xref: /openbsd-src/sys/netinet/tcp_input.c (revision 11efff7f3ac2b3cfeff0c0cddc14294d9b3aca4f)
1 /*	$OpenBSD: tcp_input.c,v 1.178 2004/11/25 15:32:08 markus Exp $	*/
2 /*	$NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
33  *
34  * NRL grants permission for redistribution and use in source and binary
35  * forms, with or without modification, of the software and documentation
36  * created at NRL provided that the following conditions are met:
37  *
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgements:
45  * 	This product includes software developed by the University of
46  * 	California, Berkeley and its contributors.
47  * 	This product includes software developed at the Information
48  * 	Technology Division, US Naval Research Laboratory.
49  * 4. Neither the name of the NRL nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
54  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
56  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
57  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
58  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
59  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
60  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
61  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
62  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
63  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64  *
65  * The views and conclusions contained in the software and documentation
66  * are those of the authors and should not be interpreted as representing
67  * official policies, either expressed or implied, of the US Naval
68  * Research Laboratory (NRL).
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/mbuf.h>
74 #include <sys/protosw.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/kernel.h>
78 
79 #include <dev/rndvar.h>
80 
81 #include <net/if.h>
82 #include <net/route.h>
83 
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/in_pcb.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/tcp.h>
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/tcpip.h>
95 #include <netinet/tcp_debug.h>
96 
97 struct	tcpiphdr tcp_saveti;
98 
99 #ifdef INET6
100 #include <netinet6/in6_var.h>
101 #include <netinet6/nd6.h>
102 
103 struct  tcpipv6hdr tcp_saveti6;
104 
105 /* for the packet header length in the mbuf */
106 #define M_PH_LEN(m)      (((struct mbuf *)(m))->m_pkthdr.len)
107 #define M_V6_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip6_hdr))
108 #define M_V4_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip))
109 #endif /* INET6 */
110 
111 int	tcprexmtthresh = 3;
112 int	tcptv_keep_init = TCPTV_KEEP_INIT;
113 
114 extern u_long sb_max;
115 
116 int tcp_rst_ppslim = 100;		/* 100pps */
117 int tcp_rst_ppslim_count = 0;
118 struct timeval tcp_rst_ppslim_last;
119 
120 int tcp_ackdrop_ppslim = 100;		/* 100pps */
121 int tcp_ackdrop_ppslim_count = 0;
122 struct timeval tcp_ackdrop_ppslim_last;
123 
124 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
125 
126 /* for modulo comparisons of timestamps */
127 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
128 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
129 
130 /*
131  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
132  */
133 #ifdef INET6
134 #define ND6_HINT(tp) \
135 do { \
136 	if (tp && tp->t_inpcb && (tp->t_inpcb->inp_flags & INP_IPV6) && \
137 	    tp->t_inpcb->inp_route6.ro_rt) { \
138 		nd6_nud_hint(tp->t_inpcb->inp_route6.ro_rt, NULL, 0); \
139 	} \
140 } while (0)
141 #else
142 #define ND6_HINT(tp)
143 #endif
144 
145 #ifdef TCP_ECN
146 /*
147  * ECN (Explicit Congestion Notification) support based on RFC3168
148  * implementation note:
149  *   snd_last is used to track a recovery phase.
150  *   when cwnd is reduced, snd_last is set to snd_max.
151  *   while snd_last > snd_una, the sender is in a recovery phase and
152  *   its cwnd should not be reduced again.
153  *   snd_last follows snd_una when not in a recovery phase.
154  */
155 #endif
156 
157 /*
158  * Macro to compute ACK transmission behavior.  Delay the ACK unless
159  * we have already delayed an ACK (must send an ACK every two segments).
160  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
161  * option is enabled.
162  */
163 #define	TCP_SETUP_ACK(tp, tiflags) \
164 do { \
165 	if ((tp)->t_flags & TF_DELACK || \
166 	    (tcp_ack_on_push && (tiflags) & TH_PUSH)) \
167 		tp->t_flags |= TF_ACKNOW; \
168 	else \
169 		TCP_SET_DELACK(tp); \
170 } while (0)
171 
172 /*
173  * Insert segment ti into reassembly queue of tcp with
174  * control block tp.  Return TH_FIN if reassembly now includes
175  * a segment with FIN.  The macro form does the common case inline
176  * (segment is the next to be received on an established connection,
177  * and the queue is empty), avoiding linkage into and removal
178  * from the queue and repetition of various conversions.
179  * Set DELACK for segments received in order, but ack immediately
180  * when segments are out of order (so fast retransmit can work).
181  */
182 
183 int
184 tcp_reass(tp, th, m, tlen)
185 	struct tcpcb *tp;
186 	struct tcphdr *th;
187 	struct mbuf *m;
188 	int *tlen;
189 {
190 	struct ipqent *p, *q, *nq, *tiqe;
191 	struct socket *so = tp->t_inpcb->inp_socket;
192 	int flags;
193 
194 	/*
195 	 * Call with th==0 after become established to
196 	 * force pre-ESTABLISHED data up to user socket.
197 	 */
198 	if (th == 0)
199 		goto present;
200 
201 	/*
202 	 * Allocate a new queue entry, before we throw away any data.
203 	 * If we can't, just drop the packet.  XXX
204 	 */
205 	tiqe = pool_get(&tcpqe_pool, PR_NOWAIT);
206 	if (tiqe == NULL) {
207 		tiqe = LIST_FIRST(&tp->segq);
208 		if (tiqe != NULL && th->th_seq == tp->rcv_nxt) {
209 			/* Reuse last entry since new segment fills a hole */
210 			while ((p = LIST_NEXT(tiqe, ipqe_q)) != NULL)
211 				tiqe = p;
212 			m_freem(tiqe->ipqe_m);
213 			LIST_REMOVE(tiqe, ipqe_q);
214 		}
215 		if (tiqe == NULL || th->th_seq != tp->rcv_nxt) {
216 			/* Flush segment queue for this connection */
217 			tcp_freeq(tp);
218 			tcpstat.tcps_rcvmemdrop++;
219 			m_freem(m);
220 			return (0);
221 		}
222 	}
223 
224 	/*
225 	 * Find a segment which begins after this one does.
226 	 */
227 	for (p = NULL, q = tp->segq.lh_first; q != NULL;
228 	    p = q, q = q->ipqe_q.le_next)
229 		if (SEQ_GT(q->ipqe_tcp->th_seq, th->th_seq))
230 			break;
231 
232 	/*
233 	 * If there is a preceding segment, it may provide some of
234 	 * our data already.  If so, drop the data from the incoming
235 	 * segment.  If it provides all of our data, drop us.
236 	 */
237 	if (p != NULL) {
238 		struct tcphdr *phdr = p->ipqe_tcp;
239 		int i;
240 
241 		/* conversion to int (in i) handles seq wraparound */
242 		i = phdr->th_seq + phdr->th_reseqlen - th->th_seq;
243 		if (i > 0) {
244 		        if (i >= *tlen) {
245 				tcpstat.tcps_rcvduppack++;
246 				tcpstat.tcps_rcvdupbyte += *tlen;
247 				m_freem(m);
248 				pool_put(&tcpqe_pool, tiqe);
249 				return (0);
250 			}
251 			m_adj(m, i);
252 			*tlen -= i;
253 			th->th_seq += i;
254 		}
255 	}
256 	tcpstat.tcps_rcvoopack++;
257 	tcpstat.tcps_rcvoobyte += *tlen;
258 
259 	/*
260 	 * While we overlap succeeding segments trim them or,
261 	 * if they are completely covered, dequeue them.
262 	 */
263 	for (; q != NULL; q = nq) {
264 		struct tcphdr *qhdr = q->ipqe_tcp;
265 		int i = (th->th_seq + *tlen) - qhdr->th_seq;
266 
267 		if (i <= 0)
268 			break;
269 		if (i < qhdr->th_reseqlen) {
270 			qhdr->th_seq += i;
271 			qhdr->th_reseqlen -= i;
272 			m_adj(q->ipqe_m, i);
273 			break;
274 		}
275 		nq = q->ipqe_q.le_next;
276 		m_freem(q->ipqe_m);
277 		LIST_REMOVE(q, ipqe_q);
278 		pool_put(&tcpqe_pool, q);
279 	}
280 
281 	/* Insert the new segment queue entry into place. */
282 	tiqe->ipqe_m = m;
283 	th->th_reseqlen = *tlen;
284 	tiqe->ipqe_tcp = th;
285 	if (p == NULL) {
286 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
287 	} else {
288 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
289 	}
290 
291 present:
292 	/*
293 	 * Present data to user, advancing rcv_nxt through
294 	 * completed sequence space.
295 	 */
296 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
297 		return (0);
298 	q = tp->segq.lh_first;
299 	if (q == NULL || q->ipqe_tcp->th_seq != tp->rcv_nxt)
300 		return (0);
301 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->th_reseqlen)
302 		return (0);
303 	do {
304 		tp->rcv_nxt += q->ipqe_tcp->th_reseqlen;
305 		flags = q->ipqe_tcp->th_flags & TH_FIN;
306 
307 		nq = q->ipqe_q.le_next;
308 		LIST_REMOVE(q, ipqe_q);
309 		ND6_HINT(tp);
310 		if (so->so_state & SS_CANTRCVMORE)
311 			m_freem(q->ipqe_m);
312 		else
313 			sbappendstream(&so->so_rcv, q->ipqe_m);
314 		pool_put(&tcpqe_pool, q);
315 		q = nq;
316 	} while (q != NULL && q->ipqe_tcp->th_seq == tp->rcv_nxt);
317 	sorwakeup(so);
318 	return (flags);
319 }
320 
321 #ifdef INET6
322 int
323 tcp6_input(mp, offp, proto)
324 	struct mbuf **mp;
325 	int *offp, proto;
326 {
327 	struct mbuf *m = *mp;
328 
329 #if defined(NFAITH) && 0 < NFAITH
330 	if (m->m_pkthdr.rcvif) {
331 		if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
332 			/* XXX send icmp6 host/port unreach? */
333 			m_freem(m);
334 			return IPPROTO_DONE;
335 		}
336 	}
337 #endif
338 
339 	/*
340 	 * draft-itojun-ipv6-tcp-to-anycast
341 	 * better place to put this in?
342 	 */
343 	if (m->m_flags & M_ANYCAST6) {
344 		if (m->m_len >= sizeof(struct ip6_hdr)) {
345 			struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
346 			icmp6_error(m, ICMP6_DST_UNREACH,
347 				ICMP6_DST_UNREACH_ADDR,
348 				(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
349 		} else
350 			m_freem(m);
351 		return IPPROTO_DONE;
352 	}
353 
354 	tcp_input(m, *offp, proto);
355 	return IPPROTO_DONE;
356 }
357 #endif
358 
359 /*
360  * TCP input routine, follows pages 65-76 of the
361  * protocol specification dated September, 1981 very closely.
362  */
363 void
364 tcp_input(struct mbuf *m, ...)
365 {
366 	struct ip *ip;
367 	struct inpcb *inp;
368 	u_int8_t *optp = NULL;
369 	int optlen = 0;
370 	int tlen, off;
371 	struct tcpcb *tp = 0;
372 	int tiflags;
373 	struct socket *so = NULL;
374 	int todrop, acked, ourfinisacked, needoutput = 0;
375 	int hdroptlen = 0;
376 	short ostate = 0;
377 	int iss = 0;
378 	u_long tiwin;
379 	struct tcp_opt_info opti;
380 	int iphlen;
381 	va_list ap;
382 	struct tcphdr *th;
383 #ifdef INET6
384 	struct ip6_hdr *ip6 = NULL;
385 #endif /* INET6 */
386 #ifdef IPSEC
387 	struct m_tag *mtag;
388 	struct tdb_ident *tdbi;
389 	struct tdb *tdb;
390 	int error, s;
391 #endif /* IPSEC */
392 	int af;
393 #ifdef TCP_ECN
394 	u_char iptos;
395 #endif
396 
397 	va_start(ap, m);
398 	iphlen = va_arg(ap, int);
399 	va_end(ap);
400 
401 	tcpstat.tcps_rcvtotal++;
402 
403 	opti.ts_present = 0;
404 	opti.maxseg = 0;
405 
406 	/*
407 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
408 	 * See below for AF specific multicast.
409 	 */
410 	if (m->m_flags & (M_BCAST|M_MCAST))
411 		goto drop;
412 
413 	/*
414 	 * Before we do ANYTHING, we have to figure out if it's TCP/IPv6 or
415 	 * TCP/IPv4.
416 	 */
417 	switch (mtod(m, struct ip *)->ip_v) {
418 #ifdef INET6
419 	case 6:
420 		af = AF_INET6;
421 		break;
422 #endif
423 	case 4:
424 		af = AF_INET;
425 		break;
426 	default:
427 		m_freem(m);
428 		return;	/*EAFNOSUPPORT*/
429 	}
430 
431 	/*
432 	 * Get IP and TCP header together in first mbuf.
433 	 * Note: IP leaves IP header in first mbuf.
434 	 */
435 	switch (af) {
436 	case AF_INET:
437 #ifdef DIAGNOSTIC
438 		if (iphlen < sizeof(struct ip)) {
439 			m_freem(m);
440 			return;
441 		}
442 #endif /* DIAGNOSTIC */
443 		break;
444 #ifdef INET6
445 	case AF_INET6:
446 #ifdef DIAGNOSTIC
447 		if (iphlen < sizeof(struct ip6_hdr)) {
448 			m_freem(m);
449 			return;
450 		}
451 #endif /* DIAGNOSTIC */
452 		break;
453 #endif
454 	default:
455 		m_freem(m);
456 		return;
457 	}
458 
459 	IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, sizeof(*th));
460 	if (!th) {
461 		tcpstat.tcps_rcvshort++;
462 		return;
463 	}
464 
465 	tlen = m->m_pkthdr.len - iphlen;
466 	ip = NULL;
467 #ifdef INET6
468 	ip6 = NULL;
469 #endif
470 	switch (af) {
471 	case AF_INET:
472 		ip = mtod(m, struct ip *);
473 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
474 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
475 			goto drop;
476 #ifdef TCP_ECN
477 		/* save ip_tos before clearing it for checksum */
478 		iptos = ip->ip_tos;
479 #endif
480 		/*
481 		 * Checksum extended TCP header and data.
482 		 */
483 		if ((m->m_pkthdr.csum & M_TCP_CSUM_IN_OK) == 0) {
484 			if (m->m_pkthdr.csum & M_TCP_CSUM_IN_BAD) {
485 				tcpstat.tcps_inhwcsum++;
486 				tcpstat.tcps_rcvbadsum++;
487 				goto drop;
488 			}
489 			if (in4_cksum(m, IPPROTO_TCP, iphlen, tlen) != 0) {
490 				tcpstat.tcps_rcvbadsum++;
491 				goto drop;
492 			}
493 		} else {
494 			m->m_pkthdr.csum &= ~M_TCP_CSUM_IN_OK;
495 			tcpstat.tcps_inhwcsum++;
496 		}
497 		break;
498 #ifdef INET6
499 	case AF_INET6:
500 		ip6 = mtod(m, struct ip6_hdr *);
501 #ifdef TCP_ECN
502 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
503 #endif
504 
505 		/* Be proactive about malicious use of IPv4 mapped address */
506 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
507 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
508 			/* XXX stat */
509 			goto drop;
510 		}
511 
512 		/*
513 		 * Be proactive about unspecified IPv6 address in source.
514 		 * As we use all-zero to indicate unbounded/unconnected pcb,
515 		 * unspecified IPv6 address can be used to confuse us.
516 		 *
517 		 * Note that packets with unspecified IPv6 destination is
518 		 * already dropped in ip6_input.
519 		 */
520 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
521 			/* XXX stat */
522 			goto drop;
523 		}
524 
525 		/* Discard packets to multicast */
526 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
527 			/* XXX stat */
528 			goto drop;
529 		}
530 
531 		/*
532 		 * Checksum extended TCP header and data.
533 		 */
534 		if (in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr), tlen)) {
535 			tcpstat.tcps_rcvbadsum++;
536 			goto drop;
537 		}
538 		break;
539 #endif
540 	}
541 
542 	/*
543 	 * Check that TCP offset makes sense,
544 	 * pull out TCP options and adjust length.		XXX
545 	 */
546 	off = th->th_off << 2;
547 	if (off < sizeof(struct tcphdr) || off > tlen) {
548 		tcpstat.tcps_rcvbadoff++;
549 		goto drop;
550 	}
551 	tlen -= off;
552 	if (off > sizeof(struct tcphdr)) {
553 		IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, off);
554 		if (!th) {
555 			tcpstat.tcps_rcvshort++;
556 			return;
557 		}
558 		optlen = off - sizeof(struct tcphdr);
559 		optp = (u_int8_t *)(th + 1);
560 		/*
561 		 * Do quick retrieval of timestamp options ("options
562 		 * prediction?").  If timestamp is the only option and it's
563 		 * formatted as recommended in RFC 1323 appendix A, we
564 		 * quickly get the values now and not bother calling
565 		 * tcp_dooptions(), etc.
566 		 */
567 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
568 		     (optlen > TCPOLEN_TSTAMP_APPA &&
569 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
570 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
571 		     (th->th_flags & TH_SYN) == 0) {
572 			opti.ts_present = 1;
573 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
574 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
575 			optp = NULL;	/* we've parsed the options */
576 		}
577 	}
578 	tiflags = th->th_flags;
579 
580 	/*
581 	 * Convert TCP protocol specific fields to host format.
582 	 */
583 	NTOHL(th->th_seq);
584 	NTOHL(th->th_ack);
585 	NTOHS(th->th_win);
586 	NTOHS(th->th_urp);
587 
588 	/*
589 	 * Locate pcb for segment.
590 	 */
591 findpcb:
592 	switch (af) {
593 #ifdef INET6
594 	case AF_INET6:
595 		inp = in6_pcbhashlookup(&tcbtable, &ip6->ip6_src, th->th_sport,
596 		    &ip6->ip6_dst, th->th_dport);
597 		break;
598 #endif
599 	case AF_INET:
600 		inp = in_pcbhashlookup(&tcbtable, ip->ip_src, th->th_sport,
601 		    ip->ip_dst, th->th_dport);
602 		break;
603 	}
604 	if (inp == 0) {
605 		++tcpstat.tcps_pcbhashmiss;
606 		switch (af) {
607 #ifdef INET6
608 		case AF_INET6:
609 			inp = in6_pcblookup_listen(&tcbtable,
610 			    &ip6->ip6_dst, th->th_dport, m_tag_find(m,
611 			    PACKET_TAG_PF_TRANSLATE_LOCALHOST, NULL) != NULL);
612 			break;
613 #endif /* INET6 */
614 		case AF_INET:
615 			inp = in_pcblookup_listen(&tcbtable,
616 			    ip->ip_dst, th->th_dport, m_tag_find(m,
617 			    PACKET_TAG_PF_TRANSLATE_LOCALHOST, NULL) != NULL);
618 			break;
619 		}
620 		/*
621 		 * If the state is CLOSED (i.e., TCB does not exist) then
622 		 * all data in the incoming segment is discarded.
623 		 * If the TCB exists but is in CLOSED state, it is embryonic,
624 		 * but should either do a listen or a connect soon.
625 		 */
626 		if (inp == 0) {
627 			++tcpstat.tcps_noport;
628 			goto dropwithreset_ratelim;
629 		}
630 	}
631 
632 	tp = intotcpcb(inp);
633 	if (tp == 0)
634 		goto dropwithreset_ratelim;
635 	if (tp->t_state == TCPS_CLOSED)
636 		goto drop;
637 
638 	/* Unscale the window into a 32-bit value. */
639 	if ((tiflags & TH_SYN) == 0)
640 		tiwin = th->th_win << tp->snd_scale;
641 	else
642 		tiwin = th->th_win;
643 
644 	so = inp->inp_socket;
645 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
646 		union syn_cache_sa src;
647 		union syn_cache_sa dst;
648 
649 		bzero(&src, sizeof(src));
650 		bzero(&dst, sizeof(dst));
651 		switch (af) {
652 #ifdef INET
653 		case AF_INET:
654 			src.sin.sin_len = sizeof(struct sockaddr_in);
655 			src.sin.sin_family = AF_INET;
656 			src.sin.sin_addr = ip->ip_src;
657 			src.sin.sin_port = th->th_sport;
658 
659 			dst.sin.sin_len = sizeof(struct sockaddr_in);
660 			dst.sin.sin_family = AF_INET;
661 			dst.sin.sin_addr = ip->ip_dst;
662 			dst.sin.sin_port = th->th_dport;
663 			break;
664 #endif
665 #ifdef INET6
666 		case AF_INET6:
667 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
668 			src.sin6.sin6_family = AF_INET6;
669 			src.sin6.sin6_addr = ip6->ip6_src;
670 			src.sin6.sin6_port = th->th_sport;
671 
672 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
673 			dst.sin6.sin6_family = AF_INET6;
674 			dst.sin6.sin6_addr = ip6->ip6_dst;
675 			dst.sin6.sin6_port = th->th_dport;
676 			break;
677 #endif /* INET6 */
678 		default:
679 			goto badsyn;	/*sanity*/
680 		}
681 
682 		if (so->so_options & SO_DEBUG) {
683 			ostate = tp->t_state;
684 			switch (af) {
685 #ifdef INET6
686 			case AF_INET6:
687 				bcopy(ip6, &tcp_saveti6.ti6_i, sizeof(*ip6));
688 				bcopy(th, &tcp_saveti6.ti6_t, sizeof(*th));
689 				break;
690 #endif
691 			case AF_INET:
692 				bcopy(ip, &tcp_saveti.ti_i, sizeof(*ip));
693 				bcopy(th, &tcp_saveti.ti_t, sizeof(*th));
694 				break;
695 			}
696 		}
697 		if (so->so_options & SO_ACCEPTCONN) {
698 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
699 				if (tiflags & TH_RST) {
700 					syn_cache_reset(&src.sa, &dst.sa, th);
701 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
702 				    (TH_ACK|TH_SYN)) {
703 					/*
704 					 * Received a SYN,ACK.  This should
705 					 * never happen while we are in
706 					 * LISTEN.  Send an RST.
707 					 */
708 					goto badsyn;
709 				} else if (tiflags & TH_ACK) {
710 					so = syn_cache_get(&src.sa, &dst.sa,
711 						th, iphlen, tlen, so, m);
712 					if (so == NULL) {
713 						/*
714 						 * We don't have a SYN for
715 						 * this ACK; send an RST.
716 						 */
717 						goto badsyn;
718 					} else if (so ==
719 					    (struct socket *)(-1)) {
720 						/*
721 						 * We were unable to create
722 						 * the connection.  If the
723 						 * 3-way handshake was
724 						 * completed, and RST has
725 						 * been sent to the peer.
726 						 * Since the mbuf might be
727 						 * in use for the reply,
728 						 * do not free it.
729 						 */
730 						m = NULL;
731 					} else {
732 						/*
733 						 * We have created a
734 						 * full-blown connection.
735 						 */
736 						tp = NULL;
737 						inp = (struct inpcb *)so->so_pcb;
738 						tp = intotcpcb(inp);
739 						if (tp == NULL)
740 							goto badsyn;	/*XXX*/
741 
742 						/*
743 						 * Compute proper scaling
744 						 * value from buffer space
745 						 */
746 						tcp_rscale(tp, so->so_rcv.sb_hiwat);
747 						goto after_listen;
748 					}
749 				} else {
750 					/*
751 					 * None of RST, SYN or ACK was set.
752 					 * This is an invalid packet for a
753 					 * TCB in LISTEN state.  Send a RST.
754 					 */
755 					goto badsyn;
756 				}
757 			} else {
758 				/*
759 				 * Received a SYN.
760 				 */
761 #ifdef INET6
762 				/*
763 				 * If deprecated address is forbidden, we do
764 				 * not accept SYN to deprecated interface
765 				 * address to prevent any new inbound
766 				 * connection from getting established.
767 				 * When we do not accept SYN, we send a TCP
768 				 * RST, with deprecated source address (instead
769 				 * of dropping it).  We compromise it as it is
770 				 * much better for peer to send a RST, and
771 				 * RST will be the final packet for the
772 				 * exchange.
773 				 *
774 				 * If we do not forbid deprecated addresses, we
775 				 * accept the SYN packet.  RFC2462 does not
776 				 * suggest dropping SYN in this case.
777 				 * If we decipher RFC2462 5.5.4, it says like
778 				 * this:
779 				 * 1. use of deprecated addr with existing
780 				 *    communication is okay - "SHOULD continue
781 				 *    to be used"
782 				 * 2. use of it with new communication:
783 				 *   (2a) "SHOULD NOT be used if alternate
784 				 *        address with sufficient scope is
785 				 *        available"
786 				 *   (2b) nothing mentioned otherwise.
787 				 * Here we fall into (2b) case as we have no
788 				 * choice in our source address selection - we
789 				 * must obey the peer.
790 				 *
791 				 * The wording in RFC2462 is confusing, and
792 				 * there are multiple description text for
793 				 * deprecated address handling - worse, they
794 				 * are not exactly the same.  I believe 5.5.4
795 				 * is the best one, so we follow 5.5.4.
796 				 */
797 				if (ip6 && !ip6_use_deprecated) {
798 					struct in6_ifaddr *ia6;
799 
800 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
801 					    &ip6->ip6_dst)) &&
802 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
803 						tp = NULL;
804 						goto dropwithreset;
805 					}
806 				}
807 #endif
808 
809 				/*
810 				 * LISTEN socket received a SYN
811 				 * from itself?  This can't possibly
812 				 * be valid; drop the packet.
813 				 */
814 				if (th->th_dport == th->th_sport) {
815 					switch (af) {
816 #ifdef INET6
817 					case AF_INET6:
818 						if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
819 						    &ip6->ip6_dst)) {
820 							tcpstat.tcps_badsyn++;
821 							goto drop;
822 						}
823 						break;
824 #endif /* INET6 */
825 					case AF_INET:
826 						if (ip->ip_dst.s_addr == ip->ip_src.s_addr) {
827 							tcpstat.tcps_badsyn++;
828 							goto drop;
829 						}
830 						break;
831 					}
832 				}
833 
834 				/*
835 				 * SYN looks ok; create compressed TCP
836 				 * state for it.
837 				 */
838 				if (so->so_qlen <= so->so_qlimit &&
839 				    syn_cache_add(&src.sa, &dst.sa, th, iphlen,
840 						so, m, optp, optlen, &opti))
841 					m = NULL;
842 			}
843 			goto drop;
844 		}
845 	}
846 
847 after_listen:
848 #ifdef DIAGNOSTIC
849 	/*
850 	 * Should not happen now that all embryonic connections
851 	 * are handled with compressed state.
852 	 */
853 	if (tp->t_state == TCPS_LISTEN)
854 		panic("tcp_input: TCPS_LISTEN");
855 #endif
856 
857 #ifdef IPSEC
858 	/* Find most recent IPsec tag */
859 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
860         s = splnet();
861 	if (mtag != NULL) {
862 		tdbi = (struct tdb_ident *)(mtag + 1);
863 	        tdb = gettdb(tdbi->spi, &tdbi->dst, tdbi->proto);
864 	} else
865 		tdb = NULL;
866 	ipsp_spd_lookup(m, af, iphlen, &error, IPSP_DIRECTION_IN,
867 	    tdb, inp);
868 	if (error) {
869 		splx(s);
870 		goto drop;
871 	}
872 
873 	/* Latch SA */
874 	if (inp->inp_tdb_in != tdb) {
875 		if (tdb) {
876 		        tdb_add_inp(tdb, inp, 1);
877 			if (inp->inp_ipo == NULL) {
878 				inp->inp_ipo = ipsec_add_policy(inp, af,
879 				    IPSP_DIRECTION_OUT);
880 				if (inp->inp_ipo == NULL) {
881 					splx(s);
882 					goto drop;
883 				}
884 			}
885 			if (inp->inp_ipo->ipo_dstid == NULL &&
886 			    tdb->tdb_srcid != NULL) {
887 				inp->inp_ipo->ipo_dstid = tdb->tdb_srcid;
888 				tdb->tdb_srcid->ref_count++;
889 			}
890 			if (inp->inp_ipsec_remotecred == NULL &&
891 			    tdb->tdb_remote_cred != NULL) {
892 				inp->inp_ipsec_remotecred =
893 				    tdb->tdb_remote_cred;
894 				tdb->tdb_remote_cred->ref_count++;
895 			}
896 			if (inp->inp_ipsec_remoteauth == NULL &&
897 			    tdb->tdb_remote_auth != NULL) {
898 				inp->inp_ipsec_remoteauth =
899 				    tdb->tdb_remote_auth;
900 				tdb->tdb_remote_auth->ref_count++;
901 			}
902 		} else { /* Just reset */
903 		        TAILQ_REMOVE(&inp->inp_tdb_in->tdb_inp_in, inp,
904 				     inp_tdb_in_next);
905 			inp->inp_tdb_in = NULL;
906 		}
907 	}
908         splx(s);
909 #endif /* IPSEC */
910 
911 	/*
912 	 * Segment received on connection.
913 	 * Reset idle time and keep-alive timer.
914 	 */
915 	tp->t_rcvtime = tcp_now;
916 	if (TCPS_HAVEESTABLISHED(tp->t_state))
917 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
918 
919 #ifdef TCP_SACK
920 	if (tp->sack_enable)
921 		tcp_del_sackholes(tp, th); /* Delete stale SACK holes */
922 #endif /* TCP_SACK */
923 
924 	/*
925 	 * Process options.
926 	 */
927 #ifdef TCP_SIGNATURE
928 	if (optp || (tp->t_flags & TF_SIGNATURE))
929 #else
930 	if (optp)
931 #endif
932 		if (tcp_dooptions(tp, optp, optlen, th, m, iphlen, &opti))
933 			goto drop;
934 
935 	/* subtract out the tcp timestamp modulator */
936 	if (opti.ts_present)
937 		opti.ts_ecr -= tp->ts_modulate;
938 
939 #ifdef TCP_SACK
940 	if (tp->sack_enable) {
941 		tp->rcv_laststart = th->th_seq; /* last rec'vd segment*/
942 		tp->rcv_lastend = th->th_seq + tlen;
943 	}
944 #endif /* TCP_SACK */
945 #ifdef TCP_ECN
946 	/* if congestion experienced, set ECE bit in subsequent packets. */
947 	if ((iptos & IPTOS_ECN_MASK) == IPTOS_ECN_CE) {
948 		tp->t_flags |= TF_RCVD_CE;
949 		tcpstat.tcps_ecn_rcvce++;
950 	}
951 #endif
952 	/*
953 	 * Header prediction: check for the two common cases
954 	 * of a uni-directional data xfer.  If the packet has
955 	 * no control flags, is in-sequence, the window didn't
956 	 * change and we're not retransmitting, it's a
957 	 * candidate.  If the length is zero and the ack moved
958 	 * forward, we're the sender side of the xfer.  Just
959 	 * free the data acked & wake any higher level process
960 	 * that was blocked waiting for space.  If the length
961 	 * is non-zero and the ack didn't move, we're the
962 	 * receiver side.  If we're getting packets in-order
963 	 * (the reassembly queue is empty), add the data to
964 	 * the socket buffer and note that we need a delayed ack.
965 	 */
966 	if (tp->t_state == TCPS_ESTABLISHED &&
967 #ifdef TCP_ECN
968 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK)) == TH_ACK &&
969 #else
970 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
971 #endif
972 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
973 	    th->th_seq == tp->rcv_nxt &&
974 	    tiwin && tiwin == tp->snd_wnd &&
975 	    tp->snd_nxt == tp->snd_max) {
976 
977 		/*
978 		 * If last ACK falls within this segment's sequence numbers,
979 		 *  record the timestamp.
980 		 * Fix from Braden, see Stevens p. 870
981 		 */
982 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
983 			tp->ts_recent_age = tcp_now;
984 			tp->ts_recent = opti.ts_val;
985 		}
986 
987 		if (tlen == 0) {
988 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
989 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
990 			    tp->snd_cwnd >= tp->snd_wnd &&
991 			    tp->t_dupacks == 0) {
992 				/*
993 				 * this is a pure ack for outstanding data.
994 				 */
995 				++tcpstat.tcps_predack;
996 				if (opti.ts_present)
997 					tcp_xmit_timer(tp, tcp_now-opti.ts_ecr+1);
998 				else if (tp->t_rtttime &&
999 					    SEQ_GT(th->th_ack, tp->t_rtseq))
1000 					tcp_xmit_timer(tp,
1001 					    tcp_now - tp->t_rtttime);
1002 				acked = th->th_ack - tp->snd_una;
1003 				tcpstat.tcps_rcvackpack++;
1004 				tcpstat.tcps_rcvackbyte += acked;
1005 				ND6_HINT(tp);
1006 				sbdrop(&so->so_snd, acked);
1007 				tp->snd_una = th->th_ack;
1008 #if defined(TCP_SACK) || defined(TCP_ECN)
1009 				/*
1010 				 * We want snd_last to track snd_una so
1011 				 * as to avoid sequence wraparound problems
1012 				 * for very large transfers.
1013 				 */
1014 #ifdef TCP_ECN
1015 				if (SEQ_GT(tp->snd_una, tp->snd_last))
1016 #endif
1017 				tp->snd_last = tp->snd_una;
1018 #endif /* TCP_SACK */
1019 #if defined(TCP_SACK) && defined(TCP_FACK)
1020 				tp->snd_fack = tp->snd_una;
1021 				tp->retran_data = 0;
1022 #endif /* TCP_FACK */
1023 				m_freem(m);
1024 
1025 				/*
1026 				 * If all outstanding data are acked, stop
1027 				 * retransmit timer, otherwise restart timer
1028 				 * using current (possibly backed-off) value.
1029 				 * If process is waiting for space,
1030 				 * wakeup/selwakeup/signal.  If data
1031 				 * are ready to send, let tcp_output
1032 				 * decide between more output or persist.
1033 				 */
1034 				if (tp->snd_una == tp->snd_max)
1035 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1036 				else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1037 					TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1038 
1039 				if (sb_notify(&so->so_snd))
1040 					sowwakeup(so);
1041 				if (so->so_snd.sb_cc)
1042 					(void) tcp_output(tp);
1043 				return;
1044 			}
1045 		} else if (th->th_ack == tp->snd_una &&
1046 		    tp->segq.lh_first == NULL &&
1047 		    tlen <= sbspace(&so->so_rcv)) {
1048 			/*
1049 			 * This is a pure, in-sequence data packet
1050 			 * with nothing on the reassembly queue and
1051 			 * we have enough buffer space to take it.
1052 			 */
1053 #ifdef TCP_SACK
1054 			/* Clean receiver SACK report if present */
1055 			if (tp->sack_enable && tp->rcv_numsacks)
1056 				tcp_clean_sackreport(tp);
1057 #endif /* TCP_SACK */
1058 			++tcpstat.tcps_preddat;
1059 			tp->rcv_nxt += tlen;
1060 			tcpstat.tcps_rcvpack++;
1061 			tcpstat.tcps_rcvbyte += tlen;
1062 			ND6_HINT(tp);
1063 			/*
1064 			 * Drop TCP, IP headers and TCP options then add data
1065 			 * to socket buffer.
1066 			 */
1067 			if (so->so_state & SS_CANTRCVMORE)
1068 				m_freem(m);
1069 			else {
1070 				m_adj(m, iphlen + off);
1071 				sbappendstream(&so->so_rcv, m);
1072 			}
1073 			sorwakeup(so);
1074 			TCP_SETUP_ACK(tp, tiflags);
1075 			if (tp->t_flags & TF_ACKNOW)
1076 				(void) tcp_output(tp);
1077 			return;
1078 		}
1079 	}
1080 
1081 	/*
1082 	 * Compute mbuf offset to TCP data segment.
1083 	 */
1084 	hdroptlen = iphlen + off;
1085 
1086 	/*
1087 	 * Calculate amount of space in receive window,
1088 	 * and then do TCP input processing.
1089 	 * Receive window is amount of space in rcv queue,
1090 	 * but not less than advertised window.
1091 	 */
1092 	{ int win;
1093 
1094 	win = sbspace(&so->so_rcv);
1095 	if (win < 0)
1096 		win = 0;
1097 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1098 	}
1099 
1100 	switch (tp->t_state) {
1101 
1102 	/*
1103 	 * If the state is SYN_RECEIVED:
1104 	 * 	if seg contains SYN/ACK, send an RST.
1105 	 *	if seg contains an ACK, but not for our SYN/ACK, send an RST
1106 	 */
1107 
1108 	case TCPS_SYN_RECEIVED:
1109 		if (tiflags & TH_ACK) {
1110 			if (tiflags & TH_SYN) {
1111 				tcpstat.tcps_badsyn++;
1112 				goto dropwithreset;
1113 			}
1114 			if (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1115 			    SEQ_GT(th->th_ack, tp->snd_max))
1116 				goto dropwithreset;
1117 		}
1118 		break;
1119 
1120 	/*
1121 	 * If the state is SYN_SENT:
1122 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1123 	 *	if seg contains a RST, then drop the connection.
1124 	 *	if seg does not contain SYN, then drop it.
1125 	 * Otherwise this is an acceptable SYN segment
1126 	 *	initialize tp->rcv_nxt and tp->irs
1127 	 *	if seg contains ack then advance tp->snd_una
1128 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1129 	 *	arrange for segment to be acked (eventually)
1130 	 *	continue processing rest of data/controls, beginning with URG
1131 	 */
1132 	case TCPS_SYN_SENT:
1133 		if ((tiflags & TH_ACK) &&
1134 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1135 		     SEQ_GT(th->th_ack, tp->snd_max)))
1136 			goto dropwithreset;
1137 		if (tiflags & TH_RST) {
1138 #ifdef TCP_ECN
1139 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1140 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1141 				goto drop;
1142 #endif
1143 			if (tiflags & TH_ACK)
1144 				tp = tcp_drop(tp, ECONNREFUSED);
1145 			goto drop;
1146 		}
1147 		if ((tiflags & TH_SYN) == 0)
1148 			goto drop;
1149 		if (tiflags & TH_ACK) {
1150 			tp->snd_una = th->th_ack;
1151 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1152 				tp->snd_nxt = tp->snd_una;
1153 		}
1154 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
1155 		tp->irs = th->th_seq;
1156 		tcp_mss(tp, opti.maxseg);
1157 		/* Reset initial window to 1 segment for retransmit */
1158 		if (tp->t_rxtshift > 0)
1159 			tp->snd_cwnd = tp->t_maxseg;
1160 		tcp_rcvseqinit(tp);
1161 		tp->t_flags |= TF_ACKNOW;
1162 #ifdef TCP_SACK
1163                 /*
1164                  * If we've sent a SACK_PERMITTED option, and the peer
1165                  * also replied with one, then TF_SACK_PERMIT should have
1166                  * been set in tcp_dooptions().  If it was not, disable SACKs.
1167                  */
1168 		if (tp->sack_enable)
1169 			tp->sack_enable = tp->t_flags & TF_SACK_PERMIT;
1170 #endif
1171 #ifdef TCP_ECN
1172 		/*
1173 		 * if ECE is set but CWR is not set for SYN-ACK, or
1174 		 * both ECE and CWR are set for simultaneous open,
1175 		 * peer is ECN capable.
1176 		 */
1177 		if (tcp_do_ecn) {
1178 			if ((tiflags & (TH_ACK|TH_ECE|TH_CWR))
1179 			    == (TH_ACK|TH_ECE) ||
1180 			    (tiflags & (TH_ACK|TH_ECE|TH_CWR))
1181 			    == (TH_ECE|TH_CWR)) {
1182 				tp->t_flags |= TF_ECN_PERMIT;
1183 				tiflags &= ~(TH_ECE|TH_CWR);
1184 				tcpstat.tcps_ecn_accepts++;
1185 			}
1186 		}
1187 #endif
1188 
1189 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
1190 			tcpstat.tcps_connects++;
1191 			soisconnected(so);
1192 			tp->t_state = TCPS_ESTABLISHED;
1193 			TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1194 			/* Do window scaling on this connection? */
1195 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1196 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1197 				tp->snd_scale = tp->requested_s_scale;
1198 				tp->rcv_scale = tp->request_r_scale;
1199 			}
1200 			tcp_reass_lock(tp);
1201 			(void) tcp_reass(tp, (struct tcphdr *)0,
1202 				(struct mbuf *)0, &tlen);
1203 			tcp_reass_unlock(tp);
1204 			/*
1205 			 * if we didn't have to retransmit the SYN,
1206 			 * use its rtt as our initial srtt & rtt var.
1207 			 */
1208 			if (tp->t_rtttime)
1209 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1210 			/*
1211 			 * Since new data was acked (the SYN), open the
1212 			 * congestion window by one MSS.  We do this
1213 			 * here, because we won't go through the normal
1214 			 * ACK processing below.  And since this is the
1215 			 * start of the connection, we know we are in
1216 			 * the exponential phase of slow-start.
1217 			 */
1218 			tp->snd_cwnd += tp->t_maxseg;
1219 		} else
1220 			tp->t_state = TCPS_SYN_RECEIVED;
1221 
1222 #if 0
1223 trimthenstep6:
1224 #endif
1225 		/*
1226 		 * Advance th->th_seq to correspond to first data byte.
1227 		 * If data, trim to stay within window,
1228 		 * dropping FIN if necessary.
1229 		 */
1230 		th->th_seq++;
1231 		if (tlen > tp->rcv_wnd) {
1232 			todrop = tlen - tp->rcv_wnd;
1233 			m_adj(m, -todrop);
1234 			tlen = tp->rcv_wnd;
1235 			tiflags &= ~TH_FIN;
1236 			tcpstat.tcps_rcvpackafterwin++;
1237 			tcpstat.tcps_rcvbyteafterwin += todrop;
1238 		}
1239 		tp->snd_wl1 = th->th_seq - 1;
1240 		tp->rcv_up = th->th_seq;
1241 		goto step6;
1242 	}
1243 
1244 	/*
1245 	 * States other than LISTEN or SYN_SENT.
1246 	 * First check timestamp, if present.
1247 	 * Then check that at least some bytes of segment are within
1248 	 * receive window.  If segment begins before rcv_nxt,
1249 	 * drop leading data (and SYN); if nothing left, just ack.
1250 	 *
1251 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1252 	 * and it's less than opti.ts_recent, drop it.
1253 	 */
1254 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1255 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1256 
1257 		/* Check to see if ts_recent is over 24 days old.  */
1258 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1259 			/*
1260 			 * Invalidate ts_recent.  If this segment updates
1261 			 * ts_recent, the age will be reset later and ts_recent
1262 			 * will get a valid value.  If it does not, setting
1263 			 * ts_recent to zero will at least satisfy the
1264 			 * requirement that zero be placed in the timestamp
1265 			 * echo reply when ts_recent isn't valid.  The
1266 			 * age isn't reset until we get a valid ts_recent
1267 			 * because we don't want out-of-order segments to be
1268 			 * dropped when ts_recent is old.
1269 			 */
1270 			tp->ts_recent = 0;
1271 		} else {
1272 			tcpstat.tcps_rcvduppack++;
1273 			tcpstat.tcps_rcvdupbyte += tlen;
1274 			tcpstat.tcps_pawsdrop++;
1275 			goto dropafterack;
1276 		}
1277 	}
1278 
1279 	todrop = tp->rcv_nxt - th->th_seq;
1280 	if (todrop > 0) {
1281 		if (tiflags & TH_SYN) {
1282 			tiflags &= ~TH_SYN;
1283 			th->th_seq++;
1284 			if (th->th_urp > 1)
1285 				th->th_urp--;
1286 			else
1287 				tiflags &= ~TH_URG;
1288 			todrop--;
1289 		}
1290 		if (todrop > tlen ||
1291 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1292 			/*
1293 			 * Any valid FIN must be to the left of the
1294 			 * window.  At this point, FIN must be a
1295 			 * duplicate or out-of-sequence, so drop it.
1296 			 */
1297 			tiflags &= ~TH_FIN;
1298 			/*
1299 			 * Send ACK to resynchronize, and drop any data,
1300 			 * but keep on processing for RST or ACK.
1301 			 */
1302 			tp->t_flags |= TF_ACKNOW;
1303 			tcpstat.tcps_rcvdupbyte += todrop = tlen;
1304 			tcpstat.tcps_rcvduppack++;
1305 		} else {
1306 			tcpstat.tcps_rcvpartduppack++;
1307 			tcpstat.tcps_rcvpartdupbyte += todrop;
1308 		}
1309 		hdroptlen += todrop;	/* drop from head afterwards */
1310 		th->th_seq += todrop;
1311 		tlen -= todrop;
1312 		if (th->th_urp > todrop)
1313 			th->th_urp -= todrop;
1314 		else {
1315 			tiflags &= ~TH_URG;
1316 			th->th_urp = 0;
1317 		}
1318 	}
1319 
1320 	/*
1321 	 * If new data are received on a connection after the
1322 	 * user processes are gone, then RST the other end.
1323 	 */
1324 	if ((so->so_state & SS_NOFDREF) &&
1325 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1326 		tp = tcp_close(tp);
1327 		tcpstat.tcps_rcvafterclose++;
1328 		goto dropwithreset;
1329 	}
1330 
1331 	/*
1332 	 * If segment ends after window, drop trailing data
1333 	 * (and PUSH and FIN); if nothing left, just ACK.
1334 	 */
1335 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1336 	if (todrop > 0) {
1337 		tcpstat.tcps_rcvpackafterwin++;
1338 		if (todrop >= tlen) {
1339 			tcpstat.tcps_rcvbyteafterwin += tlen;
1340 			/*
1341 			 * If a new connection request is received
1342 			 * while in TIME_WAIT, drop the old connection
1343 			 * and start over if the sequence numbers
1344 			 * are above the previous ones.
1345 			 */
1346 			if (tiflags & TH_SYN &&
1347 			    tp->t_state == TCPS_TIME_WAIT &&
1348 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1349 				iss = tp->snd_nxt + TCP_ISSINCR;
1350 				tp = tcp_close(tp);
1351 				goto findpcb;
1352 			}
1353 			/*
1354 			 * If window is closed can only take segments at
1355 			 * window edge, and have to drop data and PUSH from
1356 			 * incoming segments.  Continue processing, but
1357 			 * remember to ack.  Otherwise, drop segment
1358 			 * and ack.
1359 			 */
1360 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1361 				tp->t_flags |= TF_ACKNOW;
1362 				tcpstat.tcps_rcvwinprobe++;
1363 			} else
1364 				goto dropafterack;
1365 		} else
1366 			tcpstat.tcps_rcvbyteafterwin += todrop;
1367 		m_adj(m, -todrop);
1368 		tlen -= todrop;
1369 		tiflags &= ~(TH_PUSH|TH_FIN);
1370 	}
1371 
1372 	/*
1373 	 * If last ACK falls within this segment's sequence numbers,
1374 	 * record its timestamp.
1375 	 * Fix from Braden, see Stevens p. 870
1376 	 */
1377 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1378 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1379 		tp->ts_recent_age = tcp_now;
1380 		tp->ts_recent = opti.ts_val;
1381 	}
1382 
1383 	/*
1384 	 * If the RST bit is set examine the state:
1385 	 *    SYN_RECEIVED STATE:
1386 	 *	If passive open, return to LISTEN state.
1387 	 *	If active open, inform user that connection was refused.
1388 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1389 	 *	Inform user that connection was reset, and close tcb.
1390 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1391 	 *	Close the tcb.
1392 	 */
1393 	if (tiflags & TH_RST) {
1394 		if (th->th_seq != tp->last_ack_sent)
1395 			goto drop;
1396 
1397 		switch (tp->t_state) {
1398 		case TCPS_SYN_RECEIVED:
1399 #ifdef TCP_ECN
1400 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1401 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1402 				goto drop;
1403 #endif
1404 			so->so_error = ECONNREFUSED;
1405 			goto close;
1406 
1407 		case TCPS_ESTABLISHED:
1408 		case TCPS_FIN_WAIT_1:
1409 		case TCPS_FIN_WAIT_2:
1410 		case TCPS_CLOSE_WAIT:
1411 			so->so_error = ECONNRESET;
1412 		close:
1413 			tp->t_state = TCPS_CLOSED;
1414 			tcpstat.tcps_drops++;
1415 			tp = tcp_close(tp);
1416 			goto drop;
1417 		case TCPS_CLOSING:
1418 		case TCPS_LAST_ACK:
1419 		case TCPS_TIME_WAIT:
1420 			tp = tcp_close(tp);
1421 			goto drop;
1422 		}
1423 	}
1424 
1425 	/*
1426 	 * If a SYN is in the window, then this is an
1427 	 * error and we ACK and drop the packet.
1428 	 */
1429 	if (tiflags & TH_SYN)
1430 		goto dropafterack_ratelim;
1431 
1432 	/*
1433 	 * If the ACK bit is off we drop the segment and return.
1434 	 */
1435 	if ((tiflags & TH_ACK) == 0) {
1436 		if (tp->t_flags & TF_ACKNOW)
1437 			goto dropafterack;
1438 		else
1439 			goto drop;
1440 	}
1441 
1442 	/*
1443 	 * Ack processing.
1444 	 */
1445 	switch (tp->t_state) {
1446 
1447 	/*
1448 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1449 	 * ESTABLISHED state and continue processing.
1450 	 * The ACK was checked above.
1451 	 */
1452 	case TCPS_SYN_RECEIVED:
1453 		tcpstat.tcps_connects++;
1454 		soisconnected(so);
1455 		tp->t_state = TCPS_ESTABLISHED;
1456 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1457 		/* Do window scaling? */
1458 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1459 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1460 			tp->snd_scale = tp->requested_s_scale;
1461 			tp->rcv_scale = tp->request_r_scale;
1462 		}
1463 		tcp_reass_lock(tp);
1464 		(void) tcp_reass(tp, (struct tcphdr *)0, (struct mbuf *)0,
1465 				 &tlen);
1466 		tcp_reass_unlock(tp);
1467 		tp->snd_wl1 = th->th_seq - 1;
1468 		/* fall into ... */
1469 
1470 	/*
1471 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1472 	 * ACKs.  If the ack is in the range
1473 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1474 	 * then advance tp->snd_una to th->th_ack and drop
1475 	 * data from the retransmission queue.  If this ACK reflects
1476 	 * more up to date window information we update our window information.
1477 	 */
1478 	case TCPS_ESTABLISHED:
1479 	case TCPS_FIN_WAIT_1:
1480 	case TCPS_FIN_WAIT_2:
1481 	case TCPS_CLOSE_WAIT:
1482 	case TCPS_CLOSING:
1483 	case TCPS_LAST_ACK:
1484 	case TCPS_TIME_WAIT:
1485 #ifdef TCP_ECN
1486 		/*
1487 		 * if we receive ECE and are not already in recovery phase,
1488 		 * reduce cwnd by half but don't slow-start.
1489 		 * advance snd_last to snd_max not to reduce cwnd again
1490 		 * until all outstanding packets are acked.
1491 		 */
1492 		if (tcp_do_ecn && (tiflags & TH_ECE)) {
1493 			if ((tp->t_flags & TF_ECN_PERMIT) &&
1494 			    SEQ_GEQ(tp->snd_una, tp->snd_last)) {
1495 				u_int win;
1496 
1497 				win = min(tp->snd_wnd, tp->snd_cwnd) / tp->t_maxseg;
1498 				if (win > 1) {
1499 					tp->snd_ssthresh = win / 2 * tp->t_maxseg;
1500 					tp->snd_cwnd = tp->snd_ssthresh;
1501 					tp->snd_last = tp->snd_max;
1502 					tp->t_flags |= TF_SEND_CWR;
1503 					tcpstat.tcps_cwr_ecn++;
1504 				}
1505 			}
1506 			tcpstat.tcps_ecn_rcvece++;
1507 		}
1508 		/*
1509 		 * if we receive CWR, we know that the peer has reduced
1510 		 * its congestion window.  stop sending ecn-echo.
1511 		 */
1512 		if ((tiflags & TH_CWR)) {
1513 			tp->t_flags &= ~TF_RCVD_CE;
1514 			tcpstat.tcps_ecn_rcvcwr++;
1515 		}
1516 #endif /* TCP_ECN */
1517 
1518 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1519 			/*
1520 			 * Duplicate/old ACK processing.
1521 			 * Increments t_dupacks:
1522 			 *	Pure duplicate (same seq/ack/window, no data)
1523 			 * Doesn't affect t_dupacks:
1524 			 *	Data packets.
1525 			 *	Normal window updates (window opens)
1526 			 * Resets t_dupacks:
1527 			 *	New data ACKed.
1528 			 *	Window shrinks
1529 			 *	Old ACK
1530 			 */
1531 			if (tlen) {
1532 				/* Drop very old ACKs unless th_seq matches */
1533 				if (th->th_seq != tp->rcv_nxt &&
1534 				   SEQ_LT(th->th_ack,
1535 				   tp->snd_una - tp->max_sndwnd)) {
1536 					tcpstat.tcps_rcvacktooold++;
1537 					goto drop;
1538 				}
1539 				break;
1540 			}
1541 			/*
1542 			 * If we get an old ACK, there is probably packet
1543 			 * reordering going on.  Be conservative and reset
1544 			 * t_dupacks so that we are less agressive in
1545 			 * doing a fast retransmit.
1546 			 */
1547 			if (th->th_ack != tp->snd_una) {
1548 				tp->t_dupacks = 0;
1549 				break;
1550 			}
1551 			if (tiwin == tp->snd_wnd) {
1552 				tcpstat.tcps_rcvdupack++;
1553 				/*
1554 				 * If we have outstanding data (other than
1555 				 * a window probe), this is a completely
1556 				 * duplicate ack (ie, window info didn't
1557 				 * change), the ack is the biggest we've
1558 				 * seen and we've seen exactly our rexmt
1559 				 * threshhold of them, assume a packet
1560 				 * has been dropped and retransmit it.
1561 				 * Kludge snd_nxt & the congestion
1562 				 * window so we send only this one
1563 				 * packet.
1564 				 *
1565 				 * We know we're losing at the current
1566 				 * window size so do congestion avoidance
1567 				 * (set ssthresh to half the current window
1568 				 * and pull our congestion window back to
1569 				 * the new ssthresh).
1570 				 *
1571 				 * Dup acks mean that packets have left the
1572 				 * network (they're now cached at the receiver)
1573 				 * so bump cwnd by the amount in the receiver
1574 				 * to keep a constant cwnd packets in the
1575 				 * network.
1576 				 */
1577 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0)
1578 					tp->t_dupacks = 0;
1579 #if defined(TCP_SACK) && defined(TCP_FACK)
1580 				/*
1581 				 * In FACK, can enter fast rec. if the receiver
1582 				 * reports a reass. queue longer than 3 segs.
1583 				 */
1584 				else if (++tp->t_dupacks == tcprexmtthresh ||
1585 				    ((SEQ_GT(tp->snd_fack, tcprexmtthresh *
1586 				    tp->t_maxseg + tp->snd_una)) &&
1587 				    SEQ_GT(tp->snd_una, tp->snd_last))) {
1588 #else
1589 				else if (++tp->t_dupacks == tcprexmtthresh) {
1590 #endif /* TCP_FACK */
1591 					tcp_seq onxt = tp->snd_nxt;
1592 					u_long win =
1593 					    ulmin(tp->snd_wnd, tp->snd_cwnd) /
1594 						2 / tp->t_maxseg;
1595 
1596 #if defined(TCP_SACK) || defined(TCP_ECN)
1597 					if (SEQ_LT(th->th_ack, tp->snd_last)){
1598 					    	/*
1599 						 * False fast retx after
1600 						 * timeout.  Do not cut window.
1601 						 */
1602 						tp->t_dupacks = 0;
1603 						goto drop;
1604 					}
1605 #endif
1606 					if (win < 2)
1607 						win = 2;
1608 					tp->snd_ssthresh = win * tp->t_maxseg;
1609 #if defined(TCP_SACK)
1610 					tp->snd_last = tp->snd_max;
1611 #endif
1612 #ifdef TCP_SACK
1613                     			if (tp->sack_enable) {
1614 						TCP_TIMER_DISARM(tp, TCPT_REXMT);
1615 						tp->t_rtttime = 0;
1616 #ifdef TCP_ECN
1617 						tp->t_flags |= TF_SEND_CWR;
1618 #endif
1619 #if 1 /* TCP_ECN */
1620 						tcpstat.tcps_cwr_frecovery++;
1621 #endif
1622 						tcpstat.tcps_sndrexmitfast++;
1623 #if defined(TCP_SACK) && defined(TCP_FACK)
1624 						tp->t_dupacks = tcprexmtthresh;
1625 						(void) tcp_output(tp);
1626 						/*
1627 						 * During FR, snd_cwnd is held
1628 						 * constant for FACK.
1629 						 */
1630 						tp->snd_cwnd = tp->snd_ssthresh;
1631 #else
1632 						/*
1633 						 * tcp_output() will send
1634 						 * oldest SACK-eligible rtx.
1635 						 */
1636 						(void) tcp_output(tp);
1637 						tp->snd_cwnd = tp->snd_ssthresh+
1638 					           tp->t_maxseg * tp->t_dupacks;
1639 #endif /* TCP_FACK */
1640 						goto drop;
1641 					}
1642 #endif /* TCP_SACK */
1643 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1644 					tp->t_rtttime = 0;
1645 					tp->snd_nxt = th->th_ack;
1646 					tp->snd_cwnd = tp->t_maxseg;
1647 #ifdef TCP_ECN
1648 					tp->t_flags |= TF_SEND_CWR;
1649 #endif
1650 #if 1 /* TCP_ECN */
1651 					tcpstat.tcps_cwr_frecovery++;
1652 #endif
1653 					tcpstat.tcps_sndrexmitfast++;
1654 					(void) tcp_output(tp);
1655 
1656 					tp->snd_cwnd = tp->snd_ssthresh +
1657 					    tp->t_maxseg * tp->t_dupacks;
1658 					if (SEQ_GT(onxt, tp->snd_nxt))
1659 						tp->snd_nxt = onxt;
1660 					goto drop;
1661 				} else if (tp->t_dupacks > tcprexmtthresh) {
1662 #if defined(TCP_SACK) && defined(TCP_FACK)
1663 					/*
1664 					 * while (awnd < cwnd)
1665 					 *         sendsomething();
1666 					 */
1667 					if (tp->sack_enable) {
1668 						if (tp->snd_awnd < tp->snd_cwnd)
1669 							tcp_output(tp);
1670 						goto drop;
1671 					}
1672 #endif /* TCP_FACK */
1673 					tp->snd_cwnd += tp->t_maxseg;
1674 					(void) tcp_output(tp);
1675 					goto drop;
1676 				}
1677 			} else if (tiwin < tp->snd_wnd) {
1678 				/*
1679 				 * The window was retracted!  Previous dup
1680 				 * ACKs may have been due to packets arriving
1681 				 * after the shrunken window, not a missing
1682 				 * packet, so play it safe and reset t_dupacks
1683 				 */
1684 				tp->t_dupacks = 0;
1685 			}
1686 			break;
1687 		}
1688 		/*
1689 		 * If the congestion window was inflated to account
1690 		 * for the other side's cached packets, retract it.
1691 		 */
1692 #if defined(TCP_SACK)
1693 		if (tp->sack_enable) {
1694 			if (tp->t_dupacks >= tcprexmtthresh) {
1695 				/* Check for a partial ACK */
1696 				if (tcp_sack_partialack(tp, th)) {
1697 #if defined(TCP_SACK) && defined(TCP_FACK)
1698 					/* Force call to tcp_output */
1699 					if (tp->snd_awnd < tp->snd_cwnd)
1700 						needoutput = 1;
1701 #else
1702 					tp->snd_cwnd += tp->t_maxseg;
1703 					needoutput = 1;
1704 #endif /* TCP_FACK */
1705 				} else {
1706 					/* Out of fast recovery */
1707 					tp->snd_cwnd = tp->snd_ssthresh;
1708 					if (tcp_seq_subtract(tp->snd_max,
1709 					    th->th_ack) < tp->snd_ssthresh)
1710 						tp->snd_cwnd =
1711 						   tcp_seq_subtract(tp->snd_max,
1712 					           th->th_ack);
1713 					tp->t_dupacks = 0;
1714 #if defined(TCP_SACK) && defined(TCP_FACK)
1715 					if (SEQ_GT(th->th_ack, tp->snd_fack))
1716 						tp->snd_fack = th->th_ack;
1717 #endif /* TCP_FACK */
1718 				}
1719 			}
1720 		} else {
1721 			if (tp->t_dupacks >= tcprexmtthresh &&
1722 			    !tcp_newreno(tp, th)) {
1723 				/* Out of fast recovery */
1724 				tp->snd_cwnd = tp->snd_ssthresh;
1725 				if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
1726 			  	    tp->snd_ssthresh)
1727 					tp->snd_cwnd =
1728 					    tcp_seq_subtract(tp->snd_max,
1729 					    th->th_ack);
1730 				tp->t_dupacks = 0;
1731 			}
1732 		}
1733 		if (tp->t_dupacks < tcprexmtthresh)
1734 			tp->t_dupacks = 0;
1735 #else /* else no TCP_SACK */
1736 		if (tp->t_dupacks >= tcprexmtthresh &&
1737 		    tp->snd_cwnd > tp->snd_ssthresh)
1738 			tp->snd_cwnd = tp->snd_ssthresh;
1739 		tp->t_dupacks = 0;
1740 #endif
1741 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1742 			tcpstat.tcps_rcvacktoomuch++;
1743 			goto dropafterack_ratelim;
1744 		}
1745 		acked = th->th_ack - tp->snd_una;
1746 		tcpstat.tcps_rcvackpack++;
1747 		tcpstat.tcps_rcvackbyte += acked;
1748 
1749 		/*
1750 		 * If we have a timestamp reply, update smoothed
1751 		 * round trip time.  If no timestamp is present but
1752 		 * transmit timer is running and timed sequence
1753 		 * number was acked, update smoothed round trip time.
1754 		 * Since we now have an rtt measurement, cancel the
1755 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1756 		 * Recompute the initial retransmit timer.
1757 		 */
1758 		if (opti.ts_present)
1759 			tcp_xmit_timer(tp, tcp_now-opti.ts_ecr+1);
1760 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1761 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1762 
1763 		/*
1764 		 * If all outstanding data is acked, stop retransmit
1765 		 * timer and remember to restart (more output or persist).
1766 		 * If there is more data to be acked, restart retransmit
1767 		 * timer, using current (possibly backed-off) value.
1768 		 */
1769 		if (th->th_ack == tp->snd_max) {
1770 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1771 			needoutput = 1;
1772 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1773 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1774 		/*
1775 		 * When new data is acked, open the congestion window.
1776 		 * If the window gives us less than ssthresh packets
1777 		 * in flight, open exponentially (maxseg per packet).
1778 		 * Otherwise open linearly: maxseg per window
1779 		 * (maxseg^2 / cwnd per packet).
1780 		 */
1781 		{
1782 		u_int cw = tp->snd_cwnd;
1783 		u_int incr = tp->t_maxseg;
1784 
1785 		if (cw > tp->snd_ssthresh)
1786 			incr = incr * incr / cw;
1787 #if defined (TCP_SACK)
1788 		if (tp->t_dupacks < tcprexmtthresh)
1789 #endif
1790 		tp->snd_cwnd = ulmin(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1791 		}
1792 		ND6_HINT(tp);
1793 		if (acked > so->so_snd.sb_cc) {
1794 			tp->snd_wnd -= so->so_snd.sb_cc;
1795 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1796 			ourfinisacked = 1;
1797 		} else {
1798 			sbdrop(&so->so_snd, acked);
1799 			tp->snd_wnd -= acked;
1800 			ourfinisacked = 0;
1801 		}
1802 		if (sb_notify(&so->so_snd))
1803 			sowwakeup(so);
1804 		tp->snd_una = th->th_ack;
1805 #ifdef TCP_ECN
1806 		/* sync snd_last with snd_una */
1807 		if (SEQ_GT(tp->snd_una, tp->snd_last))
1808 			tp->snd_last = tp->snd_una;
1809 #endif
1810 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1811 			tp->snd_nxt = tp->snd_una;
1812 #if defined (TCP_SACK) && defined (TCP_FACK)
1813 		if (SEQ_GT(tp->snd_una, tp->snd_fack)) {
1814 			tp->snd_fack = tp->snd_una;
1815 			/* Update snd_awnd for partial ACK
1816 			 * without any SACK blocks.
1817 			 */
1818 			tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt,
1819 				tp->snd_fack) + tp->retran_data;
1820 		}
1821 #endif
1822 
1823 		switch (tp->t_state) {
1824 
1825 		/*
1826 		 * In FIN_WAIT_1 STATE in addition to the processing
1827 		 * for the ESTABLISHED state if our FIN is now acknowledged
1828 		 * then enter FIN_WAIT_2.
1829 		 */
1830 		case TCPS_FIN_WAIT_1:
1831 			if (ourfinisacked) {
1832 				/*
1833 				 * If we can't receive any more
1834 				 * data, then closing user can proceed.
1835 				 * Starting the timer is contrary to the
1836 				 * specification, but if we don't get a FIN
1837 				 * we'll hang forever.
1838 				 */
1839 				if (so->so_state & SS_CANTRCVMORE) {
1840 					soisdisconnected(so);
1841 					TCP_TIMER_ARM(tp, TCPT_2MSL, tcp_maxidle);
1842 				}
1843 				tp->t_state = TCPS_FIN_WAIT_2;
1844 			}
1845 			break;
1846 
1847 		/*
1848 		 * In CLOSING STATE in addition to the processing for
1849 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1850 		 * then enter the TIME-WAIT state, otherwise ignore
1851 		 * the segment.
1852 		 */
1853 		case TCPS_CLOSING:
1854 			if (ourfinisacked) {
1855 				tp->t_state = TCPS_TIME_WAIT;
1856 				tcp_canceltimers(tp);
1857 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1858 				soisdisconnected(so);
1859 			}
1860 			break;
1861 
1862 		/*
1863 		 * In LAST_ACK, we may still be waiting for data to drain
1864 		 * and/or to be acked, as well as for the ack of our FIN.
1865 		 * If our FIN is now acknowledged, delete the TCB,
1866 		 * enter the closed state and return.
1867 		 */
1868 		case TCPS_LAST_ACK:
1869 			if (ourfinisacked) {
1870 				tp = tcp_close(tp);
1871 				goto drop;
1872 			}
1873 			break;
1874 
1875 		/*
1876 		 * In TIME_WAIT state the only thing that should arrive
1877 		 * is a retransmission of the remote FIN.  Acknowledge
1878 		 * it and restart the finack timer.
1879 		 */
1880 		case TCPS_TIME_WAIT:
1881 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1882 			goto dropafterack;
1883 		}
1884 	}
1885 
1886 step6:
1887 	/*
1888 	 * Update window information.
1889 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1890 	 */
1891 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1892 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1893 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1894 		/* keep track of pure window updates */
1895 		if (tlen == 0 &&
1896 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1897 			tcpstat.tcps_rcvwinupd++;
1898 		tp->snd_wnd = tiwin;
1899 		tp->snd_wl1 = th->th_seq;
1900 		tp->snd_wl2 = th->th_ack;
1901 		if (tp->snd_wnd > tp->max_sndwnd)
1902 			tp->max_sndwnd = tp->snd_wnd;
1903 		needoutput = 1;
1904 	}
1905 
1906 	/*
1907 	 * Process segments with URG.
1908 	 */
1909 	if ((tiflags & TH_URG) && th->th_urp &&
1910 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1911 		/*
1912 		 * This is a kludge, but if we receive and accept
1913 		 * random urgent pointers, we'll crash in
1914 		 * soreceive.  It's hard to imagine someone
1915 		 * actually wanting to send this much urgent data.
1916 		 */
1917 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1918 			th->th_urp = 0;			/* XXX */
1919 			tiflags &= ~TH_URG;		/* XXX */
1920 			goto dodata;			/* XXX */
1921 		}
1922 		/*
1923 		 * If this segment advances the known urgent pointer,
1924 		 * then mark the data stream.  This should not happen
1925 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1926 		 * a FIN has been received from the remote side.
1927 		 * In these states we ignore the URG.
1928 		 *
1929 		 * According to RFC961 (Assigned Protocols),
1930 		 * the urgent pointer points to the last octet
1931 		 * of urgent data.  We continue, however,
1932 		 * to consider it to indicate the first octet
1933 		 * of data past the urgent section as the original
1934 		 * spec states (in one of two places).
1935 		 */
1936 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1937 			tp->rcv_up = th->th_seq + th->th_urp;
1938 			so->so_oobmark = so->so_rcv.sb_cc +
1939 			    (tp->rcv_up - tp->rcv_nxt) - 1;
1940 			if (so->so_oobmark == 0)
1941 				so->so_state |= SS_RCVATMARK;
1942 			sohasoutofband(so);
1943 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1944 		}
1945 		/*
1946 		 * Remove out of band data so doesn't get presented to user.
1947 		 * This can happen independent of advancing the URG pointer,
1948 		 * but if two URG's are pending at once, some out-of-band
1949 		 * data may creep in... ick.
1950 		 */
1951 		if (th->th_urp <= (u_int16_t) tlen
1952 #ifdef SO_OOBINLINE
1953 		     && (so->so_options & SO_OOBINLINE) == 0
1954 #endif
1955 		     )
1956 		        tcp_pulloutofband(so, th->th_urp, m, hdroptlen);
1957 	} else
1958 		/*
1959 		 * If no out of band data is expected,
1960 		 * pull receive urgent pointer along
1961 		 * with the receive window.
1962 		 */
1963 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1964 			tp->rcv_up = tp->rcv_nxt;
1965 dodata:							/* XXX */
1966 
1967 	/*
1968 	 * Process the segment text, merging it into the TCP sequencing queue,
1969 	 * and arranging for acknowledgment of receipt if necessary.
1970 	 * This process logically involves adjusting tp->rcv_wnd as data
1971 	 * is presented to the user (this happens in tcp_usrreq.c,
1972 	 * case PRU_RCVD).  If a FIN has already been received on this
1973 	 * connection then we just ignore the text.
1974 	 */
1975 	if ((tlen || (tiflags & TH_FIN)) &&
1976 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1977 		tcp_reass_lock(tp);
1978 		if (th->th_seq == tp->rcv_nxt && tp->segq.lh_first == NULL &&
1979 		    tp->t_state == TCPS_ESTABLISHED) {
1980 			tcp_reass_unlock(tp);
1981 			TCP_SETUP_ACK(tp, tiflags);
1982 			tp->rcv_nxt += tlen;
1983 			tiflags = th->th_flags & TH_FIN;
1984 			tcpstat.tcps_rcvpack++;
1985 			tcpstat.tcps_rcvbyte += tlen;
1986 			ND6_HINT(tp);
1987 			if (so->so_state & SS_CANTRCVMORE)
1988 				m_freem(m);
1989 			else {
1990 				m_adj(m, hdroptlen);
1991 				sbappendstream(&so->so_rcv, m);
1992 			}
1993 			sorwakeup(so);
1994 		} else {
1995 			m_adj(m, hdroptlen);
1996 			tiflags = tcp_reass(tp, th, m, &tlen);
1997 			tcp_reass_unlock(tp);
1998 			tp->t_flags |= TF_ACKNOW;
1999 		}
2000 #ifdef TCP_SACK
2001 		if (tp->sack_enable)
2002 			tcp_update_sack_list(tp);
2003 #endif
2004 
2005 		/*
2006 		 * variable len never referenced again in modern BSD,
2007 		 * so why bother computing it ??
2008 		 */
2009 #if 0
2010 		/*
2011 		 * Note the amount of data that peer has sent into
2012 		 * our window, in order to estimate the sender's
2013 		 * buffer size.
2014 		 */
2015 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2016 #endif /* 0 */
2017 	} else {
2018 		m_freem(m);
2019 		tiflags &= ~TH_FIN;
2020 	}
2021 
2022 	/*
2023 	 * If FIN is received ACK the FIN and let the user know
2024 	 * that the connection is closing.  Ignore a FIN received before
2025 	 * the connection is fully established.
2026 	 */
2027 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2028 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2029 			socantrcvmore(so);
2030 			tp->t_flags |= TF_ACKNOW;
2031 			tp->rcv_nxt++;
2032 		}
2033 		switch (tp->t_state) {
2034 
2035 		/*
2036 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2037 		 */
2038 		case TCPS_ESTABLISHED:
2039 			tp->t_state = TCPS_CLOSE_WAIT;
2040 			break;
2041 
2042 		/*
2043 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2044 		 * enter the CLOSING state.
2045 		 */
2046 		case TCPS_FIN_WAIT_1:
2047 			tp->t_state = TCPS_CLOSING;
2048 			break;
2049 
2050 		/*
2051 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2052 		 * starting the time-wait timer, turning off the other
2053 		 * standard timers.
2054 		 */
2055 		case TCPS_FIN_WAIT_2:
2056 			tp->t_state = TCPS_TIME_WAIT;
2057 			tcp_canceltimers(tp);
2058 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2059 			soisdisconnected(so);
2060 			break;
2061 
2062 		/*
2063 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2064 		 */
2065 		case TCPS_TIME_WAIT:
2066 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2067 			break;
2068 		}
2069 	}
2070 	if (so->so_options & SO_DEBUG) {
2071 		switch (tp->pf) {
2072 #ifdef INET6
2073 		case PF_INET6:
2074 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti6,
2075 			    0, tlen);
2076 			break;
2077 #endif /* INET6 */
2078 		case PF_INET:
2079 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti,
2080 			    0, tlen);
2081 			break;
2082 		}
2083 	}
2084 
2085 	/*
2086 	 * Return any desired output.
2087 	 */
2088 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2089 		(void) tcp_output(tp);
2090 	}
2091 	return;
2092 
2093 badsyn:
2094 	/*
2095 	 * Received a bad SYN.  Increment counters and dropwithreset.
2096 	 */
2097 	tcpstat.tcps_badsyn++;
2098 	tp = NULL;
2099 	goto dropwithreset;
2100 
2101 dropafterack_ratelim:
2102 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2103 	    tcp_ackdrop_ppslim) == 0) {
2104 		/* XXX stat */
2105 		goto drop;
2106 	}
2107 	/* ...fall into dropafterack... */
2108 
2109 dropafterack:
2110 	/*
2111 	 * Generate an ACK dropping incoming segment if it occupies
2112 	 * sequence space, where the ACK reflects our state.
2113 	 */
2114 	if (tiflags & TH_RST)
2115 		goto drop;
2116 	m_freem(m);
2117 	tp->t_flags |= TF_ACKNOW;
2118 	(void) tcp_output(tp);
2119 	return;
2120 
2121 dropwithreset_ratelim:
2122 	/*
2123 	 * We may want to rate-limit RSTs in certain situations,
2124 	 * particularly if we are sending an RST in response to
2125 	 * an attempt to connect to or otherwise communicate with
2126 	 * a port for which we have no socket.
2127 	 */
2128 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2129 	    tcp_rst_ppslim) == 0) {
2130 		/* XXX stat */
2131 		goto drop;
2132 	}
2133 	/* ...fall into dropwithreset... */
2134 
2135 dropwithreset:
2136 	/*
2137 	 * Generate a RST, dropping incoming segment.
2138 	 * Make ACK acceptable to originator of segment.
2139 	 * Don't bother to respond to RST.
2140 	 */
2141 	if (tiflags & TH_RST)
2142 		goto drop;
2143 	if (tiflags & TH_ACK) {
2144 		tcp_respond(tp, mtod(m, caddr_t), m, (tcp_seq)0, th->th_ack,
2145 		    TH_RST);
2146 	} else {
2147 		if (tiflags & TH_SYN)
2148 			tlen++;
2149 		tcp_respond(tp, mtod(m, caddr_t), m, th->th_seq + tlen,
2150 		    (tcp_seq)0, TH_RST|TH_ACK);
2151 	}
2152 	return;
2153 
2154 drop:
2155 	/*
2156 	 * Drop space held by incoming segment and return.
2157 	 */
2158 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
2159 		switch (tp->pf) {
2160 #ifdef INET6
2161 		case PF_INET6:
2162 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti6,
2163 			    0, tlen);
2164 			break;
2165 #endif /* INET6 */
2166 		case PF_INET:
2167 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti,
2168 			    0, tlen);
2169 			break;
2170 		}
2171 	}
2172 
2173 	m_freem(m);
2174 	return;
2175 }
2176 
2177 int
2178 tcp_dooptions(tp, cp, cnt, th, m, iphlen, oi)
2179 	struct tcpcb *tp;
2180 	u_char *cp;
2181 	int cnt;
2182 	struct tcphdr *th;
2183 	struct mbuf *m;
2184 	int iphlen;
2185 	struct tcp_opt_info *oi;
2186 {
2187 	u_int16_t mss = 0;
2188 	int opt, optlen;
2189 #ifdef TCP_SIGNATURE
2190 	caddr_t sigp = NULL;
2191 	struct tdb *tdb = NULL;
2192 #endif /* TCP_SIGNATURE */
2193 
2194 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2195 		opt = cp[0];
2196 		if (opt == TCPOPT_EOL)
2197 			break;
2198 		if (opt == TCPOPT_NOP)
2199 			optlen = 1;
2200 		else {
2201 			if (cnt < 2)
2202 				break;
2203 			optlen = cp[1];
2204 			if (optlen < 2 || optlen > cnt)
2205 				break;
2206 		}
2207 		switch (opt) {
2208 
2209 		default:
2210 			continue;
2211 
2212 		case TCPOPT_MAXSEG:
2213 			if (optlen != TCPOLEN_MAXSEG)
2214 				continue;
2215 			if (!(th->th_flags & TH_SYN))
2216 				continue;
2217 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
2218 			NTOHS(mss);
2219 			oi->maxseg = mss;
2220 			break;
2221 
2222 		case TCPOPT_WINDOW:
2223 			if (optlen != TCPOLEN_WINDOW)
2224 				continue;
2225 			if (!(th->th_flags & TH_SYN))
2226 				continue;
2227 			tp->t_flags |= TF_RCVD_SCALE;
2228 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2229 			break;
2230 
2231 		case TCPOPT_TIMESTAMP:
2232 			if (optlen != TCPOLEN_TIMESTAMP)
2233 				continue;
2234 			oi->ts_present = 1;
2235 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2236 			NTOHL(oi->ts_val);
2237 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2238 			NTOHL(oi->ts_ecr);
2239 
2240 			/*
2241 			 * A timestamp received in a SYN makes
2242 			 * it ok to send timestamp requests and replies.
2243 			 */
2244 			if (th->th_flags & TH_SYN) {
2245 				tp->t_flags |= TF_RCVD_TSTMP;
2246 				tp->ts_recent = oi->ts_val;
2247 				tp->ts_recent_age = tcp_now;
2248 			}
2249 			break;
2250 
2251 #ifdef TCP_SACK
2252 		case TCPOPT_SACK_PERMITTED:
2253 			if (!tp->sack_enable || optlen!=TCPOLEN_SACK_PERMITTED)
2254 				continue;
2255 			if (th->th_flags & TH_SYN)
2256 				/* MUST only be set on SYN */
2257 				tp->t_flags |= TF_SACK_PERMIT;
2258 			break;
2259 		case TCPOPT_SACK:
2260 			if (tcp_sack_option(tp, th, cp, optlen))
2261 				continue;
2262 			break;
2263 #endif
2264 #ifdef TCP_SIGNATURE
2265 		case TCPOPT_SIGNATURE:
2266 			if (optlen != TCPOLEN_SIGNATURE)
2267 				continue;
2268 
2269 			if (sigp && bcmp(sigp, cp + 2, 16))
2270 				return (-1);
2271 
2272 			sigp = cp + 2;
2273 			break;
2274 #endif /* TCP_SIGNATURE */
2275 		}
2276 	}
2277 
2278 #ifdef TCP_SIGNATURE
2279 	if (tp->t_flags & TF_SIGNATURE) {
2280 		union sockaddr_union src, dst;
2281 
2282 		memset(&src, 0, sizeof(union sockaddr_union));
2283 		memset(&dst, 0, sizeof(union sockaddr_union));
2284 
2285 		switch (tp->pf) {
2286 		case 0:
2287 #ifdef INET
2288 		case AF_INET:
2289 			src.sa.sa_len = sizeof(struct sockaddr_in);
2290 			src.sa.sa_family = AF_INET;
2291 			src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
2292 			dst.sa.sa_len = sizeof(struct sockaddr_in);
2293 			dst.sa.sa_family = AF_INET;
2294 			dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
2295 			break;
2296 #endif
2297 #ifdef INET6
2298 		case AF_INET6:
2299 			src.sa.sa_len = sizeof(struct sockaddr_in6);
2300 			src.sa.sa_family = AF_INET6;
2301 			src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
2302 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
2303 			dst.sa.sa_family = AF_INET6;
2304 			dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
2305 			break;
2306 #endif /* INET6 */
2307 		}
2308 
2309 		tdb = gettdbbysrcdst(0, &src, &dst, IPPROTO_TCP);
2310 
2311 		/*
2312 		 * We don't have an SA for this peer, so we turn off
2313 		 * TF_SIGNATURE on the listen socket
2314 		 */
2315 		if (tdb == NULL && tp->t_state == TCPS_LISTEN)
2316 			tp->t_flags &= ~TF_SIGNATURE;
2317 
2318 	}
2319 
2320 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2321 		tcpstat.tcps_rcvbadsig++;
2322 		return (-1);
2323 	}
2324 
2325 	if (sigp) {
2326 		char sig[16];
2327 
2328 		if (tdb == NULL) {
2329 			tcpstat.tcps_rcvbadsig++;
2330 			return (-1);
2331 		}
2332 
2333 		if (tcp_signature(tdb, tp->pf, m, th, iphlen, 1, sig) < 0)
2334 			return (-1);
2335 
2336 		if (bcmp(sig, sigp, 16)) {
2337 			tcpstat.tcps_rcvbadsig++;
2338 			return (-1);
2339 		}
2340 
2341 		tcpstat.tcps_rcvgoodsig++;
2342 	}
2343 #endif /* TCP_SIGNATURE */
2344 
2345 	return (0);
2346 }
2347 
2348 #if defined(TCP_SACK)
2349 u_long
2350 tcp_seq_subtract(a, b)
2351 	u_long a, b;
2352 {
2353 	return ((long)(a - b));
2354 }
2355 #endif
2356 
2357 
2358 #ifdef TCP_SACK
2359 /*
2360  * This function is called upon receipt of new valid data (while not in header
2361  * prediction mode), and it updates the ordered list of sacks.
2362  */
2363 void
2364 tcp_update_sack_list(tp)
2365 	struct tcpcb *tp;
2366 {
2367 	/*
2368 	 * First reported block MUST be the most recent one.  Subsequent
2369 	 * blocks SHOULD be in the order in which they arrived at the
2370 	 * receiver.  These two conditions make the implementation fully
2371 	 * compliant with RFC 2018.
2372 	 */
2373 	int i, j = 0, count = 0, lastpos = -1;
2374 	struct sackblk sack, firstsack, temp[MAX_SACK_BLKS];
2375 
2376 	/* First clean up current list of sacks */
2377 	for (i = 0; i < tp->rcv_numsacks; i++) {
2378 		sack = tp->sackblks[i];
2379 		if (sack.start == 0 && sack.end == 0) {
2380 			count++; /* count = number of blocks to be discarded */
2381 			continue;
2382 		}
2383 		if (SEQ_LEQ(sack.end, tp->rcv_nxt)) {
2384 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2385 			count++;
2386 		} else {
2387 			temp[j].start = tp->sackblks[i].start;
2388 			temp[j++].end = tp->sackblks[i].end;
2389 		}
2390 	}
2391 	tp->rcv_numsacks -= count;
2392 	if (tp->rcv_numsacks == 0) { /* no sack blocks currently (fast path) */
2393 		tcp_clean_sackreport(tp);
2394 		if (SEQ_LT(tp->rcv_nxt, tp->rcv_laststart)) {
2395 			/* ==> need first sack block */
2396 			tp->sackblks[0].start = tp->rcv_laststart;
2397 			tp->sackblks[0].end = tp->rcv_lastend;
2398 			tp->rcv_numsacks = 1;
2399 		}
2400 		return;
2401 	}
2402 	/* Otherwise, sack blocks are already present. */
2403 	for (i = 0; i < tp->rcv_numsacks; i++)
2404 		tp->sackblks[i] = temp[i]; /* first copy back sack list */
2405 	if (SEQ_GEQ(tp->rcv_nxt, tp->rcv_lastend))
2406 		return;     /* sack list remains unchanged */
2407 	/*
2408 	 * From here, segment just received should be (part of) the 1st sack.
2409 	 * Go through list, possibly coalescing sack block entries.
2410 	 */
2411 	firstsack.start = tp->rcv_laststart;
2412 	firstsack.end = tp->rcv_lastend;
2413 	for (i = 0; i < tp->rcv_numsacks; i++) {
2414 		sack = tp->sackblks[i];
2415 		if (SEQ_LT(sack.end, firstsack.start) ||
2416 		    SEQ_GT(sack.start, firstsack.end))
2417 			continue; /* no overlap */
2418 		if (sack.start == firstsack.start && sack.end == firstsack.end){
2419 			/*
2420 			 * identical block; delete it here since we will
2421 			 * move it to the front of the list.
2422 			 */
2423 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2424 			lastpos = i;    /* last posn with a zero entry */
2425 			continue;
2426 		}
2427 		if (SEQ_LEQ(sack.start, firstsack.start))
2428 			firstsack.start = sack.start; /* merge blocks */
2429 		if (SEQ_GEQ(sack.end, firstsack.end))
2430 			firstsack.end = sack.end;     /* merge blocks */
2431 		tp->sackblks[i].start = tp->sackblks[i].end = 0;
2432 		lastpos = i;    /* last posn with a zero entry */
2433 	}
2434 	if (lastpos != -1) {    /* at least one merge */
2435 		for (i = 0, j = 1; i < tp->rcv_numsacks; i++) {
2436 			sack = tp->sackblks[i];
2437 			if (sack.start == 0 && sack.end == 0)
2438 				continue;
2439 			temp[j++] = sack;
2440 		}
2441 		tp->rcv_numsacks = j; /* including first blk (added later) */
2442 		for (i = 1; i < tp->rcv_numsacks; i++) /* now copy back */
2443 			tp->sackblks[i] = temp[i];
2444 	} else {        /* no merges -- shift sacks by 1 */
2445 		if (tp->rcv_numsacks < MAX_SACK_BLKS)
2446 			tp->rcv_numsacks++;
2447 		for (i = tp->rcv_numsacks-1; i > 0; i--)
2448 			tp->sackblks[i] = tp->sackblks[i-1];
2449 	}
2450 	tp->sackblks[0] = firstsack;
2451 	return;
2452 }
2453 
2454 /*
2455  * Process the TCP SACK option.  Returns 1 if tcp_dooptions() should continue,
2456  * and 0 otherwise, if the option was fine.  tp->snd_holes is an ordered list
2457  * of holes (oldest to newest, in terms of the sequence space).
2458  */
2459 int
2460 tcp_sack_option(struct tcpcb *tp, struct tcphdr *th, u_char *cp, int optlen)
2461 {
2462 	int tmp_olen;
2463 	u_char *tmp_cp;
2464 	struct sackhole *cur, *p, *temp;
2465 
2466 	if (!tp->sack_enable)
2467 		return (1);
2468 
2469 	/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2470 	if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2471 		return (1);
2472 	tmp_cp = cp + 2;
2473 	tmp_olen = optlen - 2;
2474 	if (tp->snd_numholes < 0)
2475 		tp->snd_numholes = 0;
2476 	if (tp->t_maxseg == 0)
2477 		panic("tcp_sack_option"); /* Should never happen */
2478 	while (tmp_olen > 0) {
2479 		struct sackblk sack;
2480 
2481 		bcopy(tmp_cp, (char *) &(sack.start), sizeof(tcp_seq));
2482 		NTOHL(sack.start);
2483 		bcopy(tmp_cp + sizeof(tcp_seq),
2484 		    (char *) &(sack.end), sizeof(tcp_seq));
2485 		NTOHL(sack.end);
2486 		tmp_olen -= TCPOLEN_SACK;
2487 		tmp_cp += TCPOLEN_SACK;
2488 		if (SEQ_LEQ(sack.end, sack.start))
2489 			continue; /* bad SACK fields */
2490 		if (SEQ_LEQ(sack.end, tp->snd_una))
2491 			continue; /* old block */
2492 #if defined(TCP_SACK) && defined(TCP_FACK)
2493 		/* Updates snd_fack.  */
2494 		if (SEQ_GT(sack.end, tp->snd_fack))
2495 			tp->snd_fack = sack.end;
2496 #endif /* TCP_FACK */
2497 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
2498 			if (SEQ_LT(sack.start, th->th_ack))
2499 				continue;
2500 		}
2501 		if (SEQ_GT(sack.end, tp->snd_max))
2502 			continue;
2503 		if (tp->snd_holes == NULL) { /* first hole */
2504 			tp->snd_holes = (struct sackhole *)
2505 			    pool_get(&sackhl_pool, PR_NOWAIT);
2506 			if (tp->snd_holes == NULL) {
2507 				/* ENOBUFS, so ignore SACKed block for now*/
2508 				continue;
2509 			}
2510 			cur = tp->snd_holes;
2511 			cur->start = th->th_ack;
2512 			cur->end = sack.start;
2513 			cur->rxmit = cur->start;
2514 			cur->next = NULL;
2515 			tp->snd_numholes = 1;
2516 			tp->rcv_lastsack = sack.end;
2517 			/*
2518 			 * dups is at least one.  If more data has been
2519 			 * SACKed, it can be greater than one.
2520 			 */
2521 			cur->dups = min(tcprexmtthresh,
2522 			    ((sack.end - cur->end)/tp->t_maxseg));
2523 			if (cur->dups < 1)
2524 				cur->dups = 1;
2525 			continue; /* with next sack block */
2526 		}
2527 		/* Go thru list of holes:  p = previous,  cur = current */
2528 		p = cur = tp->snd_holes;
2529 		while (cur) {
2530 			if (SEQ_LEQ(sack.end, cur->start))
2531 				/* SACKs data before the current hole */
2532 				break; /* no use going through more holes */
2533 			if (SEQ_GEQ(sack.start, cur->end)) {
2534 				/* SACKs data beyond the current hole */
2535 				cur->dups++;
2536 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2537 				    tcprexmtthresh)
2538 					cur->dups = tcprexmtthresh;
2539 				p = cur;
2540 				cur = cur->next;
2541 				continue;
2542 			}
2543 			if (SEQ_LEQ(sack.start, cur->start)) {
2544 				/* Data acks at least the beginning of hole */
2545 #if defined(TCP_SACK) && defined(TCP_FACK)
2546 				if (SEQ_GT(sack.end, cur->rxmit))
2547 					tp->retran_data -=
2548 				    	    tcp_seq_subtract(cur->rxmit,
2549 					    cur->start);
2550 				else
2551 					tp->retran_data -=
2552 					    tcp_seq_subtract(sack.end,
2553 					    cur->start);
2554 #endif /* TCP_FACK */
2555 				if (SEQ_GEQ(sack.end, cur->end)) {
2556 					/* Acks entire hole, so delete hole */
2557 					if (p != cur) {
2558 						p->next = cur->next;
2559 						pool_put(&sackhl_pool, cur);
2560 						cur = p->next;
2561 					} else {
2562 						cur = cur->next;
2563 						pool_put(&sackhl_pool, p);
2564 						p = cur;
2565 						tp->snd_holes = p;
2566 					}
2567 					tp->snd_numholes--;
2568 					continue;
2569 				}
2570 				/* otherwise, move start of hole forward */
2571 				cur->start = sack.end;
2572 				cur->rxmit = max (cur->rxmit, cur->start);
2573 				p = cur;
2574 				cur = cur->next;
2575 				continue;
2576 			}
2577 			/* move end of hole backward */
2578 			if (SEQ_GEQ(sack.end, cur->end)) {
2579 #if defined(TCP_SACK) && defined(TCP_FACK)
2580 				if (SEQ_GT(cur->rxmit, sack.start))
2581 					tp->retran_data -=
2582 					    tcp_seq_subtract(cur->rxmit,
2583 					    sack.start);
2584 #endif /* TCP_FACK */
2585 				cur->end = sack.start;
2586 				cur->rxmit = min(cur->rxmit, cur->end);
2587 				cur->dups++;
2588 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2589 				    tcprexmtthresh)
2590 					cur->dups = tcprexmtthresh;
2591 				p = cur;
2592 				cur = cur->next;
2593 				continue;
2594 			}
2595 			if (SEQ_LT(cur->start, sack.start) &&
2596 			    SEQ_GT(cur->end, sack.end)) {
2597 				/*
2598 				 * ACKs some data in middle of a hole; need to
2599 				 * split current hole
2600 				 */
2601 				temp = (struct sackhole *)
2602 				    pool_get(&sackhl_pool, PR_NOWAIT);
2603 				if (temp == NULL)
2604 					continue; /* ENOBUFS */
2605 #if defined(TCP_SACK) && defined(TCP_FACK)
2606 				if (SEQ_GT(cur->rxmit, sack.end))
2607 					tp->retran_data -=
2608 					    tcp_seq_subtract(sack.end,
2609 					    sack.start);
2610 				else if (SEQ_GT(cur->rxmit, sack.start))
2611 					tp->retran_data -=
2612 					    tcp_seq_subtract(cur->rxmit,
2613 					    sack.start);
2614 #endif /* TCP_FACK */
2615 				temp->next = cur->next;
2616 				temp->start = sack.end;
2617 				temp->end = cur->end;
2618 				temp->dups = cur->dups;
2619 				temp->rxmit = max(cur->rxmit, temp->start);
2620 				cur->end = sack.start;
2621 				cur->rxmit = min(cur->rxmit, cur->end);
2622 				cur->dups++;
2623 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2624 					tcprexmtthresh)
2625 					cur->dups = tcprexmtthresh;
2626 				cur->next = temp;
2627 				p = temp;
2628 				cur = p->next;
2629 				tp->snd_numholes++;
2630 			}
2631 		}
2632 		/* At this point, p points to the last hole on the list */
2633 		if (SEQ_LT(tp->rcv_lastsack, sack.start)) {
2634 			/*
2635 			 * Need to append new hole at end.
2636 			 * Last hole is p (and it's not NULL).
2637 			 */
2638 			temp = (struct sackhole *)
2639 			    pool_get(&sackhl_pool, PR_NOWAIT);
2640 			if (temp == NULL)
2641 				continue; /* ENOBUFS */
2642 			temp->start = tp->rcv_lastsack;
2643 			temp->end = sack.start;
2644 			temp->dups = min(tcprexmtthresh,
2645 			    ((sack.end - sack.start)/tp->t_maxseg));
2646 			if (temp->dups < 1)
2647 				temp->dups = 1;
2648 			temp->rxmit = temp->start;
2649 			temp->next = 0;
2650 			p->next = temp;
2651 			tp->rcv_lastsack = sack.end;
2652 			tp->snd_numholes++;
2653 		}
2654 	}
2655 #if defined(TCP_SACK) && defined(TCP_FACK)
2656 	/*
2657 	 * Update retran_data and snd_awnd.  Go through the list of
2658 	 * holes.   Increment retran_data by (hole->rxmit - hole->start).
2659 	 */
2660 	tp->retran_data = 0;
2661 	cur = tp->snd_holes;
2662 	while (cur) {
2663 		tp->retran_data += cur->rxmit - cur->start;
2664 		cur = cur->next;
2665 	}
2666 	tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt, tp->snd_fack) +
2667 	    tp->retran_data;
2668 #endif /* TCP_FACK */
2669 
2670 	return (0);
2671 }
2672 
2673 /*
2674  * Delete stale (i.e, cumulatively ack'd) holes.  Hole is deleted only if
2675  * it is completely acked; otherwise, tcp_sack_option(), called from
2676  * tcp_dooptions(), will fix up the hole.
2677  */
2678 void
2679 tcp_del_sackholes(tp, th)
2680 	struct tcpcb *tp;
2681 	struct tcphdr *th;
2682 {
2683 	if (tp->sack_enable && tp->t_state != TCPS_LISTEN) {
2684 		/* max because this could be an older ack just arrived */
2685 		tcp_seq lastack = SEQ_GT(th->th_ack, tp->snd_una) ?
2686 			th->th_ack : tp->snd_una;
2687 		struct sackhole *cur = tp->snd_holes;
2688 		struct sackhole *prev;
2689 		while (cur)
2690 			if (SEQ_LEQ(cur->end, lastack)) {
2691 				prev = cur;
2692 				cur = cur->next;
2693 				pool_put(&sackhl_pool, prev);
2694 				tp->snd_numholes--;
2695 			} else if (SEQ_LT(cur->start, lastack)) {
2696 				cur->start = lastack;
2697 				if (SEQ_LT(cur->rxmit, cur->start))
2698 					cur->rxmit = cur->start;
2699 				break;
2700 			} else
2701 				break;
2702 		tp->snd_holes = cur;
2703 	}
2704 }
2705 
2706 /*
2707  * Delete all receiver-side SACK information.
2708  */
2709 void
2710 tcp_clean_sackreport(tp)
2711 	struct tcpcb *tp;
2712 {
2713 	int i;
2714 
2715 	tp->rcv_numsacks = 0;
2716 	for (i = 0; i < MAX_SACK_BLKS; i++)
2717 		tp->sackblks[i].start = tp->sackblks[i].end=0;
2718 
2719 }
2720 
2721 /*
2722  * Checks for partial ack.  If partial ack arrives, turn off retransmission
2723  * timer, deflate the window, do not clear tp->t_dupacks, and return 1.
2724  * If the ack advances at least to tp->snd_last, return 0.
2725  */
2726 int
2727 tcp_sack_partialack(tp, th)
2728 	struct tcpcb *tp;
2729 	struct tcphdr *th;
2730 {
2731 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
2732 		/* Turn off retx. timer (will start again next segment) */
2733 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2734 		tp->t_rtttime = 0;
2735 #ifndef TCP_FACK
2736 		/*
2737 		 * Partial window deflation.  This statement relies on the
2738 		 * fact that tp->snd_una has not been updated yet.  In FACK
2739 		 * hold snd_cwnd constant during fast recovery.
2740 		 */
2741 		if (tp->snd_cwnd > (th->th_ack - tp->snd_una)) {
2742 			tp->snd_cwnd -= th->th_ack - tp->snd_una;
2743 			tp->snd_cwnd += tp->t_maxseg;
2744 		} else
2745 			tp->snd_cwnd = tp->t_maxseg;
2746 #endif
2747 		return (1);
2748 	}
2749 	return (0);
2750 }
2751 #endif /* TCP_SACK */
2752 
2753 /*
2754  * Pull out of band byte out of a segment so
2755  * it doesn't appear in the user's data queue.
2756  * It is still reflected in the segment length for
2757  * sequencing purposes.
2758  */
2759 void
2760 tcp_pulloutofband(so, urgent, m, off)
2761 	struct socket *so;
2762 	u_int urgent;
2763 	struct mbuf *m;
2764 	int off;
2765 {
2766         int cnt = off + urgent - 1;
2767 
2768 	while (cnt >= 0) {
2769 		if (m->m_len > cnt) {
2770 			char *cp = mtod(m, caddr_t) + cnt;
2771 			struct tcpcb *tp = sototcpcb(so);
2772 
2773 			tp->t_iobc = *cp;
2774 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2775 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2776 			m->m_len--;
2777 			return;
2778 		}
2779 		cnt -= m->m_len;
2780 		m = m->m_next;
2781 		if (m == 0)
2782 			break;
2783 	}
2784 	panic("tcp_pulloutofband");
2785 }
2786 
2787 /*
2788  * Collect new round-trip time estimate
2789  * and update averages and current timeout.
2790  */
2791 void
2792 tcp_xmit_timer(tp, rtt)
2793 	struct tcpcb *tp;
2794 	short rtt;
2795 {
2796 	short delta;
2797 	short rttmin;
2798 
2799 	tcpstat.tcps_rttupdated++;
2800 	--rtt;
2801 	if (tp->t_srtt != 0) {
2802 		/*
2803 		 * srtt is stored as fixed point with 3 bits after the
2804 		 * binary point (i.e., scaled by 8).  The following magic
2805 		 * is equivalent to the smoothing algorithm in rfc793 with
2806 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2807 		 * point).  Adjust rtt to origin 0.
2808 		 */
2809 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2810 		if ((tp->t_srtt += delta) <= 0)
2811 			tp->t_srtt = 1;
2812 		/*
2813 		 * We accumulate a smoothed rtt variance (actually, a
2814 		 * smoothed mean difference), then set the retransmit
2815 		 * timer to smoothed rtt + 4 times the smoothed variance.
2816 		 * rttvar is stored as fixed point with 2 bits after the
2817 		 * binary point (scaled by 4).  The following is
2818 		 * equivalent to rfc793 smoothing with an alpha of .75
2819 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2820 		 * rfc793's wired-in beta.
2821 		 */
2822 		if (delta < 0)
2823 			delta = -delta;
2824 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2825 		if ((tp->t_rttvar += delta) <= 0)
2826 			tp->t_rttvar = 1;
2827 	} else {
2828 		/*
2829 		 * No rtt measurement yet - use the unsmoothed rtt.
2830 		 * Set the variance to half the rtt (so our first
2831 		 * retransmit happens at 3*rtt).
2832 		 */
2833 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2834 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2835 	}
2836 	tp->t_rtttime = 0;
2837 	tp->t_rxtshift = 0;
2838 
2839 	/*
2840 	 * the retransmit should happen at rtt + 4 * rttvar.
2841 	 * Because of the way we do the smoothing, srtt and rttvar
2842 	 * will each average +1/2 tick of bias.  When we compute
2843 	 * the retransmit timer, we want 1/2 tick of rounding and
2844 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2845 	 * firing of the timer.  The bias will give us exactly the
2846 	 * 1.5 tick we need.  But, because the bias is
2847 	 * statistical, we have to test that we don't drop below
2848 	 * the minimum feasible timer (which is 2 ticks).
2849 	 */
2850 	if (tp->t_rttmin > rtt + 2)
2851 		rttmin = tp->t_rttmin;
2852 	else
2853 		rttmin = rtt + 2;
2854 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2855 
2856 	/*
2857 	 * We received an ack for a packet that wasn't retransmitted;
2858 	 * it is probably safe to discard any error indications we've
2859 	 * received recently.  This isn't quite right, but close enough
2860 	 * for now (a route might have failed after we sent a segment,
2861 	 * and the return path might not be symmetrical).
2862 	 */
2863 	tp->t_softerror = 0;
2864 }
2865 
2866 /*
2867  * Determine a reasonable value for maxseg size.
2868  * If the route is known, check route for mtu.
2869  * If none, use an mss that can be handled on the outgoing
2870  * interface without forcing IP to fragment; if bigger than
2871  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2872  * to utilize large mbufs.  If no route is found, route has no mtu,
2873  * or the destination isn't local, use a default, hopefully conservative
2874  * size (usually 512 or the default IP max size, but no more than the mtu
2875  * of the interface), as we can't discover anything about intervening
2876  * gateways or networks.  We also initialize the congestion/slow start
2877  * window to be a single segment if the destination isn't local.
2878  * While looking at the routing entry, we also initialize other path-dependent
2879  * parameters from pre-set or cached values in the routing entry.
2880  *
2881  * Also take into account the space needed for options that we
2882  * send regularly.  Make maxseg shorter by that amount to assure
2883  * that we can send maxseg amount of data even when the options
2884  * are present.  Store the upper limit of the length of options plus
2885  * data in maxopd.
2886  *
2887  * NOTE: offer == -1 indicates that the maxseg size changed due to
2888  * Path MTU discovery.
2889  */
2890 int
2891 tcp_mss(tp, offer)
2892 	struct tcpcb *tp;
2893 	int offer;
2894 {
2895 	struct rtentry *rt;
2896 	struct ifnet *ifp;
2897 	int mss, mssopt;
2898 	int iphlen;
2899 	struct inpcb *inp;
2900 
2901 	inp = tp->t_inpcb;
2902 
2903 	mssopt = mss = tcp_mssdflt;
2904 
2905 	rt = in_pcbrtentry(inp);
2906 
2907 	if (rt == NULL)
2908 		goto out;
2909 
2910 	ifp = rt->rt_ifp;
2911 
2912 	switch (tp->pf) {
2913 #ifdef INET6
2914 	case AF_INET6:
2915 		iphlen = sizeof(struct ip6_hdr);
2916 		break;
2917 #endif
2918 	case AF_INET:
2919 		iphlen = sizeof(struct ip);
2920 		break;
2921 	default:
2922 		/* the family does not support path MTU discovery */
2923 		goto out;
2924 	}
2925 
2926 #ifdef RTV_MTU
2927 	/*
2928 	 * if there's an mtu associated with the route and we support
2929 	 * path MTU discovery for the underlying protocol family, use it.
2930 	 */
2931 	if (rt->rt_rmx.rmx_mtu) {
2932 		/*
2933 		 * One may wish to lower MSS to take into account options,
2934 		 * especially security-related options.
2935 		 */
2936 		if (tp->pf == AF_INET6 && rt->rt_rmx.rmx_mtu < IPV6_MMTU) {
2937 			/*
2938 			 * RFC2460 section 5, last paragraph: if path MTU is
2939 			 * smaller than 1280, use 1280 as packet size and
2940 			 * attach fragment header.
2941 			 */
2942 			mss = IPV6_MMTU - iphlen - sizeof(struct ip6_frag) -
2943 			    sizeof(struct tcphdr);
2944 		} else
2945 			mss = rt->rt_rmx.rmx_mtu - iphlen - sizeof(struct tcphdr);
2946 	} else
2947 #endif /* RTV_MTU */
2948 	if (!ifp)
2949 		/*
2950 		 * ifp may be null and rmx_mtu may be zero in certain
2951 		 * v6 cases (e.g., if ND wasn't able to resolve the
2952 		 * destination host.
2953 		 */
2954 		goto out;
2955 	else if (ifp->if_flags & IFF_LOOPBACK)
2956 		mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
2957 	else if (tp->pf == AF_INET) {
2958 		if (ip_mtudisc)
2959 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
2960 		else if (inp && in_localaddr(inp->inp_faddr))
2961 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
2962 	}
2963 #ifdef INET6
2964 	else if (tp->pf == AF_INET6) {
2965 		/*
2966 		 * for IPv6, path MTU discovery is always turned on,
2967 		 * or the node must use packet size <= 1280.
2968 		 */
2969 		mss = IN6_LINKMTU(ifp) - iphlen - sizeof(struct tcphdr);
2970 	}
2971 #endif /* INET6 */
2972 
2973 	/* Calculate the value that we offer in TCPOPT_MAXSEG */
2974 	if (offer != -1) {
2975 #ifndef INET6
2976 		mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
2977 #else
2978 		if (tp->pf == AF_INET6)
2979 			mssopt = IN6_LINKMTU(ifp) - iphlen -
2980 			    sizeof(struct tcphdr);
2981 		else
2982 			mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
2983 #endif
2984 
2985 		mssopt = max(tcp_mssdflt, mssopt);
2986 	}
2987 
2988  out:
2989 	/*
2990 	 * The current mss, t_maxseg, is initialized to the default value.
2991 	 * If we compute a smaller value, reduce the current mss.
2992 	 * If we compute a larger value, return it for use in sending
2993 	 * a max seg size option, but don't store it for use
2994 	 * unless we received an offer at least that large from peer.
2995 	 *
2996 	 * However, do not accept offers lower than the minimum of
2997 	 * the interface MTU and 216.
2998 	 */
2999 	if (offer > 0)
3000 		tp->t_peermss = offer;
3001 	if (tp->t_peermss)
3002 		mss = min(mss, max(tp->t_peermss, 216));
3003 
3004 	/* sanity - at least max opt. space */
3005 	mss = max(mss, 64);
3006 
3007 	/*
3008 	 * maxopd stores the maximum length of data AND options
3009 	 * in a segment; maxseg is the amount of data in a normal
3010 	 * segment.  We need to store this value (maxopd) apart
3011 	 * from maxseg, because now every segment carries options
3012 	 * and thus we normally have somewhat less data in segments.
3013 	 */
3014 	tp->t_maxopd = mss;
3015 
3016 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3017 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
3018 		mss -= TCPOLEN_TSTAMP_APPA;
3019 #ifdef TCP_SIGNATURE
3020 	if (tp->t_flags & TF_SIGNATURE)
3021 		mss -= TCPOLEN_SIGLEN;
3022 #endif
3023 
3024 	if (offer == -1) {
3025 		/* mss changed due to Path MTU discovery */
3026 		if (mss < tp->t_maxseg) {
3027 			/*
3028 			 * Follow suggestion in RFC 2414 to reduce the
3029 			 * congestion window by the ratio of the old
3030 			 * segment size to the new segment size.
3031 			 */
3032 			tp->snd_cwnd = ulmax((tp->snd_cwnd / tp->t_maxseg) *
3033 					     mss, mss);
3034 		}
3035 	} else if (tcp_do_rfc3390) {
3036 		/* increase initial window  */
3037 		tp->snd_cwnd = ulmin(4 * mss, ulmax(2 * mss, 4380));
3038 	} else
3039 		tp->snd_cwnd = mss;
3040 
3041 	tp->t_maxseg = mss;
3042 
3043 	return (offer != -1 ? mssopt : mss);
3044 }
3045 
3046 /*
3047  * Set connection variables based on the effective MSS.
3048  * We are passed the TCPCB for the actual connection.  If we
3049  * are the server, we are called by the compressed state engine
3050  * when the 3-way handshake is complete.  If we are the client,
3051  * we are called when we receive the SYN,ACK from the server.
3052  *
3053  * NOTE: The t_maxseg value must be initialized in the TCPCB
3054  * before this routine is called!
3055  */
3056 void
3057 tcp_mss_update(tp)
3058 	struct tcpcb *tp;
3059 {
3060 	int mss;
3061 	u_long bufsize;
3062 	struct rtentry *rt;
3063 	struct socket *so;
3064 
3065 	so = tp->t_inpcb->inp_socket;
3066 	mss = tp->t_maxseg;
3067 
3068 	rt = in_pcbrtentry(tp->t_inpcb);
3069 
3070 	if (rt == NULL)
3071 		return;
3072 
3073 	bufsize = so->so_snd.sb_hiwat;
3074 	if (bufsize < mss) {
3075 		mss = bufsize;
3076 		/* Update t_maxseg and t_maxopd */
3077 		tcp_mss(tp, mss);
3078 	} else {
3079 		bufsize = roundup(bufsize, mss);
3080 		if (bufsize > sb_max)
3081 			bufsize = sb_max;
3082 		(void)sbreserve(&so->so_snd, bufsize);
3083 	}
3084 
3085 	bufsize = so->so_rcv.sb_hiwat;
3086 	if (bufsize > mss) {
3087 		bufsize = roundup(bufsize, mss);
3088 		if (bufsize > sb_max)
3089 			bufsize = sb_max;
3090 		(void)sbreserve(&so->so_rcv, bufsize);
3091 	}
3092 
3093 }
3094 
3095 #if defined (TCP_SACK)
3096 /*
3097  * Checks for partial ack.  If partial ack arrives, force the retransmission
3098  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
3099  * 1.  By setting snd_nxt to ti_ack, this forces retransmission timer to
3100  * be started again.  If the ack advances at least to tp->snd_last, return 0.
3101  */
3102 int
3103 tcp_newreno(tp, th)
3104 	struct tcpcb *tp;
3105 	struct tcphdr *th;
3106 {
3107 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
3108 		/*
3109 		 * snd_una has not been updated and the socket send buffer
3110 		 * not yet drained of the acked data, so we have to leave
3111 		 * snd_una as it was to get the correct data offset in
3112 		 * tcp_output().
3113 		 */
3114 		tcp_seq onxt = tp->snd_nxt;
3115 		u_long  ocwnd = tp->snd_cwnd;
3116 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
3117 		tp->t_rtttime = 0;
3118 		tp->snd_nxt = th->th_ack;
3119 		/*
3120 		 * Set snd_cwnd to one segment beyond acknowledged offset
3121 		 * (tp->snd_una not yet updated when this function is called)
3122 		 */
3123 		tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3124 		(void) tcp_output(tp);
3125 		tp->snd_cwnd = ocwnd;
3126 		if (SEQ_GT(onxt, tp->snd_nxt))
3127 			tp->snd_nxt = onxt;
3128 		/*
3129 		 * Partial window deflation.  Relies on fact that tp->snd_una
3130 		 * not updated yet.
3131 		 */
3132 		tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
3133 		return 1;
3134 	}
3135 	return 0;
3136 }
3137 #endif /* TCP_SACK */
3138 
3139 static int
3140 tcp_mss_adv(struct ifnet *ifp, int af)
3141 {
3142 	int mss = 0;
3143 	int iphlen;
3144 
3145 	switch (af) {
3146 	case AF_INET:
3147 		if (ifp != NULL)
3148 			mss = ifp->if_mtu;
3149 		iphlen = sizeof(struct ip);
3150 		break;
3151 #ifdef INET6
3152 	case AF_INET6:
3153 		if (ifp != NULL)
3154 			mss = IN6_LINKMTU(ifp);
3155 		iphlen = sizeof(struct ip6_hdr);
3156 		break;
3157 #endif
3158 	}
3159 	mss = mss - iphlen - sizeof(struct tcphdr);
3160 	return (max(mss, tcp_mssdflt));
3161 }
3162 
3163 /*
3164  * TCP compressed state engine.  Currently used to hold compressed
3165  * state for SYN_RECEIVED.
3166  */
3167 
3168 u_long	syn_cache_count;
3169 u_int32_t syn_hash1, syn_hash2;
3170 
3171 #define SYN_HASH(sa, sp, dp) \
3172 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3173 				     ((u_int32_t)(sp)))^syn_hash2)))
3174 #ifndef INET6
3175 #define	SYN_HASHALL(hash, src, dst) \
3176 do {									\
3177 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
3178 		((struct sockaddr_in *)(src))->sin_port,		\
3179 		((struct sockaddr_in *)(dst))->sin_port);		\
3180 } while (/*CONSTCOND*/ 0)
3181 #else
3182 #define SYN_HASH6(sa, sp, dp) \
3183 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3184 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3185 	 & 0x7fffffff)
3186 
3187 #define SYN_HASHALL(hash, src, dst) \
3188 do {									\
3189 	switch ((src)->sa_family) {					\
3190 	case AF_INET:							\
3191 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3192 			((struct sockaddr_in *)(src))->sin_port,	\
3193 			((struct sockaddr_in *)(dst))->sin_port);	\
3194 		break;							\
3195 	case AF_INET6:							\
3196 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3197 			((struct sockaddr_in6 *)(src))->sin6_port,	\
3198 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
3199 		break;							\
3200 	default:							\
3201 		hash = 0;						\
3202 	}								\
3203 } while (/*CONSTCOND*/0)
3204 #endif /* INET6 */
3205 
3206 #define	SYN_CACHE_RM(sc)						\
3207 do {									\
3208 	(sc)->sc_flags |= SCF_DEAD;					\
3209 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
3210 	    (sc), sc_bucketq);						\
3211 	(sc)->sc_tp = NULL;						\
3212 	LIST_REMOVE((sc), sc_tpq);					\
3213 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
3214 	timeout_del(&(sc)->sc_timer);					\
3215 	syn_cache_count--;						\
3216 } while (/*CONSTCOND*/0)
3217 
3218 #define	SYN_CACHE_PUT(sc)						\
3219 do {									\
3220 	if ((sc)->sc_ipopts)						\
3221 		(void) m_free((sc)->sc_ipopts);				\
3222 	if ((sc)->sc_route4.ro_rt != NULL)				\
3223 		RTFREE((sc)->sc_route4.ro_rt);				\
3224 	timeout_set(&(sc)->sc_timer, syn_cache_reaper, (sc));		\
3225 	timeout_add(&(sc)->sc_timer, 0);				\
3226 } while (/*CONSTCOND*/0)
3227 
3228 struct pool syn_cache_pool;
3229 
3230 /*
3231  * We don't estimate RTT with SYNs, so each packet starts with the default
3232  * RTT and each timer step has a fixed timeout value.
3233  */
3234 #define	SYN_CACHE_TIMER_ARM(sc)						\
3235 do {									\
3236 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3237 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3238 	    TCPTV_REXMTMAX);						\
3239 	if (!timeout_initialized(&(sc)->sc_timer))			\
3240 		timeout_set(&(sc)->sc_timer, syn_cache_timer, (sc));	\
3241 	timeout_add(&(sc)->sc_timer, (sc)->sc_rxtcur * (hz / PR_SLOWHZ)); \
3242 } while (/*CONSTCOND*/0)
3243 
3244 #define	SYN_CACHE_TIMESTAMP(sc)	tcp_now + (sc)->sc_modulate
3245 
3246 void
3247 syn_cache_init()
3248 {
3249 	int i;
3250 
3251 	/* Initialize the hash buckets. */
3252 	for (i = 0; i < tcp_syn_cache_size; i++)
3253 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3254 
3255 	/* Initialize the syn cache pool. */
3256 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3257 	    "synpl", NULL);
3258 }
3259 
3260 void
3261 syn_cache_insert(sc, tp)
3262 	struct syn_cache *sc;
3263 	struct tcpcb *tp;
3264 {
3265 	struct syn_cache_head *scp;
3266 	struct syn_cache *sc2;
3267 	int s;
3268 
3269 	/*
3270 	 * If there are no entries in the hash table, reinitialize
3271 	 * the hash secrets.
3272 	 */
3273 	if (syn_cache_count == 0) {
3274 		syn_hash1 = arc4random();
3275 		syn_hash2 = arc4random();
3276 	}
3277 
3278 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3279 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3280 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3281 
3282 	/*
3283 	 * Make sure that we don't overflow the per-bucket
3284 	 * limit or the total cache size limit.
3285 	 */
3286 	s = splsoftnet();
3287 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3288 		tcpstat.tcps_sc_bucketoverflow++;
3289 		/*
3290 		 * The bucket is full.  Toss the oldest element in the
3291 		 * bucket.  This will be the first entry in the bucket.
3292 		 */
3293 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3294 #ifdef DIAGNOSTIC
3295 		/*
3296 		 * This should never happen; we should always find an
3297 		 * entry in our bucket.
3298 		 */
3299 		if (sc2 == NULL)
3300 			panic("syn_cache_insert: bucketoverflow: impossible");
3301 #endif
3302 		SYN_CACHE_RM(sc2);
3303 		SYN_CACHE_PUT(sc2);
3304 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3305 		struct syn_cache_head *scp2, *sce;
3306 
3307 		tcpstat.tcps_sc_overflowed++;
3308 		/*
3309 		 * The cache is full.  Toss the oldest entry in the
3310 		 * first non-empty bucket we can find.
3311 		 *
3312 		 * XXX We would really like to toss the oldest
3313 		 * entry in the cache, but we hope that this
3314 		 * condition doesn't happen very often.
3315 		 */
3316 		scp2 = scp;
3317 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3318 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3319 			for (++scp2; scp2 != scp; scp2++) {
3320 				if (scp2 >= sce)
3321 					scp2 = &tcp_syn_cache[0];
3322 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3323 					break;
3324 			}
3325 #ifdef DIAGNOSTIC
3326 			/*
3327 			 * This should never happen; we should always find a
3328 			 * non-empty bucket.
3329 			 */
3330 			if (scp2 == scp)
3331 				panic("syn_cache_insert: cacheoverflow: "
3332 				    "impossible");
3333 #endif
3334 		}
3335 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3336 		SYN_CACHE_RM(sc2);
3337 		SYN_CACHE_PUT(sc2);
3338 	}
3339 
3340 	/*
3341 	 * Initialize the entry's timer.
3342 	 */
3343 	sc->sc_rxttot = 0;
3344 	sc->sc_rxtshift = 0;
3345 	SYN_CACHE_TIMER_ARM(sc);
3346 
3347 	/* Link it from tcpcb entry */
3348 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3349 
3350 	/* Put it into the bucket. */
3351 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3352 	scp->sch_length++;
3353 	syn_cache_count++;
3354 
3355 	tcpstat.tcps_sc_added++;
3356 	splx(s);
3357 }
3358 
3359 /*
3360  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3361  * If we have retransmitted an entry the maximum number of times, expire
3362  * that entry.
3363  */
3364 void
3365 syn_cache_timer(void *arg)
3366 {
3367 	struct syn_cache *sc = arg;
3368 	int s;
3369 
3370 	s = splsoftnet();
3371 	if (sc->sc_flags & SCF_DEAD) {
3372 		splx(s);
3373 		return;
3374 	}
3375 
3376 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3377 		/* Drop it -- too many retransmissions. */
3378 		goto dropit;
3379 	}
3380 
3381 	/*
3382 	 * Compute the total amount of time this entry has
3383 	 * been on a queue.  If this entry has been on longer
3384 	 * than the keep alive timer would allow, expire it.
3385 	 */
3386 	sc->sc_rxttot += sc->sc_rxtcur;
3387 	if (sc->sc_rxttot >= tcptv_keep_init)
3388 		goto dropit;
3389 
3390 	tcpstat.tcps_sc_retransmitted++;
3391 	(void) syn_cache_respond(sc, NULL);
3392 
3393 	/* Advance the timer back-off. */
3394 	sc->sc_rxtshift++;
3395 	SYN_CACHE_TIMER_ARM(sc);
3396 
3397 	splx(s);
3398 	return;
3399 
3400  dropit:
3401 	tcpstat.tcps_sc_timed_out++;
3402 	SYN_CACHE_RM(sc);
3403 	SYN_CACHE_PUT(sc);
3404 	splx(s);
3405 }
3406 
3407 void
3408 syn_cache_reaper(void *arg)
3409 {
3410 	struct syn_cache *sc = arg;
3411 	int s;
3412 
3413 	s = splsoftnet();
3414 	pool_put(&syn_cache_pool, (sc));
3415 	splx(s);
3416 	return;
3417 }
3418 
3419 /*
3420  * Remove syn cache created by the specified tcb entry,
3421  * because this does not make sense to keep them
3422  * (if there's no tcb entry, syn cache entry will never be used)
3423  */
3424 void
3425 syn_cache_cleanup(tp)
3426 	struct tcpcb *tp;
3427 {
3428 	struct syn_cache *sc, *nsc;
3429 	int s;
3430 
3431 	s = splsoftnet();
3432 
3433 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3434 		nsc = LIST_NEXT(sc, sc_tpq);
3435 
3436 #ifdef DIAGNOSTIC
3437 		if (sc->sc_tp != tp)
3438 			panic("invalid sc_tp in syn_cache_cleanup");
3439 #endif
3440 		SYN_CACHE_RM(sc);
3441 		SYN_CACHE_PUT(sc);
3442 	}
3443 	/* just for safety */
3444 	LIST_INIT(&tp->t_sc);
3445 
3446 	splx(s);
3447 }
3448 
3449 /*
3450  * Find an entry in the syn cache.
3451  */
3452 struct syn_cache *
3453 syn_cache_lookup(src, dst, headp)
3454 	struct sockaddr *src;
3455 	struct sockaddr *dst;
3456 	struct syn_cache_head **headp;
3457 {
3458 	struct syn_cache *sc;
3459 	struct syn_cache_head *scp;
3460 	u_int32_t hash;
3461 	int s;
3462 
3463 	SYN_HASHALL(hash, src, dst);
3464 
3465 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3466 	*headp = scp;
3467 	s = splsoftnet();
3468 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3469 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3470 		if (sc->sc_hash != hash)
3471 			continue;
3472 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3473 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3474 			splx(s);
3475 			return (sc);
3476 		}
3477 	}
3478 	splx(s);
3479 	return (NULL);
3480 }
3481 
3482 /*
3483  * This function gets called when we receive an ACK for a
3484  * socket in the LISTEN state.  We look up the connection
3485  * in the syn cache, and if its there, we pull it out of
3486  * the cache and turn it into a full-blown connection in
3487  * the SYN-RECEIVED state.
3488  *
3489  * The return values may not be immediately obvious, and their effects
3490  * can be subtle, so here they are:
3491  *
3492  *	NULL	SYN was not found in cache; caller should drop the
3493  *		packet and send an RST.
3494  *
3495  *	-1	We were unable to create the new connection, and are
3496  *		aborting it.  An ACK,RST is being sent to the peer
3497  *		(unless we got screwey sequence numbners; see below),
3498  *		because the 3-way handshake has been completed.  Caller
3499  *		should not free the mbuf, since we may be using it.  If
3500  *		we are not, we will free it.
3501  *
3502  *	Otherwise, the return value is a pointer to the new socket
3503  *	associated with the connection.
3504  */
3505 struct socket *
3506 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3507 	struct sockaddr *src;
3508 	struct sockaddr *dst;
3509 	struct tcphdr *th;
3510 	unsigned int hlen, tlen;
3511 	struct socket *so;
3512 	struct mbuf *m;
3513 {
3514 	struct syn_cache *sc;
3515 	struct syn_cache_head *scp;
3516 	struct inpcb *inp = NULL;
3517 	struct tcpcb *tp = 0;
3518 	struct mbuf *am;
3519 	int s;
3520 	struct socket *oso;
3521 
3522 	s = splsoftnet();
3523 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3524 		splx(s);
3525 		return (NULL);
3526 	}
3527 
3528 	/*
3529 	 * Verify the sequence and ack numbers.  Try getting the correct
3530 	 * response again.
3531 	 */
3532 	if ((th->th_ack != sc->sc_iss + 1) ||
3533 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3534 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3535 		(void) syn_cache_respond(sc, m);
3536 		splx(s);
3537 		return ((struct socket *)(-1));
3538 	}
3539 
3540 	/* Remove this cache entry */
3541 	SYN_CACHE_RM(sc);
3542 	splx(s);
3543 
3544 	/*
3545 	 * Ok, create the full blown connection, and set things up
3546 	 * as they would have been set up if we had created the
3547 	 * connection when the SYN arrived.  If we can't create
3548 	 * the connection, abort it.
3549 	 */
3550 	oso = so;
3551 	so = sonewconn(so, SS_ISCONNECTED);
3552 	if (so == NULL)
3553 		goto resetandabort;
3554 
3555 	inp = sotoinpcb(oso);
3556 #ifdef IPSEC
3557 	/*
3558 	 * We need to copy the required security levels
3559 	 * from the old pcb. Ditto for any other
3560 	 * IPsec-related information.
3561 	 */
3562 	{
3563 	  struct inpcb *newinp = (struct inpcb *)so->so_pcb;
3564 	  bcopy(inp->inp_seclevel, newinp->inp_seclevel,
3565 		sizeof(inp->inp_seclevel));
3566 	  newinp->inp_secrequire = inp->inp_secrequire;
3567 	  if (inp->inp_ipo != NULL) {
3568 		  newinp->inp_ipo = inp->inp_ipo;
3569 		  inp->inp_ipo->ipo_ref_count++;
3570 	  }
3571 	  if (inp->inp_ipsec_remotecred != NULL) {
3572 		  newinp->inp_ipsec_remotecred = inp->inp_ipsec_remotecred;
3573 		  inp->inp_ipsec_remotecred->ref_count++;
3574 	  }
3575 	  if (inp->inp_ipsec_remoteauth != NULL) {
3576 		  newinp->inp_ipsec_remoteauth
3577 		      = inp->inp_ipsec_remoteauth;
3578 		  inp->inp_ipsec_remoteauth->ref_count++;
3579 	  }
3580 	}
3581 #endif /* IPSEC */
3582 #ifdef INET6
3583 	/*
3584 	 * inp still has the OLD in_pcb stuff, set the
3585 	 * v6-related flags on the new guy, too.
3586 	 */
3587 	{
3588 	  int flags = inp->inp_flags;
3589 	  struct inpcb *oldinpcb = inp;
3590 
3591 	  inp = (struct inpcb *)so->so_pcb;
3592 	  inp->inp_flags |= (flags & INP_IPV6);
3593 	  if ((inp->inp_flags & INP_IPV6) != 0) {
3594 	    inp->inp_ipv6.ip6_hlim =
3595 	      oldinpcb->inp_ipv6.ip6_hlim;
3596 	  }
3597 	}
3598 #else /* INET6 */
3599 	inp = (struct inpcb *)so->so_pcb;
3600 #endif /* INET6 */
3601 
3602 	inp->inp_lport = th->th_dport;
3603 	switch (src->sa_family) {
3604 #ifdef INET6
3605 	case AF_INET6:
3606 		inp->inp_laddr6 = ((struct sockaddr_in6 *)dst)->sin6_addr;
3607 		break;
3608 #endif /* INET6 */
3609 	case AF_INET:
3610 
3611 		inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3612 		inp->inp_options = ip_srcroute();
3613 		if (inp->inp_options == NULL) {
3614 			inp->inp_options = sc->sc_ipopts;
3615 			sc->sc_ipopts = NULL;
3616 		}
3617 		break;
3618 	}
3619 	in_pcbrehash(inp);
3620 
3621 	/*
3622 	 * Give the new socket our cached route reference.
3623 	 */
3624 	if (src->sa_family == AF_INET)
3625 		inp->inp_route = sc->sc_route4;         /* struct assignment */
3626 #ifdef INET6
3627 	else
3628 		inp->inp_route6 = sc->sc_route6;
3629 #endif
3630 	sc->sc_route4.ro_rt = NULL;
3631 
3632 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3633 	if (am == NULL)
3634 		goto resetandabort;
3635 	am->m_len = src->sa_len;
3636 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3637 
3638 	switch (src->sa_family) {
3639 	case AF_INET:
3640 		/* drop IPv4 packet to AF_INET6 socket */
3641 		if (inp->inp_flags & INP_IPV6) {
3642 			(void) m_free(am);
3643 			goto resetandabort;
3644 		}
3645 		if (in_pcbconnect(inp, am)) {
3646 			(void) m_free(am);
3647 			goto resetandabort;
3648 		}
3649 		break;
3650 #ifdef INET6
3651 	case AF_INET6:
3652 		if (in6_pcbconnect(inp, am)) {
3653 			(void) m_free(am);
3654 			goto resetandabort;
3655 		}
3656 		break;
3657 #endif
3658 	}
3659 	(void) m_free(am);
3660 
3661 	tp = intotcpcb(inp);
3662 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3663 	if (sc->sc_request_r_scale != 15) {
3664 		tp->requested_s_scale = sc->sc_requested_s_scale;
3665 		tp->request_r_scale = sc->sc_request_r_scale;
3666 		tp->snd_scale = sc->sc_requested_s_scale;
3667 		tp->rcv_scale = sc->sc_request_r_scale;
3668 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3669 	}
3670 	if (sc->sc_flags & SCF_TIMESTAMP)
3671 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3672 
3673 	tp->t_template = tcp_template(tp);
3674 	if (tp->t_template == 0) {
3675 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3676 		so = NULL;
3677 		m_freem(m);
3678 		goto abort;
3679 	}
3680 #ifdef TCP_SACK
3681 	tp->sack_enable = sc->sc_flags & SCF_SACK_PERMIT;
3682 #endif
3683 
3684 	tp->ts_modulate = sc->sc_modulate;
3685 	tp->iss = sc->sc_iss;
3686 	tp->irs = sc->sc_irs;
3687 	tcp_sendseqinit(tp);
3688 #if defined (TCP_SACK) || defined(TCP_ECN)
3689 	tp->snd_last = tp->snd_una;
3690 #endif /* TCP_SACK */
3691 #if defined(TCP_SACK) && defined(TCP_FACK)
3692 	tp->snd_fack = tp->snd_una;
3693 	tp->retran_data = 0;
3694 	tp->snd_awnd = 0;
3695 #endif /* TCP_FACK */
3696 #ifdef TCP_ECN
3697 	if (sc->sc_flags & SCF_ECN_PERMIT) {
3698 		tp->t_flags |= TF_ECN_PERMIT;
3699 		tcpstat.tcps_ecn_accepts++;
3700 	}
3701 #endif
3702 #ifdef TCP_SACK
3703 	if (sc->sc_flags & SCF_SACK_PERMIT)
3704 		tp->t_flags |= TF_SACK_PERMIT;
3705 #endif
3706 #ifdef TCP_SIGNATURE
3707 	if (sc->sc_flags & SCF_SIGNATURE)
3708 		tp->t_flags |= TF_SIGNATURE;
3709 #endif
3710 	tcp_rcvseqinit(tp);
3711 	tp->t_state = TCPS_SYN_RECEIVED;
3712 	tp->t_rcvtime = tcp_now;
3713 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcptv_keep_init);
3714 	tcpstat.tcps_accepts++;
3715 
3716 	tcp_mss(tp, sc->sc_peermaxseg);	 /* sets t_maxseg */
3717 	if (sc->sc_peermaxseg)
3718 		tcp_mss_update(tp);
3719 	/* Reset initial window to 1 segment for retransmit */
3720 	if (sc->sc_rxtshift > 0)
3721 		tp->snd_cwnd = tp->t_maxseg;
3722 	tp->snd_wl1 = sc->sc_irs;
3723 	tp->rcv_up = sc->sc_irs + 1;
3724 
3725 	/*
3726 	 * This is what whould have happened in tcp_output() when
3727 	 * the SYN,ACK was sent.
3728 	 */
3729 	tp->snd_up = tp->snd_una;
3730 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3731 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3732 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3733 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3734 	tp->last_ack_sent = tp->rcv_nxt;
3735 
3736 	tcpstat.tcps_sc_completed++;
3737 	SYN_CACHE_PUT(sc);
3738 	return (so);
3739 
3740 resetandabort:
3741 	tcp_respond(NULL, mtod(m, caddr_t), m, (tcp_seq)0, th->th_ack, TH_RST);
3742 abort:
3743 	if (so != NULL)
3744 		(void) soabort(so);
3745 	SYN_CACHE_PUT(sc);
3746 	tcpstat.tcps_sc_aborted++;
3747 	return ((struct socket *)(-1));
3748 }
3749 
3750 /*
3751  * This function is called when we get a RST for a
3752  * non-existent connection, so that we can see if the
3753  * connection is in the syn cache.  If it is, zap it.
3754  */
3755 
3756 void
3757 syn_cache_reset(src, dst, th)
3758 	struct sockaddr *src;
3759 	struct sockaddr *dst;
3760 	struct tcphdr *th;
3761 {
3762 	struct syn_cache *sc;
3763 	struct syn_cache_head *scp;
3764 	int s = splsoftnet();
3765 
3766 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3767 		splx(s);
3768 		return;
3769 	}
3770 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3771 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3772 		splx(s);
3773 		return;
3774 	}
3775 	SYN_CACHE_RM(sc);
3776 	splx(s);
3777 	tcpstat.tcps_sc_reset++;
3778 	SYN_CACHE_PUT(sc);
3779 }
3780 
3781 void
3782 syn_cache_unreach(src, dst, th)
3783 	struct sockaddr *src;
3784 	struct sockaddr *dst;
3785 	struct tcphdr *th;
3786 {
3787 	struct syn_cache *sc;
3788 	struct syn_cache_head *scp;
3789 	int s;
3790 
3791 	s = splsoftnet();
3792 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3793 		splx(s);
3794 		return;
3795 	}
3796 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3797 	if (ntohl (th->th_seq) != sc->sc_iss) {
3798 		splx(s);
3799 		return;
3800 	}
3801 
3802 	/*
3803 	 * If we've retransmitted 3 times and this is our second error,
3804 	 * we remove the entry.  Otherwise, we allow it to continue on.
3805 	 * This prevents us from incorrectly nuking an entry during a
3806 	 * spurious network outage.
3807 	 *
3808 	 * See tcp_notify().
3809 	 */
3810 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3811 		sc->sc_flags |= SCF_UNREACH;
3812 		splx(s);
3813 		return;
3814 	}
3815 
3816 	SYN_CACHE_RM(sc);
3817 	splx(s);
3818 	tcpstat.tcps_sc_unreach++;
3819 	SYN_CACHE_PUT(sc);
3820 }
3821 
3822 /*
3823  * Given a LISTEN socket and an inbound SYN request, add
3824  * this to the syn cache, and send back a segment:
3825  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3826  * to the source.
3827  *
3828  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3829  * Doing so would require that we hold onto the data and deliver it
3830  * to the application.  However, if we are the target of a SYN-flood
3831  * DoS attack, an attacker could send data which would eventually
3832  * consume all available buffer space if it were ACKed.  By not ACKing
3833  * the data, we avoid this DoS scenario.
3834  */
3835 
3836 int
3837 syn_cache_add(src, dst, th, iphlen, so, m, optp, optlen, oi)
3838 	struct sockaddr *src;
3839 	struct sockaddr *dst;
3840 	struct tcphdr *th;
3841 	unsigned int iphlen;
3842 	struct socket *so;
3843 	struct mbuf *m;
3844 	u_char *optp;
3845 	int optlen;
3846 	struct tcp_opt_info *oi;
3847 {
3848 	struct tcpcb tb, *tp;
3849 	long win;
3850 	struct syn_cache *sc;
3851 	struct syn_cache_head *scp;
3852 	struct mbuf *ipopts;
3853 
3854 	tp = sototcpcb(so);
3855 
3856 	/*
3857 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3858 	 *
3859 	 * Note this check is performed in tcp_input() very early on.
3860 	 */
3861 
3862 	/*
3863 	 * Initialize some local state.
3864 	 */
3865 	win = sbspace(&so->so_rcv);
3866 	if (win > TCP_MAXWIN)
3867 		win = TCP_MAXWIN;
3868 
3869 #ifdef TCP_SIGNATURE
3870 	if (optp || (tp->t_flags & TF_SIGNATURE)) {
3871 #else
3872 	if (optp) {
3873 #endif
3874 		tb.pf = tp->pf;
3875 #ifdef TCP_SACK
3876 		tb.sack_enable = tcp_do_sack;
3877 #endif
3878 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3879 #ifdef TCP_SIGNATURE
3880 		tb.t_state = TCPS_LISTEN;
3881 		if (tp->t_flags & TF_SIGNATURE)
3882 			tb.t_flags |= TF_SIGNATURE;
3883 #endif
3884 		if (tcp_dooptions(&tb, optp, optlen, th, m, iphlen, oi))
3885 			return (0);
3886 	} else
3887 		tb.t_flags = 0;
3888 
3889 	switch (src->sa_family) {
3890 #ifdef INET
3891 	case AF_INET:
3892 		/*
3893 		 * Remember the IP options, if any.
3894 		 */
3895 		ipopts = ip_srcroute();
3896 		break;
3897 #endif
3898 	default:
3899 		ipopts = NULL;
3900 	}
3901 
3902 	/*
3903 	 * See if we already have an entry for this connection.
3904 	 * If we do, resend the SYN,ACK.  We do not count this
3905 	 * as a retransmission (XXX though maybe we should).
3906 	 */
3907 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3908 		tcpstat.tcps_sc_dupesyn++;
3909 		if (ipopts) {
3910 			/*
3911 			 * If we were remembering a previous source route,
3912 			 * forget it and use the new one we've been given.
3913 			 */
3914 			if (sc->sc_ipopts)
3915 				(void) m_free(sc->sc_ipopts);
3916 			sc->sc_ipopts = ipopts;
3917 		}
3918 		sc->sc_timestamp = tb.ts_recent;
3919 		if (syn_cache_respond(sc, m) == 0) {
3920 			tcpstat.tcps_sndacks++;
3921 			tcpstat.tcps_sndtotal++;
3922 		}
3923 		return (1);
3924 	}
3925 
3926 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3927 	if (sc == NULL) {
3928 		if (ipopts)
3929 			(void) m_free(ipopts);
3930 		return (0);
3931 	}
3932 
3933 	/*
3934 	 * Fill in the cache, and put the necessary IP and TCP
3935 	 * options into the reply.
3936 	 */
3937 	bzero(sc, sizeof(struct syn_cache));
3938 	bzero(&sc->sc_timer, sizeof(sc->sc_timer));
3939 	bcopy(src, &sc->sc_src, src->sa_len);
3940 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3941 	sc->sc_flags = 0;
3942 	sc->sc_ipopts = ipopts;
3943 	sc->sc_irs = th->th_seq;
3944 
3945 #ifdef TCP_COMPAT_42
3946 	tcp_iss += TCP_ISSINCR/2;
3947 	sc->sc_iss = tcp_iss;
3948 #else
3949 	sc->sc_iss = tcp_rndiss_next();
3950 #endif
3951 	sc->sc_peermaxseg = oi->maxseg;
3952 	sc->sc_ourmaxseg = tcp_mss_adv(m->m_flags & M_PKTHDR ?
3953 	    m->m_pkthdr.rcvif : NULL, sc->sc_src.sa.sa_family);
3954 	sc->sc_win = win;
3955 	sc->sc_timestamp = tb.ts_recent;
3956 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3957 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3958 		sc->sc_flags |= SCF_TIMESTAMP;
3959 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3960 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3961 		sc->sc_requested_s_scale = tb.requested_s_scale;
3962 		sc->sc_request_r_scale = 0;
3963 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3964 		    TCP_MAXWIN << sc->sc_request_r_scale <
3965 		    so->so_rcv.sb_hiwat)
3966 			sc->sc_request_r_scale++;
3967 	} else {
3968 		sc->sc_requested_s_scale = 15;
3969 		sc->sc_request_r_scale = 15;
3970 	}
3971 #ifdef TCP_ECN
3972 	/*
3973 	 * if both ECE and CWR flag bits are set, peer is ECN capable.
3974 	 */
3975 	if (tcp_do_ecn &&
3976 	    (th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR))
3977 		sc->sc_flags |= SCF_ECN_PERMIT;
3978 #endif
3979 #ifdef TCP_SACK
3980 	/*
3981 	 * Set SCF_SACK_PERMIT if peer did send a SACK_PERMITTED option
3982 	 * (i.e., if tcp_dooptions() did set TF_SACK_PERMIT).
3983 	 */
3984 	if (tb.sack_enable && (tb.t_flags & TF_SACK_PERMIT))
3985 		sc->sc_flags |= SCF_SACK_PERMIT;
3986 #endif
3987 #ifdef TCP_SIGNATURE
3988 	if (tb.t_flags & TF_SIGNATURE)
3989 		sc->sc_flags |= SCF_SIGNATURE;
3990 #endif
3991 	sc->sc_tp = tp;
3992 	if (syn_cache_respond(sc, m) == 0) {
3993 		syn_cache_insert(sc, tp);
3994 		tcpstat.tcps_sndacks++;
3995 		tcpstat.tcps_sndtotal++;
3996 	} else {
3997 		SYN_CACHE_PUT(sc);
3998 		tcpstat.tcps_sc_dropped++;
3999 	}
4000 	return (1);
4001 }
4002 
4003 int
4004 syn_cache_respond(sc, m)
4005 	struct syn_cache *sc;
4006 	struct mbuf *m;
4007 {
4008 	struct route *ro;
4009 	u_int8_t *optp;
4010 	int optlen, error;
4011 	u_int16_t tlen;
4012 	struct ip *ip = NULL;
4013 #ifdef INET6
4014 	struct ip6_hdr *ip6 = NULL;
4015 #endif
4016 	struct tcphdr *th;
4017 	u_int hlen;
4018 	struct inpcb *inp;
4019 
4020 	switch (sc->sc_src.sa.sa_family) {
4021 	case AF_INET:
4022 		hlen = sizeof(struct ip);
4023 		ro = &sc->sc_route4;
4024 		break;
4025 #ifdef INET6
4026 	case AF_INET6:
4027 		hlen = sizeof(struct ip6_hdr);
4028 		ro = (struct route *)&sc->sc_route6;
4029 		break;
4030 #endif
4031 	default:
4032 		if (m)
4033 			m_freem(m);
4034 		return (EAFNOSUPPORT);
4035 	}
4036 
4037 	/* Compute the size of the TCP options. */
4038 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4039 #ifdef TCP_SACK
4040 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? 4 : 0) +
4041 #endif
4042 #ifdef TCP_SIGNATURE
4043 	    ((sc->sc_flags & SCF_SIGNATURE) ? TCPOLEN_SIGLEN : 0) +
4044 #endif
4045 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4046 
4047 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4048 
4049 	/*
4050 	 * Create the IP+TCP header from scratch.
4051 	 */
4052 	if (m)
4053 		m_freem(m);
4054 #ifdef DIAGNOSTIC
4055 	if (max_linkhdr + tlen > MCLBYTES)
4056 		return (ENOBUFS);
4057 #endif
4058 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4059 	if (m && max_linkhdr + tlen > MHLEN) {
4060 		MCLGET(m, M_DONTWAIT);
4061 		if ((m->m_flags & M_EXT) == 0) {
4062 			m_freem(m);
4063 			m = NULL;
4064 		}
4065 	}
4066 	if (m == NULL)
4067 		return (ENOBUFS);
4068 
4069 	/* Fixup the mbuf. */
4070 	m->m_data += max_linkhdr;
4071 	m->m_len = m->m_pkthdr.len = tlen;
4072 	m->m_pkthdr.rcvif = NULL;
4073 	memset(mtod(m, u_char *), 0, tlen);
4074 
4075 	switch (sc->sc_src.sa.sa_family) {
4076 	case AF_INET:
4077 		ip = mtod(m, struct ip *);
4078 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4079 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4080 		ip->ip_p = IPPROTO_TCP;
4081 		th = (struct tcphdr *)(ip + 1);
4082 		th->th_dport = sc->sc_src.sin.sin_port;
4083 		th->th_sport = sc->sc_dst.sin.sin_port;
4084 		break;
4085 #ifdef INET6
4086 	case AF_INET6:
4087 		ip6 = mtod(m, struct ip6_hdr *);
4088 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4089 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4090 		ip6->ip6_nxt = IPPROTO_TCP;
4091 		/* ip6_plen will be updated in ip6_output() */
4092 		th = (struct tcphdr *)(ip6 + 1);
4093 		th->th_dport = sc->sc_src.sin6.sin6_port;
4094 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4095 		break;
4096 #endif
4097 	default:
4098 		th = NULL;
4099 	}
4100 
4101 	th->th_seq = htonl(sc->sc_iss);
4102 	th->th_ack = htonl(sc->sc_irs + 1);
4103 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4104 	th->th_flags = TH_SYN|TH_ACK;
4105 #ifdef TCP_ECN
4106 	/* Set ECE for SYN-ACK if peer supports ECN. */
4107 	if (tcp_do_ecn && (sc->sc_flags & SCF_ECN_PERMIT))
4108 		th->th_flags |= TH_ECE;
4109 #endif
4110 	th->th_win = htons(sc->sc_win);
4111 	/* th_sum already 0 */
4112 	/* th_urp already 0 */
4113 
4114 	/* Tack on the TCP options. */
4115 	optp = (u_int8_t *)(th + 1);
4116 	*optp++ = TCPOPT_MAXSEG;
4117 	*optp++ = 4;
4118 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4119 	*optp++ = sc->sc_ourmaxseg & 0xff;
4120 
4121 #ifdef TCP_SACK
4122 	/* Include SACK_PERMIT_HDR option if peer has already done so. */
4123 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4124 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMIT_HDR);
4125 		optp += 4;
4126 	}
4127 #endif
4128 
4129 	if (sc->sc_request_r_scale != 15) {
4130 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4131 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4132 		    sc->sc_request_r_scale);
4133 		optp += 4;
4134 	}
4135 
4136 	if (sc->sc_flags & SCF_TIMESTAMP) {
4137 		u_int32_t *lp = (u_int32_t *)(optp);
4138 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4139 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4140 		sc->sc_modulate = arc4random();
4141 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4142 		*lp   = htonl(sc->sc_timestamp);
4143 		optp += TCPOLEN_TSTAMP_APPA;
4144 	}
4145 
4146 #ifdef TCP_SIGNATURE
4147 	if (sc->sc_flags & SCF_SIGNATURE) {
4148 		union sockaddr_union src, dst;
4149 		struct tdb *tdb;
4150 
4151 		bzero(&src, sizeof(union sockaddr_union));
4152 		bzero(&dst, sizeof(union sockaddr_union));
4153 		src.sa.sa_len = sc->sc_src.sa.sa_len;
4154 		src.sa.sa_family = sc->sc_src.sa.sa_family;
4155 		dst.sa.sa_len = sc->sc_dst.sa.sa_len;
4156 		dst.sa.sa_family = sc->sc_dst.sa.sa_family;
4157 
4158 		switch (sc->sc_src.sa.sa_family) {
4159 		case 0:	/*default to PF_INET*/
4160 #ifdef INET
4161 		case AF_INET:
4162 			src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
4163 			dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
4164 			break;
4165 #endif /* INET */
4166 #ifdef INET6
4167 		case AF_INET6:
4168 			src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
4169 			dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
4170 			break;
4171 #endif /* INET6 */
4172 		}
4173 
4174 		tdb = gettdbbysrcdst(0, &src, &dst, IPPROTO_TCP);
4175 		if (tdb == NULL) {
4176 			if (m)
4177 				m_freem(m);
4178 			return (EPERM);
4179 		}
4180 
4181 		/* Send signature option */
4182 		*(optp++) = TCPOPT_SIGNATURE;
4183 		*(optp++) = TCPOLEN_SIGNATURE;
4184 
4185 		if (tcp_signature(tdb, sc->sc_src.sa.sa_family, m, th,
4186 		    hlen, 0, optp) < 0) {
4187 			if (m)
4188 				m_freem(m);
4189 			return (EINVAL);
4190 		}
4191 		optp += 16;
4192 
4193 		/* Pad options list to the next 32 bit boundary and
4194 		 * terminate it.
4195 		 */
4196 		*optp++ = TCPOPT_NOP;
4197 		*optp++ = TCPOPT_EOL;
4198 	}
4199 #endif /* TCP_SIGNATURE */
4200 
4201 	/* Compute the packet's checksum. */
4202 	switch (sc->sc_src.sa.sa_family) {
4203 	case AF_INET:
4204 		ip->ip_len = htons(tlen - hlen);
4205 		th->th_sum = 0;
4206 		th->th_sum = in_cksum(m, tlen);
4207 		break;
4208 #ifdef INET6
4209 	case AF_INET6:
4210 		ip6->ip6_plen = htons(tlen - hlen);
4211 		th->th_sum = 0;
4212 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4213 		break;
4214 #endif
4215 	}
4216 
4217 	/*
4218 	 * Fill in some straggling IP bits.  Note the stack expects
4219 	 * ip_len to be in host order, for convenience.
4220 	 */
4221 	switch (sc->sc_src.sa.sa_family) {
4222 #ifdef INET
4223 	case AF_INET:
4224 		ip->ip_len = htons(tlen);
4225 		ip->ip_ttl = ip_defttl;
4226 		/* XXX tos? */
4227 		break;
4228 #endif
4229 #ifdef INET6
4230 	case AF_INET6:
4231 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4232 		ip6->ip6_vfc |= IPV6_VERSION;
4233 		ip6->ip6_plen = htons(tlen - hlen);
4234 		/* ip6_hlim will be initialized afterwards */
4235 		/* leave flowlabel = 0, it is legal and require no state mgmt */
4236 		break;
4237 #endif
4238 	}
4239 
4240 	/* use IPsec policy from listening socket, on SYN ACK */
4241 	inp = sc->sc_tp ? sc->sc_tp->t_inpcb : NULL;
4242 
4243 	switch (sc->sc_src.sa.sa_family) {
4244 #ifdef INET
4245 	case AF_INET:
4246 		error = ip_output(m, sc->sc_ipopts, ro,
4247 		    (ip_mtudisc ? IP_MTUDISC : 0),
4248 		    (struct ip_moptions *)NULL, inp);
4249 		break;
4250 #endif
4251 #ifdef INET6
4252 	case AF_INET6:
4253 		ip6->ip6_hlim = in6_selecthlim(NULL,
4254 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4255 
4256 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4257 			(struct ip6_moptions *)0, NULL);
4258 		break;
4259 #endif
4260 	default:
4261 		error = EAFNOSUPPORT;
4262 		break;
4263 	}
4264 	return (error);
4265 }
4266