp);
2233 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2234 			soisdisconnected(so);
2235 			break;
2236 
2237 		/*
2238 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2239 		 */
2240 		case TCPS_TIME_WAIT:
2241 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2242 			break;
2243 		}
2244 	}
2245 	if (so->so_options & SO_DEBUG) {
2246 		switch (tp->pf == PF_INET6) {
2247 #ifdef INET6
2248 		case PF_INET6:
2249 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti6,
2250 			    0, tlen);
2251 			break;
2252 #endif /* INET6 */
2253 		case PF_INET:
2254 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti,
2255 			    0, tlen);
2256 			break;
2257 		}
2258 	}
2259 
2260 	/*
2261 	 * Return any desired output.
2262 	 */
2263 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2264 		(void) tcp_output(tp);
2265 	}
2266 	return;
2267 
2268 dropafterack:
2269 	/*
2270 	 * Generate an ACK dropping incoming segment if it occupies
2271 	 * sequence space, where the ACK reflects our state.
2272 	 */
2273 	if (tiflags & TH_RST)
2274 		goto drop;
2275 	m_freem(m);
2276 	tp->t_flags |= TF_ACKNOW;
2277 	(void) tcp_output(tp);
2278 	return;
2279 
2280 dropwithreset_ratelim:
2281 	/*
2282 	 * We may want to rate-limit RSTs in certain situations,
2283 	 * particularly if we are sending an RST in response to
2284 	 * an attempt to connect to or otherwise communicate with
2285 	 * a port for which we have no socket.
2286 	 */
2287 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2288 	    tcp_rst_ppslim) == 0) {
2289 		/* XXX stat */
2290 		goto drop;
2291 	}
2292 	/* ...fall into dropwithreset... */
2293 
2294 dropwithreset:
2295 	/*
2296 	 * Generate a RST, dropping incoming segment.
2297 	 * Make ACK acceptable to originator of segment.
2298 	 * Don't bother to respond if destination was broadcast/multicast.
2299 	 */
2300 	if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
2301 		goto drop;
2302 	switch (af) {
2303 #ifdef INET6
2304 	case AF_INET6:
2305 		/* For following calls to tcp_respond */
2306 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2307 			goto drop;
2308 		break;
2309 #endif /* INET6 */
2310 	case AF_INET:
2311 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2312 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2313 			goto drop;
2314 	}
2315 	if (tiflags & TH_ACK) {
2316 		tcp_respond(tp, mtod(m, caddr_t), m, (tcp_seq)0, th->th_ack,
2317 		    TH_RST);
2318 	} else {
2319 		if (tiflags & TH_SYN)
2320 			tlen++;
2321 		tcp_respond(tp, mtod(m, caddr_t), m, th->th_seq + tlen,
2322 		    (tcp_seq)0, TH_RST|TH_ACK);
2323 	}
2324 	/* destroy temporarily created socket */
2325 	if (dropsocket)
2326 		(void) soabort(so);
2327 	return;
2328 
2329 drop:
2330 	/*
2331 	 * Drop space held by incoming segment and return.
2332 	 */
2333 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
2334 		switch (tp->pf) {
2335 #ifdef INET6
2336 		case PF_INET6:
2337 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti6,
2338 			    0, tlen);
2339 			break;
2340 #endif /* INET6 */
2341 		case PF_INET:
2342 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti,
2343 			    0, tlen);
2344 			break;
2345 		}
2346 	}
2347 
2348 	m_freem(m);
2349 	/* destroy temporarily created socket */
2350 	if (dropsocket)
2351 		(void) soabort(so);
2352 	return;
2353 #ifndef TUBA_INCLUDE
2354 }
2355 
2356 void
2357 tcp_dooptions(tp, cp, cnt, th, ts_present, ts_val, ts_ecr)
2358 	struct tcpcb *tp;
2359 	u_char *cp;
2360 	int cnt;
2361 	struct tcphdr *th;
2362 	int *ts_present;
2363 	u_int32_t *ts_val, *ts_ecr;
2364 {
2365 	u_int16_t mss = 0;
2366 	int opt, optlen;
2367 
2368 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
2369 		opt = cp[0];
2370 		if (opt == TCPOPT_EOL)
2371 			break;
2372 		if (opt == TCPOPT_NOP)
2373 			optlen = 1;
2374 		else {
2375 			if (cnt < 2)
2376 				break;
2377 			optlen = cp[1];
2378 			if (optlen < 2 || optlen > cnt)
2379 				break;
2380 		}
2381 		switch (opt) {
2382 
2383 		default:
2384 			continue;
2385 
2386 		case TCPOPT_MAXSEG:
2387 			if (optlen != TCPOLEN_MAXSEG)
2388 				continue;
2389 			if (!(th->th_flags & TH_SYN))
2390 				continue;
2391 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
2392 			NTOHS(mss);
2393 			break;
2394 
2395 		case TCPOPT_WINDOW:
2396 			if (optlen != TCPOLEN_WINDOW)
2397 				continue;
2398 			if (!(th->th_flags & TH_SYN))
2399 				continue;
2400 			tp->t_flags |= TF_RCVD_SCALE;
2401 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2402 			break;
2403 
2404 		case TCPOPT_TIMESTAMP:
2405 			if (optlen != TCPOLEN_TIMESTAMP)
2406 				continue;
2407 			*ts_present = 1;
2408 			bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val));
2409 			NTOHL(*ts_val);
2410 			bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
2411 			NTOHL(*ts_ecr);
2412 
2413 			/*
2414 			 * A timestamp received in a SYN makes
2415 			 * it ok to send timestamp requests and replies.
2416 			 */
2417 			if (th->th_flags & TH_SYN) {
2418 				tp->t_flags |= TF_RCVD_TSTMP;
2419 				tp->ts_recent = *ts_val;
2420 				tp->ts_recent_age = tcp_now;
2421 			}
2422 			break;
2423 
2424 #ifdef TCP_SACK
2425 		case TCPOPT_SACK_PERMITTED:
2426 			if (tp->sack_disable || optlen!=TCPOLEN_SACK_PERMITTED)
2427 				continue;
2428 			if (th->th_flags & TH_SYN)
2429 				/* MUST only be set on SYN */
2430 				tp->t_flags |= TF_SACK_PERMIT;
2431 			break;
2432 		case TCPOPT_SACK:
2433 			if (tcp_sack_option(tp, th, cp, optlen))
2434 				continue;
2435 			break;
2436 #endif
2437 		}
2438 	}
2439 	/* Update t_maxopd and t_maxseg after all options are processed */
2440 	if (th->th_flags & TH_SYN) {
2441 		(void) tcp_mss(tp, mss);	/* sets t_maxseg */
2442 
2443 		if (mss)
2444 			tcp_mss_update(tp);
2445 	}
2446 }
2447 
2448 #if defined(TCP_SACK)
2449 u_long
2450 tcp_seq_subtract(a, b)
2451 	u_long a, b;
2452 {
2453 	return ((long)(a - b));
2454 }
2455 #endif
2456 
2457 
2458 #ifdef TCP_SACK
2459 /*
2460  * This function is called upon receipt of new valid data (while not in header
2461  * prediction mode), and it updates the ordered list of sacks.
2462  */
2463 void
2464 tcp_update_sack_list(tp)
2465 	struct tcpcb *tp;
2466 {
2467 	/*
2468 	 * First reported block MUST be the most recent one.  Subsequent
2469 	 * blocks SHOULD be in the order in which they arrived at the
2470 	 * receiver.  These two conditions make the implementation fully
2471 	 * compliant with RFC 2018.
2472 	 */
2473 	int i, j = 0, count = 0, lastpos = -1;
2474 	struct sackblk sack, firstsack, temp[MAX_SACK_BLKS];
2475 
2476 	/* First clean up current list of sacks */
2477 	for (i = 0; i < tp->rcv_numsacks; i++) {
2478 		sack = tp->sackblks[i];
2479 		if (sack.start == 0 && sack.end == 0) {
2480 			count++; /* count = number of blocks to be discarded */
2481 			continue;
2482 		}
2483 		if (SEQ_LEQ(sack.end, tp->rcv_nxt)) {
2484 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2485 			count++;
2486 		} else {
2487 			temp[j].start = tp->sackblks[i].start;
2488 			temp[j++].end = tp->sackblks[i].end;
2489 		}
2490 	}
2491 	tp->rcv_numsacks -= count;
2492 	if (tp->rcv_numsacks == 0) { /* no sack blocks currently (fast path) */
2493 		tcp_clean_sackreport(tp);
2494 		if (SEQ_LT(tp->rcv_nxt, tp->rcv_laststart)) {
2495 			/* ==> need first sack block */
2496 			tp->sackblks[0].start = tp->rcv_laststart;
2497 			tp->sackblks[0].end = tp->rcv_lastend;
2498 			tp->rcv_numsacks = 1;
2499 		}
2500 		return;
2501 	}
2502 	/* Otherwise, sack blocks are already present. */
2503 	for (i = 0; i < tp->rcv_numsacks; i++)
2504 		tp->sackblks[i] = temp[i]; /* first copy back sack list */
2505 	if (SEQ_GEQ(tp->rcv_nxt, tp->rcv_lastend))
2506 		return;     /* sack list remains unchanged */
2507 	/*
2508 	 * From here, segment just received should be (part of) the 1st sack.
2509 	 * Go through list, possibly coalescing sack block entries.
2510 	 */
2511 	firstsack.start = tp->rcv_laststart;
2512 	firstsack.end = tp->rcv_lastend;
2513 	for (i = 0; i < tp->rcv_numsacks; i++) {
2514 		sack = tp->sackblks[i];
2515 		if (SEQ_LT(sack.end, firstsack.start) ||
2516 		    SEQ_GT(sack.start, firstsack.end))
2517 			continue; /* no overlap */
2518 		if (sack.start == firstsack.start && sack.end == firstsack.end){
2519 			/*
2520 			 * identical block; delete it here since we will
2521 			 * move it to the front of the list.
2522 			 */
2523 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2524 			lastpos = i;    /* last posn with a zero entry */
2525 			continue;
2526 		}
2527 		if (SEQ_LEQ(sack.start, firstsack.start))
2528 			firstsack.start = sack.start; /* merge blocks */
2529 		if (SEQ_GEQ(sack.end, firstsack.end))
2530 			firstsack.end = sack.end;     /* merge blocks */
2531 		tp->sackblks[i].start = tp->sackblks[i].end = 0;
2532 		lastpos = i;    /* last posn with a zero entry */
2533 	}
2534 	if (lastpos != -1) {    /* at least one merge */
2535 		for (i = 0, j = 1; i < tp->rcv_numsacks; i++) {
2536 			sack = tp->sackblks[i];
2537 			if (sack.start == 0 && sack.end == 0)
2538 				continue;
2539 			temp[j++] = sack;
2540 		}
2541 		tp->rcv_numsacks = j; /* including first blk (added later) */
2542 		for (i = 1; i < tp->rcv_numsacks; i++) /* now copy back */
2543 			tp->sackblks[i] = temp[i];
2544 	} else {        /* no merges -- shift sacks by 1 */
2545 		if (tp->rcv_numsacks < MAX_SACK_BLKS)
2546 			tp->rcv_numsacks++;
2547 		for (i = tp->rcv_numsacks-1; i > 0; i--)
2548 			tp->sackblks[i] = tp->sackblks[i-1];
2549 	}
2550 	tp->sackblks[0] = firstsack;
2551 	return;
2552 }
2553 
2554 /*
2555  * Process the TCP SACK option.  Returns 1 if tcp_dooptions() should continue,
2556  * and 0 otherwise, if the option was fine.  tp->snd_holes is an ordered list
2557  * of holes (oldest to newest, in terms of the sequence space).
2558  */
2559 int
2560 tcp_sack_option(struct tcpcb *tp, struct tcphdr *th, u_char *cp, int optlen)
2561 {
2562 	int tmp_olen;
2563 	u_char *tmp_cp;
2564 	struct sackhole *cur, *p, *temp;
2565 
2566 	if (tp->sack_disable)
2567 		return (1);
2568 
2569 	/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2570 	if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2571 		return (1);
2572 	tmp_cp = cp + 2;
2573 	tmp_olen = optlen - 2;
2574 	if (tp->snd_numholes < 0)
2575 		tp->snd_numholes = 0;
2576 	if (tp->t_maxseg == 0)
2577 		panic("tcp_sack_option"); /* Should never happen */
2578 	while (tmp_olen > 0) {
2579 		struct sackblk sack;
2580 
2581 		bcopy(tmp_cp, (char *) &(sack.start), sizeof(tcp_seq));
2582 		NTOHL(sack.start);
2583 		bcopy(tmp_cp + sizeof(tcp_seq),
2584 		    (char *) &(sack.end), sizeof(tcp_seq));
2585 		NTOHL(sack.end);
2586 		tmp_olen -= TCPOLEN_SACK;
2587 		tmp_cp += TCPOLEN_SACK;
2588 		if (SEQ_LEQ(sack.end, sack.start))
2589 			continue; /* bad SACK fields */
2590 		if (SEQ_LEQ(sack.end, tp->snd_una))
2591 			continue; /* old block */
2592 #if defined(TCP_SACK) && defined(TCP_FACK)
2593 		/* Updates snd_fack.  */
2594 		if (SEQ_GT(sack.end, tp->snd_fack))
2595 			tp->snd_fack = sack.end;
2596 #endif /* TCP_FACK */
2597 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
2598 			if (SEQ_LT(sack.start, th->th_ack))
2599 				continue;
2600 		}
2601 		if (SEQ_GT(sack.end, tp->snd_max))
2602 			continue;
2603 		if (tp->snd_holes == NULL) { /* first hole */
2604 			tp->snd_holes = (struct sackhole *)
2605 			    pool_get(&sackhl_pool, PR_NOWAIT);
2606 			if (tp->snd_holes == NULL) {
2607 				/* ENOBUFS, so ignore SACKed block for now*/
2608 				continue;
2609 			}
2610 			cur = tp->snd_holes;
2611 			cur->start = th->th_ack;
2612 			cur->end = sack.start;
2613 			cur->rxmit = cur->start;
2614 			cur->next = NULL;
2615 			tp->snd_numholes = 1;
2616 			tp->rcv_lastsack = sack.end;
2617 			/*
2618 			 * dups is at least one.  If more data has been
2619 			 * SACKed, it can be greater than one.
2620 			 */
2621 			cur->dups = min(tcprexmtthresh,
2622 			    ((sack.end - cur->end)/tp->t_maxseg));
2623 			if (cur->dups < 1)
2624 				cur->dups = 1;
2625 			continue; /* with next sack block */
2626 		}
2627 		/* Go thru list of holes:  p = previous,  cur = current */
2628 		p = cur = tp->snd_holes;
2629 		while (cur) {
2630 			if (SEQ_LEQ(sack.end, cur->start))
2631 				/* SACKs data before the current hole */
2632 				break; /* no use going through more holes */
2633 			if (SEQ_GEQ(sack.start, cur->end)) {
2634 				/* SACKs data beyond the current hole */
2635 				cur->dups++;
2636 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2637 				    tcprexmtthresh)
2638 					cur->dups = tcprexmtthresh;
2639 				p = cur;
2640 				cur = cur->next;
2641 				continue;
2642 			}
2643 			if (SEQ_LEQ(sack.start, cur->start)) {
2644 				/* Data acks at least the beginning of hole */
2645 #if defined(TCP_SACK) && defined(TCP_FACK)
2646 				if (SEQ_GT(sack.end, cur->rxmit))
2647 					tp->retran_data -=
2648 				    	    tcp_seq_subtract(cur->rxmit,
2649 					    cur->start);
2650 				else
2651 					tp->retran_data -=
2652 					    tcp_seq_subtract(sack.end,
2653 					    cur->start);
2654 #endif /* TCP_FACK */
2655 				if (SEQ_GEQ(sack.end, cur->end)) {
2656 					/* Acks entire hole, so delete hole */
2657 					if (p != cur) {
2658 						p->next = cur->next;
2659 						pool_put(&sackhl_pool, cur);
2660 						cur = p->next;
2661 					} else {
2662 						cur = cur->next;
2663 						pool_put(&sackhl_pool, p);
2664 						p = cur;
2665 						tp->snd_holes = p;
2666 					}
2667 					tp->snd_numholes--;
2668 					continue;
2669 				}
2670 				/* otherwise, move start of hole forward */
2671 				cur->start = sack.end;
2672 				cur->rxmit = max (cur->rxmit, cur->start);
2673 				p = cur;
2674 				cur = cur->next;
2675 				continue;
2676 			}
2677 			/* move end of hole backward */
2678 			if (SEQ_GEQ(sack.end, cur->end)) {
2679 #if defined(TCP_SACK) && defined(TCP_FACK)
2680 				if (SEQ_GT(cur->rxmit, sack.start))
2681 					tp->retran_data -=
2682 					    tcp_seq_subtract(cur->rxmit,
2683 					    sack.start);
2684 #endif /* TCP_FACK */
2685 				cur->end = sack.start;
2686 				cur->rxmit = min(cur->rxmit, cur->end);
2687 				cur->dups++;
2688 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2689 				    tcprexmtthresh)
2690 					cur->dups = tcprexmtthresh;
2691 				p = cur;
2692 				cur = cur->next;
2693 				continue;
2694 			}
2695 			if (SEQ_LT(cur->start, sack.start) &&
2696 			    SEQ_GT(cur->end, sack.end)) {
2697 				/*
2698 				 * ACKs some data in middle of a hole; need to
2699 				 * split current hole
2700 				 */
2701 				temp = (struct sackhole *)
2702 				    pool_get(&sackhl_pool, PR_NOWAIT);
2703 				if (temp == NULL)
2704 					continue; /* ENOBUFS */
2705 #if defined(TCP_SACK) && defined(TCP_FACK)
2706 				if (SEQ_GT(cur->rxmit, sack.end))
2707 					tp->retran_data -=
2708 					    tcp_seq_subtract(sack.end,
2709 					    sack.start);
2710 				else if (SEQ_GT(cur->rxmit, sack.start))
2711 					tp->retran_data -=
2712 					    tcp_seq_subtract(cur->rxmit,
2713 					    sack.start);
2714 #endif /* TCP_FACK */
2715 				temp->next = cur->next;
2716 				temp->start = sack.end;
2717 				temp->end = cur->end;
2718 				temp->dups = cur->dups;
2719 				temp->rxmit = max(cur->rxmit, temp->start);
2720 				cur->end = sack.start;
2721 				cur->rxmit = min(cur->rxmit, cur->end);
2722 				cur->dups++;
2723 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2724 					tcprexmtthresh)
2725 					cur->dups = tcprexmtthresh;
2726 				cur->next = temp;
2727 				p = temp;
2728 				cur = p->next;
2729 				tp->snd_numholes++;
2730 			}
2731 		}
2732 		/* At this point, p points to the last hole on the list */
2733 		if (SEQ_LT(tp->rcv_lastsack, sack.start)) {
2734 			/*
2735 			 * Need to append new hole at end.
2736 			 * Last hole is p (and it's not NULL).
2737 			 */
2738 			temp = (struct sackhole *)
2739 			    pool_get(&sackhl_pool, PR_NOWAIT);
2740 			if (temp == NULL)
2741 				continue; /* ENOBUFS */
2742 			temp->start = tp->rcv_lastsack;
2743 			temp->end = sack.start;
2744 			temp->dups = min(tcprexmtthresh,
2745 			    ((sack.end - sack.start)/tp->t_maxseg));
2746 			if (temp->dups < 1)
2747 				temp->dups = 1;
2748 			temp->rxmit = temp->start;
2749 			temp->next = 0;
2750 			p->next = temp;
2751 			tp->rcv_lastsack = sack.end;
2752 			tp->snd_numholes++;
2753 		}
2754 	}
2755 #if defined(TCP_SACK) && defined(TCP_FACK)
2756 	/*
2757 	 * Update retran_data and snd_awnd.  Go through the list of
2758 	 * holes.   Increment retran_data by (hole->rxmit - hole->start).
2759 	 */
2760 	tp->retran_data = 0;
2761 	cur = tp->snd_holes;
2762 	while (cur) {
2763 		tp->retran_data += cur->rxmit - cur->start;
2764 		cur = cur->next;
2765 	}
2766 	tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt, tp->snd_fack) +
2767 	    tp->retran_data;
2768 #endif /* TCP_FACK */
2769 
2770 	return (0);
2771 }
2772 
2773 /*
2774  * Delete stale (i.e, cumulatively ack'd) holes.  Hole is deleted only if
2775  * it is completely acked; otherwise, tcp_sack_option(), called from
2776  * tcp_dooptions(), will fix up the hole.
2777  */
2778 void
2779 tcp_del_sackholes(tp, th)
2780 	struct tcpcb *tp;
2781 	struct tcphdr *th;
2782 {
2783 	if (!tp->sack_disable && tp->t_state != TCPS_LISTEN) {
2784 		/* max because this could be an older ack just arrived */
2785 		tcp_seq lastack = SEQ_GT(th->th_ack, tp->snd_una) ?
2786 			th->th_ack : tp->snd_una;
2787 		struct sackhole *cur = tp->snd_holes;
2788 		struct sackhole *prev;
2789 		while (cur)
2790 			if (SEQ_LEQ(cur->end, lastack)) {
2791 				prev = cur;
2792 				cur = cur->next;
2793 				pool_put(&sackhl_pool, prev);
2794 				tp->snd_numholes--;
2795 			} else if (SEQ_LT(cur->start, lastack)) {
2796 				cur->start = lastack;
2797 				if (SEQ_LT(cur->rxmit, cur->start))
2798 					cur->rxmit = cur->start;
2799 				break;
2800 			} else
2801 				break;
2802 		tp->snd_holes = cur;
2803 	}
2804 }
2805 
2806 /*
2807  * Delete all receiver-side SACK information.
2808  */
2809 void
2810 tcp_clean_sackreport(tp)
2811 	struct tcpcb *tp;
2812 {
2813 	int i;
2814 
2815 	tp->rcv_numsacks = 0;
2816 	for (i = 0; i < MAX_SACK_BLKS; i++)
2817 		tp->sackblks[i].start = tp->sackblks[i].end=0;
2818 
2819 }
2820 
2821 /*
2822  * Checks for partial ack.  If partial ack arrives, turn off retransmission
2823  * timer, deflate the window, do not clear tp->t_dupacks, and return 1.
2824  * If the ack advances at least to tp->snd_last, return 0.
2825  */
2826 int
2827 tcp_sack_partialack(tp, th)
2828 	struct tcpcb *tp;
2829 	struct tcphdr *th;
2830 {
2831 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
2832 		/* Turn off retx. timer (will start again next segment) */
2833 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2834 		tp->t_rtttime = 0;
2835 #ifndef TCP_FACK
2836 		/*
2837 		 * Partial window deflation.  This statement relies on the
2838 		 * fact that tp->snd_una has not been updated yet.  In FACK
2839 		 * hold snd_cwnd constant during fast recovery.
2840 		 */
2841 		if (tp->snd_cwnd > (th->th_ack - tp->snd_una)) {
2842 			tp->snd_cwnd -= th->th_ack - tp->snd_una;
2843 			tp->snd_cwnd += tp->t_maxseg;
2844 		} else
2845 			tp->snd_cwnd = tp->t_maxseg;
2846 #endif
2847 		return (1);
2848 	}
2849 	return (0);
2850 }
2851 #endif /* TCP_SACK */
2852 
2853 /*
2854  * Pull out of band byte out of a segment so
2855  * it doesn't appear in the user's data queue.
2856  * It is still reflected in the segment length for
2857  * sequencing purposes.
2858  */
2859 void
2860 tcp_pulloutofband(so, urgent, m, off)
2861 	struct socket *so;
2862 	u_int urgent;
2863 	struct mbuf *m;
2864 	int off;
2865 {
2866         int cnt = off + urgent - 1;
2867 
2868 	while (cnt >= 0) {
2869 		if (m->m_len > cnt) {
2870 			char *cp = mtod(m, caddr_t) + cnt;
2871 			struct tcpcb *tp = sototcpcb(so);
2872 
2873 			tp->t_iobc = *cp;
2874 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2875 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2876 			m->m_len--;
2877 			return;
2878 		}
2879 		cnt -= m->m_len;
2880 		m = m->m_next;
2881 		if (m == 0)
2882 			break;
2883 	}
2884 	panic("tcp_pulloutofband");
2885 }
2886 
2887 /*
2888  * Collect new round-trip time estimate
2889  * and update averages and current timeout.
2890  */
2891 void
2892 tcp_xmit_timer(tp, rtt)
2893 	struct tcpcb *tp;
2894 	short rtt;
2895 {
2896 	short delta;
2897 	short rttmin;
2898 
2899 	tcpstat.tcps_rttupdated++;
2900 	--rtt;
2901 	if (tp->t_srtt != 0) {
2902 		/*
2903 		 * srtt is stored as fixed point with 3 bits after the
2904 		 * binary point (i.e., scaled by 8).  The following magic
2905 		 * is equivalent to the smoothing algorithm in rfc793 with
2906 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2907 		 * point).  Adjust rtt to origin 0.
2908 		 */
2909 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2910 		if ((tp->t_srtt += delta) <= 0)
2911 			tp->t_srtt = 1;
2912 		/*
2913 		 * We accumulate a smoothed rtt variance (actually, a
2914 		 * smoothed mean difference), then set the retransmit
2915 		 * timer to smoothed rtt + 4 times the smoothed variance.
2916 		 * rttvar is stored as fixed point with 2 bits after the
2917 		 * binary point (scaled by 4).  The following is
2918 		 * equivalent to rfc793 smoothing with an alpha of .75
2919 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2920 		 * rfc793's wired-in beta.
2921 		 */
2922 		if (delta < 0)
2923 			delta = -delta;
2924 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2925 		if ((tp->t_rttvar += delta) <= 0)
2926 			tp->t_rttvar = 1;
2927 	} else {
2928 		/*
2929 		 * No rtt measurement yet - use the unsmoothed rtt.
2930 		 * Set the variance to half the rtt (so our first
2931 		 * retransmit happens at 3*rtt).
2932 		 */
2933 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2934 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2935 	}
2936 	tp->t_rtttime = 0;
2937 	tp->t_rxtshift = 0;
2938 
2939 	/*
2940 	 * the retransmit should happen at rtt + 4 * rttvar.
2941 	 * Because of the way we do the smoothing, srtt and rttvar
2942 	 * will each average +1/2 tick of bias.  When we compute
2943 	 * the retransmit timer, we want 1/2 tick of rounding and
2944 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2945 	 * firing of the timer.  The bias will give us exactly the
2946 	 * 1.5 tick we need.  But, because the bias is
2947 	 * statistical, we have to test that we don't drop below
2948 	 * the minimum feasible timer (which is 2 ticks).
2949 	 */
2950 	if (tp->t_rttmin > rtt + 2)
2951 		rttmin = tp->t_rttmin;
2952 	else
2953 		rttmin = rtt + 2;
2954 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2955 
2956 	/*
2957 	 * We received an ack for a packet that wasn't retransmitted;
2958 	 * it is probably safe to discard any error indications we've
2959 	 * received recently.  This isn't quite right, but close enough
2960 	 * for now (a route might have failed after we sent a segment,
2961 	 * and the return path might not be symmetrical).
2962 	 */
2963 	tp->t_softerror = 0;
2964 }
2965 
2966 /*
2967  * Determine a reasonable value for maxseg size.
2968  * If the route is known, check route for mtu.
2969  * If none, use an mss that can be handled on the outgoing
2970  * interface without forcing IP to fragment; if bigger than
2971  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2972  * to utilize large mbufs.  If no route is found, route has no mtu,
2973  * or the destination isn't local, use a default, hopefully conservative
2974  * size (usually 512 or the default IP max size, but no more than the mtu
2975  * of the interface), as we can't discover anything about intervening
2976  * gateways or networks.  We also initialize the congestion/slow start
2977  * window to be a single segment if the destination isn't local.
2978  * While looking at the routing entry, we also initialize other path-dependent
2979  * parameters from pre-set or cached values in the routing entry.
2980  *
2981  * Also take into account the space needed for options that we
2982  * send regularly.  Make maxseg shorter by that amount to assure
2983  * that we can send maxseg amount of data even when the options
2984  * are present.  Store the upper limit of the length of options plus
2985  * data in maxopd.
2986  *
2987  * NOTE: offer == -1 indicates that the maxseg size changed due to
2988  * Path MTU discovery.
2989  */
2990 int
2991 tcp_mss(tp, offer)
2992 	struct tcpcb *tp;
2993 	int offer;
2994 {
2995 	struct rtentry *rt;
2996 	struct ifnet *ifp;
2997 	int mss, mssopt;
2998 	int iphlen;
2999 	struct inpcb *inp;
3000 
3001 	inp = tp->t_inpcb;
3002 
3003 	mssopt = mss = tcp_mssdflt;
3004 
3005 	rt = in_pcbrtentry(inp);
3006 
3007 	if (rt == NULL)
3008 		goto out;
3009 
3010 	ifp = rt->rt_ifp;
3011 
3012 	switch (tp->pf) {
3013 #ifdef INET6
3014 	case AF_INET6:
3015 		iphlen = sizeof(struct ip6_hdr);
3016 		break;
3017 #endif
3018 	case AF_INET:
3019 		iphlen = sizeof(struct ip);
3020 		break;
3021 	default:
3022 		/* the family does not support path MTU discovery */
3023 		goto out;
3024 	}
3025 
3026 #ifdef RTV_MTU
3027 	/*
3028 	 * if there's an mtu associated with the route and we support
3029 	 * path MTU discovery for the underlying protocol family, use it.
3030 	 */
3031 	if (rt->rt_rmx.rmx_mtu) {
3032 		/*
3033 		 * One may wish to lower MSS to take into account options,
3034 		 * especially security-related options.
3035 		 */
3036 		mss = rt->rt_rmx.rmx_mtu - iphlen - sizeof(struct tcphdr);
3037 	} else
3038 #endif /* RTV_MTU */
3039 	if (!ifp)
3040 		/*
3041 		 * ifp may be null and rmx_mtu may be zero in certain
3042 		 * v6 cases (e.g., if ND wasn't able to resolve the
3043 		 * destination host.
3044 		 */
3045 		goto out;
3046 	else if (ifp->if_flags & IFF_LOOPBACK)
3047 		mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3048 	else if (tp->pf == AF_INET) {
3049 		if (ip_mtudisc)
3050 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3051 		else if (inp && in_localaddr(inp->inp_faddr))
3052 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3053 	}
3054 #ifdef INET6
3055 	else if (tp->pf == AF_INET6) {
3056 		/*
3057 		 * for IPv6, path MTU discovery is always turned on,
3058 		 * or the node must use packet size <= 1280.
3059 		 */
3060 		mss = IN6_LINKMTU(ifp) - iphlen - sizeof(struct tcphdr);
3061 	}
3062 #endif /* INET6 */
3063 
3064 	/* Calculate the value that we offer in TCPOPT_MAXSEG */
3065 	if (offer != -1) {
3066 		mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3067 		mssopt = max(tcp_mssdflt, mssopt);
3068 	}
3069 
3070  out:
3071 	/*
3072 	 * The current mss, t_maxseg, is initialized to the default value.
3073 	 * If we compute a smaller value, reduce the current mss.
3074 	 * If we compute a larger value, return it for use in sending
3075 	 * a max seg size option, but don't store it for use
3076 	 * unless we received an offer at least that large from peer.
3077 	 * However, do not accept offers under 64 bytes.
3078 	 */
3079 	if (offer > 0)
3080 		tp->t_peermss = offer;
3081 	if (tp->t_peermss)
3082 		mss = min(mss, tp->t_peermss);
3083 	mss = max(mss, 64);		/* sanity - at least max opt. space */
3084 
3085 	/*
3086 	 * maxopd stores the maximum length of data AND options
3087 	 * in a segment; maxseg is the amount of data in a normal
3088 	 * segment.  We need to store this value (maxopd) apart
3089 	 * from maxseg, because now every segment carries options
3090 	 * and thus we normally have somewhat less data in segments.
3091 	 */
3092 	tp->t_maxopd = mss;
3093 
3094 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3095 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
3096 		mss -= TCPOLEN_TSTAMP_APPA;
3097 
3098 	if (offer == -1) {
3099 		/* mss changed due to Path MTU discovery */
3100 		if (mss < tp->t_maxseg) {
3101 			/*
3102 			 * Follow suggestion in RFC 2414 to reduce the
3103 			 * congestion window by the ratio of the old
3104 			 * segment size to the new segment size.
3105 			 */
3106 			tp->snd_cwnd = ulmax((tp->snd_cwnd / tp->t_maxseg) *
3107 					     mss, mss);
3108 		}
3109 	} else
3110 		tp->snd_cwnd = mss;
3111 
3112 	tp->t_maxseg = mss;
3113 
3114 	return (offer != -1 ? mssopt : mss);
3115 }
3116 
3117 /*
3118  * Set connection variables based on the effective MSS.
3119  * We are passed the TCPCB for the actual connection.  If we
3120  * are the server, we are called by the compressed state engine
3121  * when the 3-way handshake is complete.  If we are the client,
3122  * we are called when we receive the SYN,ACK from the server.
3123  *
3124  * NOTE: The t_maxseg value must be initialized in the TCPCB
3125  * before this routine is called!
3126  */
3127 void
3128 tcp_mss_update(tp)
3129 	struct tcpcb *tp;
3130 {
3131 	int mss, rtt;
3132 	u_long bufsize;
3133 	struct rtentry *rt;
3134 	struct socket *so;
3135 
3136 	so = tp->t_inpcb->inp_socket;
3137 	mss = tp->t_maxseg;
3138 
3139 	rt = in_pcbrtentry(tp->t_inpcb);
3140 
3141 	if (rt == NULL)
3142 		return;
3143 
3144 #ifdef RTV_MTU	/* if route characteristics exist ... */
3145 	/*
3146 	 * While we're here, check if there's an initial rtt
3147 	 * or rttvar.  Convert from the route-table units
3148 	 * to scaled multiples of the slow timeout timer.
3149 	 */
3150 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
3151 		/*
3152 		 * XXX the lock bit for MTU indicates that the value
3153 		 * is also a minimum value; this is subject to time.
3154 		 */
3155 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
3156 			TCPT_RANGESET(tp->t_rttmin,
3157 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
3158 			    TCPTV_MIN, TCPTV_REXMTMAX);
3159 		tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
3160 		if (rt->rt_rmx.rmx_rttvar)
3161 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
3162 			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
3163 		else
3164 			/* default variation is +- 1 rtt */
3165 			tp->t_rttvar =
3166 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3167 		TCPT_RANGESET((long) tp->t_rxtcur,
3168 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3169 		    tp->t_rttmin, TCPTV_REXMTMAX);
3170 	}
3171 #endif
3172 
3173 	/*
3174 	 * If there's a pipesize, change the socket buffer
3175 	 * to that size.  Make the socket buffers an integral
3176 	 * number of mss units; if the mss is larger than
3177 	 * the socket buffer, decrease the mss.
3178 	 */
3179 #ifdef RTV_SPIPE
3180 	if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
3181 #endif
3182 		bufsize = so->so_snd.sb_hiwat;
3183 	if (bufsize < mss) {
3184 		mss = bufsize;
3185 		/* Update t_maxseg and t_maxopd */
3186 		tcp_mss(tp, mss);
3187 	} else {
3188 		bufsize = roundup(bufsize, mss);
3189 		if (bufsize > sb_max)
3190 			bufsize = sb_max;
3191 		(void)sbreserve(&so->so_snd, bufsize);
3192 	}
3193 
3194 #ifdef RTV_RPIPE
3195 	if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
3196 #endif
3197 		bufsize = so->so_rcv.sb_hiwat;
3198 	if (bufsize > mss) {
3199 		bufsize = roundup(bufsize, mss);
3200 		if (bufsize > sb_max)
3201 			bufsize = sb_max;
3202 		(void)sbreserve(&so->so_rcv, bufsize);
3203 #ifdef RTV_RPIPE
3204 		if (rt->rt_rmx.rmx_recvpipe > 0)
3205 			tcp_rscale(tp, so->so_rcv.sb_hiwat);
3206 #endif
3207 	}
3208 
3209 #ifdef RTV_SSTHRESH
3210 	if (rt->rt_rmx.rmx_ssthresh) {
3211 		/*
3212 		 * There's some sort of gateway or interface
3213 		 * buffer limit on the path.  Use this to set
3214 		 * the slow start threshhold, but set the
3215 		 * threshold to no less than 2*mss.
3216 		 */
3217 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3218 	}
3219 #endif /* RTV_MTU */
3220 }
3221 #endif /* TUBA_INCLUDE */
3222 
3223 #if defined (TCP_SACK)
3224 /*
3225  * Checks for partial ack.  If partial ack arrives, force the retransmission
3226  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
3227  * 1.  By setting snd_nxt to ti_ack, this forces retransmission timer to
3228  * be started again.  If the ack advances at least to tp->snd_last, return 0.
3229  */
3230 int
3231 tcp_newreno(tp, th)
3232 	struct tcpcb *tp;
3233 	struct tcphdr *th;
3234 {
3235 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
3236 		/*
3237 		 * snd_una has not been updated and the socket send buffer
3238 		 * not yet drained of the acked data, so we have to leave
3239 		 * snd_una as it was to get the correct data offset in
3240 		 * tcp_output().
3241 		 */
3242 		tcp_seq onxt = tp->snd_nxt;
3243 		u_long  ocwnd = tp->snd_cwnd;
3244 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
3245 		tp->t_rtttime = 0;
3246 		tp->snd_nxt = th->th_ack;
3247 		/*
3248 		 * Set snd_cwnd to one segment beyond acknowledged offset
3249 		 * (tp->snd_una not yet updated when this function is called)
3250 		 */
3251 		tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3252 		(void) tcp_output(tp);
3253 		tp->snd_cwnd = ocwnd;
3254 		if (SEQ_GT(onxt, tp->snd_nxt))
3255 			tp->snd_nxt = onxt;
3256 		/*
3257 		 * Partial window deflation.  Relies on fact that tp->snd_una
3258 		 * not updated yet.
3259 		 */
3260 		tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
3261 		return 1;
3262 	}
3263 	return 0;
3264 }
3265 #endif /* TCP_SACK */
3266