xref: /openbsd-src/sys/netinet/tcp_input.c (revision 43003dfe3ad45d1698bed8a37f2b0f5b14f20d4f)
1 /*	$OpenBSD: tcp_input.c,v 1.228 2009/08/20 13:25:42 bluhm Exp $	*/
2 /*	$NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
33  *
34  * NRL grants permission for redistribution and use in source and binary
35  * forms, with or without modification, of the software and documentation
36  * created at NRL provided that the following conditions are met:
37  *
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgements:
45  * 	This product includes software developed by the University of
46  * 	California, Berkeley and its contributors.
47  * 	This product includes software developed at the Information
48  * 	Technology Division, US Naval Research Laboratory.
49  * 4. Neither the name of the NRL nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
54  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
56  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
57  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
58  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
59  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
60  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
61  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
62  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
63  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64  *
65  * The views and conclusions contained in the software and documentation
66  * are those of the authors and should not be interpreted as representing
67  * official policies, either expressed or implied, of the US Naval
68  * Research Laboratory (NRL).
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/mbuf.h>
74 #include <sys/protosw.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/kernel.h>
78 #include <sys/pool.h>
79 
80 #include <dev/rndvar.h>
81 
82 #include <net/if.h>
83 #include <net/route.h>
84 
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp.h>
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_seq.h>
93 #include <netinet/tcp_timer.h>
94 #include <netinet/tcp_var.h>
95 #include <netinet/tcpip.h>
96 #include <netinet/tcp_debug.h>
97 
98 #include "faith.h"
99 
100 #include "pf.h"
101 #if NPF > 0
102 #include <net/pfvar.h>
103 #endif
104 
105 struct	tcpiphdr tcp_saveti;
106 
107 int tcp_mss_adv(struct ifnet *, int);
108 
109 #ifdef INET6
110 #include <netinet6/in6_var.h>
111 #include <netinet6/nd6.h>
112 
113 struct  tcpipv6hdr tcp_saveti6;
114 
115 /* for the packet header length in the mbuf */
116 #define M_PH_LEN(m)      (((struct mbuf *)(m))->m_pkthdr.len)
117 #define M_V6_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip6_hdr))
118 #define M_V4_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip))
119 #endif /* INET6 */
120 
121 int	tcprexmtthresh = 3;
122 int	tcptv_keep_init = TCPTV_KEEP_INIT;
123 
124 extern u_long sb_max;
125 
126 int tcp_rst_ppslim = 100;		/* 100pps */
127 int tcp_rst_ppslim_count = 0;
128 struct timeval tcp_rst_ppslim_last;
129 
130 int tcp_ackdrop_ppslim = 100;		/* 100pps */
131 int tcp_ackdrop_ppslim_count = 0;
132 struct timeval tcp_ackdrop_ppslim_last;
133 
134 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
135 
136 /* for modulo comparisons of timestamps */
137 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
138 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
139 
140 /* for TCP SACK comparisons */
141 #define	SEQ_MIN(a,b)	(SEQ_LT(a,b) ? (a) : (b))
142 #define	SEQ_MAX(a,b)	(SEQ_GT(a,b) ? (a) : (b))
143 
144 /*
145  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
146  */
147 #ifdef INET6
148 #define ND6_HINT(tp) \
149 do { \
150 	if (tp && tp->t_inpcb && (tp->t_inpcb->inp_flags & INP_IPV6) && \
151 	    tp->t_inpcb->inp_route6.ro_rt) { \
152 		nd6_nud_hint(tp->t_inpcb->inp_route6.ro_rt, NULL, 0); \
153 	} \
154 } while (0)
155 #else
156 #define ND6_HINT(tp)
157 #endif
158 
159 #ifdef TCP_ECN
160 /*
161  * ECN (Explicit Congestion Notification) support based on RFC3168
162  * implementation note:
163  *   snd_last is used to track a recovery phase.
164  *   when cwnd is reduced, snd_last is set to snd_max.
165  *   while snd_last > snd_una, the sender is in a recovery phase and
166  *   its cwnd should not be reduced again.
167  *   snd_last follows snd_una when not in a recovery phase.
168  */
169 #endif
170 
171 /*
172  * Macro to compute ACK transmission behavior.  Delay the ACK unless
173  * we have already delayed an ACK (must send an ACK every two segments).
174  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
175  * option is enabled.
176  */
177 #define	TCP_SETUP_ACK(tp, tiflags) \
178 do { \
179 	if ((tp)->t_flags & TF_DELACK || \
180 	    (tcp_ack_on_push && (tiflags) & TH_PUSH)) \
181 		tp->t_flags |= TF_ACKNOW; \
182 	else \
183 		TCP_SET_DELACK(tp); \
184 } while (0)
185 
186 /*
187  * Insert segment ti into reassembly queue of tcp with
188  * control block tp.  Return TH_FIN if reassembly now includes
189  * a segment with FIN.  The macro form does the common case inline
190  * (segment is the next to be received on an established connection,
191  * and the queue is empty), avoiding linkage into and removal
192  * from the queue and repetition of various conversions.
193  * Set DELACK for segments received in order, but ack immediately
194  * when segments are out of order (so fast retransmit can work).
195  */
196 
197 int
198 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
199 {
200 	struct tcpqent *p, *q, *nq, *tiqe;
201 	struct socket *so = tp->t_inpcb->inp_socket;
202 	int flags;
203 
204 	/*
205 	 * Call with th==0 after become established to
206 	 * force pre-ESTABLISHED data up to user socket.
207 	 */
208 	if (th == 0)
209 		goto present;
210 
211 	/*
212 	 * Allocate a new queue entry, before we throw away any data.
213 	 * If we can't, just drop the packet.  XXX
214 	 */
215 	tiqe = pool_get(&tcpqe_pool, PR_NOWAIT);
216 	if (tiqe == NULL) {
217 		tiqe = TAILQ_LAST(&tp->t_segq, tcpqehead);
218 		if (tiqe != NULL && th->th_seq == tp->rcv_nxt) {
219 			/* Reuse last entry since new segment fills a hole */
220 			m_freem(tiqe->tcpqe_m);
221 			TAILQ_REMOVE(&tp->t_segq, tiqe, tcpqe_q);
222 		}
223 		if (tiqe == NULL || th->th_seq != tp->rcv_nxt) {
224 			/* Flush segment queue for this connection */
225 			tcp_freeq(tp);
226 			tcpstat.tcps_rcvmemdrop++;
227 			m_freem(m);
228 			return (0);
229 		}
230 	}
231 
232 	/*
233 	 * Find a segment which begins after this one does.
234 	 */
235 	for (p = NULL, q = TAILQ_FIRST(&tp->t_segq); q != NULL;
236 	    p = q, q = TAILQ_NEXT(q, tcpqe_q))
237 		if (SEQ_GT(q->tcpqe_tcp->th_seq, th->th_seq))
238 			break;
239 
240 	/*
241 	 * If there is a preceding segment, it may provide some of
242 	 * our data already.  If so, drop the data from the incoming
243 	 * segment.  If it provides all of our data, drop us.
244 	 */
245 	if (p != NULL) {
246 		struct tcphdr *phdr = p->tcpqe_tcp;
247 		int i;
248 
249 		/* conversion to int (in i) handles seq wraparound */
250 		i = phdr->th_seq + phdr->th_reseqlen - th->th_seq;
251 		if (i > 0) {
252 		        if (i >= *tlen) {
253 				tcpstat.tcps_rcvduppack++;
254 				tcpstat.tcps_rcvdupbyte += *tlen;
255 				m_freem(m);
256 				pool_put(&tcpqe_pool, tiqe);
257 				return (0);
258 			}
259 			m_adj(m, i);
260 			*tlen -= i;
261 			th->th_seq += i;
262 		}
263 	}
264 	tcpstat.tcps_rcvoopack++;
265 	tcpstat.tcps_rcvoobyte += *tlen;
266 
267 	/*
268 	 * While we overlap succeeding segments trim them or,
269 	 * if they are completely covered, dequeue them.
270 	 */
271 	for (; q != NULL; q = nq) {
272 		struct tcphdr *qhdr = q->tcpqe_tcp;
273 		int i = (th->th_seq + *tlen) - qhdr->th_seq;
274 
275 		if (i <= 0)
276 			break;
277 		if (i < qhdr->th_reseqlen) {
278 			qhdr->th_seq += i;
279 			qhdr->th_reseqlen -= i;
280 			m_adj(q->tcpqe_m, i);
281 			break;
282 		}
283 		nq = TAILQ_NEXT(q, tcpqe_q);
284 		m_freem(q->tcpqe_m);
285 		TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q);
286 		pool_put(&tcpqe_pool, q);
287 	}
288 
289 	/* Insert the new segment queue entry into place. */
290 	tiqe->tcpqe_m = m;
291 	th->th_reseqlen = *tlen;
292 	tiqe->tcpqe_tcp = th;
293 	if (p == NULL) {
294 		TAILQ_INSERT_HEAD(&tp->t_segq, tiqe, tcpqe_q);
295 	} else {
296 		TAILQ_INSERT_AFTER(&tp->t_segq, p, tiqe, tcpqe_q);
297 	}
298 
299 present:
300 	/*
301 	 * Present data to user, advancing rcv_nxt through
302 	 * completed sequence space.
303 	 */
304 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
305 		return (0);
306 	q = TAILQ_FIRST(&tp->t_segq);
307 	if (q == NULL || q->tcpqe_tcp->th_seq != tp->rcv_nxt)
308 		return (0);
309 	if (tp->t_state == TCPS_SYN_RECEIVED && q->tcpqe_tcp->th_reseqlen)
310 		return (0);
311 	do {
312 		tp->rcv_nxt += q->tcpqe_tcp->th_reseqlen;
313 		flags = q->tcpqe_tcp->th_flags & TH_FIN;
314 
315 		nq = TAILQ_NEXT(q, tcpqe_q);
316 		TAILQ_REMOVE(&tp->t_segq, q, tcpqe_q);
317 		ND6_HINT(tp);
318 		if (so->so_state & SS_CANTRCVMORE)
319 			m_freem(q->tcpqe_m);
320 		else
321 			sbappendstream(&so->so_rcv, q->tcpqe_m);
322 		pool_put(&tcpqe_pool, q);
323 		q = nq;
324 	} while (q != NULL && q->tcpqe_tcp->th_seq == tp->rcv_nxt);
325 	sorwakeup(so);
326 	return (flags);
327 }
328 
329 #ifdef INET6
330 int
331 tcp6_input(struct mbuf **mp, int *offp, int proto)
332 {
333 	struct mbuf *m = *mp;
334 
335 #if NFAITH > 0
336 	if (m->m_pkthdr.rcvif) {
337 		if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
338 			/* XXX send icmp6 host/port unreach? */
339 			m_freem(m);
340 			return IPPROTO_DONE;
341 		}
342 	}
343 #endif
344 
345 	tcp_input(m, *offp, proto);
346 	return IPPROTO_DONE;
347 }
348 #endif
349 
350 /*
351  * TCP input routine, follows pages 65-76 of the
352  * protocol specification dated September, 1981 very closely.
353  */
354 void
355 tcp_input(struct mbuf *m, ...)
356 {
357 	struct ip *ip;
358 	struct inpcb *inp = NULL;
359 	u_int8_t *optp = NULL;
360 	int optlen = 0;
361 	int tlen, off;
362 	struct tcpcb *tp = 0;
363 	int tiflags;
364 	struct socket *so = NULL;
365 	int todrop, acked, ourfinisacked, needoutput = 0;
366 	int hdroptlen = 0;
367 	short ostate = 0;
368 	tcp_seq iss, *reuse = NULL;
369 	u_long tiwin;
370 	struct tcp_opt_info opti;
371 	int iphlen;
372 	va_list ap;
373 	struct tcphdr *th;
374 #ifdef INET6
375 	struct ip6_hdr *ip6 = NULL;
376 #endif /* INET6 */
377 #ifdef IPSEC
378 	struct m_tag *mtag;
379 	struct tdb_ident *tdbi;
380 	struct tdb *tdb;
381 	int error, s;
382 #endif /* IPSEC */
383 	int af;
384 #ifdef TCP_ECN
385 	u_char iptos;
386 #endif
387 
388 	va_start(ap, m);
389 	iphlen = va_arg(ap, int);
390 	va_end(ap);
391 
392 	tcpstat.tcps_rcvtotal++;
393 
394 	opti.ts_present = 0;
395 	opti.maxseg = 0;
396 
397 	/*
398 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
399 	 * See below for AF specific multicast.
400 	 */
401 	if (m->m_flags & (M_BCAST|M_MCAST))
402 		goto drop;
403 
404 	/*
405 	 * Before we do ANYTHING, we have to figure out if it's TCP/IPv6 or
406 	 * TCP/IPv4.
407 	 */
408 	switch (mtod(m, struct ip *)->ip_v) {
409 #ifdef INET6
410 	case 6:
411 		af = AF_INET6;
412 		break;
413 #endif
414 	case 4:
415 		af = AF_INET;
416 		break;
417 	default:
418 		m_freem(m);
419 		return;	/*EAFNOSUPPORT*/
420 	}
421 
422 	/*
423 	 * Get IP and TCP header together in first mbuf.
424 	 * Note: IP leaves IP header in first mbuf.
425 	 */
426 	switch (af) {
427 	case AF_INET:
428 #ifdef DIAGNOSTIC
429 		if (iphlen < sizeof(struct ip)) {
430 			m_freem(m);
431 			return;
432 		}
433 #endif /* DIAGNOSTIC */
434 		break;
435 #ifdef INET6
436 	case AF_INET6:
437 #ifdef DIAGNOSTIC
438 		if (iphlen < sizeof(struct ip6_hdr)) {
439 			m_freem(m);
440 			return;
441 		}
442 #endif /* DIAGNOSTIC */
443 		break;
444 #endif
445 	default:
446 		m_freem(m);
447 		return;
448 	}
449 
450 	IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, sizeof(*th));
451 	if (!th) {
452 		tcpstat.tcps_rcvshort++;
453 		return;
454 	}
455 
456 	tlen = m->m_pkthdr.len - iphlen;
457 	ip = NULL;
458 #ifdef INET6
459 	ip6 = NULL;
460 #endif
461 	switch (af) {
462 	case AF_INET:
463 		ip = mtod(m, struct ip *);
464 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
465 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
466 			goto drop;
467 #ifdef TCP_ECN
468 		/* save ip_tos before clearing it for checksum */
469 		iptos = ip->ip_tos;
470 #endif
471 		/*
472 		 * Checksum extended TCP header and data.
473 		 */
474 		if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_OK) == 0) {
475 			if (m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_BAD) {
476 				tcpstat.tcps_inhwcsum++;
477 				tcpstat.tcps_rcvbadsum++;
478 				goto drop;
479 			}
480 			if (in4_cksum(m, IPPROTO_TCP, iphlen, tlen) != 0) {
481 				tcpstat.tcps_rcvbadsum++;
482 				goto drop;
483 			}
484 		} else {
485 			m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_IN_OK;
486 			tcpstat.tcps_inhwcsum++;
487 		}
488 		break;
489 #ifdef INET6
490 	case AF_INET6:
491 		ip6 = mtod(m, struct ip6_hdr *);
492 #ifdef TCP_ECN
493 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
494 #endif
495 
496 		/* Be proactive about malicious use of IPv4 mapped address */
497 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
498 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
499 			/* XXX stat */
500 			goto drop;
501 		}
502 
503 		/*
504 		 * Be proactive about unspecified IPv6 address in source.
505 		 * As we use all-zero to indicate unbounded/unconnected pcb,
506 		 * unspecified IPv6 address can be used to confuse us.
507 		 *
508 		 * Note that packets with unspecified IPv6 destination is
509 		 * already dropped in ip6_input.
510 		 */
511 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
512 			/* XXX stat */
513 			goto drop;
514 		}
515 
516 		/* Discard packets to multicast */
517 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
518 			/* XXX stat */
519 			goto drop;
520 		}
521 
522 		/*
523 		 * Checksum extended TCP header and data.
524 		 */
525 		if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_OK) == 0) {
526 			if (m->m_pkthdr.csum_flags & M_TCP_CSUM_IN_BAD) {
527 				tcpstat.tcps_inhwcsum++;
528 				tcpstat.tcps_rcvbadsum++;
529 				goto drop;
530 			}
531 			if (in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
532 			    tlen)) {
533 				tcpstat.tcps_rcvbadsum++;
534 				goto drop;
535 			}
536 		} else {
537 			m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_IN_OK;
538 			tcpstat.tcps_inhwcsum++;
539 		}
540 		break;
541 #endif
542 	}
543 
544 	/*
545 	 * Check that TCP offset makes sense,
546 	 * pull out TCP options and adjust length.		XXX
547 	 */
548 	off = th->th_off << 2;
549 	if (off < sizeof(struct tcphdr) || off > tlen) {
550 		tcpstat.tcps_rcvbadoff++;
551 		goto drop;
552 	}
553 	tlen -= off;
554 	if (off > sizeof(struct tcphdr)) {
555 		IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, off);
556 		if (!th) {
557 			tcpstat.tcps_rcvshort++;
558 			return;
559 		}
560 		optlen = off - sizeof(struct tcphdr);
561 		optp = (u_int8_t *)(th + 1);
562 		/*
563 		 * Do quick retrieval of timestamp options ("options
564 		 * prediction?").  If timestamp is the only option and it's
565 		 * formatted as recommended in RFC 1323 appendix A, we
566 		 * quickly get the values now and not bother calling
567 		 * tcp_dooptions(), etc.
568 		 */
569 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
570 		     (optlen > TCPOLEN_TSTAMP_APPA &&
571 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
572 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
573 		     (th->th_flags & TH_SYN) == 0) {
574 			opti.ts_present = 1;
575 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
576 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
577 			optp = NULL;	/* we've parsed the options */
578 		}
579 	}
580 	tiflags = th->th_flags;
581 
582 	/*
583 	 * Convert TCP protocol specific fields to host format.
584 	 */
585 	NTOHL(th->th_seq);
586 	NTOHL(th->th_ack);
587 	NTOHS(th->th_win);
588 	NTOHS(th->th_urp);
589 
590 	/*
591 	 * Locate pcb for segment.
592 	 */
593 #if NPF > 0
594 	if (m->m_pkthdr.pf.statekey)
595 		inp = ((struct pf_state_key *)m->m_pkthdr.pf.statekey)->inp;
596 #endif
597 findpcb:
598 	if (inp == NULL) {
599 		switch (af) {
600 #ifdef INET6
601 		case AF_INET6:
602 			inp = in6_pcbhashlookup(&tcbtable, &ip6->ip6_src,
603 			    th->th_sport, &ip6->ip6_dst, th->th_dport);
604 			break;
605 #endif
606 		case AF_INET:
607 			inp = in_pcbhashlookup(&tcbtable, ip->ip_src,
608 			    th->th_sport, ip->ip_dst, th->th_dport,
609 			    m->m_pkthdr.rdomain);
610 			break;
611 		}
612 #if NPF > 0
613 		if (m->m_pkthdr.pf.statekey && inp) {
614 			((struct pf_state_key *)m->m_pkthdr.pf.statekey)->inp =
615 			    inp;
616 			inp->inp_pf_sk = m->m_pkthdr.pf.statekey;
617 		}
618 #endif
619 	}
620 	if (inp == NULL) {
621 		int	inpl_flags = 0;
622 		if (m->m_pkthdr.pf.flags & PF_TAG_TRANSLATE_LOCALHOST)
623 			inpl_flags = INPLOOKUP_WILDCARD;
624 		++tcpstat.tcps_pcbhashmiss;
625 		switch (af) {
626 #ifdef INET6
627 		case AF_INET6:
628 			inp = in6_pcblookup_listen(&tcbtable,
629 			    &ip6->ip6_dst, th->th_dport, inpl_flags, m);
630 			break;
631 #endif /* INET6 */
632 		case AF_INET:
633 			inp = in_pcblookup_listen(&tcbtable,
634 			    ip->ip_dst, th->th_dport, inpl_flags, m,
635 			    m->m_pkthdr.rdomain);
636 			break;
637 		}
638 		/*
639 		 * If the state is CLOSED (i.e., TCB does not exist) then
640 		 * all data in the incoming segment is discarded.
641 		 * If the TCB exists but is in CLOSED state, it is embryonic,
642 		 * but should either do a listen or a connect soon.
643 		 */
644 		if (inp == 0) {
645 			++tcpstat.tcps_noport;
646 			goto dropwithreset_ratelim;
647 		}
648 	}
649 
650 	/* Check the minimum TTL for socket. */
651 	if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl)
652 		goto drop;
653 
654 	tp = intotcpcb(inp);
655 	if (tp == 0)
656 		goto dropwithreset_ratelim;
657 	if (tp->t_state == TCPS_CLOSED)
658 		goto drop;
659 
660 	/* Unscale the window into a 32-bit value. */
661 	if ((tiflags & TH_SYN) == 0)
662 		tiwin = th->th_win << tp->snd_scale;
663 	else
664 		tiwin = th->th_win;
665 
666 	so = inp->inp_socket;
667 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
668 		union syn_cache_sa src;
669 		union syn_cache_sa dst;
670 
671 		bzero(&src, sizeof(src));
672 		bzero(&dst, sizeof(dst));
673 		switch (af) {
674 #ifdef INET
675 		case AF_INET:
676 			src.sin.sin_len = sizeof(struct sockaddr_in);
677 			src.sin.sin_family = AF_INET;
678 			src.sin.sin_addr = ip->ip_src;
679 			src.sin.sin_port = th->th_sport;
680 
681 			dst.sin.sin_len = sizeof(struct sockaddr_in);
682 			dst.sin.sin_family = AF_INET;
683 			dst.sin.sin_addr = ip->ip_dst;
684 			dst.sin.sin_port = th->th_dport;
685 			break;
686 #endif
687 #ifdef INET6
688 		case AF_INET6:
689 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
690 			src.sin6.sin6_family = AF_INET6;
691 			src.sin6.sin6_addr = ip6->ip6_src;
692 			src.sin6.sin6_port = th->th_sport;
693 
694 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
695 			dst.sin6.sin6_family = AF_INET6;
696 			dst.sin6.sin6_addr = ip6->ip6_dst;
697 			dst.sin6.sin6_port = th->th_dport;
698 			break;
699 #endif /* INET6 */
700 		default:
701 			goto badsyn;	/*sanity*/
702 		}
703 
704 		if (so->so_options & SO_DEBUG) {
705 			ostate = tp->t_state;
706 			switch (af) {
707 #ifdef INET6
708 			case AF_INET6:
709 				bcopy(ip6, &tcp_saveti6.ti6_i, sizeof(*ip6));
710 				bcopy(th, &tcp_saveti6.ti6_t, sizeof(*th));
711 				break;
712 #endif
713 			case AF_INET:
714 				bcopy(ip, &tcp_saveti.ti_i, sizeof(*ip));
715 				bcopy(th, &tcp_saveti.ti_t, sizeof(*th));
716 				break;
717 			}
718 		}
719 		if (so->so_options & SO_ACCEPTCONN) {
720 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
721 				if (tiflags & TH_RST) {
722 					syn_cache_reset(&src.sa, &dst.sa, th,
723 					    inp->inp_rdomain);
724 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
725 				    (TH_ACK|TH_SYN)) {
726 					/*
727 					 * Received a SYN,ACK.  This should
728 					 * never happen while we are in
729 					 * LISTEN.  Send an RST.
730 					 */
731 					goto badsyn;
732 				} else if (tiflags & TH_ACK) {
733 					so = syn_cache_get(&src.sa, &dst.sa,
734 						th, iphlen, tlen, so, m);
735 					if (so == NULL) {
736 						/*
737 						 * We don't have a SYN for
738 						 * this ACK; send an RST.
739 						 */
740 						goto badsyn;
741 					} else if (so ==
742 					    (struct socket *)(-1)) {
743 						/*
744 						 * We were unable to create
745 						 * the connection.  If the
746 						 * 3-way handshake was
747 						 * completed, and RST has
748 						 * been sent to the peer.
749 						 * Since the mbuf might be
750 						 * in use for the reply,
751 						 * do not free it.
752 						 */
753 						m = NULL;
754 					} else {
755 						/*
756 						 * We have created a
757 						 * full-blown connection.
758 						 */
759 						tp = NULL;
760 						inp = (struct inpcb *)so->so_pcb;
761 						tp = intotcpcb(inp);
762 						if (tp == NULL)
763 							goto badsyn;	/*XXX*/
764 
765 						/*
766 						 * Compute proper scaling
767 						 * value from buffer space
768 						 */
769 						tcp_rscale(tp, so->so_rcv.sb_hiwat);
770 						goto after_listen;
771 					}
772 				} else {
773 					/*
774 					 * None of RST, SYN or ACK was set.
775 					 * This is an invalid packet for a
776 					 * TCB in LISTEN state.  Send a RST.
777 					 */
778 					goto badsyn;
779 				}
780 			} else {
781 				/*
782 				 * Received a SYN.
783 				 */
784 #ifdef INET6
785 				/*
786 				 * If deprecated address is forbidden, we do
787 				 * not accept SYN to deprecated interface
788 				 * address to prevent any new inbound
789 				 * connection from getting established.
790 				 * When we do not accept SYN, we send a TCP
791 				 * RST, with deprecated source address (instead
792 				 * of dropping it).  We compromise it as it is
793 				 * much better for peer to send a RST, and
794 				 * RST will be the final packet for the
795 				 * exchange.
796 				 *
797 				 * If we do not forbid deprecated addresses, we
798 				 * accept the SYN packet.  RFC2462 does not
799 				 * suggest dropping SYN in this case.
800 				 * If we decipher RFC2462 5.5.4, it says like
801 				 * this:
802 				 * 1. use of deprecated addr with existing
803 				 *    communication is okay - "SHOULD continue
804 				 *    to be used"
805 				 * 2. use of it with new communication:
806 				 *   (2a) "SHOULD NOT be used if alternate
807 				 *        address with sufficient scope is
808 				 *        available"
809 				 *   (2b) nothing mentioned otherwise.
810 				 * Here we fall into (2b) case as we have no
811 				 * choice in our source address selection - we
812 				 * must obey the peer.
813 				 *
814 				 * The wording in RFC2462 is confusing, and
815 				 * there are multiple description text for
816 				 * deprecated address handling - worse, they
817 				 * are not exactly the same.  I believe 5.5.4
818 				 * is the best one, so we follow 5.5.4.
819 				 */
820 				if (ip6 && !ip6_use_deprecated) {
821 					struct in6_ifaddr *ia6;
822 
823 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
824 					    &ip6->ip6_dst)) &&
825 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
826 						tp = NULL;
827 						goto dropwithreset;
828 					}
829 				}
830 #endif
831 
832 				/*
833 				 * LISTEN socket received a SYN
834 				 * from itself?  This can't possibly
835 				 * be valid; drop the packet.
836 				 */
837 				if (th->th_dport == th->th_sport) {
838 					switch (af) {
839 #ifdef INET6
840 					case AF_INET6:
841 						if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
842 						    &ip6->ip6_dst)) {
843 							tcpstat.tcps_badsyn++;
844 							goto drop;
845 						}
846 						break;
847 #endif /* INET6 */
848 					case AF_INET:
849 						if (ip->ip_dst.s_addr == ip->ip_src.s_addr) {
850 							tcpstat.tcps_badsyn++;
851 							goto drop;
852 						}
853 						break;
854 					}
855 				}
856 
857 				/*
858 				 * SYN looks ok; create compressed TCP
859 				 * state for it.
860 				 */
861 				if (so->so_qlen <= so->so_qlimit &&
862 				    syn_cache_add(&src.sa, &dst.sa, th, iphlen,
863 				    so, m, optp, optlen, &opti, reuse))
864 					m = NULL;
865 			}
866 			goto drop;
867 		}
868 	}
869 
870 after_listen:
871 #ifdef DIAGNOSTIC
872 	/*
873 	 * Should not happen now that all embryonic connections
874 	 * are handled with compressed state.
875 	 */
876 	if (tp->t_state == TCPS_LISTEN)
877 		panic("tcp_input: TCPS_LISTEN");
878 #endif
879 
880 #if NPF > 0
881 	if (m->m_pkthdr.pf.statekey) {
882 		((struct pf_state_key *)m->m_pkthdr.pf.statekey)->inp = inp;
883 		inp->inp_pf_sk = m->m_pkthdr.pf.statekey;
884 	}
885 #endif
886 
887 #ifdef IPSEC
888 	/* Find most recent IPsec tag */
889 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
890         s = splnet();
891 	if (mtag != NULL) {
892 		tdbi = (struct tdb_ident *)(mtag + 1);
893 	        tdb = gettdb(tdbi->spi, &tdbi->dst, tdbi->proto);
894 	} else
895 		tdb = NULL;
896 	ipsp_spd_lookup(m, af, iphlen, &error, IPSP_DIRECTION_IN,
897 	    tdb, inp);
898 	if (error) {
899 		splx(s);
900 		goto drop;
901 	}
902 
903 	/* Latch SA */
904 	if (inp->inp_tdb_in != tdb) {
905 		if (tdb) {
906 		        tdb_add_inp(tdb, inp, 1);
907 			if (inp->inp_ipo == NULL) {
908 				inp->inp_ipo = ipsec_add_policy(inp, af,
909 				    IPSP_DIRECTION_OUT);
910 				if (inp->inp_ipo == NULL) {
911 					splx(s);
912 					goto drop;
913 				}
914 			}
915 			if (inp->inp_ipo->ipo_dstid == NULL &&
916 			    tdb->tdb_srcid != NULL) {
917 				inp->inp_ipo->ipo_dstid = tdb->tdb_srcid;
918 				tdb->tdb_srcid->ref_count++;
919 			}
920 			if (inp->inp_ipsec_remotecred == NULL &&
921 			    tdb->tdb_remote_cred != NULL) {
922 				inp->inp_ipsec_remotecred =
923 				    tdb->tdb_remote_cred;
924 				tdb->tdb_remote_cred->ref_count++;
925 			}
926 			if (inp->inp_ipsec_remoteauth == NULL &&
927 			    tdb->tdb_remote_auth != NULL) {
928 				inp->inp_ipsec_remoteauth =
929 				    tdb->tdb_remote_auth;
930 				tdb->tdb_remote_auth->ref_count++;
931 			}
932 		} else { /* Just reset */
933 		        TAILQ_REMOVE(&inp->inp_tdb_in->tdb_inp_in, inp,
934 				     inp_tdb_in_next);
935 			inp->inp_tdb_in = NULL;
936 		}
937 	}
938         splx(s);
939 #endif /* IPSEC */
940 
941 	/*
942 	 * Segment received on connection.
943 	 * Reset idle time and keep-alive timer.
944 	 */
945 	tp->t_rcvtime = tcp_now;
946 	if (TCPS_HAVEESTABLISHED(tp->t_state))
947 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
948 
949 #ifdef TCP_SACK
950 	if (tp->sack_enable)
951 		tcp_del_sackholes(tp, th); /* Delete stale SACK holes */
952 #endif /* TCP_SACK */
953 
954 	/*
955 	 * Process options.
956 	 */
957 #ifdef TCP_SIGNATURE
958 	if (optp || (tp->t_flags & TF_SIGNATURE))
959 #else
960 	if (optp)
961 #endif
962 		if (tcp_dooptions(tp, optp, optlen, th, m, iphlen, &opti))
963 			goto drop;
964 
965 	if (opti.ts_present && opti.ts_ecr) {
966 		int rtt_test;
967 
968 		/* subtract out the tcp timestamp modulator */
969 		opti.ts_ecr -= tp->ts_modulate;
970 
971 		/* make sure ts_ecr is sensible */
972 		rtt_test = tcp_now - opti.ts_ecr;
973 		if (rtt_test < 0 || rtt_test > TCP_RTT_MAX)
974 			opti.ts_ecr = 0;
975 	}
976 
977 #ifdef TCP_ECN
978 	/* if congestion experienced, set ECE bit in subsequent packets. */
979 	if ((iptos & IPTOS_ECN_MASK) == IPTOS_ECN_CE) {
980 		tp->t_flags |= TF_RCVD_CE;
981 		tcpstat.tcps_ecn_rcvce++;
982 	}
983 #endif
984 	/*
985 	 * Header prediction: check for the two common cases
986 	 * of a uni-directional data xfer.  If the packet has
987 	 * no control flags, is in-sequence, the window didn't
988 	 * change and we're not retransmitting, it's a
989 	 * candidate.  If the length is zero and the ack moved
990 	 * forward, we're the sender side of the xfer.  Just
991 	 * free the data acked & wake any higher level process
992 	 * that was blocked waiting for space.  If the length
993 	 * is non-zero and the ack didn't move, we're the
994 	 * receiver side.  If we're getting packets in-order
995 	 * (the reassembly queue is empty), add the data to
996 	 * the socket buffer and note that we need a delayed ack.
997 	 */
998 	if (tp->t_state == TCPS_ESTABLISHED &&
999 #ifdef TCP_ECN
1000 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK)) == TH_ACK &&
1001 #else
1002 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1003 #endif
1004 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1005 	    th->th_seq == tp->rcv_nxt &&
1006 	    tiwin && tiwin == tp->snd_wnd &&
1007 	    tp->snd_nxt == tp->snd_max) {
1008 
1009 		/*
1010 		 * If last ACK falls within this segment's sequence numbers,
1011 		 *  record the timestamp.
1012 		 * Fix from Braden, see Stevens p. 870
1013 		 */
1014 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1015 			tp->ts_recent_age = tcp_now;
1016 			tp->ts_recent = opti.ts_val;
1017 		}
1018 
1019 		if (tlen == 0) {
1020 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
1021 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
1022 			    tp->snd_cwnd >= tp->snd_wnd &&
1023 			    tp->t_dupacks == 0) {
1024 				/*
1025 				 * this is a pure ack for outstanding data.
1026 				 */
1027 				++tcpstat.tcps_predack;
1028 				if (opti.ts_present && opti.ts_ecr)
1029 					tcp_xmit_timer(tp, tcp_now - opti.ts_ecr);
1030 				else if (tp->t_rtttime &&
1031 				    SEQ_GT(th->th_ack, tp->t_rtseq))
1032 					tcp_xmit_timer(tp,
1033 					    tcp_now - tp->t_rtttime);
1034 				acked = th->th_ack - tp->snd_una;
1035 				tcpstat.tcps_rcvackpack++;
1036 				tcpstat.tcps_rcvackbyte += acked;
1037 				ND6_HINT(tp);
1038 				sbdrop(&so->so_snd, acked);
1039 
1040 				/*
1041 				 * If we had a pending ICMP message that
1042 				 * referres to data that have just been
1043 				 * acknowledged, disregard the recorded ICMP
1044 				 * message.
1045 				 */
1046 				if ((tp->t_flags & TF_PMTUD_PEND) &&
1047 				    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
1048 					tp->t_flags &= ~TF_PMTUD_PEND;
1049 
1050 				/*
1051 				 * Keep track of the largest chunk of data
1052 				 * acknowledged since last PMTU update
1053 				 */
1054 				if (tp->t_pmtud_mss_acked < acked)
1055 					tp->t_pmtud_mss_acked = acked;
1056 
1057 				tp->snd_una = th->th_ack;
1058 #if defined(TCP_SACK) || defined(TCP_ECN)
1059 				/*
1060 				 * We want snd_last to track snd_una so
1061 				 * as to avoid sequence wraparound problems
1062 				 * for very large transfers.
1063 				 */
1064 #ifdef TCP_ECN
1065 				if (SEQ_GT(tp->snd_una, tp->snd_last))
1066 #endif
1067 				tp->snd_last = tp->snd_una;
1068 #endif /* TCP_SACK */
1069 #if defined(TCP_SACK) && defined(TCP_FACK)
1070 				tp->snd_fack = tp->snd_una;
1071 				tp->retran_data = 0;
1072 #endif /* TCP_FACK */
1073 				m_freem(m);
1074 
1075 				/*
1076 				 * If all outstanding data are acked, stop
1077 				 * retransmit timer, otherwise restart timer
1078 				 * using current (possibly backed-off) value.
1079 				 * If process is waiting for space,
1080 				 * wakeup/selwakeup/signal.  If data
1081 				 * are ready to send, let tcp_output
1082 				 * decide between more output or persist.
1083 				 */
1084 				if (tp->snd_una == tp->snd_max)
1085 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1086 				else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1087 					TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1088 
1089 				if (sb_notify(&so->so_snd))
1090 					sowwakeup(so);
1091 				if (so->so_snd.sb_cc)
1092 					(void) tcp_output(tp);
1093 				return;
1094 			}
1095 		} else if (th->th_ack == tp->snd_una &&
1096 		    TAILQ_EMPTY(&tp->t_segq) &&
1097 		    tlen <= sbspace(&so->so_rcv)) {
1098 			/*
1099 			 * This is a pure, in-sequence data packet
1100 			 * with nothing on the reassembly queue and
1101 			 * we have enough buffer space to take it.
1102 			 */
1103 #ifdef TCP_SACK
1104 			/* Clean receiver SACK report if present */
1105 			if (tp->sack_enable && tp->rcv_numsacks)
1106 				tcp_clean_sackreport(tp);
1107 #endif /* TCP_SACK */
1108 			++tcpstat.tcps_preddat;
1109 			tp->rcv_nxt += tlen;
1110 			tcpstat.tcps_rcvpack++;
1111 			tcpstat.tcps_rcvbyte += tlen;
1112 			ND6_HINT(tp);
1113 			/*
1114 			 * Drop TCP, IP headers and TCP options then add data
1115 			 * to socket buffer.
1116 			 */
1117 			if (so->so_state & SS_CANTRCVMORE)
1118 				m_freem(m);
1119 			else {
1120 				m_adj(m, iphlen + off);
1121 				sbappendstream(&so->so_rcv, m);
1122 			}
1123 			sorwakeup(so);
1124 			TCP_SETUP_ACK(tp, tiflags);
1125 			if (tp->t_flags & TF_ACKNOW)
1126 				(void) tcp_output(tp);
1127 			return;
1128 		}
1129 	}
1130 
1131 	/*
1132 	 * Compute mbuf offset to TCP data segment.
1133 	 */
1134 	hdroptlen = iphlen + off;
1135 
1136 	/*
1137 	 * Calculate amount of space in receive window,
1138 	 * and then do TCP input processing.
1139 	 * Receive window is amount of space in rcv queue,
1140 	 * but not less than advertised window.
1141 	 */
1142 	{ int win;
1143 
1144 	win = sbspace(&so->so_rcv);
1145 	if (win < 0)
1146 		win = 0;
1147 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1148 	}
1149 
1150 	switch (tp->t_state) {
1151 
1152 	/*
1153 	 * If the state is SYN_RECEIVED:
1154 	 * 	if seg contains SYN/ACK, send an RST.
1155 	 *	if seg contains an ACK, but not for our SYN/ACK, send an RST
1156 	 */
1157 
1158 	case TCPS_SYN_RECEIVED:
1159 		if (tiflags & TH_ACK) {
1160 			if (tiflags & TH_SYN) {
1161 				tcpstat.tcps_badsyn++;
1162 				goto dropwithreset;
1163 			}
1164 			if (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1165 			    SEQ_GT(th->th_ack, tp->snd_max))
1166 				goto dropwithreset;
1167 		}
1168 		break;
1169 
1170 	/*
1171 	 * If the state is SYN_SENT:
1172 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1173 	 *	if seg contains a RST, then drop the connection.
1174 	 *	if seg does not contain SYN, then drop it.
1175 	 * Otherwise this is an acceptable SYN segment
1176 	 *	initialize tp->rcv_nxt and tp->irs
1177 	 *	if seg contains ack then advance tp->snd_una
1178 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1179 	 *	arrange for segment to be acked (eventually)
1180 	 *	continue processing rest of data/controls, beginning with URG
1181 	 */
1182 	case TCPS_SYN_SENT:
1183 		if ((tiflags & TH_ACK) &&
1184 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1185 		     SEQ_GT(th->th_ack, tp->snd_max)))
1186 			goto dropwithreset;
1187 		if (tiflags & TH_RST) {
1188 #ifdef TCP_ECN
1189 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1190 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1191 				goto drop;
1192 #endif
1193 			if (tiflags & TH_ACK)
1194 				tp = tcp_drop(tp, ECONNREFUSED);
1195 			goto drop;
1196 		}
1197 		if ((tiflags & TH_SYN) == 0)
1198 			goto drop;
1199 		if (tiflags & TH_ACK) {
1200 			tp->snd_una = th->th_ack;
1201 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1202 				tp->snd_nxt = tp->snd_una;
1203 		}
1204 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
1205 		tp->irs = th->th_seq;
1206 		tcp_mss(tp, opti.maxseg);
1207 		/* Reset initial window to 1 segment for retransmit */
1208 		if (tp->t_rxtshift > 0)
1209 			tp->snd_cwnd = tp->t_maxseg;
1210 		tcp_rcvseqinit(tp);
1211 		tp->t_flags |= TF_ACKNOW;
1212 #ifdef TCP_SACK
1213                 /*
1214                  * If we've sent a SACK_PERMITTED option, and the peer
1215                  * also replied with one, then TF_SACK_PERMIT should have
1216                  * been set in tcp_dooptions().  If it was not, disable SACKs.
1217                  */
1218 		if (tp->sack_enable)
1219 			tp->sack_enable = tp->t_flags & TF_SACK_PERMIT;
1220 #endif
1221 #ifdef TCP_ECN
1222 		/*
1223 		 * if ECE is set but CWR is not set for SYN-ACK, or
1224 		 * both ECE and CWR are set for simultaneous open,
1225 		 * peer is ECN capable.
1226 		 */
1227 		if (tcp_do_ecn) {
1228 			if ((tiflags & (TH_ACK|TH_ECE|TH_CWR))
1229 			    == (TH_ACK|TH_ECE) ||
1230 			    (tiflags & (TH_ACK|TH_ECE|TH_CWR))
1231 			    == (TH_ECE|TH_CWR)) {
1232 				tp->t_flags |= TF_ECN_PERMIT;
1233 				tiflags &= ~(TH_ECE|TH_CWR);
1234 				tcpstat.tcps_ecn_accepts++;
1235 			}
1236 		}
1237 #endif
1238 
1239 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
1240 			tcpstat.tcps_connects++;
1241 			soisconnected(so);
1242 			tp->t_state = TCPS_ESTABLISHED;
1243 			TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1244 			/* Do window scaling on this connection? */
1245 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1246 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1247 				tp->snd_scale = tp->requested_s_scale;
1248 				tp->rcv_scale = tp->request_r_scale;
1249 			}
1250 			(void) tcp_reass(tp, (struct tcphdr *)0,
1251 				(struct mbuf *)0, &tlen);
1252 			/*
1253 			 * if we didn't have to retransmit the SYN,
1254 			 * use its rtt as our initial srtt & rtt var.
1255 			 */
1256 			if (tp->t_rtttime)
1257 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1258 			/*
1259 			 * Since new data was acked (the SYN), open the
1260 			 * congestion window by one MSS.  We do this
1261 			 * here, because we won't go through the normal
1262 			 * ACK processing below.  And since this is the
1263 			 * start of the connection, we know we are in
1264 			 * the exponential phase of slow-start.
1265 			 */
1266 			tp->snd_cwnd += tp->t_maxseg;
1267 		} else
1268 			tp->t_state = TCPS_SYN_RECEIVED;
1269 
1270 #if 0
1271 trimthenstep6:
1272 #endif
1273 		/*
1274 		 * Advance th->th_seq to correspond to first data byte.
1275 		 * If data, trim to stay within window,
1276 		 * dropping FIN if necessary.
1277 		 */
1278 		th->th_seq++;
1279 		if (tlen > tp->rcv_wnd) {
1280 			todrop = tlen - tp->rcv_wnd;
1281 			m_adj(m, -todrop);
1282 			tlen = tp->rcv_wnd;
1283 			tiflags &= ~TH_FIN;
1284 			tcpstat.tcps_rcvpackafterwin++;
1285 			tcpstat.tcps_rcvbyteafterwin += todrop;
1286 		}
1287 		tp->snd_wl1 = th->th_seq - 1;
1288 		tp->rcv_up = th->th_seq;
1289 		goto step6;
1290 	/*
1291 	 * If a new connection request is received while in TIME_WAIT,
1292 	 * drop the old connection and start over if the if the
1293 	 * timestamp or the sequence numbers are above the previous
1294 	 * ones.
1295 	 */
1296 	case TCPS_TIME_WAIT:
1297 		if (((tiflags & (TH_SYN|TH_ACK)) == TH_SYN) &&
1298 		    ((opti.ts_present &&
1299 		    TSTMP_LT(tp->ts_recent, opti.ts_val)) ||
1300 		    SEQ_GT(th->th_seq, tp->rcv_nxt))) {
1301 			/*
1302 			* Advance the iss by at least 32768, but
1303 			* clear the msb in order to make sure
1304 			* that SEG_LT(snd_nxt, iss).
1305 			*/
1306 			iss = tp->snd_nxt +
1307 			    ((arc4random() & 0x7fffffff) | 0x8000);
1308 			reuse = &iss;
1309 			tp = tcp_close(tp);
1310 			inp = NULL;
1311 			goto findpcb;
1312 		}
1313 	}
1314 
1315 	/*
1316 	 * States other than LISTEN or SYN_SENT.
1317 	 * First check timestamp, if present.
1318 	 * Then check that at least some bytes of segment are within
1319 	 * receive window.  If segment begins before rcv_nxt,
1320 	 * drop leading data (and SYN); if nothing left, just ack.
1321 	 *
1322 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1323 	 * and it's less than opti.ts_recent, drop it.
1324 	 */
1325 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1326 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1327 
1328 		/* Check to see if ts_recent is over 24 days old.  */
1329 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1330 			/*
1331 			 * Invalidate ts_recent.  If this segment updates
1332 			 * ts_recent, the age will be reset later and ts_recent
1333 			 * will get a valid value.  If it does not, setting
1334 			 * ts_recent to zero will at least satisfy the
1335 			 * requirement that zero be placed in the timestamp
1336 			 * echo reply when ts_recent isn't valid.  The
1337 			 * age isn't reset until we get a valid ts_recent
1338 			 * because we don't want out-of-order segments to be
1339 			 * dropped when ts_recent is old.
1340 			 */
1341 			tp->ts_recent = 0;
1342 		} else {
1343 			tcpstat.tcps_rcvduppack++;
1344 			tcpstat.tcps_rcvdupbyte += tlen;
1345 			tcpstat.tcps_pawsdrop++;
1346 			goto dropafterack;
1347 		}
1348 	}
1349 
1350 	todrop = tp->rcv_nxt - th->th_seq;
1351 	if (todrop > 0) {
1352 		if (tiflags & TH_SYN) {
1353 			tiflags &= ~TH_SYN;
1354 			th->th_seq++;
1355 			if (th->th_urp > 1)
1356 				th->th_urp--;
1357 			else
1358 				tiflags &= ~TH_URG;
1359 			todrop--;
1360 		}
1361 		if (todrop > tlen ||
1362 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1363 			/*
1364 			 * Any valid FIN must be to the left of the
1365 			 * window.  At this point, FIN must be a
1366 			 * duplicate or out-of-sequence, so drop it.
1367 			 */
1368 			tiflags &= ~TH_FIN;
1369 			/*
1370 			 * Send ACK to resynchronize, and drop any data,
1371 			 * but keep on processing for RST or ACK.
1372 			 */
1373 			tp->t_flags |= TF_ACKNOW;
1374 			tcpstat.tcps_rcvdupbyte += todrop = tlen;
1375 			tcpstat.tcps_rcvduppack++;
1376 		} else {
1377 			tcpstat.tcps_rcvpartduppack++;
1378 			tcpstat.tcps_rcvpartdupbyte += todrop;
1379 		}
1380 		hdroptlen += todrop;	/* drop from head afterwards */
1381 		th->th_seq += todrop;
1382 		tlen -= todrop;
1383 		if (th->th_urp > todrop)
1384 			th->th_urp -= todrop;
1385 		else {
1386 			tiflags &= ~TH_URG;
1387 			th->th_urp = 0;
1388 		}
1389 	}
1390 
1391 	/*
1392 	 * If new data are received on a connection after the
1393 	 * user processes are gone, then RST the other end.
1394 	 */
1395 	if ((so->so_state & SS_NOFDREF) &&
1396 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1397 		tp = tcp_close(tp);
1398 		tcpstat.tcps_rcvafterclose++;
1399 		goto dropwithreset;
1400 	}
1401 
1402 	/*
1403 	 * If segment ends after window, drop trailing data
1404 	 * (and PUSH and FIN); if nothing left, just ACK.
1405 	 */
1406 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1407 	if (todrop > 0) {
1408 		tcpstat.tcps_rcvpackafterwin++;
1409 		if (todrop >= tlen) {
1410 			tcpstat.tcps_rcvbyteafterwin += tlen;
1411 			/*
1412 			 * If window is closed can only take segments at
1413 			 * window edge, and have to drop data and PUSH from
1414 			 * incoming segments.  Continue processing, but
1415 			 * remember to ack.  Otherwise, drop segment
1416 			 * and ack.
1417 			 */
1418 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1419 				tp->t_flags |= TF_ACKNOW;
1420 				tcpstat.tcps_rcvwinprobe++;
1421 			} else
1422 				goto dropafterack;
1423 		} else
1424 			tcpstat.tcps_rcvbyteafterwin += todrop;
1425 		m_adj(m, -todrop);
1426 		tlen -= todrop;
1427 		tiflags &= ~(TH_PUSH|TH_FIN);
1428 	}
1429 
1430 	/*
1431 	 * If last ACK falls within this segment's sequence numbers,
1432 	 * record its timestamp if it's more recent.
1433 	 * Cf fix from Braden, see Stevens p. 870
1434 	 */
1435 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1436 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1437 		if (SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1438 		    ((tiflags & (TH_SYN|TH_FIN)) != 0)))
1439 			tp->ts_recent = opti.ts_val;
1440 		else
1441 			tp->ts_recent = 0;
1442 		tp->ts_recent_age = tcp_now;
1443 	}
1444 
1445 	/*
1446 	 * If the RST bit is set examine the state:
1447 	 *    SYN_RECEIVED STATE:
1448 	 *	If passive open, return to LISTEN state.
1449 	 *	If active open, inform user that connection was refused.
1450 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1451 	 *	Inform user that connection was reset, and close tcb.
1452 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1453 	 *	Close the tcb.
1454 	 */
1455 	if (tiflags & TH_RST) {
1456 		if (th->th_seq != tp->last_ack_sent &&
1457 		    th->th_seq != tp->rcv_nxt &&
1458 		    th->th_seq != (tp->rcv_nxt + 1))
1459 			goto drop;
1460 
1461 		switch (tp->t_state) {
1462 		case TCPS_SYN_RECEIVED:
1463 #ifdef TCP_ECN
1464 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1465 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1466 				goto drop;
1467 #endif
1468 			so->so_error = ECONNREFUSED;
1469 			goto close;
1470 
1471 		case TCPS_ESTABLISHED:
1472 		case TCPS_FIN_WAIT_1:
1473 		case TCPS_FIN_WAIT_2:
1474 		case TCPS_CLOSE_WAIT:
1475 			so->so_error = ECONNRESET;
1476 		close:
1477 			tp->t_state = TCPS_CLOSED;
1478 			tcpstat.tcps_drops++;
1479 			tp = tcp_close(tp);
1480 			goto drop;
1481 		case TCPS_CLOSING:
1482 		case TCPS_LAST_ACK:
1483 		case TCPS_TIME_WAIT:
1484 			tp = tcp_close(tp);
1485 			goto drop;
1486 		}
1487 	}
1488 
1489 	/*
1490 	 * If a SYN is in the window, then this is an
1491 	 * error and we ACK and drop the packet.
1492 	 */
1493 	if (tiflags & TH_SYN)
1494 		goto dropafterack_ratelim;
1495 
1496 	/*
1497 	 * If the ACK bit is off we drop the segment and return.
1498 	 */
1499 	if ((tiflags & TH_ACK) == 0) {
1500 		if (tp->t_flags & TF_ACKNOW)
1501 			goto dropafterack;
1502 		else
1503 			goto drop;
1504 	}
1505 
1506 	/*
1507 	 * Ack processing.
1508 	 */
1509 	switch (tp->t_state) {
1510 
1511 	/*
1512 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1513 	 * ESTABLISHED state and continue processing.
1514 	 * The ACK was checked above.
1515 	 */
1516 	case TCPS_SYN_RECEIVED:
1517 		tcpstat.tcps_connects++;
1518 		soisconnected(so);
1519 		tp->t_state = TCPS_ESTABLISHED;
1520 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1521 		/* Do window scaling? */
1522 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1523 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1524 			tp->snd_scale = tp->requested_s_scale;
1525 			tp->rcv_scale = tp->request_r_scale;
1526 			tiwin = th->th_win << tp->snd_scale;
1527 		}
1528 		(void) tcp_reass(tp, (struct tcphdr *)0, (struct mbuf *)0,
1529 				 &tlen);
1530 		tp->snd_wl1 = th->th_seq - 1;
1531 		/* fall into ... */
1532 
1533 	/*
1534 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1535 	 * ACKs.  If the ack is in the range
1536 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1537 	 * then advance tp->snd_una to th->th_ack and drop
1538 	 * data from the retransmission queue.  If this ACK reflects
1539 	 * more up to date window information we update our window information.
1540 	 */
1541 	case TCPS_ESTABLISHED:
1542 	case TCPS_FIN_WAIT_1:
1543 	case TCPS_FIN_WAIT_2:
1544 	case TCPS_CLOSE_WAIT:
1545 	case TCPS_CLOSING:
1546 	case TCPS_LAST_ACK:
1547 	case TCPS_TIME_WAIT:
1548 #ifdef TCP_ECN
1549 		/*
1550 		 * if we receive ECE and are not already in recovery phase,
1551 		 * reduce cwnd by half but don't slow-start.
1552 		 * advance snd_last to snd_max not to reduce cwnd again
1553 		 * until all outstanding packets are acked.
1554 		 */
1555 		if (tcp_do_ecn && (tiflags & TH_ECE)) {
1556 			if ((tp->t_flags & TF_ECN_PERMIT) &&
1557 			    SEQ_GEQ(tp->snd_una, tp->snd_last)) {
1558 				u_int win;
1559 
1560 				win = min(tp->snd_wnd, tp->snd_cwnd) / tp->t_maxseg;
1561 				if (win > 1) {
1562 					tp->snd_ssthresh = win / 2 * tp->t_maxseg;
1563 					tp->snd_cwnd = tp->snd_ssthresh;
1564 					tp->snd_last = tp->snd_max;
1565 					tp->t_flags |= TF_SEND_CWR;
1566 					tcpstat.tcps_cwr_ecn++;
1567 				}
1568 			}
1569 			tcpstat.tcps_ecn_rcvece++;
1570 		}
1571 		/*
1572 		 * if we receive CWR, we know that the peer has reduced
1573 		 * its congestion window.  stop sending ecn-echo.
1574 		 */
1575 		if ((tiflags & TH_CWR)) {
1576 			tp->t_flags &= ~TF_RCVD_CE;
1577 			tcpstat.tcps_ecn_rcvcwr++;
1578 		}
1579 #endif /* TCP_ECN */
1580 
1581 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1582 			/*
1583 			 * Duplicate/old ACK processing.
1584 			 * Increments t_dupacks:
1585 			 *	Pure duplicate (same seq/ack/window, no data)
1586 			 * Doesn't affect t_dupacks:
1587 			 *	Data packets.
1588 			 *	Normal window updates (window opens)
1589 			 * Resets t_dupacks:
1590 			 *	New data ACKed.
1591 			 *	Window shrinks
1592 			 *	Old ACK
1593 			 */
1594 			if (tlen) {
1595 				/* Drop very old ACKs unless th_seq matches */
1596 				if (th->th_seq != tp->rcv_nxt &&
1597 				   SEQ_LT(th->th_ack,
1598 				   tp->snd_una - tp->max_sndwnd)) {
1599 					tcpstat.tcps_rcvacktooold++;
1600 					goto drop;
1601 				}
1602 				break;
1603 			}
1604 			/*
1605 			 * If we get an old ACK, there is probably packet
1606 			 * reordering going on.  Be conservative and reset
1607 			 * t_dupacks so that we are less aggressive in
1608 			 * doing a fast retransmit.
1609 			 */
1610 			if (th->th_ack != tp->snd_una) {
1611 				tp->t_dupacks = 0;
1612 				break;
1613 			}
1614 			if (tiwin == tp->snd_wnd) {
1615 				tcpstat.tcps_rcvdupack++;
1616 				/*
1617 				 * If we have outstanding data (other than
1618 				 * a window probe), this is a completely
1619 				 * duplicate ack (ie, window info didn't
1620 				 * change), the ack is the biggest we've
1621 				 * seen and we've seen exactly our rexmt
1622 				 * threshold of them, assume a packet
1623 				 * has been dropped and retransmit it.
1624 				 * Kludge snd_nxt & the congestion
1625 				 * window so we send only this one
1626 				 * packet.
1627 				 *
1628 				 * We know we're losing at the current
1629 				 * window size so do congestion avoidance
1630 				 * (set ssthresh to half the current window
1631 				 * and pull our congestion window back to
1632 				 * the new ssthresh).
1633 				 *
1634 				 * Dup acks mean that packets have left the
1635 				 * network (they're now cached at the receiver)
1636 				 * so bump cwnd by the amount in the receiver
1637 				 * to keep a constant cwnd packets in the
1638 				 * network.
1639 				 */
1640 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0)
1641 					tp->t_dupacks = 0;
1642 #if defined(TCP_SACK) && defined(TCP_FACK)
1643 				/*
1644 				 * In FACK, can enter fast rec. if the receiver
1645 				 * reports a reass. queue longer than 3 segs.
1646 				 */
1647 				else if (++tp->t_dupacks == tcprexmtthresh ||
1648 				    ((SEQ_GT(tp->snd_fack, tcprexmtthresh *
1649 				    tp->t_maxseg + tp->snd_una)) &&
1650 				    SEQ_GT(tp->snd_una, tp->snd_last))) {
1651 #else
1652 				else if (++tp->t_dupacks == tcprexmtthresh) {
1653 #endif /* TCP_FACK */
1654 					tcp_seq onxt = tp->snd_nxt;
1655 					u_long win =
1656 					    ulmin(tp->snd_wnd, tp->snd_cwnd) /
1657 						2 / tp->t_maxseg;
1658 
1659 #if defined(TCP_SACK) || defined(TCP_ECN)
1660 					if (SEQ_LT(th->th_ack, tp->snd_last)){
1661 					    	/*
1662 						 * False fast retx after
1663 						 * timeout.  Do not cut window.
1664 						 */
1665 						tp->t_dupacks = 0;
1666 						goto drop;
1667 					}
1668 #endif
1669 					if (win < 2)
1670 						win = 2;
1671 					tp->snd_ssthresh = win * tp->t_maxseg;
1672 #ifdef TCP_SACK
1673 					tp->snd_last = tp->snd_max;
1674                     			if (tp->sack_enable) {
1675 						TCP_TIMER_DISARM(tp, TCPT_REXMT);
1676 						tp->t_rtttime = 0;
1677 #ifdef TCP_ECN
1678 						tp->t_flags |= TF_SEND_CWR;
1679 #endif
1680 						tcpstat.tcps_cwr_frecovery++;
1681 						tcpstat.tcps_sack_recovery_episode++;
1682 #if defined(TCP_SACK) && defined(TCP_FACK)
1683 						tp->t_dupacks = tcprexmtthresh;
1684 						(void) tcp_output(tp);
1685 						/*
1686 						 * During FR, snd_cwnd is held
1687 						 * constant for FACK.
1688 						 */
1689 						tp->snd_cwnd = tp->snd_ssthresh;
1690 #else
1691 						/*
1692 						 * tcp_output() will send
1693 						 * oldest SACK-eligible rtx.
1694 						 */
1695 						(void) tcp_output(tp);
1696 						tp->snd_cwnd = tp->snd_ssthresh+
1697 					           tp->t_maxseg * tp->t_dupacks;
1698 #endif /* TCP_FACK */
1699 						goto drop;
1700 					}
1701 #endif /* TCP_SACK */
1702 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1703 					tp->t_rtttime = 0;
1704 					tp->snd_nxt = th->th_ack;
1705 					tp->snd_cwnd = tp->t_maxseg;
1706 #ifdef TCP_ECN
1707 					tp->t_flags |= TF_SEND_CWR;
1708 #endif
1709 					tcpstat.tcps_cwr_frecovery++;
1710 					tcpstat.tcps_sndrexmitfast++;
1711 					(void) tcp_output(tp);
1712 
1713 					tp->snd_cwnd = tp->snd_ssthresh +
1714 					    tp->t_maxseg * tp->t_dupacks;
1715 					if (SEQ_GT(onxt, tp->snd_nxt))
1716 						tp->snd_nxt = onxt;
1717 					goto drop;
1718 				} else if (tp->t_dupacks > tcprexmtthresh) {
1719 #if defined(TCP_SACK) && defined(TCP_FACK)
1720 					/*
1721 					 * while (awnd < cwnd)
1722 					 *         sendsomething();
1723 					 */
1724 					if (tp->sack_enable) {
1725 						if (tp->snd_awnd < tp->snd_cwnd)
1726 							tcp_output(tp);
1727 						goto drop;
1728 					}
1729 #endif /* TCP_FACK */
1730 					tp->snd_cwnd += tp->t_maxseg;
1731 					(void) tcp_output(tp);
1732 					goto drop;
1733 				}
1734 			} else if (tiwin < tp->snd_wnd) {
1735 				/*
1736 				 * The window was retracted!  Previous dup
1737 				 * ACKs may have been due to packets arriving
1738 				 * after the shrunken window, not a missing
1739 				 * packet, so play it safe and reset t_dupacks
1740 				 */
1741 				tp->t_dupacks = 0;
1742 			}
1743 			break;
1744 		}
1745 		/*
1746 		 * If the congestion window was inflated to account
1747 		 * for the other side's cached packets, retract it.
1748 		 */
1749 #if defined(TCP_SACK)
1750 		if (tp->sack_enable) {
1751 			if (tp->t_dupacks >= tcprexmtthresh) {
1752 				/* Check for a partial ACK */
1753 				if (tcp_sack_partialack(tp, th)) {
1754 #if defined(TCP_SACK) && defined(TCP_FACK)
1755 					/* Force call to tcp_output */
1756 					if (tp->snd_awnd < tp->snd_cwnd)
1757 						needoutput = 1;
1758 #else
1759 					tp->snd_cwnd += tp->t_maxseg;
1760 					needoutput = 1;
1761 #endif /* TCP_FACK */
1762 				} else {
1763 					/* Out of fast recovery */
1764 					tp->snd_cwnd = tp->snd_ssthresh;
1765 					if (tcp_seq_subtract(tp->snd_max,
1766 					    th->th_ack) < tp->snd_ssthresh)
1767 						tp->snd_cwnd =
1768 						   tcp_seq_subtract(tp->snd_max,
1769 					           th->th_ack);
1770 					tp->t_dupacks = 0;
1771 #if defined(TCP_SACK) && defined(TCP_FACK)
1772 					if (SEQ_GT(th->th_ack, tp->snd_fack))
1773 						tp->snd_fack = th->th_ack;
1774 #endif /* TCP_FACK */
1775 				}
1776 			}
1777 		} else {
1778 			if (tp->t_dupacks >= tcprexmtthresh &&
1779 			    !tcp_newreno(tp, th)) {
1780 				/* Out of fast recovery */
1781 				tp->snd_cwnd = tp->snd_ssthresh;
1782 				if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
1783 			  	    tp->snd_ssthresh)
1784 					tp->snd_cwnd =
1785 					    tcp_seq_subtract(tp->snd_max,
1786 					    th->th_ack);
1787 				tp->t_dupacks = 0;
1788 			}
1789 		}
1790 		if (tp->t_dupacks < tcprexmtthresh)
1791 			tp->t_dupacks = 0;
1792 #else /* else no TCP_SACK */
1793 		if (tp->t_dupacks >= tcprexmtthresh &&
1794 		    tp->snd_cwnd > tp->snd_ssthresh)
1795 			tp->snd_cwnd = tp->snd_ssthresh;
1796 		tp->t_dupacks = 0;
1797 #endif
1798 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1799 			tcpstat.tcps_rcvacktoomuch++;
1800 			goto dropafterack_ratelim;
1801 		}
1802 		acked = th->th_ack - tp->snd_una;
1803 		tcpstat.tcps_rcvackpack++;
1804 		tcpstat.tcps_rcvackbyte += acked;
1805 
1806 		/*
1807 		 * If we have a timestamp reply, update smoothed
1808 		 * round trip time.  If no timestamp is present but
1809 		 * transmit timer is running and timed sequence
1810 		 * number was acked, update smoothed round trip time.
1811 		 * Since we now have an rtt measurement, cancel the
1812 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1813 		 * Recompute the initial retransmit timer.
1814 		 */
1815 		if (opti.ts_present && opti.ts_ecr)
1816 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr);
1817 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1818 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1819 
1820 		/*
1821 		 * If all outstanding data is acked, stop retransmit
1822 		 * timer and remember to restart (more output or persist).
1823 		 * If there is more data to be acked, restart retransmit
1824 		 * timer, using current (possibly backed-off) value.
1825 		 */
1826 		if (th->th_ack == tp->snd_max) {
1827 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1828 			needoutput = 1;
1829 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1830 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1831 		/*
1832 		 * When new data is acked, open the congestion window.
1833 		 * If the window gives us less than ssthresh packets
1834 		 * in flight, open exponentially (maxseg per packet).
1835 		 * Otherwise open linearly: maxseg per window
1836 		 * (maxseg^2 / cwnd per packet).
1837 		 */
1838 		{
1839 		u_int cw = tp->snd_cwnd;
1840 		u_int incr = tp->t_maxseg;
1841 
1842 		if (cw > tp->snd_ssthresh)
1843 			incr = incr * incr / cw;
1844 #if defined (TCP_SACK)
1845 		if (tp->t_dupacks < tcprexmtthresh)
1846 #endif
1847 		tp->snd_cwnd = ulmin(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1848 		}
1849 		ND6_HINT(tp);
1850 		if (acked > so->so_snd.sb_cc) {
1851 			tp->snd_wnd -= so->so_snd.sb_cc;
1852 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1853 			ourfinisacked = 1;
1854 		} else {
1855 			sbdrop(&so->so_snd, acked);
1856 			tp->snd_wnd -= acked;
1857 			ourfinisacked = 0;
1858 		}
1859 		if (sb_notify(&so->so_snd))
1860 			sowwakeup(so);
1861 
1862 		/*
1863 		 * If we had a pending ICMP message that referred to data
1864 		 * that have just been acknowledged, disregard the recorded
1865 		 * ICMP message.
1866 		 */
1867 		if ((tp->t_flags & TF_PMTUD_PEND) &&
1868 		    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
1869 			tp->t_flags &= ~TF_PMTUD_PEND;
1870 
1871 		/*
1872 		 * Keep track of the largest chunk of data acknowledged
1873 		 * since last PMTU update
1874 		 */
1875 		if (tp->t_pmtud_mss_acked < acked)
1876 			tp->t_pmtud_mss_acked = acked;
1877 
1878 		tp->snd_una = th->th_ack;
1879 #ifdef TCP_ECN
1880 		/* sync snd_last with snd_una */
1881 		if (SEQ_GT(tp->snd_una, tp->snd_last))
1882 			tp->snd_last = tp->snd_una;
1883 #endif
1884 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1885 			tp->snd_nxt = tp->snd_una;
1886 #if defined (TCP_SACK) && defined (TCP_FACK)
1887 		if (SEQ_GT(tp->snd_una, tp->snd_fack)) {
1888 			tp->snd_fack = tp->snd_una;
1889 			/* Update snd_awnd for partial ACK
1890 			 * without any SACK blocks.
1891 			 */
1892 			tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt,
1893 				tp->snd_fack) + tp->retran_data;
1894 		}
1895 #endif
1896 
1897 		switch (tp->t_state) {
1898 
1899 		/*
1900 		 * In FIN_WAIT_1 STATE in addition to the processing
1901 		 * for the ESTABLISHED state if our FIN is now acknowledged
1902 		 * then enter FIN_WAIT_2.
1903 		 */
1904 		case TCPS_FIN_WAIT_1:
1905 			if (ourfinisacked) {
1906 				/*
1907 				 * If we can't receive any more
1908 				 * data, then closing user can proceed.
1909 				 * Starting the timer is contrary to the
1910 				 * specification, but if we don't get a FIN
1911 				 * we'll hang forever.
1912 				 */
1913 				if (so->so_state & SS_CANTRCVMORE) {
1914 					soisdisconnected(so);
1915 					TCP_TIMER_ARM(tp, TCPT_2MSL, tcp_maxidle);
1916 				}
1917 				tp->t_state = TCPS_FIN_WAIT_2;
1918 			}
1919 			break;
1920 
1921 		/*
1922 		 * In CLOSING STATE in addition to the processing for
1923 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1924 		 * then enter the TIME-WAIT state, otherwise ignore
1925 		 * the segment.
1926 		 */
1927 		case TCPS_CLOSING:
1928 			if (ourfinisacked) {
1929 				tp->t_state = TCPS_TIME_WAIT;
1930 				tcp_canceltimers(tp);
1931 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1932 				soisdisconnected(so);
1933 			}
1934 			break;
1935 
1936 		/*
1937 		 * In LAST_ACK, we may still be waiting for data to drain
1938 		 * and/or to be acked, as well as for the ack of our FIN.
1939 		 * If our FIN is now acknowledged, delete the TCB,
1940 		 * enter the closed state and return.
1941 		 */
1942 		case TCPS_LAST_ACK:
1943 			if (ourfinisacked) {
1944 				tp = tcp_close(tp);
1945 				goto drop;
1946 			}
1947 			break;
1948 
1949 		/*
1950 		 * In TIME_WAIT state the only thing that should arrive
1951 		 * is a retransmission of the remote FIN.  Acknowledge
1952 		 * it and restart the finack timer.
1953 		 */
1954 		case TCPS_TIME_WAIT:
1955 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1956 			goto dropafterack;
1957 		}
1958 	}
1959 
1960 step6:
1961 	/*
1962 	 * Update window information.
1963 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1964 	 */
1965 	if ((tiflags & TH_ACK) &&
1966 	    (SEQ_LT(tp->snd_wl1, th->th_seq) || (tp->snd_wl1 == th->th_seq &&
1967 	    (SEQ_LT(tp->snd_wl2, th->th_ack) ||
1968 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
1969 		/* keep track of pure window updates */
1970 		if (tlen == 0 &&
1971 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1972 			tcpstat.tcps_rcvwinupd++;
1973 		tp->snd_wnd = tiwin;
1974 		tp->snd_wl1 = th->th_seq;
1975 		tp->snd_wl2 = th->th_ack;
1976 		if (tp->snd_wnd > tp->max_sndwnd)
1977 			tp->max_sndwnd = tp->snd_wnd;
1978 		needoutput = 1;
1979 	}
1980 
1981 	/*
1982 	 * Process segments with URG.
1983 	 */
1984 	if ((tiflags & TH_URG) && th->th_urp &&
1985 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1986 		/*
1987 		 * This is a kludge, but if we receive and accept
1988 		 * random urgent pointers, we'll crash in
1989 		 * soreceive.  It's hard to imagine someone
1990 		 * actually wanting to send this much urgent data.
1991 		 */
1992 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1993 			th->th_urp = 0;			/* XXX */
1994 			tiflags &= ~TH_URG;		/* XXX */
1995 			goto dodata;			/* XXX */
1996 		}
1997 		/*
1998 		 * If this segment advances the known urgent pointer,
1999 		 * then mark the data stream.  This should not happen
2000 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2001 		 * a FIN has been received from the remote side.
2002 		 * In these states we ignore the URG.
2003 		 *
2004 		 * According to RFC961 (Assigned Protocols),
2005 		 * the urgent pointer points to the last octet
2006 		 * of urgent data.  We continue, however,
2007 		 * to consider it to indicate the first octet
2008 		 * of data past the urgent section as the original
2009 		 * spec states (in one of two places).
2010 		 */
2011 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2012 			tp->rcv_up = th->th_seq + th->th_urp;
2013 			so->so_oobmark = so->so_rcv.sb_cc +
2014 			    (tp->rcv_up - tp->rcv_nxt) - 1;
2015 			if (so->so_oobmark == 0)
2016 				so->so_state |= SS_RCVATMARK;
2017 			sohasoutofband(so);
2018 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2019 		}
2020 		/*
2021 		 * Remove out of band data so doesn't get presented to user.
2022 		 * This can happen independent of advancing the URG pointer,
2023 		 * but if two URG's are pending at once, some out-of-band
2024 		 * data may creep in... ick.
2025 		 */
2026 		if (th->th_urp <= (u_int16_t) tlen
2027 #ifdef SO_OOBINLINE
2028 		     && (so->so_options & SO_OOBINLINE) == 0
2029 #endif
2030 		     )
2031 		        tcp_pulloutofband(so, th->th_urp, m, hdroptlen);
2032 	} else
2033 		/*
2034 		 * If no out of band data is expected,
2035 		 * pull receive urgent pointer along
2036 		 * with the receive window.
2037 		 */
2038 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2039 			tp->rcv_up = tp->rcv_nxt;
2040 dodata:							/* XXX */
2041 
2042 	/*
2043 	 * Process the segment text, merging it into the TCP sequencing queue,
2044 	 * and arranging for acknowledgment of receipt if necessary.
2045 	 * This process logically involves adjusting tp->rcv_wnd as data
2046 	 * is presented to the user (this happens in tcp_usrreq.c,
2047 	 * case PRU_RCVD).  If a FIN has already been received on this
2048 	 * connection then we just ignore the text.
2049 	 */
2050 	if ((tlen || (tiflags & TH_FIN)) &&
2051 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2052 #ifdef TCP_SACK
2053 		tcp_seq laststart = th->th_seq;
2054 		tcp_seq lastend = th->th_seq + tlen;
2055 #endif
2056 		if (th->th_seq == tp->rcv_nxt && TAILQ_EMPTY(&tp->t_segq) &&
2057 		    tp->t_state == TCPS_ESTABLISHED) {
2058 			TCP_SETUP_ACK(tp, tiflags);
2059 			tp->rcv_nxt += tlen;
2060 			tiflags = th->th_flags & TH_FIN;
2061 			tcpstat.tcps_rcvpack++;
2062 			tcpstat.tcps_rcvbyte += tlen;
2063 			ND6_HINT(tp);
2064 			if (so->so_state & SS_CANTRCVMORE)
2065 				m_freem(m);
2066 			else {
2067 				m_adj(m, hdroptlen);
2068 				sbappendstream(&so->so_rcv, m);
2069 			}
2070 			sorwakeup(so);
2071 		} else {
2072 			m_adj(m, hdroptlen);
2073 			tiflags = tcp_reass(tp, th, m, &tlen);
2074 			tp->t_flags |= TF_ACKNOW;
2075 		}
2076 #ifdef TCP_SACK
2077 		if (tp->sack_enable)
2078 			tcp_update_sack_list(tp, laststart, lastend);
2079 #endif
2080 
2081 		/*
2082 		 * variable len never referenced again in modern BSD,
2083 		 * so why bother computing it ??
2084 		 */
2085 #if 0
2086 		/*
2087 		 * Note the amount of data that peer has sent into
2088 		 * our window, in order to estimate the sender's
2089 		 * buffer size.
2090 		 */
2091 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2092 #endif /* 0 */
2093 	} else {
2094 		m_freem(m);
2095 		tiflags &= ~TH_FIN;
2096 	}
2097 
2098 	/*
2099 	 * If FIN is received ACK the FIN and let the user know
2100 	 * that the connection is closing.  Ignore a FIN received before
2101 	 * the connection is fully established.
2102 	 */
2103 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2104 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2105 			socantrcvmore(so);
2106 			tp->t_flags |= TF_ACKNOW;
2107 			tp->rcv_nxt++;
2108 		}
2109 		switch (tp->t_state) {
2110 
2111 		/*
2112 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2113 		 */
2114 		case TCPS_ESTABLISHED:
2115 			tp->t_state = TCPS_CLOSE_WAIT;
2116 			break;
2117 
2118 		/*
2119 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2120 		 * enter the CLOSING state.
2121 		 */
2122 		case TCPS_FIN_WAIT_1:
2123 			tp->t_state = TCPS_CLOSING;
2124 			break;
2125 
2126 		/*
2127 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2128 		 * starting the time-wait timer, turning off the other
2129 		 * standard timers.
2130 		 */
2131 		case TCPS_FIN_WAIT_2:
2132 			tp->t_state = TCPS_TIME_WAIT;
2133 			tcp_canceltimers(tp);
2134 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2135 			soisdisconnected(so);
2136 			break;
2137 
2138 		/*
2139 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2140 		 */
2141 		case TCPS_TIME_WAIT:
2142 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2143 			break;
2144 		}
2145 	}
2146 	if (so->so_options & SO_DEBUG) {
2147 		switch (tp->pf) {
2148 #ifdef INET6
2149 		case PF_INET6:
2150 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti6,
2151 			    0, tlen);
2152 			break;
2153 #endif /* INET6 */
2154 		case PF_INET:
2155 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti,
2156 			    0, tlen);
2157 			break;
2158 		}
2159 	}
2160 
2161 	/*
2162 	 * Return any desired output.
2163 	 */
2164 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2165 		(void) tcp_output(tp);
2166 	}
2167 	return;
2168 
2169 badsyn:
2170 	/*
2171 	 * Received a bad SYN.  Increment counters and dropwithreset.
2172 	 */
2173 	tcpstat.tcps_badsyn++;
2174 	tp = NULL;
2175 	goto dropwithreset;
2176 
2177 dropafterack_ratelim:
2178 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2179 	    tcp_ackdrop_ppslim) == 0) {
2180 		/* XXX stat */
2181 		goto drop;
2182 	}
2183 	/* ...fall into dropafterack... */
2184 
2185 dropafterack:
2186 	/*
2187 	 * Generate an ACK dropping incoming segment if it occupies
2188 	 * sequence space, where the ACK reflects our state.
2189 	 */
2190 	if (tiflags & TH_RST)
2191 		goto drop;
2192 	m_freem(m);
2193 	tp->t_flags |= TF_ACKNOW;
2194 	(void) tcp_output(tp);
2195 	return;
2196 
2197 dropwithreset_ratelim:
2198 	/*
2199 	 * We may want to rate-limit RSTs in certain situations,
2200 	 * particularly if we are sending an RST in response to
2201 	 * an attempt to connect to or otherwise communicate with
2202 	 * a port for which we have no socket.
2203 	 */
2204 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2205 	    tcp_rst_ppslim) == 0) {
2206 		/* XXX stat */
2207 		goto drop;
2208 	}
2209 	/* ...fall into dropwithreset... */
2210 
2211 dropwithreset:
2212 	/*
2213 	 * Generate a RST, dropping incoming segment.
2214 	 * Make ACK acceptable to originator of segment.
2215 	 * Don't bother to respond to RST.
2216 	 */
2217 	if (tiflags & TH_RST)
2218 		goto drop;
2219 	if (tiflags & TH_ACK) {
2220 		tcp_respond(tp, mtod(m, caddr_t), th, (tcp_seq)0, th->th_ack,
2221 		    TH_RST);
2222 	} else {
2223 		if (tiflags & TH_SYN)
2224 			tlen++;
2225 		tcp_respond(tp, mtod(m, caddr_t), th, th->th_seq + tlen,
2226 		    (tcp_seq)0, TH_RST|TH_ACK);
2227 	}
2228 	m_freem(m);
2229 	return;
2230 
2231 drop:
2232 	/*
2233 	 * Drop space held by incoming segment and return.
2234 	 */
2235 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
2236 		switch (tp->pf) {
2237 #ifdef INET6
2238 		case PF_INET6:
2239 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti6,
2240 			    0, tlen);
2241 			break;
2242 #endif /* INET6 */
2243 		case PF_INET:
2244 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti,
2245 			    0, tlen);
2246 			break;
2247 		}
2248 	}
2249 
2250 	m_freem(m);
2251 	return;
2252 }
2253 
2254 int
2255 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2256     struct mbuf *m, int iphlen, struct tcp_opt_info *oi)
2257 {
2258 	u_int16_t mss = 0;
2259 	int opt, optlen;
2260 #ifdef TCP_SIGNATURE
2261 	caddr_t sigp = NULL;
2262 	struct tdb *tdb = NULL;
2263 #endif /* TCP_SIGNATURE */
2264 
2265 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2266 		opt = cp[0];
2267 		if (opt == TCPOPT_EOL)
2268 			break;
2269 		if (opt == TCPOPT_NOP)
2270 			optlen = 1;
2271 		else {
2272 			if (cnt < 2)
2273 				break;
2274 			optlen = cp[1];
2275 			if (optlen < 2 || optlen > cnt)
2276 				break;
2277 		}
2278 		switch (opt) {
2279 
2280 		default:
2281 			continue;
2282 
2283 		case TCPOPT_MAXSEG:
2284 			if (optlen != TCPOLEN_MAXSEG)
2285 				continue;
2286 			if (!(th->th_flags & TH_SYN))
2287 				continue;
2288 			if (TCPS_HAVERCVDSYN(tp->t_state))
2289 				continue;
2290 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
2291 			NTOHS(mss);
2292 			oi->maxseg = mss;
2293 			break;
2294 
2295 		case TCPOPT_WINDOW:
2296 			if (optlen != TCPOLEN_WINDOW)
2297 				continue;
2298 			if (!(th->th_flags & TH_SYN))
2299 				continue;
2300 			if (TCPS_HAVERCVDSYN(tp->t_state))
2301 				continue;
2302 			tp->t_flags |= TF_RCVD_SCALE;
2303 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2304 			break;
2305 
2306 		case TCPOPT_TIMESTAMP:
2307 			if (optlen != TCPOLEN_TIMESTAMP)
2308 				continue;
2309 			oi->ts_present = 1;
2310 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2311 			NTOHL(oi->ts_val);
2312 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2313 			NTOHL(oi->ts_ecr);
2314 
2315 			if (!(th->th_flags & TH_SYN))
2316 				continue;
2317 			if (TCPS_HAVERCVDSYN(tp->t_state))
2318 				continue;
2319 			/*
2320 			 * A timestamp received in a SYN makes
2321 			 * it ok to send timestamp requests and replies.
2322 			 */
2323 			tp->t_flags |= TF_RCVD_TSTMP;
2324 			tp->ts_recent = oi->ts_val;
2325 			tp->ts_recent_age = tcp_now;
2326 			break;
2327 
2328 #ifdef TCP_SACK
2329 		case TCPOPT_SACK_PERMITTED:
2330 			if (!tp->sack_enable || optlen!=TCPOLEN_SACK_PERMITTED)
2331 				continue;
2332 			if (!(th->th_flags & TH_SYN))
2333 				continue;
2334 			if (TCPS_HAVERCVDSYN(tp->t_state))
2335 				continue;
2336 			/* MUST only be set on SYN */
2337 			tp->t_flags |= TF_SACK_PERMIT;
2338 			break;
2339 		case TCPOPT_SACK:
2340 			tcp_sack_option(tp, th, cp, optlen);
2341 			break;
2342 #endif
2343 #ifdef TCP_SIGNATURE
2344 		case TCPOPT_SIGNATURE:
2345 			if (optlen != TCPOLEN_SIGNATURE)
2346 				continue;
2347 
2348 			if (sigp && bcmp(sigp, cp + 2, 16))
2349 				return (-1);
2350 
2351 			sigp = cp + 2;
2352 			break;
2353 #endif /* TCP_SIGNATURE */
2354 		}
2355 	}
2356 
2357 #ifdef TCP_SIGNATURE
2358 	if (tp->t_flags & TF_SIGNATURE) {
2359 		union sockaddr_union src, dst;
2360 
2361 		memset(&src, 0, sizeof(union sockaddr_union));
2362 		memset(&dst, 0, sizeof(union sockaddr_union));
2363 
2364 		switch (tp->pf) {
2365 		case 0:
2366 #ifdef INET
2367 		case AF_INET:
2368 			src.sa.sa_len = sizeof(struct sockaddr_in);
2369 			src.sa.sa_family = AF_INET;
2370 			src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
2371 			dst.sa.sa_len = sizeof(struct sockaddr_in);
2372 			dst.sa.sa_family = AF_INET;
2373 			dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
2374 			break;
2375 #endif
2376 #ifdef INET6
2377 		case AF_INET6:
2378 			src.sa.sa_len = sizeof(struct sockaddr_in6);
2379 			src.sa.sa_family = AF_INET6;
2380 			src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
2381 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
2382 			dst.sa.sa_family = AF_INET6;
2383 			dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
2384 			break;
2385 #endif /* INET6 */
2386 		}
2387 
2388 		tdb = gettdbbysrcdst(0, &src, &dst, IPPROTO_TCP);
2389 
2390 		/*
2391 		 * We don't have an SA for this peer, so we turn off
2392 		 * TF_SIGNATURE on the listen socket
2393 		 */
2394 		if (tdb == NULL && tp->t_state == TCPS_LISTEN)
2395 			tp->t_flags &= ~TF_SIGNATURE;
2396 
2397 	}
2398 
2399 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2400 		tcpstat.tcps_rcvbadsig++;
2401 		return (-1);
2402 	}
2403 
2404 	if (sigp) {
2405 		char sig[16];
2406 
2407 		if (tdb == NULL) {
2408 			tcpstat.tcps_rcvbadsig++;
2409 			return (-1);
2410 		}
2411 
2412 		if (tcp_signature(tdb, tp->pf, m, th, iphlen, 1, sig) < 0)
2413 			return (-1);
2414 
2415 		if (bcmp(sig, sigp, 16)) {
2416 			tcpstat.tcps_rcvbadsig++;
2417 			return (-1);
2418 		}
2419 
2420 		tcpstat.tcps_rcvgoodsig++;
2421 	}
2422 #endif /* TCP_SIGNATURE */
2423 
2424 	return (0);
2425 }
2426 
2427 #if defined(TCP_SACK)
2428 u_long
2429 tcp_seq_subtract(u_long a, u_long b)
2430 {
2431 	return ((long)(a - b));
2432 }
2433 #endif
2434 
2435 
2436 #ifdef TCP_SACK
2437 /*
2438  * This function is called upon receipt of new valid data (while not in header
2439  * prediction mode), and it updates the ordered list of sacks.
2440  */
2441 void
2442 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_laststart,
2443     tcp_seq rcv_lastend)
2444 {
2445 	/*
2446 	 * First reported block MUST be the most recent one.  Subsequent
2447 	 * blocks SHOULD be in the order in which they arrived at the
2448 	 * receiver.  These two conditions make the implementation fully
2449 	 * compliant with RFC 2018.
2450 	 */
2451 	int i, j = 0, count = 0, lastpos = -1;
2452 	struct sackblk sack, firstsack, temp[MAX_SACK_BLKS];
2453 
2454 	/* First clean up current list of sacks */
2455 	for (i = 0; i < tp->rcv_numsacks; i++) {
2456 		sack = tp->sackblks[i];
2457 		if (sack.start == 0 && sack.end == 0) {
2458 			count++; /* count = number of blocks to be discarded */
2459 			continue;
2460 		}
2461 		if (SEQ_LEQ(sack.end, tp->rcv_nxt)) {
2462 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2463 			count++;
2464 		} else {
2465 			temp[j].start = tp->sackblks[i].start;
2466 			temp[j++].end = tp->sackblks[i].end;
2467 		}
2468 	}
2469 	tp->rcv_numsacks -= count;
2470 	if (tp->rcv_numsacks == 0) { /* no sack blocks currently (fast path) */
2471 		tcp_clean_sackreport(tp);
2472 		if (SEQ_LT(tp->rcv_nxt, rcv_laststart)) {
2473 			/* ==> need first sack block */
2474 			tp->sackblks[0].start = rcv_laststart;
2475 			tp->sackblks[0].end = rcv_lastend;
2476 			tp->rcv_numsacks = 1;
2477 		}
2478 		return;
2479 	}
2480 	/* Otherwise, sack blocks are already present. */
2481 	for (i = 0; i < tp->rcv_numsacks; i++)
2482 		tp->sackblks[i] = temp[i]; /* first copy back sack list */
2483 	if (SEQ_GEQ(tp->rcv_nxt, rcv_lastend))
2484 		return;     /* sack list remains unchanged */
2485 	/*
2486 	 * From here, segment just received should be (part of) the 1st sack.
2487 	 * Go through list, possibly coalescing sack block entries.
2488 	 */
2489 	firstsack.start = rcv_laststart;
2490 	firstsack.end = rcv_lastend;
2491 	for (i = 0; i < tp->rcv_numsacks; i++) {
2492 		sack = tp->sackblks[i];
2493 		if (SEQ_LT(sack.end, firstsack.start) ||
2494 		    SEQ_GT(sack.start, firstsack.end))
2495 			continue; /* no overlap */
2496 		if (sack.start == firstsack.start && sack.end == firstsack.end){
2497 			/*
2498 			 * identical block; delete it here since we will
2499 			 * move it to the front of the list.
2500 			 */
2501 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2502 			lastpos = i;    /* last posn with a zero entry */
2503 			continue;
2504 		}
2505 		if (SEQ_LEQ(sack.start, firstsack.start))
2506 			firstsack.start = sack.start; /* merge blocks */
2507 		if (SEQ_GEQ(sack.end, firstsack.end))
2508 			firstsack.end = sack.end;     /* merge blocks */
2509 		tp->sackblks[i].start = tp->sackblks[i].end = 0;
2510 		lastpos = i;    /* last posn with a zero entry */
2511 	}
2512 	if (lastpos != -1) {    /* at least one merge */
2513 		for (i = 0, j = 1; i < tp->rcv_numsacks; i++) {
2514 			sack = tp->sackblks[i];
2515 			if (sack.start == 0 && sack.end == 0)
2516 				continue;
2517 			temp[j++] = sack;
2518 		}
2519 		tp->rcv_numsacks = j; /* including first blk (added later) */
2520 		for (i = 1; i < tp->rcv_numsacks; i++) /* now copy back */
2521 			tp->sackblks[i] = temp[i];
2522 	} else {        /* no merges -- shift sacks by 1 */
2523 		if (tp->rcv_numsacks < MAX_SACK_BLKS)
2524 			tp->rcv_numsacks++;
2525 		for (i = tp->rcv_numsacks-1; i > 0; i--)
2526 			tp->sackblks[i] = tp->sackblks[i-1];
2527 	}
2528 	tp->sackblks[0] = firstsack;
2529 	return;
2530 }
2531 
2532 /*
2533  * Process the TCP SACK option.  tp->snd_holes is an ordered list
2534  * of holes (oldest to newest, in terms of the sequence space).
2535  */
2536 void
2537 tcp_sack_option(struct tcpcb *tp, struct tcphdr *th, u_char *cp, int optlen)
2538 {
2539 	int tmp_olen;
2540 	u_char *tmp_cp;
2541 	struct sackhole *cur, *p, *temp;
2542 
2543 	if (!tp->sack_enable)
2544 		return;
2545 	/* SACK without ACK doesn't make sense. */
2546 	if ((th->th_flags & TH_ACK) == 0)
2547 	       return;
2548 	/* Make sure the ACK on this segment is in [snd_una, snd_max]. */
2549 	if (SEQ_LT(th->th_ack, tp->snd_una) ||
2550 	    SEQ_GT(th->th_ack, tp->snd_max))
2551 		return;
2552 	/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2553 	if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2554 		return;
2555 	/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2556 	tmp_cp = cp + 2;
2557 	tmp_olen = optlen - 2;
2558 	tcpstat.tcps_sack_rcv_opts++;
2559 	if (tp->snd_numholes < 0)
2560 		tp->snd_numholes = 0;
2561 	if (tp->t_maxseg == 0)
2562 		panic("tcp_sack_option"); /* Should never happen */
2563 	while (tmp_olen > 0) {
2564 		struct sackblk sack;
2565 
2566 		bcopy(tmp_cp, (char *) &(sack.start), sizeof(tcp_seq));
2567 		NTOHL(sack.start);
2568 		bcopy(tmp_cp + sizeof(tcp_seq),
2569 		    (char *) &(sack.end), sizeof(tcp_seq));
2570 		NTOHL(sack.end);
2571 		tmp_olen -= TCPOLEN_SACK;
2572 		tmp_cp += TCPOLEN_SACK;
2573 		if (SEQ_LEQ(sack.end, sack.start))
2574 			continue; /* bad SACK fields */
2575 		if (SEQ_LEQ(sack.end, tp->snd_una))
2576 			continue; /* old block */
2577 #if defined(TCP_SACK) && defined(TCP_FACK)
2578 		/* Updates snd_fack.  */
2579 		if (SEQ_GT(sack.end, tp->snd_fack))
2580 			tp->snd_fack = sack.end;
2581 #endif /* TCP_FACK */
2582 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
2583 			if (SEQ_LT(sack.start, th->th_ack))
2584 				continue;
2585 		}
2586 		if (SEQ_GT(sack.end, tp->snd_max))
2587 			continue;
2588 		if (tp->snd_holes == NULL) { /* first hole */
2589 			tp->snd_holes = (struct sackhole *)
2590 			    pool_get(&sackhl_pool, PR_NOWAIT);
2591 			if (tp->snd_holes == NULL) {
2592 				/* ENOBUFS, so ignore SACKed block for now*/
2593 				goto done;
2594 			}
2595 			cur = tp->snd_holes;
2596 			cur->start = th->th_ack;
2597 			cur->end = sack.start;
2598 			cur->rxmit = cur->start;
2599 			cur->next = NULL;
2600 			tp->snd_numholes = 1;
2601 			tp->rcv_lastsack = sack.end;
2602 			/*
2603 			 * dups is at least one.  If more data has been
2604 			 * SACKed, it can be greater than one.
2605 			 */
2606 			cur->dups = min(tcprexmtthresh,
2607 			    ((sack.end - cur->end)/tp->t_maxseg));
2608 			if (cur->dups < 1)
2609 				cur->dups = 1;
2610 			continue; /* with next sack block */
2611 		}
2612 		/* Go thru list of holes:  p = previous,  cur = current */
2613 		p = cur = tp->snd_holes;
2614 		while (cur) {
2615 			if (SEQ_LEQ(sack.end, cur->start))
2616 				/* SACKs data before the current hole */
2617 				break; /* no use going through more holes */
2618 			if (SEQ_GEQ(sack.start, cur->end)) {
2619 				/* SACKs data beyond the current hole */
2620 				cur->dups++;
2621 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2622 				    tcprexmtthresh)
2623 					cur->dups = tcprexmtthresh;
2624 				p = cur;
2625 				cur = cur->next;
2626 				continue;
2627 			}
2628 			if (SEQ_LEQ(sack.start, cur->start)) {
2629 				/* Data acks at least the beginning of hole */
2630 #if defined(TCP_SACK) && defined(TCP_FACK)
2631 				if (SEQ_GT(sack.end, cur->rxmit))
2632 					tp->retran_data -=
2633 				    	    tcp_seq_subtract(cur->rxmit,
2634 					    cur->start);
2635 				else
2636 					tp->retran_data -=
2637 					    tcp_seq_subtract(sack.end,
2638 					    cur->start);
2639 #endif /* TCP_FACK */
2640 				if (SEQ_GEQ(sack.end, cur->end)) {
2641 					/* Acks entire hole, so delete hole */
2642 					if (p != cur) {
2643 						p->next = cur->next;
2644 						pool_put(&sackhl_pool, cur);
2645 						cur = p->next;
2646 					} else {
2647 						cur = cur->next;
2648 						pool_put(&sackhl_pool, p);
2649 						p = cur;
2650 						tp->snd_holes = p;
2651 					}
2652 					tp->snd_numholes--;
2653 					continue;
2654 				}
2655 				/* otherwise, move start of hole forward */
2656 				cur->start = sack.end;
2657 				cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
2658 				p = cur;
2659 				cur = cur->next;
2660 				continue;
2661 			}
2662 			/* move end of hole backward */
2663 			if (SEQ_GEQ(sack.end, cur->end)) {
2664 #if defined(TCP_SACK) && defined(TCP_FACK)
2665 				if (SEQ_GT(cur->rxmit, sack.start))
2666 					tp->retran_data -=
2667 					    tcp_seq_subtract(cur->rxmit,
2668 					    sack.start);
2669 #endif /* TCP_FACK */
2670 				cur->end = sack.start;
2671 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
2672 				cur->dups++;
2673 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2674 				    tcprexmtthresh)
2675 					cur->dups = tcprexmtthresh;
2676 				p = cur;
2677 				cur = cur->next;
2678 				continue;
2679 			}
2680 			if (SEQ_LT(cur->start, sack.start) &&
2681 			    SEQ_GT(cur->end, sack.end)) {
2682 				/*
2683 				 * ACKs some data in middle of a hole; need to
2684 				 * split current hole
2685 				 */
2686 				temp = (struct sackhole *)
2687 				    pool_get(&sackhl_pool, PR_NOWAIT);
2688 				if (temp == NULL)
2689 					goto done; /* ENOBUFS */
2690 #if defined(TCP_SACK) && defined(TCP_FACK)
2691 				if (SEQ_GT(cur->rxmit, sack.end))
2692 					tp->retran_data -=
2693 					    tcp_seq_subtract(sack.end,
2694 					    sack.start);
2695 				else if (SEQ_GT(cur->rxmit, sack.start))
2696 					tp->retran_data -=
2697 					    tcp_seq_subtract(cur->rxmit,
2698 					    sack.start);
2699 #endif /* TCP_FACK */
2700 				temp->next = cur->next;
2701 				temp->start = sack.end;
2702 				temp->end = cur->end;
2703 				temp->dups = cur->dups;
2704 				temp->rxmit = SEQ_MAX(cur->rxmit, temp->start);
2705 				cur->end = sack.start;
2706 				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
2707 				cur->dups++;
2708 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2709 					tcprexmtthresh)
2710 					cur->dups = tcprexmtthresh;
2711 				cur->next = temp;
2712 				p = temp;
2713 				cur = p->next;
2714 				tp->snd_numholes++;
2715 			}
2716 		}
2717 		/* At this point, p points to the last hole on the list */
2718 		if (SEQ_LT(tp->rcv_lastsack, sack.start)) {
2719 			/*
2720 			 * Need to append new hole at end.
2721 			 * Last hole is p (and it's not NULL).
2722 			 */
2723 			temp = (struct sackhole *)
2724 			    pool_get(&sackhl_pool, PR_NOWAIT);
2725 			if (temp == NULL)
2726 				goto done; /* ENOBUFS */
2727 			temp->start = tp->rcv_lastsack;
2728 			temp->end = sack.start;
2729 			temp->dups = min(tcprexmtthresh,
2730 			    ((sack.end - sack.start)/tp->t_maxseg));
2731 			if (temp->dups < 1)
2732 				temp->dups = 1;
2733 			temp->rxmit = temp->start;
2734 			temp->next = 0;
2735 			p->next = temp;
2736 			tp->rcv_lastsack = sack.end;
2737 			tp->snd_numholes++;
2738 		}
2739 	}
2740 done:
2741 #if defined(TCP_SACK) && defined(TCP_FACK)
2742 	/*
2743 	 * Update retran_data and snd_awnd.  Go through the list of
2744 	 * holes.   Increment retran_data by (hole->rxmit - hole->start).
2745 	 */
2746 	tp->retran_data = 0;
2747 	cur = tp->snd_holes;
2748 	while (cur) {
2749 		tp->retran_data += cur->rxmit - cur->start;
2750 		cur = cur->next;
2751 	}
2752 	tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt, tp->snd_fack) +
2753 	    tp->retran_data;
2754 #endif /* TCP_FACK */
2755 
2756 	return;
2757 }
2758 
2759 /*
2760  * Delete stale (i.e, cumulatively ack'd) holes.  Hole is deleted only if
2761  * it is completely acked; otherwise, tcp_sack_option(), called from
2762  * tcp_dooptions(), will fix up the hole.
2763  */
2764 void
2765 tcp_del_sackholes(struct tcpcb *tp, struct tcphdr *th)
2766 {
2767 	if (tp->sack_enable && tp->t_state != TCPS_LISTEN) {
2768 		/* max because this could be an older ack just arrived */
2769 		tcp_seq lastack = SEQ_GT(th->th_ack, tp->snd_una) ?
2770 			th->th_ack : tp->snd_una;
2771 		struct sackhole *cur = tp->snd_holes;
2772 		struct sackhole *prev;
2773 		while (cur)
2774 			if (SEQ_LEQ(cur->end, lastack)) {
2775 				prev = cur;
2776 				cur = cur->next;
2777 				pool_put(&sackhl_pool, prev);
2778 				tp->snd_numholes--;
2779 			} else if (SEQ_LT(cur->start, lastack)) {
2780 				cur->start = lastack;
2781 				if (SEQ_LT(cur->rxmit, cur->start))
2782 					cur->rxmit = cur->start;
2783 				break;
2784 			} else
2785 				break;
2786 		tp->snd_holes = cur;
2787 	}
2788 }
2789 
2790 /*
2791  * Delete all receiver-side SACK information.
2792  */
2793 void
2794 tcp_clean_sackreport(struct tcpcb *tp)
2795 {
2796 	int i;
2797 
2798 	tp->rcv_numsacks = 0;
2799 	for (i = 0; i < MAX_SACK_BLKS; i++)
2800 		tp->sackblks[i].start = tp->sackblks[i].end=0;
2801 
2802 }
2803 
2804 /*
2805  * Checks for partial ack.  If partial ack arrives, turn off retransmission
2806  * timer, deflate the window, do not clear tp->t_dupacks, and return 1.
2807  * If the ack advances at least to tp->snd_last, return 0.
2808  */
2809 int
2810 tcp_sack_partialack(struct tcpcb *tp, struct tcphdr *th)
2811 {
2812 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
2813 		/* Turn off retx. timer (will start again next segment) */
2814 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2815 		tp->t_rtttime = 0;
2816 #ifndef TCP_FACK
2817 		/*
2818 		 * Partial window deflation.  This statement relies on the
2819 		 * fact that tp->snd_una has not been updated yet.  In FACK
2820 		 * hold snd_cwnd constant during fast recovery.
2821 		 */
2822 		if (tp->snd_cwnd > (th->th_ack - tp->snd_una)) {
2823 			tp->snd_cwnd -= th->th_ack - tp->snd_una;
2824 			tp->snd_cwnd += tp->t_maxseg;
2825 		} else
2826 			tp->snd_cwnd = tp->t_maxseg;
2827 #endif
2828 		return (1);
2829 	}
2830 	return (0);
2831 }
2832 #endif /* TCP_SACK */
2833 
2834 /*
2835  * Pull out of band byte out of a segment so
2836  * it doesn't appear in the user's data queue.
2837  * It is still reflected in the segment length for
2838  * sequencing purposes.
2839  */
2840 void
2841 tcp_pulloutofband(struct socket *so, u_int urgent, struct mbuf *m, int off)
2842 {
2843         int cnt = off + urgent - 1;
2844 
2845 	while (cnt >= 0) {
2846 		if (m->m_len > cnt) {
2847 			char *cp = mtod(m, caddr_t) + cnt;
2848 			struct tcpcb *tp = sototcpcb(so);
2849 
2850 			tp->t_iobc = *cp;
2851 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2852 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2853 			m->m_len--;
2854 			return;
2855 		}
2856 		cnt -= m->m_len;
2857 		m = m->m_next;
2858 		if (m == 0)
2859 			break;
2860 	}
2861 	panic("tcp_pulloutofband");
2862 }
2863 
2864 /*
2865  * Collect new round-trip time estimate
2866  * and update averages and current timeout.
2867  */
2868 void
2869 tcp_xmit_timer(struct tcpcb *tp, int rtt)
2870 {
2871 	short delta;
2872 	short rttmin;
2873 
2874 	if (rtt < 0)
2875 		rtt = 0;
2876 	else if (rtt > TCP_RTT_MAX)
2877 		rtt = TCP_RTT_MAX;
2878 
2879 	tcpstat.tcps_rttupdated++;
2880 	if (tp->t_srtt != 0) {
2881 		/*
2882 		 * delta is fixed point with 2 (TCP_RTT_BASE_SHIFT) bits
2883 		 * after the binary point (scaled by 4), whereas
2884 		 * srtt is stored as fixed point with 5 bits after the
2885 		 * binary point (i.e., scaled by 32).  The following magic
2886 		 * is equivalent to the smoothing algorithm in rfc793 with
2887 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2888 		 * point).
2889 		 */
2890 		delta = (rtt << TCP_RTT_BASE_SHIFT) -
2891 		    (tp->t_srtt >> TCP_RTT_SHIFT);
2892 		if ((tp->t_srtt += delta) <= 0)
2893 			tp->t_srtt = 1 << TCP_RTT_BASE_SHIFT;
2894 		/*
2895 		 * We accumulate a smoothed rtt variance (actually, a
2896 		 * smoothed mean difference), then set the retransmit
2897 		 * timer to smoothed rtt + 4 times the smoothed variance.
2898 		 * rttvar is stored as fixed point with 4 bits after the
2899 		 * binary point (scaled by 16).  The following is
2900 		 * equivalent to rfc793 smoothing with an alpha of .75
2901 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2902 		 * rfc793's wired-in beta.
2903 		 */
2904 		if (delta < 0)
2905 			delta = -delta;
2906 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2907 		if ((tp->t_rttvar += delta) <= 0)
2908 			tp->t_rttvar = 1 << TCP_RTT_BASE_SHIFT;
2909 	} else {
2910 		/*
2911 		 * No rtt measurement yet - use the unsmoothed rtt.
2912 		 * Set the variance to half the rtt (so our first
2913 		 * retransmit happens at 3*rtt).
2914 		 */
2915 		tp->t_srtt = (rtt + 1) << (TCP_RTT_SHIFT + TCP_RTT_BASE_SHIFT);
2916 		tp->t_rttvar = (rtt + 1) <<
2917 		    (TCP_RTTVAR_SHIFT + TCP_RTT_BASE_SHIFT - 1);
2918 	}
2919 	tp->t_rtttime = 0;
2920 	tp->t_rxtshift = 0;
2921 
2922 	/*
2923 	 * the retransmit should happen at rtt + 4 * rttvar.
2924 	 * Because of the way we do the smoothing, srtt and rttvar
2925 	 * will each average +1/2 tick of bias.  When we compute
2926 	 * the retransmit timer, we want 1/2 tick of rounding and
2927 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2928 	 * firing of the timer.  The bias will give us exactly the
2929 	 * 1.5 tick we need.  But, because the bias is
2930 	 * statistical, we have to test that we don't drop below
2931 	 * the minimum feasible timer (which is 2 ticks).
2932 	 */
2933 	rttmin = min(max(rtt + 2, tp->t_rttmin), TCPTV_REXMTMAX);
2934 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2935 
2936 	/*
2937 	 * We received an ack for a packet that wasn't retransmitted;
2938 	 * it is probably safe to discard any error indications we've
2939 	 * received recently.  This isn't quite right, but close enough
2940 	 * for now (a route might have failed after we sent a segment,
2941 	 * and the return path might not be symmetrical).
2942 	 */
2943 	tp->t_softerror = 0;
2944 }
2945 
2946 /*
2947  * Determine a reasonable value for maxseg size.
2948  * If the route is known, check route for mtu.
2949  * If none, use an mss that can be handled on the outgoing
2950  * interface without forcing IP to fragment; if bigger than
2951  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2952  * to utilize large mbufs.  If no route is found, route has no mtu,
2953  * or the destination isn't local, use a default, hopefully conservative
2954  * size (usually 512 or the default IP max size, but no more than the mtu
2955  * of the interface), as we can't discover anything about intervening
2956  * gateways or networks.  We also initialize the congestion/slow start
2957  * window to be a single segment if the destination isn't local.
2958  * While looking at the routing entry, we also initialize other path-dependent
2959  * parameters from pre-set or cached values in the routing entry.
2960  *
2961  * Also take into account the space needed for options that we
2962  * send regularly.  Make maxseg shorter by that amount to assure
2963  * that we can send maxseg amount of data even when the options
2964  * are present.  Store the upper limit of the length of options plus
2965  * data in maxopd.
2966  *
2967  * NOTE: offer == -1 indicates that the maxseg size changed due to
2968  * Path MTU discovery.
2969  */
2970 int
2971 tcp_mss(struct tcpcb *tp, int offer)
2972 {
2973 	struct rtentry *rt;
2974 	struct ifnet *ifp;
2975 	int mss, mssopt;
2976 	int iphlen;
2977 	struct inpcb *inp;
2978 
2979 	inp = tp->t_inpcb;
2980 
2981 	mssopt = mss = tcp_mssdflt;
2982 
2983 	rt = in_pcbrtentry(inp);
2984 
2985 	if (rt == NULL)
2986 		goto out;
2987 
2988 	ifp = rt->rt_ifp;
2989 
2990 	switch (tp->pf) {
2991 #ifdef INET6
2992 	case AF_INET6:
2993 		iphlen = sizeof(struct ip6_hdr);
2994 		break;
2995 #endif
2996 	case AF_INET:
2997 		iphlen = sizeof(struct ip);
2998 		break;
2999 	default:
3000 		/* the family does not support path MTU discovery */
3001 		goto out;
3002 	}
3003 
3004 #ifdef RTV_MTU
3005 	/*
3006 	 * if there's an mtu associated with the route and we support
3007 	 * path MTU discovery for the underlying protocol family, use it.
3008 	 */
3009 	if (rt->rt_rmx.rmx_mtu) {
3010 		/*
3011 		 * One may wish to lower MSS to take into account options,
3012 		 * especially security-related options.
3013 		 */
3014 		if (tp->pf == AF_INET6 && rt->rt_rmx.rmx_mtu < IPV6_MMTU) {
3015 			/*
3016 			 * RFC2460 section 5, last paragraph: if path MTU is
3017 			 * smaller than 1280, use 1280 as packet size and
3018 			 * attach fragment header.
3019 			 */
3020 			mss = IPV6_MMTU - iphlen - sizeof(struct ip6_frag) -
3021 			    sizeof(struct tcphdr);
3022 		} else
3023 			mss = rt->rt_rmx.rmx_mtu - iphlen - sizeof(struct tcphdr);
3024 	} else
3025 #endif /* RTV_MTU */
3026 	if (!ifp)
3027 		/*
3028 		 * ifp may be null and rmx_mtu may be zero in certain
3029 		 * v6 cases (e.g., if ND wasn't able to resolve the
3030 		 * destination host.
3031 		 */
3032 		goto out;
3033 	else if (ifp->if_flags & IFF_LOOPBACK)
3034 		mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3035 	else if (tp->pf == AF_INET) {
3036 		if (ip_mtudisc)
3037 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3038 		else if (inp && in_localaddr(inp->inp_faddr, inp->inp_rdomain))
3039 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3040 	}
3041 #ifdef INET6
3042 	else if (tp->pf == AF_INET6) {
3043 		/*
3044 		 * for IPv6, path MTU discovery is always turned on,
3045 		 * or the node must use packet size <= 1280.
3046 		 */
3047 		mss = IN6_LINKMTU(ifp) - iphlen - sizeof(struct tcphdr);
3048 	}
3049 #endif /* INET6 */
3050 
3051 	/* Calculate the value that we offer in TCPOPT_MAXSEG */
3052 	if (offer != -1) {
3053 #ifndef INET6
3054 		mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3055 #else
3056 		if (tp->pf == AF_INET6)
3057 			mssopt = IN6_LINKMTU(ifp) - iphlen -
3058 			    sizeof(struct tcphdr);
3059 		else
3060 			mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
3061 #endif
3062 
3063 		mssopt = max(tcp_mssdflt, mssopt);
3064 	}
3065 
3066  out:
3067 	/*
3068 	 * The current mss, t_maxseg, is initialized to the default value.
3069 	 * If we compute a smaller value, reduce the current mss.
3070 	 * If we compute a larger value, return it for use in sending
3071 	 * a max seg size option, but don't store it for use
3072 	 * unless we received an offer at least that large from peer.
3073 	 *
3074 	 * However, do not accept offers lower than the minimum of
3075 	 * the interface MTU and 216.
3076 	 */
3077 	if (offer > 0)
3078 		tp->t_peermss = offer;
3079 	if (tp->t_peermss)
3080 		mss = min(mss, max(tp->t_peermss, 216));
3081 
3082 	/* sanity - at least max opt. space */
3083 	mss = max(mss, 64);
3084 
3085 	/*
3086 	 * maxopd stores the maximum length of data AND options
3087 	 * in a segment; maxseg is the amount of data in a normal
3088 	 * segment.  We need to store this value (maxopd) apart
3089 	 * from maxseg, because now every segment carries options
3090 	 * and thus we normally have somewhat less data in segments.
3091 	 */
3092 	tp->t_maxopd = mss;
3093 
3094 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3095 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
3096 		mss -= TCPOLEN_TSTAMP_APPA;
3097 #ifdef TCP_SIGNATURE
3098 	if (tp->t_flags & TF_SIGNATURE)
3099 		mss -= TCPOLEN_SIGLEN;
3100 #endif
3101 
3102 	if (offer == -1) {
3103 		/* mss changed due to Path MTU discovery */
3104 		tp->t_flags &= ~TF_PMTUD_PEND;
3105 		tp->t_pmtud_mtu_sent = 0;
3106 		tp->t_pmtud_mss_acked = 0;
3107 		if (mss < tp->t_maxseg) {
3108 			/*
3109 			 * Follow suggestion in RFC 2414 to reduce the
3110 			 * congestion window by the ratio of the old
3111 			 * segment size to the new segment size.
3112 			 */
3113 			tp->snd_cwnd = ulmax((tp->snd_cwnd / tp->t_maxseg) *
3114 					     mss, mss);
3115 		}
3116 	} else if (tcp_do_rfc3390) {
3117 		/* increase initial window  */
3118 		tp->snd_cwnd = ulmin(4 * mss, ulmax(2 * mss, 4380));
3119 	} else
3120 		tp->snd_cwnd = mss;
3121 
3122 	tp->t_maxseg = mss;
3123 
3124 	return (offer != -1 ? mssopt : mss);
3125 }
3126 
3127 u_int
3128 tcp_hdrsz(struct tcpcb *tp)
3129 {
3130 	u_int hlen;
3131 
3132 	switch (tp->pf) {
3133 #ifdef INET6
3134 	case AF_INET6:
3135 		hlen = sizeof(struct ip6_hdr);
3136 		break;
3137 #endif
3138 	case AF_INET:
3139 		hlen = sizeof(struct ip);
3140 		break;
3141 	default:
3142 		hlen = 0;
3143 		break;
3144 	}
3145 	hlen += sizeof(struct tcphdr);
3146 
3147 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3148 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
3149 		hlen += TCPOLEN_TSTAMP_APPA;
3150 #ifdef TCP_SIGNATURE
3151 	if (tp->t_flags & TF_SIGNATURE)
3152 		hlen += TCPOLEN_SIGLEN;
3153 #endif
3154 	return (hlen);
3155 }
3156 
3157 /*
3158  * Set connection variables based on the effective MSS.
3159  * We are passed the TCPCB for the actual connection.  If we
3160  * are the server, we are called by the compressed state engine
3161  * when the 3-way handshake is complete.  If we are the client,
3162  * we are called when we receive the SYN,ACK from the server.
3163  *
3164  * NOTE: The t_maxseg value must be initialized in the TCPCB
3165  * before this routine is called!
3166  */
3167 void
3168 tcp_mss_update(struct tcpcb *tp)
3169 {
3170 	int mss;
3171 	u_long bufsize;
3172 	struct rtentry *rt;
3173 	struct socket *so;
3174 
3175 	so = tp->t_inpcb->inp_socket;
3176 	mss = tp->t_maxseg;
3177 
3178 	rt = in_pcbrtentry(tp->t_inpcb);
3179 
3180 	if (rt == NULL)
3181 		return;
3182 
3183 	bufsize = so->so_snd.sb_hiwat;
3184 	if (bufsize < mss) {
3185 		mss = bufsize;
3186 		/* Update t_maxseg and t_maxopd */
3187 		tcp_mss(tp, mss);
3188 	} else {
3189 		bufsize = roundup(bufsize, mss);
3190 		if (bufsize > sb_max)
3191 			bufsize = sb_max;
3192 		(void)sbreserve(&so->so_snd, bufsize);
3193 	}
3194 
3195 	bufsize = so->so_rcv.sb_hiwat;
3196 	if (bufsize > mss) {
3197 		bufsize = roundup(bufsize, mss);
3198 		if (bufsize > sb_max)
3199 			bufsize = sb_max;
3200 		(void)sbreserve(&so->so_rcv, bufsize);
3201 	}
3202 
3203 }
3204 
3205 #if defined (TCP_SACK)
3206 /*
3207  * Checks for partial ack.  If partial ack arrives, force the retransmission
3208  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
3209  * 1.  By setting snd_nxt to ti_ack, this forces retransmission timer to
3210  * be started again.  If the ack advances at least to tp->snd_last, return 0.
3211  */
3212 int
3213 tcp_newreno(struct tcpcb *tp, struct tcphdr *th)
3214 {
3215 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
3216 		/*
3217 		 * snd_una has not been updated and the socket send buffer
3218 		 * not yet drained of the acked data, so we have to leave
3219 		 * snd_una as it was to get the correct data offset in
3220 		 * tcp_output().
3221 		 */
3222 		tcp_seq onxt = tp->snd_nxt;
3223 		u_long  ocwnd = tp->snd_cwnd;
3224 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
3225 		tp->t_rtttime = 0;
3226 		tp->snd_nxt = th->th_ack;
3227 		/*
3228 		 * Set snd_cwnd to one segment beyond acknowledged offset
3229 		 * (tp->snd_una not yet updated when this function is called)
3230 		 */
3231 		tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3232 		(void) tcp_output(tp);
3233 		tp->snd_cwnd = ocwnd;
3234 		if (SEQ_GT(onxt, tp->snd_nxt))
3235 			tp->snd_nxt = onxt;
3236 		/*
3237 		 * Partial window deflation.  Relies on fact that tp->snd_una
3238 		 * not updated yet.
3239 		 */
3240 		if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3241 			tp->snd_cwnd -= th->th_ack - tp->snd_una;
3242 		else
3243 			tp->snd_cwnd = 0;
3244 		tp->snd_cwnd += tp->t_maxseg;
3245 
3246 		return 1;
3247 	}
3248 	return 0;
3249 }
3250 #endif /* TCP_SACK */
3251 
3252 int
3253 tcp_mss_adv(struct ifnet *ifp, int af)
3254 {
3255 	int mss = 0;
3256 	int iphlen;
3257 
3258 	switch (af) {
3259 	case AF_INET:
3260 		if (ifp != NULL)
3261 			mss = ifp->if_mtu;
3262 		iphlen = sizeof(struct ip);
3263 		break;
3264 #ifdef INET6
3265 	case AF_INET6:
3266 		if (ifp != NULL)
3267 			mss = IN6_LINKMTU(ifp);
3268 		iphlen = sizeof(struct ip6_hdr);
3269 		break;
3270 #endif
3271 	}
3272 	mss = mss - iphlen - sizeof(struct tcphdr);
3273 	return (max(mss, tcp_mssdflt));
3274 }
3275 
3276 /*
3277  * TCP compressed state engine.  Currently used to hold compressed
3278  * state for SYN_RECEIVED.
3279  */
3280 
3281 u_long	syn_cache_count;
3282 u_int32_t syn_hash1, syn_hash2;
3283 
3284 #define SYN_HASH(sa, sp, dp) \
3285 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3286 				     ((u_int32_t)(sp)))^syn_hash2)))
3287 #ifndef INET6
3288 #define	SYN_HASHALL(hash, src, dst) \
3289 do {									\
3290 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
3291 		((struct sockaddr_in *)(src))->sin_port,		\
3292 		((struct sockaddr_in *)(dst))->sin_port);		\
3293 } while (/*CONSTCOND*/ 0)
3294 #else
3295 #define SYN_HASH6(sa, sp, dp) \
3296 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3297 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3298 	 & 0x7fffffff)
3299 
3300 #define SYN_HASHALL(hash, src, dst) \
3301 do {									\
3302 	switch ((src)->sa_family) {					\
3303 	case AF_INET:							\
3304 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3305 			((struct sockaddr_in *)(src))->sin_port,	\
3306 			((struct sockaddr_in *)(dst))->sin_port);	\
3307 		break;							\
3308 	case AF_INET6:							\
3309 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3310 			((struct sockaddr_in6 *)(src))->sin6_port,	\
3311 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
3312 		break;							\
3313 	default:							\
3314 		hash = 0;						\
3315 	}								\
3316 } while (/*CONSTCOND*/0)
3317 #endif /* INET6 */
3318 
3319 #define	SYN_CACHE_RM(sc)						\
3320 do {									\
3321 	(sc)->sc_flags |= SCF_DEAD;					\
3322 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
3323 	    (sc), sc_bucketq);						\
3324 	(sc)->sc_tp = NULL;						\
3325 	LIST_REMOVE((sc), sc_tpq);					\
3326 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
3327 	timeout_del(&(sc)->sc_timer);					\
3328 	syn_cache_count--;						\
3329 } while (/*CONSTCOND*/0)
3330 
3331 #define	SYN_CACHE_PUT(sc)						\
3332 do {									\
3333 	if ((sc)->sc_ipopts)						\
3334 		(void) m_free((sc)->sc_ipopts);				\
3335 	if ((sc)->sc_route4.ro_rt != NULL)				\
3336 		RTFREE((sc)->sc_route4.ro_rt);				\
3337 	timeout_set(&(sc)->sc_timer, syn_cache_reaper, (sc));		\
3338 	timeout_add(&(sc)->sc_timer, 0);				\
3339 } while (/*CONSTCOND*/0)
3340 
3341 struct pool syn_cache_pool;
3342 
3343 /*
3344  * We don't estimate RTT with SYNs, so each packet starts with the default
3345  * RTT and each timer step has a fixed timeout value.
3346  */
3347 #define	SYN_CACHE_TIMER_ARM(sc)						\
3348 do {									\
3349 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3350 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3351 	    TCPTV_REXMTMAX);						\
3352 	if (!timeout_initialized(&(sc)->sc_timer))			\
3353 		timeout_set(&(sc)->sc_timer, syn_cache_timer, (sc));	\
3354 	timeout_add(&(sc)->sc_timer, (sc)->sc_rxtcur * (hz / PR_SLOWHZ)); \
3355 } while (/*CONSTCOND*/0)
3356 
3357 #define	SYN_CACHE_TIMESTAMP(sc)	tcp_now + (sc)->sc_modulate
3358 
3359 void
3360 syn_cache_init()
3361 {
3362 	int i;
3363 
3364 	/* Initialize the hash buckets. */
3365 	for (i = 0; i < tcp_syn_cache_size; i++)
3366 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3367 
3368 	/* Initialize the syn cache pool. */
3369 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3370 	    "synpl", NULL);
3371 }
3372 
3373 void
3374 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3375 {
3376 	struct syn_cache_head *scp;
3377 	struct syn_cache *sc2;
3378 	int s;
3379 
3380 	/*
3381 	 * If there are no entries in the hash table, reinitialize
3382 	 * the hash secrets.
3383 	 */
3384 	if (syn_cache_count == 0) {
3385 		syn_hash1 = arc4random();
3386 		syn_hash2 = arc4random();
3387 	}
3388 
3389 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3390 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3391 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3392 
3393 	/*
3394 	 * Make sure that we don't overflow the per-bucket
3395 	 * limit or the total cache size limit.
3396 	 */
3397 	s = splsoftnet();
3398 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3399 		tcpstat.tcps_sc_bucketoverflow++;
3400 		/*
3401 		 * The bucket is full.  Toss the oldest element in the
3402 		 * bucket.  This will be the first entry in the bucket.
3403 		 */
3404 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3405 #ifdef DIAGNOSTIC
3406 		/*
3407 		 * This should never happen; we should always find an
3408 		 * entry in our bucket.
3409 		 */
3410 		if (sc2 == NULL)
3411 			panic("syn_cache_insert: bucketoverflow: impossible");
3412 #endif
3413 		SYN_CACHE_RM(sc2);
3414 		SYN_CACHE_PUT(sc2);
3415 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3416 		struct syn_cache_head *scp2, *sce;
3417 
3418 		tcpstat.tcps_sc_overflowed++;
3419 		/*
3420 		 * The cache is full.  Toss the oldest entry in the
3421 		 * first non-empty bucket we can find.
3422 		 *
3423 		 * XXX We would really like to toss the oldest
3424 		 * entry in the cache, but we hope that this
3425 		 * condition doesn't happen very often.
3426 		 */
3427 		scp2 = scp;
3428 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3429 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3430 			for (++scp2; scp2 != scp; scp2++) {
3431 				if (scp2 >= sce)
3432 					scp2 = &tcp_syn_cache[0];
3433 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3434 					break;
3435 			}
3436 #ifdef DIAGNOSTIC
3437 			/*
3438 			 * This should never happen; we should always find a
3439 			 * non-empty bucket.
3440 			 */
3441 			if (scp2 == scp)
3442 				panic("syn_cache_insert: cacheoverflow: "
3443 				    "impossible");
3444 #endif
3445 		}
3446 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3447 		SYN_CACHE_RM(sc2);
3448 		SYN_CACHE_PUT(sc2);
3449 	}
3450 
3451 	/*
3452 	 * Initialize the entry's timer.
3453 	 */
3454 	sc->sc_rxttot = 0;
3455 	sc->sc_rxtshift = 0;
3456 	SYN_CACHE_TIMER_ARM(sc);
3457 
3458 	/* Link it from tcpcb entry */
3459 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3460 
3461 	/* Put it into the bucket. */
3462 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3463 	scp->sch_length++;
3464 	syn_cache_count++;
3465 
3466 	tcpstat.tcps_sc_added++;
3467 	splx(s);
3468 }
3469 
3470 /*
3471  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3472  * If we have retransmitted an entry the maximum number of times, expire
3473  * that entry.
3474  */
3475 void
3476 syn_cache_timer(void *arg)
3477 {
3478 	struct syn_cache *sc = arg;
3479 	int s;
3480 
3481 	s = splsoftnet();
3482 	if (sc->sc_flags & SCF_DEAD) {
3483 		splx(s);
3484 		return;
3485 	}
3486 
3487 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3488 		/* Drop it -- too many retransmissions. */
3489 		goto dropit;
3490 	}
3491 
3492 	/*
3493 	 * Compute the total amount of time this entry has
3494 	 * been on a queue.  If this entry has been on longer
3495 	 * than the keep alive timer would allow, expire it.
3496 	 */
3497 	sc->sc_rxttot += sc->sc_rxtcur;
3498 	if (sc->sc_rxttot >= tcptv_keep_init)
3499 		goto dropit;
3500 
3501 	tcpstat.tcps_sc_retransmitted++;
3502 	(void) syn_cache_respond(sc, NULL);
3503 
3504 	/* Advance the timer back-off. */
3505 	sc->sc_rxtshift++;
3506 	SYN_CACHE_TIMER_ARM(sc);
3507 
3508 	splx(s);
3509 	return;
3510 
3511  dropit:
3512 	tcpstat.tcps_sc_timed_out++;
3513 	SYN_CACHE_RM(sc);
3514 	SYN_CACHE_PUT(sc);
3515 	splx(s);
3516 }
3517 
3518 void
3519 syn_cache_reaper(void *arg)
3520 {
3521 	struct syn_cache *sc = arg;
3522 	int s;
3523 
3524 	s = splsoftnet();
3525 	pool_put(&syn_cache_pool, (sc));
3526 	splx(s);
3527 	return;
3528 }
3529 
3530 /*
3531  * Remove syn cache created by the specified tcb entry,
3532  * because this does not make sense to keep them
3533  * (if there's no tcb entry, syn cache entry will never be used)
3534  */
3535 void
3536 syn_cache_cleanup(struct tcpcb *tp)
3537 {
3538 	struct syn_cache *sc, *nsc;
3539 	int s;
3540 
3541 	s = splsoftnet();
3542 
3543 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3544 		nsc = LIST_NEXT(sc, sc_tpq);
3545 
3546 #ifdef DIAGNOSTIC
3547 		if (sc->sc_tp != tp)
3548 			panic("invalid sc_tp in syn_cache_cleanup");
3549 #endif
3550 		SYN_CACHE_RM(sc);
3551 		SYN_CACHE_PUT(sc);
3552 	}
3553 	/* just for safety */
3554 	LIST_INIT(&tp->t_sc);
3555 
3556 	splx(s);
3557 }
3558 
3559 /*
3560  * Find an entry in the syn cache.
3561  */
3562 struct syn_cache *
3563 syn_cache_lookup(struct sockaddr *src, struct sockaddr *dst,
3564     struct syn_cache_head **headp, u_int rdomain)
3565 {
3566 	struct syn_cache *sc;
3567 	struct syn_cache_head *scp;
3568 	u_int32_t hash;
3569 	int s;
3570 
3571 	SYN_HASHALL(hash, src, dst);
3572 
3573 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3574 	*headp = scp;
3575 	s = splsoftnet();
3576 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3577 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3578 		if (sc->sc_hash != hash)
3579 			continue;
3580 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3581 		    !bcmp(&sc->sc_dst, dst, dst->sa_len) &&
3582 		    rdomain == sc->sc_rdomain) {
3583 			splx(s);
3584 			return (sc);
3585 		}
3586 	}
3587 	splx(s);
3588 	return (NULL);
3589 }
3590 
3591 /*
3592  * This function gets called when we receive an ACK for a
3593  * socket in the LISTEN state.  We look up the connection
3594  * in the syn cache, and if its there, we pull it out of
3595  * the cache and turn it into a full-blown connection in
3596  * the SYN-RECEIVED state.
3597  *
3598  * The return values may not be immediately obvious, and their effects
3599  * can be subtle, so here they are:
3600  *
3601  *	NULL	SYN was not found in cache; caller should drop the
3602  *		packet and send an RST.
3603  *
3604  *	-1	We were unable to create the new connection, and are
3605  *		aborting it.  An ACK,RST is being sent to the peer
3606  *		(unless we got screwey sequence numbners; see below),
3607  *		because the 3-way handshake has been completed.  Caller
3608  *		should not free the mbuf, since we may be using it.  If
3609  *		we are not, we will free it.
3610  *
3611  *	Otherwise, the return value is a pointer to the new socket
3612  *	associated with the connection.
3613  */
3614 struct socket *
3615 syn_cache_get(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3616     u_int hlen, u_int tlen, struct socket *so, struct mbuf *m)
3617 {
3618 	struct syn_cache *sc;
3619 	struct syn_cache_head *scp;
3620 	struct inpcb *inp = NULL;
3621 	struct tcpcb *tp = 0;
3622 	struct mbuf *am;
3623 	int s;
3624 	struct socket *oso;
3625 
3626 	s = splsoftnet();
3627 	if ((sc = syn_cache_lookup(src, dst, &scp,
3628 	    m->m_pkthdr.rdomain)) == NULL) {
3629 		splx(s);
3630 		return (NULL);
3631 	}
3632 
3633 	/*
3634 	 * Verify the sequence and ack numbers.  Try getting the correct
3635 	 * response again.
3636 	 */
3637 	if ((th->th_ack != sc->sc_iss + 1) ||
3638 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3639 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3640 		(void) syn_cache_respond(sc, m);
3641 		splx(s);
3642 		return ((struct socket *)(-1));
3643 	}
3644 
3645 	/* Remove this cache entry */
3646 	SYN_CACHE_RM(sc);
3647 	splx(s);
3648 
3649 	/*
3650 	 * Ok, create the full blown connection, and set things up
3651 	 * as they would have been set up if we had created the
3652 	 * connection when the SYN arrived.  If we can't create
3653 	 * the connection, abort it.
3654 	 */
3655 	oso = so;
3656 	so = sonewconn(so, SS_ISCONNECTED);
3657 	if (so == NULL)
3658 		goto resetandabort;
3659 
3660 	inp = sotoinpcb(oso);
3661 
3662 #ifdef IPSEC
3663 	/*
3664 	 * We need to copy the required security levels
3665 	 * from the old pcb. Ditto for any other
3666 	 * IPsec-related information.
3667 	 */
3668 	{
3669 	  struct inpcb *newinp = (struct inpcb *)so->so_pcb;
3670 	  bcopy(inp->inp_seclevel, newinp->inp_seclevel,
3671 		sizeof(inp->inp_seclevel));
3672 	  newinp->inp_secrequire = inp->inp_secrequire;
3673 	  if (inp->inp_ipo != NULL) {
3674 		  newinp->inp_ipo = inp->inp_ipo;
3675 		  inp->inp_ipo->ipo_ref_count++;
3676 	  }
3677 	  if (inp->inp_ipsec_remotecred != NULL) {
3678 		  newinp->inp_ipsec_remotecred = inp->inp_ipsec_remotecred;
3679 		  inp->inp_ipsec_remotecred->ref_count++;
3680 	  }
3681 	  if (inp->inp_ipsec_remoteauth != NULL) {
3682 		  newinp->inp_ipsec_remoteauth
3683 		      = inp->inp_ipsec_remoteauth;
3684 		  inp->inp_ipsec_remoteauth->ref_count++;
3685 	  }
3686 	}
3687 #endif /* IPSEC */
3688 #ifdef INET6
3689 	/*
3690 	 * inp still has the OLD in_pcb stuff, set the
3691 	 * v6-related flags on the new guy, too.
3692 	 */
3693 	{
3694 	  int flags = inp->inp_flags;
3695 	  struct inpcb *oldinpcb = inp;
3696 
3697 	  inp = (struct inpcb *)so->so_pcb;
3698 	  inp->inp_flags |= (flags & INP_IPV6);
3699 	  if ((inp->inp_flags & INP_IPV6) != 0) {
3700 	    inp->inp_ipv6.ip6_hlim =
3701 	      oldinpcb->inp_ipv6.ip6_hlim;
3702 	  }
3703 	}
3704 #else /* INET6 */
3705 	inp = (struct inpcb *)so->so_pcb;
3706 #endif /* INET6 */
3707 
3708 	/* inherit rdomain from listening socket */
3709 	inp->inp_rdomain = sc->sc_rdomain;
3710 
3711 	inp->inp_lport = th->th_dport;
3712 	switch (src->sa_family) {
3713 #ifdef INET6
3714 	case AF_INET6:
3715 		inp->inp_laddr6 = ((struct sockaddr_in6 *)dst)->sin6_addr;
3716 		break;
3717 #endif /* INET6 */
3718 	case AF_INET:
3719 
3720 		inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3721 		inp->inp_options = ip_srcroute();
3722 		if (inp->inp_options == NULL) {
3723 			inp->inp_options = sc->sc_ipopts;
3724 			sc->sc_ipopts = NULL;
3725 		}
3726 		break;
3727 	}
3728 	in_pcbrehash(inp);
3729 
3730 	/*
3731 	 * Give the new socket our cached route reference.
3732 	 */
3733 	if (src->sa_family == AF_INET)
3734 		inp->inp_route = sc->sc_route4;         /* struct assignment */
3735 #ifdef INET6
3736 	else
3737 		inp->inp_route6 = sc->sc_route6;
3738 #endif
3739 	sc->sc_route4.ro_rt = NULL;
3740 
3741 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3742 	if (am == NULL)
3743 		goto resetandabort;
3744 	am->m_len = src->sa_len;
3745 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3746 
3747 	switch (src->sa_family) {
3748 	case AF_INET:
3749 		/* drop IPv4 packet to AF_INET6 socket */
3750 		if (inp->inp_flags & INP_IPV6) {
3751 			(void) m_free(am);
3752 			goto resetandabort;
3753 		}
3754 		if (in_pcbconnect(inp, am)) {
3755 			(void) m_free(am);
3756 			goto resetandabort;
3757 		}
3758 		break;
3759 #ifdef INET6
3760 	case AF_INET6:
3761 		if (in6_pcbconnect(inp, am)) {
3762 			(void) m_free(am);
3763 			goto resetandabort;
3764 		}
3765 		break;
3766 #endif
3767 	}
3768 	(void) m_free(am);
3769 
3770 	tp = intotcpcb(inp);
3771 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3772 	if (sc->sc_request_r_scale != 15) {
3773 		tp->requested_s_scale = sc->sc_requested_s_scale;
3774 		tp->request_r_scale = sc->sc_request_r_scale;
3775 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3776 	}
3777 	if (sc->sc_flags & SCF_TIMESTAMP)
3778 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3779 
3780 	tp->t_template = tcp_template(tp);
3781 	if (tp->t_template == 0) {
3782 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3783 		so = NULL;
3784 		m_freem(m);
3785 		goto abort;
3786 	}
3787 #ifdef TCP_SACK
3788 	tp->sack_enable = sc->sc_flags & SCF_SACK_PERMIT;
3789 #endif
3790 
3791 	tp->ts_modulate = sc->sc_modulate;
3792 	tp->iss = sc->sc_iss;
3793 	tp->irs = sc->sc_irs;
3794 	tcp_sendseqinit(tp);
3795 #if defined (TCP_SACK) || defined(TCP_ECN)
3796 	tp->snd_last = tp->snd_una;
3797 #endif /* TCP_SACK */
3798 #if defined(TCP_SACK) && defined(TCP_FACK)
3799 	tp->snd_fack = tp->snd_una;
3800 	tp->retran_data = 0;
3801 	tp->snd_awnd = 0;
3802 #endif /* TCP_FACK */
3803 #ifdef TCP_ECN
3804 	if (sc->sc_flags & SCF_ECN_PERMIT) {
3805 		tp->t_flags |= TF_ECN_PERMIT;
3806 		tcpstat.tcps_ecn_accepts++;
3807 	}
3808 #endif
3809 #ifdef TCP_SACK
3810 	if (sc->sc_flags & SCF_SACK_PERMIT)
3811 		tp->t_flags |= TF_SACK_PERMIT;
3812 #endif
3813 #ifdef TCP_SIGNATURE
3814 	if (sc->sc_flags & SCF_SIGNATURE)
3815 		tp->t_flags |= TF_SIGNATURE;
3816 #endif
3817 	tcp_rcvseqinit(tp);
3818 	tp->t_state = TCPS_SYN_RECEIVED;
3819 	tp->t_rcvtime = tcp_now;
3820 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcptv_keep_init);
3821 	tcpstat.tcps_accepts++;
3822 
3823 	tcp_mss(tp, sc->sc_peermaxseg);	 /* sets t_maxseg */
3824 	if (sc->sc_peermaxseg)
3825 		tcp_mss_update(tp);
3826 	/* Reset initial window to 1 segment for retransmit */
3827 	if (sc->sc_rxtshift > 0)
3828 		tp->snd_cwnd = tp->t_maxseg;
3829 	tp->snd_wl1 = sc->sc_irs;
3830 	tp->rcv_up = sc->sc_irs + 1;
3831 
3832 	/*
3833 	 * This is what whould have happened in tcp_output() when
3834 	 * the SYN,ACK was sent.
3835 	 */
3836 	tp->snd_up = tp->snd_una;
3837 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3838 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3839 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3840 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3841 	tp->last_ack_sent = tp->rcv_nxt;
3842 
3843 	tcpstat.tcps_sc_completed++;
3844 	SYN_CACHE_PUT(sc);
3845 	return (so);
3846 
3847 resetandabort:
3848 	tcp_respond(NULL, mtod(m, caddr_t), th, (tcp_seq)0, th->th_ack, TH_RST);
3849 	m_freem(m);
3850 abort:
3851 	if (so != NULL)
3852 		(void) soabort(so);
3853 	SYN_CACHE_PUT(sc);
3854 	tcpstat.tcps_sc_aborted++;
3855 	return ((struct socket *)(-1));
3856 }
3857 
3858 /*
3859  * This function is called when we get a RST for a
3860  * non-existent connection, so that we can see if the
3861  * connection is in the syn cache.  If it is, zap it.
3862  */
3863 
3864 void
3865 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3866     u_int rdomain)
3867 {
3868 	struct syn_cache *sc;
3869 	struct syn_cache_head *scp;
3870 	int s = splsoftnet();
3871 
3872 	if ((sc = syn_cache_lookup(src, dst, &scp, rdomain)) == NULL) {
3873 		splx(s);
3874 		return;
3875 	}
3876 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3877 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3878 		splx(s);
3879 		return;
3880 	}
3881 	SYN_CACHE_RM(sc);
3882 	splx(s);
3883 	tcpstat.tcps_sc_reset++;
3884 	SYN_CACHE_PUT(sc);
3885 }
3886 
3887 void
3888 syn_cache_unreach(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3889     u_int rdomain)
3890 {
3891 	struct syn_cache *sc;
3892 	struct syn_cache_head *scp;
3893 	int s;
3894 
3895 	s = splsoftnet();
3896 	if ((sc = syn_cache_lookup(src, dst, &scp, rdomain)) == NULL) {
3897 		splx(s);
3898 		return;
3899 	}
3900 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3901 	if (ntohl (th->th_seq) != sc->sc_iss) {
3902 		splx(s);
3903 		return;
3904 	}
3905 
3906 	/*
3907 	 * If we've retransmitted 3 times and this is our second error,
3908 	 * we remove the entry.  Otherwise, we allow it to continue on.
3909 	 * This prevents us from incorrectly nuking an entry during a
3910 	 * spurious network outage.
3911 	 *
3912 	 * See tcp_notify().
3913 	 */
3914 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3915 		sc->sc_flags |= SCF_UNREACH;
3916 		splx(s);
3917 		return;
3918 	}
3919 
3920 	SYN_CACHE_RM(sc);
3921 	splx(s);
3922 	tcpstat.tcps_sc_unreach++;
3923 	SYN_CACHE_PUT(sc);
3924 }
3925 
3926 /*
3927  * Given a LISTEN socket and an inbound SYN request, add
3928  * this to the syn cache, and send back a segment:
3929  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3930  * to the source.
3931  *
3932  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3933  * Doing so would require that we hold onto the data and deliver it
3934  * to the application.  However, if we are the target of a SYN-flood
3935  * DoS attack, an attacker could send data which would eventually
3936  * consume all available buffer space if it were ACKed.  By not ACKing
3937  * the data, we avoid this DoS scenario.
3938  */
3939 
3940 int
3941 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3942     u_int iphlen, struct socket *so, struct mbuf *m, u_char *optp, int optlen,
3943     struct tcp_opt_info *oi, tcp_seq *issp)
3944 {
3945 	struct tcpcb tb, *tp;
3946 	long win;
3947 	struct syn_cache *sc;
3948 	struct syn_cache_head *scp;
3949 	struct mbuf *ipopts;
3950 
3951 	tp = sototcpcb(so);
3952 
3953 	/*
3954 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3955 	 *
3956 	 * Note this check is performed in tcp_input() very early on.
3957 	 */
3958 
3959 	/*
3960 	 * Initialize some local state.
3961 	 */
3962 	win = sbspace(&so->so_rcv);
3963 	if (win > TCP_MAXWIN)
3964 		win = TCP_MAXWIN;
3965 
3966 #ifdef TCP_SIGNATURE
3967 	if (optp || (tp->t_flags & TF_SIGNATURE)) {
3968 #else
3969 	if (optp) {
3970 #endif
3971 		tb.pf = tp->pf;
3972 #ifdef TCP_SACK
3973 		tb.sack_enable = tp->sack_enable;
3974 #endif
3975 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3976 #ifdef TCP_SIGNATURE
3977 		if (tp->t_flags & TF_SIGNATURE)
3978 			tb.t_flags |= TF_SIGNATURE;
3979 #endif
3980 		tb.t_state = TCPS_LISTEN;
3981 		if (tcp_dooptions(&tb, optp, optlen, th, m, iphlen, oi))
3982 			return (0);
3983 	} else
3984 		tb.t_flags = 0;
3985 
3986 	switch (src->sa_family) {
3987 #ifdef INET
3988 	case AF_INET:
3989 		/*
3990 		 * Remember the IP options, if any.
3991 		 */
3992 		ipopts = ip_srcroute();
3993 		break;
3994 #endif
3995 	default:
3996 		ipopts = NULL;
3997 	}
3998 
3999 	/*
4000 	 * See if we already have an entry for this connection.
4001 	 * If we do, resend the SYN,ACK.  We do not count this
4002 	 * as a retransmission (XXX though maybe we should).
4003 	 */
4004 	if ((sc = syn_cache_lookup(src, dst, &scp, m->m_pkthdr.rdomain)) !=
4005 	    NULL) {
4006 		tcpstat.tcps_sc_dupesyn++;
4007 		if (ipopts) {
4008 			/*
4009 			 * If we were remembering a previous source route,
4010 			 * forget it and use the new one we've been given.
4011 			 */
4012 			if (sc->sc_ipopts)
4013 				(void) m_free(sc->sc_ipopts);
4014 			sc->sc_ipopts = ipopts;
4015 		}
4016 		sc->sc_timestamp = tb.ts_recent;
4017 		if (syn_cache_respond(sc, m) == 0) {
4018 			tcpstat.tcps_sndacks++;
4019 			tcpstat.tcps_sndtotal++;
4020 		}
4021 		return (1);
4022 	}
4023 
4024 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4025 	if (sc == NULL) {
4026 		if (ipopts)
4027 			(void) m_free(ipopts);
4028 		return (0);
4029 	}
4030 
4031 	/*
4032 	 * Fill in the cache, and put the necessary IP and TCP
4033 	 * options into the reply.
4034 	 */
4035 	bzero(sc, sizeof(struct syn_cache));
4036 	bzero(&sc->sc_timer, sizeof(sc->sc_timer));
4037 	bcopy(src, &sc->sc_src, src->sa_len);
4038 	bcopy(dst, &sc->sc_dst, dst->sa_len);
4039 	sc->sc_rdomain = m->m_pkthdr.rdomain;
4040 	sc->sc_flags = 0;
4041 	sc->sc_ipopts = ipopts;
4042 	sc->sc_irs = th->th_seq;
4043 
4044 	sc->sc_iss = issp ? *issp : arc4random();
4045 	sc->sc_peermaxseg = oi->maxseg;
4046 	sc->sc_ourmaxseg = tcp_mss_adv(m->m_flags & M_PKTHDR ?
4047 	    m->m_pkthdr.rcvif : NULL, sc->sc_src.sa.sa_family);
4048 	sc->sc_win = win;
4049 	sc->sc_timestamp = tb.ts_recent;
4050 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4051 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP)) {
4052 		sc->sc_flags |= SCF_TIMESTAMP;
4053 		sc->sc_modulate = arc4random();
4054 	}
4055 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4056 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4057 		sc->sc_requested_s_scale = tb.requested_s_scale;
4058 		sc->sc_request_r_scale = 0;
4059 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4060 		    TCP_MAXWIN << sc->sc_request_r_scale <
4061 		    so->so_rcv.sb_hiwat)
4062 			sc->sc_request_r_scale++;
4063 	} else {
4064 		sc->sc_requested_s_scale = 15;
4065 		sc->sc_request_r_scale = 15;
4066 	}
4067 #ifdef TCP_ECN
4068 	/*
4069 	 * if both ECE and CWR flag bits are set, peer is ECN capable.
4070 	 */
4071 	if (tcp_do_ecn &&
4072 	    (th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR))
4073 		sc->sc_flags |= SCF_ECN_PERMIT;
4074 #endif
4075 #ifdef TCP_SACK
4076 	/*
4077 	 * Set SCF_SACK_PERMIT if peer did send a SACK_PERMITTED option
4078 	 * (i.e., if tcp_dooptions() did set TF_SACK_PERMIT).
4079 	 */
4080 	if (tb.sack_enable && (tb.t_flags & TF_SACK_PERMIT))
4081 		sc->sc_flags |= SCF_SACK_PERMIT;
4082 #endif
4083 #ifdef TCP_SIGNATURE
4084 	if (tb.t_flags & TF_SIGNATURE)
4085 		sc->sc_flags |= SCF_SIGNATURE;
4086 #endif
4087 	sc->sc_tp = tp;
4088 	if (syn_cache_respond(sc, m) == 0) {
4089 		syn_cache_insert(sc, tp);
4090 		tcpstat.tcps_sndacks++;
4091 		tcpstat.tcps_sndtotal++;
4092 	} else {
4093 		SYN_CACHE_PUT(sc);
4094 		tcpstat.tcps_sc_dropped++;
4095 	}
4096 	return (1);
4097 }
4098 
4099 int
4100 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4101 {
4102 	struct route *ro;
4103 	u_int8_t *optp;
4104 	int optlen, error;
4105 	u_int16_t tlen;
4106 	struct ip *ip = NULL;
4107 #ifdef INET6
4108 	struct ip6_hdr *ip6 = NULL;
4109 #endif
4110 	struct tcphdr *th;
4111 	u_int hlen;
4112 	struct inpcb *inp;
4113 
4114 	switch (sc->sc_src.sa.sa_family) {
4115 	case AF_INET:
4116 		hlen = sizeof(struct ip);
4117 		ro = &sc->sc_route4;
4118 		break;
4119 #ifdef INET6
4120 	case AF_INET6:
4121 		hlen = sizeof(struct ip6_hdr);
4122 		ro = (struct route *)&sc->sc_route6;
4123 		break;
4124 #endif
4125 	default:
4126 		if (m)
4127 			m_freem(m);
4128 		return (EAFNOSUPPORT);
4129 	}
4130 
4131 	/* Compute the size of the TCP options. */
4132 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4133 #ifdef TCP_SACK
4134 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? 4 : 0) +
4135 #endif
4136 #ifdef TCP_SIGNATURE
4137 	    ((sc->sc_flags & SCF_SIGNATURE) ? TCPOLEN_SIGLEN : 0) +
4138 #endif
4139 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4140 
4141 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4142 
4143 	/*
4144 	 * Create the IP+TCP header from scratch.
4145 	 */
4146 	if (m)
4147 		m_freem(m);
4148 #ifdef DIAGNOSTIC
4149 	if (max_linkhdr + tlen > MCLBYTES)
4150 		return (ENOBUFS);
4151 #endif
4152 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4153 	if (m && max_linkhdr + tlen > MHLEN) {
4154 		MCLGET(m, M_DONTWAIT);
4155 		if ((m->m_flags & M_EXT) == 0) {
4156 			m_freem(m);
4157 			m = NULL;
4158 		}
4159 	}
4160 	if (m == NULL)
4161 		return (ENOBUFS);
4162 
4163 	/* Fixup the mbuf. */
4164 	m->m_data += max_linkhdr;
4165 	m->m_len = m->m_pkthdr.len = tlen;
4166 	m->m_pkthdr.rcvif = NULL;
4167 	m->m_pkthdr.rdomain = sc->sc_rdomain;
4168 	memset(mtod(m, u_char *), 0, tlen);
4169 
4170 	switch (sc->sc_src.sa.sa_family) {
4171 	case AF_INET:
4172 		ip = mtod(m, struct ip *);
4173 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4174 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4175 		ip->ip_p = IPPROTO_TCP;
4176 		th = (struct tcphdr *)(ip + 1);
4177 		th->th_dport = sc->sc_src.sin.sin_port;
4178 		th->th_sport = sc->sc_dst.sin.sin_port;
4179 		break;
4180 #ifdef INET6
4181 	case AF_INET6:
4182 		ip6 = mtod(m, struct ip6_hdr *);
4183 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4184 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4185 		ip6->ip6_nxt = IPPROTO_TCP;
4186 		/* ip6_plen will be updated in ip6_output() */
4187 		th = (struct tcphdr *)(ip6 + 1);
4188 		th->th_dport = sc->sc_src.sin6.sin6_port;
4189 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4190 		break;
4191 #endif
4192 	default:
4193 		th = NULL;
4194 	}
4195 
4196 	th->th_seq = htonl(sc->sc_iss);
4197 	th->th_ack = htonl(sc->sc_irs + 1);
4198 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4199 	th->th_flags = TH_SYN|TH_ACK;
4200 #ifdef TCP_ECN
4201 	/* Set ECE for SYN-ACK if peer supports ECN. */
4202 	if (tcp_do_ecn && (sc->sc_flags & SCF_ECN_PERMIT))
4203 		th->th_flags |= TH_ECE;
4204 #endif
4205 	th->th_win = htons(sc->sc_win);
4206 	/* th_sum already 0 */
4207 	/* th_urp already 0 */
4208 
4209 	/* Tack on the TCP options. */
4210 	optp = (u_int8_t *)(th + 1);
4211 	*optp++ = TCPOPT_MAXSEG;
4212 	*optp++ = 4;
4213 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4214 	*optp++ = sc->sc_ourmaxseg & 0xff;
4215 
4216 #ifdef TCP_SACK
4217 	/* Include SACK_PERMIT_HDR option if peer has already done so. */
4218 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4219 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMIT_HDR);
4220 		optp += 4;
4221 	}
4222 #endif
4223 
4224 	if (sc->sc_request_r_scale != 15) {
4225 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4226 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4227 		    sc->sc_request_r_scale);
4228 		optp += 4;
4229 	}
4230 
4231 	if (sc->sc_flags & SCF_TIMESTAMP) {
4232 		u_int32_t *lp = (u_int32_t *)(optp);
4233 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4234 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4235 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4236 		*lp   = htonl(sc->sc_timestamp);
4237 		optp += TCPOLEN_TSTAMP_APPA;
4238 	}
4239 
4240 #ifdef TCP_SIGNATURE
4241 	if (sc->sc_flags & SCF_SIGNATURE) {
4242 		union sockaddr_union src, dst;
4243 		struct tdb *tdb;
4244 
4245 		bzero(&src, sizeof(union sockaddr_union));
4246 		bzero(&dst, sizeof(union sockaddr_union));
4247 		src.sa.sa_len = sc->sc_src.sa.sa_len;
4248 		src.sa.sa_family = sc->sc_src.sa.sa_family;
4249 		dst.sa.sa_len = sc->sc_dst.sa.sa_len;
4250 		dst.sa.sa_family = sc->sc_dst.sa.sa_family;
4251 
4252 		switch (sc->sc_src.sa.sa_family) {
4253 		case 0:	/*default to PF_INET*/
4254 #ifdef INET
4255 		case AF_INET:
4256 			src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
4257 			dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
4258 			break;
4259 #endif /* INET */
4260 #ifdef INET6
4261 		case AF_INET6:
4262 			src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
4263 			dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
4264 			break;
4265 #endif /* INET6 */
4266 		}
4267 
4268 		tdb = gettdbbysrcdst(0, &src, &dst, IPPROTO_TCP);
4269 		if (tdb == NULL) {
4270 			if (m)
4271 				m_freem(m);
4272 			return (EPERM);
4273 		}
4274 
4275 		/* Send signature option */
4276 		*(optp++) = TCPOPT_SIGNATURE;
4277 		*(optp++) = TCPOLEN_SIGNATURE;
4278 
4279 		if (tcp_signature(tdb, sc->sc_src.sa.sa_family, m, th,
4280 		    hlen, 0, optp) < 0) {
4281 			if (m)
4282 				m_freem(m);
4283 			return (EINVAL);
4284 		}
4285 		optp += 16;
4286 
4287 		/* Pad options list to the next 32 bit boundary and
4288 		 * terminate it.
4289 		 */
4290 		*optp++ = TCPOPT_NOP;
4291 		*optp++ = TCPOPT_EOL;
4292 	}
4293 #endif /* TCP_SIGNATURE */
4294 
4295 	/* Compute the packet's checksum. */
4296 	switch (sc->sc_src.sa.sa_family) {
4297 	case AF_INET:
4298 		ip->ip_len = htons(tlen - hlen);
4299 		th->th_sum = 0;
4300 		th->th_sum = in_cksum(m, tlen);
4301 		break;
4302 #ifdef INET6
4303 	case AF_INET6:
4304 		ip6->ip6_plen = htons(tlen - hlen);
4305 		th->th_sum = 0;
4306 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4307 		break;
4308 #endif
4309 	}
4310 
4311 	/* use IPsec policy and ttl from listening socket, on SYN ACK */
4312 	inp = sc->sc_tp ? sc->sc_tp->t_inpcb : NULL;
4313 
4314 	/*
4315 	 * Fill in some straggling IP bits.  Note the stack expects
4316 	 * ip_len to be in host order, for convenience.
4317 	 */
4318 	switch (sc->sc_src.sa.sa_family) {
4319 #ifdef INET
4320 	case AF_INET:
4321 		ip->ip_len = htons(tlen);
4322 		ip->ip_ttl = inp ? inp->inp_ip.ip_ttl : ip_defttl;
4323 		/* XXX tos? */
4324 		break;
4325 #endif
4326 #ifdef INET6
4327 	case AF_INET6:
4328 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4329 		ip6->ip6_vfc |= IPV6_VERSION;
4330 		ip6->ip6_plen = htons(tlen - hlen);
4331 		/* ip6_hlim will be initialized afterwards */
4332 		/* leave flowlabel = 0, it is legal and require no state mgmt */
4333 		break;
4334 #endif
4335 	}
4336 
4337 	switch (sc->sc_src.sa.sa_family) {
4338 #ifdef INET
4339 	case AF_INET:
4340 		error = ip_output(m, sc->sc_ipopts, ro,
4341 		    (ip_mtudisc ? IP_MTUDISC : 0),
4342 		    (struct ip_moptions *)NULL, inp);
4343 		break;
4344 #endif
4345 #ifdef INET6
4346 	case AF_INET6:
4347 		ip6->ip6_hlim = in6_selecthlim(NULL,
4348 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4349 
4350 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4351 			(struct ip6_moptions *)0, NULL, NULL);
4352 		break;
4353 #endif
4354 	default:
4355 		error = EAFNOSUPPORT;
4356 		break;
4357 	}
4358 	return (error);
4359 }
4360