xref: /openbsd-src/sys/netinet/tcp_input.c (revision 0eea0d082377cb9c3ec583313dc4d52b7b6a4d6d)
1 /*	$OpenBSD: tcp_input.c,v 1.175 2004/07/16 09:26:07 markus Exp $	*/
2 /*	$NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)COPYRIGHT	1.1 (NRL) 17 January 1995
33  *
34  * NRL grants permission for redistribution and use in source and binary
35  * forms, with or without modification, of the software and documentation
36  * created at NRL provided that the following conditions are met:
37  *
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgements:
45  * 	This product includes software developed by the University of
46  * 	California, Berkeley and its contributors.
47  * 	This product includes software developed at the Information
48  * 	Technology Division, US Naval Research Laboratory.
49  * 4. Neither the name of the NRL nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
54  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
56  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
57  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
58  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
59  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
60  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
61  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
62  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
63  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64  *
65  * The views and conclusions contained in the software and documentation
66  * are those of the authors and should not be interpreted as representing
67  * official policies, either expressed or implied, of the US Naval
68  * Research Laboratory (NRL).
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/mbuf.h>
74 #include <sys/protosw.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/kernel.h>
78 
79 #include <dev/rndvar.h>
80 
81 #include <net/if.h>
82 #include <net/route.h>
83 
84 #include <netinet/in.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/in_pcb.h>
88 #include <netinet/ip_var.h>
89 #include <netinet/tcp.h>
90 #include <netinet/tcp_fsm.h>
91 #include <netinet/tcp_seq.h>
92 #include <netinet/tcp_timer.h>
93 #include <netinet/tcp_var.h>
94 #include <netinet/tcpip.h>
95 #include <netinet/tcp_debug.h>
96 
97 struct	tcpiphdr tcp_saveti;
98 
99 #ifdef INET6
100 #include <netinet6/in6_var.h>
101 #include <netinet6/nd6.h>
102 
103 struct  tcpipv6hdr tcp_saveti6;
104 
105 /* for the packet header length in the mbuf */
106 #define M_PH_LEN(m)      (((struct mbuf *)(m))->m_pkthdr.len)
107 #define M_V6_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip6_hdr))
108 #define M_V4_LEN(m)      (M_PH_LEN(m) - sizeof(struct ip))
109 #endif /* INET6 */
110 
111 int	tcprexmtthresh = 3;
112 int	tcptv_keep_init = TCPTV_KEEP_INIT;
113 
114 extern u_long sb_max;
115 
116 int tcp_rst_ppslim = 100;		/* 100pps */
117 int tcp_rst_ppslim_count = 0;
118 struct timeval tcp_rst_ppslim_last;
119 
120 int tcp_ackdrop_ppslim = 100;		/* 100pps */
121 int tcp_ackdrop_ppslim_count = 0;
122 struct timeval tcp_ackdrop_ppslim_last;
123 
124 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
125 
126 /* for modulo comparisons of timestamps */
127 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
128 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
129 
130 /*
131  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
132  */
133 #ifdef INET6
134 #define ND6_HINT(tp) \
135 do { \
136 	if (tp && tp->t_inpcb && (tp->t_inpcb->inp_flags & INP_IPV6) && \
137 	    tp->t_inpcb->inp_route6.ro_rt) { \
138 		nd6_nud_hint(tp->t_inpcb->inp_route6.ro_rt, NULL, 0); \
139 	} \
140 } while (0)
141 #else
142 #define ND6_HINT(tp)
143 #endif
144 
145 #ifdef TCP_ECN
146 /*
147  * ECN (Explicit Congestion Notification) support based on RFC3168
148  * implementation note:
149  *   snd_last is used to track a recovery phase.
150  *   when cwnd is reduced, snd_last is set to snd_max.
151  *   while snd_last > snd_una, the sender is in a recovery phase and
152  *   its cwnd should not be reduced again.
153  *   snd_last follows snd_una when not in a recovery phase.
154  */
155 #endif
156 
157 /*
158  * Macro to compute ACK transmission behavior.  Delay the ACK unless
159  * we have already delayed an ACK (must send an ACK every two segments).
160  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
161  * option is enabled.
162  */
163 #define	TCP_SETUP_ACK(tp, tiflags) \
164 do { \
165 	if ((tp)->t_flags & TF_DELACK || \
166 	    (tcp_ack_on_push && (tiflags) & TH_PUSH)) \
167 		tp->t_flags |= TF_ACKNOW; \
168 	else \
169 		TCP_SET_DELACK(tp); \
170 } while (0)
171 
172 /*
173  * Insert segment ti into reassembly queue of tcp with
174  * control block tp.  Return TH_FIN if reassembly now includes
175  * a segment with FIN.  The macro form does the common case inline
176  * (segment is the next to be received on an established connection,
177  * and the queue is empty), avoiding linkage into and removal
178  * from the queue and repetition of various conversions.
179  * Set DELACK for segments received in order, but ack immediately
180  * when segments are out of order (so fast retransmit can work).
181  */
182 
183 int
184 tcp_reass(tp, th, m, tlen)
185 	struct tcpcb *tp;
186 	struct tcphdr *th;
187 	struct mbuf *m;
188 	int *tlen;
189 {
190 	struct ipqent *p, *q, *nq, *tiqe;
191 	struct socket *so = tp->t_inpcb->inp_socket;
192 	int flags;
193 
194 	/*
195 	 * Call with th==0 after become established to
196 	 * force pre-ESTABLISHED data up to user socket.
197 	 */
198 	if (th == 0)
199 		goto present;
200 
201 	/*
202 	 * Allocate a new queue entry, before we throw away any data.
203 	 * If we can't, just drop the packet.  XXX
204 	 */
205 	tiqe = pool_get(&tcpqe_pool, PR_NOWAIT);
206 	if (tiqe == NULL) {
207 		tiqe = LIST_FIRST(&tp->segq);
208 		if (tiqe != NULL && th->th_seq == tp->rcv_nxt) {
209 			/* Reuse last entry since new segment fills a hole */
210 			while ((p = LIST_NEXT(tiqe, ipqe_q)) != NULL)
211 				tiqe = p;
212 			m_freem(tiqe->ipqe_m);
213 			LIST_REMOVE(tiqe, ipqe_q);
214 		}
215 		if (tiqe == NULL || th->th_seq != tp->rcv_nxt) {
216 			/* Flush segment queue for this connection */
217 			tcp_freeq(tp);
218 			tcpstat.tcps_rcvmemdrop++;
219 			m_freem(m);
220 			return (0);
221 		}
222 	}
223 
224 	/*
225 	 * Find a segment which begins after this one does.
226 	 */
227 	for (p = NULL, q = tp->segq.lh_first; q != NULL;
228 	    p = q, q = q->ipqe_q.le_next)
229 		if (SEQ_GT(q->ipqe_tcp->th_seq, th->th_seq))
230 			break;
231 
232 	/*
233 	 * If there is a preceding segment, it may provide some of
234 	 * our data already.  If so, drop the data from the incoming
235 	 * segment.  If it provides all of our data, drop us.
236 	 */
237 	if (p != NULL) {
238 		struct tcphdr *phdr = p->ipqe_tcp;
239 		int i;
240 
241 		/* conversion to int (in i) handles seq wraparound */
242 		i = phdr->th_seq + phdr->th_reseqlen - th->th_seq;
243 		if (i > 0) {
244 		        if (i >= *tlen) {
245 				tcpstat.tcps_rcvduppack++;
246 				tcpstat.tcps_rcvdupbyte += *tlen;
247 				m_freem(m);
248 				pool_put(&tcpqe_pool, tiqe);
249 				return (0);
250 			}
251 			m_adj(m, i);
252 			*tlen -= i;
253 			th->th_seq += i;
254 		}
255 	}
256 	tcpstat.tcps_rcvoopack++;
257 	tcpstat.tcps_rcvoobyte += *tlen;
258 
259 	/*
260 	 * While we overlap succeeding segments trim them or,
261 	 * if they are completely covered, dequeue them.
262 	 */
263 	for (; q != NULL; q = nq) {
264 		struct tcphdr *qhdr = q->ipqe_tcp;
265 		int i = (th->th_seq + *tlen) - qhdr->th_seq;
266 
267 		if (i <= 0)
268 			break;
269 		if (i < qhdr->th_reseqlen) {
270 			qhdr->th_seq += i;
271 			qhdr->th_reseqlen -= i;
272 			m_adj(q->ipqe_m, i);
273 			break;
274 		}
275 		nq = q->ipqe_q.le_next;
276 		m_freem(q->ipqe_m);
277 		LIST_REMOVE(q, ipqe_q);
278 		pool_put(&tcpqe_pool, q);
279 	}
280 
281 	/* Insert the new segment queue entry into place. */
282 	tiqe->ipqe_m = m;
283 	th->th_reseqlen = *tlen;
284 	tiqe->ipqe_tcp = th;
285 	if (p == NULL) {
286 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
287 	} else {
288 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
289 	}
290 
291 present:
292 	/*
293 	 * Present data to user, advancing rcv_nxt through
294 	 * completed sequence space.
295 	 */
296 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
297 		return (0);
298 	q = tp->segq.lh_first;
299 	if (q == NULL || q->ipqe_tcp->th_seq != tp->rcv_nxt)
300 		return (0);
301 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->th_reseqlen)
302 		return (0);
303 	do {
304 		tp->rcv_nxt += q->ipqe_tcp->th_reseqlen;
305 		flags = q->ipqe_tcp->th_flags & TH_FIN;
306 
307 		nq = q->ipqe_q.le_next;
308 		LIST_REMOVE(q, ipqe_q);
309 		ND6_HINT(tp);
310 		if (so->so_state & SS_CANTRCVMORE)
311 			m_freem(q->ipqe_m);
312 		else
313 			sbappendstream(&so->so_rcv, q->ipqe_m);
314 		pool_put(&tcpqe_pool, q);
315 		q = nq;
316 	} while (q != NULL && q->ipqe_tcp->th_seq == tp->rcv_nxt);
317 	sorwakeup(so);
318 	return (flags);
319 }
320 
321 #ifdef INET6
322 int
323 tcp6_input(mp, offp, proto)
324 	struct mbuf **mp;
325 	int *offp, proto;
326 {
327 	struct mbuf *m = *mp;
328 
329 #if defined(NFAITH) && 0 < NFAITH
330 	if (m->m_pkthdr.rcvif) {
331 		if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
332 			/* XXX send icmp6 host/port unreach? */
333 			m_freem(m);
334 			return IPPROTO_DONE;
335 		}
336 	}
337 #endif
338 
339 	/*
340 	 * draft-itojun-ipv6-tcp-to-anycast
341 	 * better place to put this in?
342 	 */
343 	if (m->m_flags & M_ANYCAST6) {
344 		if (m->m_len >= sizeof(struct ip6_hdr)) {
345 			struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
346 			icmp6_error(m, ICMP6_DST_UNREACH,
347 				ICMP6_DST_UNREACH_ADDR,
348 				(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
349 		} else
350 			m_freem(m);
351 		return IPPROTO_DONE;
352 	}
353 
354 	tcp_input(m, *offp, proto);
355 	return IPPROTO_DONE;
356 }
357 #endif
358 
359 /*
360  * TCP input routine, follows pages 65-76 of the
361  * protocol specification dated September, 1981 very closely.
362  */
363 void
364 tcp_input(struct mbuf *m, ...)
365 {
366 	struct ip *ip;
367 	struct inpcb *inp;
368 	u_int8_t *optp = NULL;
369 	int optlen = 0;
370 	int tlen, off;
371 	struct tcpcb *tp = 0;
372 	int tiflags;
373 	struct socket *so = NULL;
374 	int todrop, acked, ourfinisacked, needoutput = 0;
375 	int hdroptlen = 0;
376 	short ostate = 0;
377 	int iss = 0;
378 	u_long tiwin;
379 	struct tcp_opt_info opti;
380 	int iphlen;
381 	va_list ap;
382 	struct tcphdr *th;
383 #ifdef INET6
384 	struct ip6_hdr *ip6 = NULL;
385 #endif /* INET6 */
386 #ifdef IPSEC
387 	struct m_tag *mtag;
388 	struct tdb_ident *tdbi;
389 	struct tdb *tdb;
390 	int error, s;
391 #endif /* IPSEC */
392 	int af;
393 #ifdef TCP_ECN
394 	u_char iptos;
395 #endif
396 
397 	va_start(ap, m);
398 	iphlen = va_arg(ap, int);
399 	va_end(ap);
400 
401 	tcpstat.tcps_rcvtotal++;
402 
403 	opti.ts_present = 0;
404 	opti.maxseg = 0;
405 
406 	/*
407 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
408 	 * See below for AF specific multicast.
409 	 */
410 	if (m->m_flags & (M_BCAST|M_MCAST))
411 		goto drop;
412 
413 	/*
414 	 * Before we do ANYTHING, we have to figure out if it's TCP/IPv6 or
415 	 * TCP/IPv4.
416 	 */
417 	switch (mtod(m, struct ip *)->ip_v) {
418 #ifdef INET6
419 	case 6:
420 		af = AF_INET6;
421 		break;
422 #endif
423 	case 4:
424 		af = AF_INET;
425 		break;
426 	default:
427 		m_freem(m);
428 		return;	/*EAFNOSUPPORT*/
429 	}
430 
431 	/*
432 	 * Get IP and TCP header together in first mbuf.
433 	 * Note: IP leaves IP header in first mbuf.
434 	 */
435 	switch (af) {
436 	case AF_INET:
437 #ifdef DIAGNOSTIC
438 		if (iphlen < sizeof(struct ip)) {
439 			m_freem(m);
440 			return;
441 		}
442 #endif /* DIAGNOSTIC */
443 		break;
444 #ifdef INET6
445 	case AF_INET6:
446 #ifdef DIAGNOSTIC
447 		if (iphlen < sizeof(struct ip6_hdr)) {
448 			m_freem(m);
449 			return;
450 		}
451 #endif /* DIAGNOSTIC */
452 		break;
453 #endif
454 	default:
455 		m_freem(m);
456 		return;
457 	}
458 
459 	IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, sizeof(*th));
460 	if (!th) {
461 		tcpstat.tcps_rcvshort++;
462 		return;
463 	}
464 
465 	tlen = m->m_pkthdr.len - iphlen;
466 	ip = NULL;
467 #ifdef INET6
468 	ip6 = NULL;
469 #endif
470 	switch (af) {
471 	case AF_INET:
472 		ip = mtod(m, struct ip *);
473 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
474 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
475 			goto drop;
476 #ifdef TCP_ECN
477 		/* save ip_tos before clearing it for checksum */
478 		iptos = ip->ip_tos;
479 #endif
480 		/*
481 		 * Checksum extended TCP header and data.
482 		 */
483 		if ((m->m_pkthdr.csum & M_TCP_CSUM_IN_OK) == 0) {
484 			if (m->m_pkthdr.csum & M_TCP_CSUM_IN_BAD) {
485 				tcpstat.tcps_inhwcsum++;
486 				tcpstat.tcps_rcvbadsum++;
487 				goto drop;
488 			}
489 			if (in4_cksum(m, IPPROTO_TCP, iphlen, tlen) != 0) {
490 				tcpstat.tcps_rcvbadsum++;
491 				goto drop;
492 			}
493 		} else {
494 			m->m_pkthdr.csum &= ~M_TCP_CSUM_IN_OK;
495 			tcpstat.tcps_inhwcsum++;
496 		}
497 		break;
498 #ifdef INET6
499 	case AF_INET6:
500 		ip6 = mtod(m, struct ip6_hdr *);
501 #ifdef TCP_ECN
502 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
503 #endif
504 
505 		/* Be proactive about malicious use of IPv4 mapped address */
506 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
507 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
508 			/* XXX stat */
509 			goto drop;
510 		}
511 
512 		/*
513 		 * Be proactive about unspecified IPv6 address in source.
514 		 * As we use all-zero to indicate unbounded/unconnected pcb,
515 		 * unspecified IPv6 address can be used to confuse us.
516 		 *
517 		 * Note that packets with unspecified IPv6 destination is
518 		 * already dropped in ip6_input.
519 		 */
520 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
521 			/* XXX stat */
522 			goto drop;
523 		}
524 
525 		/* Discard packets to multicast */
526 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
527 			/* XXX stat */
528 			goto drop;
529 		}
530 
531 		/*
532 		 * Checksum extended TCP header and data.
533 		 */
534 		if (in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr), tlen)) {
535 			tcpstat.tcps_rcvbadsum++;
536 			goto drop;
537 		}
538 		break;
539 #endif
540 	}
541 
542 	/*
543 	 * Check that TCP offset makes sense,
544 	 * pull out TCP options and adjust length.		XXX
545 	 */
546 	off = th->th_off << 2;
547 	if (off < sizeof(struct tcphdr) || off > tlen) {
548 		tcpstat.tcps_rcvbadoff++;
549 		goto drop;
550 	}
551 	tlen -= off;
552 	if (off > sizeof(struct tcphdr)) {
553 		IP6_EXTHDR_GET(th, struct tcphdr *, m, iphlen, off);
554 		if (!th) {
555 			tcpstat.tcps_rcvshort++;
556 			return;
557 		}
558 		optlen = off - sizeof(struct tcphdr);
559 		optp = (u_int8_t *)(th + 1);
560 		/*
561 		 * Do quick retrieval of timestamp options ("options
562 		 * prediction?").  If timestamp is the only option and it's
563 		 * formatted as recommended in RFC 1323 appendix A, we
564 		 * quickly get the values now and not bother calling
565 		 * tcp_dooptions(), etc.
566 		 */
567 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
568 		     (optlen > TCPOLEN_TSTAMP_APPA &&
569 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
570 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
571 		     (th->th_flags & TH_SYN) == 0) {
572 			opti.ts_present = 1;
573 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
574 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
575 			optp = NULL;	/* we've parsed the options */
576 		}
577 	}
578 	tiflags = th->th_flags;
579 
580 	/*
581 	 * Convert TCP protocol specific fields to host format.
582 	 */
583 	NTOHL(th->th_seq);
584 	NTOHL(th->th_ack);
585 	NTOHS(th->th_win);
586 	NTOHS(th->th_urp);
587 
588 	/*
589 	 * Locate pcb for segment.
590 	 */
591 findpcb:
592 	switch (af) {
593 #ifdef INET6
594 	case AF_INET6:
595 		inp = in6_pcbhashlookup(&tcbtable, &ip6->ip6_src, th->th_sport,
596 		    &ip6->ip6_dst, th->th_dport);
597 		break;
598 #endif
599 	case AF_INET:
600 		inp = in_pcbhashlookup(&tcbtable, ip->ip_src, th->th_sport,
601 		    ip->ip_dst, th->th_dport);
602 		break;
603 	}
604 	if (inp == 0) {
605 		++tcpstat.tcps_pcbhashmiss;
606 		switch (af) {
607 #ifdef INET6
608 		case AF_INET6:
609 			inp = in6_pcblookup_listen(&tcbtable,
610 			    &ip6->ip6_dst, th->th_dport, m_tag_find(m,
611 			    PACKET_TAG_PF_TRANSLATE_LOCALHOST, NULL) != NULL);
612 			break;
613 #endif /* INET6 */
614 		case AF_INET:
615 			inp = in_pcblookup_listen(&tcbtable,
616 			    ip->ip_dst, th->th_dport, m_tag_find(m,
617 			    PACKET_TAG_PF_TRANSLATE_LOCALHOST, NULL) != NULL);
618 			break;
619 		}
620 		/*
621 		 * If the state is CLOSED (i.e., TCB does not exist) then
622 		 * all data in the incoming segment is discarded.
623 		 * If the TCB exists but is in CLOSED state, it is embryonic,
624 		 * but should either do a listen or a connect soon.
625 		 */
626 		if (inp == 0) {
627 			++tcpstat.tcps_noport;
628 			goto dropwithreset_ratelim;
629 		}
630 	}
631 
632 	tp = intotcpcb(inp);
633 	if (tp == 0)
634 		goto dropwithreset_ratelim;
635 	if (tp->t_state == TCPS_CLOSED)
636 		goto drop;
637 
638 	/* Unscale the window into a 32-bit value. */
639 	if ((tiflags & TH_SYN) == 0)
640 		tiwin = th->th_win << tp->snd_scale;
641 	else
642 		tiwin = th->th_win;
643 
644 	so = inp->inp_socket;
645 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
646 		union syn_cache_sa src;
647 		union syn_cache_sa dst;
648 
649 		bzero(&src, sizeof(src));
650 		bzero(&dst, sizeof(dst));
651 		switch (af) {
652 #ifdef INET
653 		case AF_INET:
654 			src.sin.sin_len = sizeof(struct sockaddr_in);
655 			src.sin.sin_family = AF_INET;
656 			src.sin.sin_addr = ip->ip_src;
657 			src.sin.sin_port = th->th_sport;
658 
659 			dst.sin.sin_len = sizeof(struct sockaddr_in);
660 			dst.sin.sin_family = AF_INET;
661 			dst.sin.sin_addr = ip->ip_dst;
662 			dst.sin.sin_port = th->th_dport;
663 			break;
664 #endif
665 #ifdef INET6
666 		case AF_INET6:
667 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
668 			src.sin6.sin6_family = AF_INET6;
669 			src.sin6.sin6_addr = ip6->ip6_src;
670 			src.sin6.sin6_port = th->th_sport;
671 
672 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
673 			dst.sin6.sin6_family = AF_INET6;
674 			dst.sin6.sin6_addr = ip6->ip6_dst;
675 			dst.sin6.sin6_port = th->th_dport;
676 			break;
677 #endif /* INET6 */
678 		default:
679 			goto badsyn;	/*sanity*/
680 		}
681 
682 		if (so->so_options & SO_DEBUG) {
683 			ostate = tp->t_state;
684 			switch (af) {
685 #ifdef INET6
686 			case AF_INET6:
687 				bcopy(ip6, &tcp_saveti6.ti6_i, sizeof(*ip6));
688 				bcopy(th, &tcp_saveti6.ti6_t, sizeof(*th));
689 				break;
690 #endif
691 			case AF_INET:
692 				bcopy(ip, &tcp_saveti.ti_i, sizeof(*ip));
693 				bcopy(th, &tcp_saveti.ti_t, sizeof(*th));
694 				break;
695 			}
696 		}
697 		if (so->so_options & SO_ACCEPTCONN) {
698 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
699 				if (tiflags & TH_RST) {
700 					syn_cache_reset(&src.sa, &dst.sa, th);
701 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
702 				    (TH_ACK|TH_SYN)) {
703 					/*
704 					 * Received a SYN,ACK.  This should
705 					 * never happen while we are in
706 					 * LISTEN.  Send an RST.
707 					 */
708 					goto badsyn;
709 				} else if (tiflags & TH_ACK) {
710 					so = syn_cache_get(&src.sa, &dst.sa,
711 						th, iphlen, tlen, so, m);
712 					if (so == NULL) {
713 						/*
714 						 * We don't have a SYN for
715 						 * this ACK; send an RST.
716 						 */
717 						goto badsyn;
718 					} else if (so ==
719 					    (struct socket *)(-1)) {
720 						/*
721 						 * We were unable to create
722 						 * the connection.  If the
723 						 * 3-way handshake was
724 						 * completed, and RST has
725 						 * been sent to the peer.
726 						 * Since the mbuf might be
727 						 * in use for the reply,
728 						 * do not free it.
729 						 */
730 						m = NULL;
731 					} else {
732 						/*
733 						 * We have created a
734 						 * full-blown connection.
735 						 */
736 						tp = NULL;
737 						inp = (struct inpcb *)so->so_pcb;
738 						tp = intotcpcb(inp);
739 						if (tp == NULL)
740 							goto badsyn;	/*XXX*/
741 
742 						/*
743 						 * Compute proper scaling
744 						 * value from buffer space
745 						 */
746 						tcp_rscale(tp, so->so_rcv.sb_hiwat);
747 						goto after_listen;
748 					}
749 				} else {
750 					/*
751 					 * None of RST, SYN or ACK was set.
752 					 * This is an invalid packet for a
753 					 * TCB in LISTEN state.  Send a RST.
754 					 */
755 					goto badsyn;
756 				}
757 			} else {
758 				/*
759 				 * Received a SYN.
760 				 */
761 #ifdef INET6
762 				/*
763 				 * If deprecated address is forbidden, we do
764 				 * not accept SYN to deprecated interface
765 				 * address to prevent any new inbound
766 				 * connection from getting established.
767 				 * When we do not accept SYN, we send a TCP
768 				 * RST, with deprecated source address (instead
769 				 * of dropping it).  We compromise it as it is
770 				 * much better for peer to send a RST, and
771 				 * RST will be the final packet for the
772 				 * exchange.
773 				 *
774 				 * If we do not forbid deprecated addresses, we
775 				 * accept the SYN packet.  RFC2462 does not
776 				 * suggest dropping SYN in this case.
777 				 * If we decipher RFC2462 5.5.4, it says like
778 				 * this:
779 				 * 1. use of deprecated addr with existing
780 				 *    communication is okay - "SHOULD continue
781 				 *    to be used"
782 				 * 2. use of it with new communication:
783 				 *   (2a) "SHOULD NOT be used if alternate
784 				 *        address with sufficient scope is
785 				 *        available"
786 				 *   (2b) nothing mentioned otherwise.
787 				 * Here we fall into (2b) case as we have no
788 				 * choice in our source address selection - we
789 				 * must obey the peer.
790 				 *
791 				 * The wording in RFC2462 is confusing, and
792 				 * there are multiple description text for
793 				 * deprecated address handling - worse, they
794 				 * are not exactly the same.  I believe 5.5.4
795 				 * is the best one, so we follow 5.5.4.
796 				 */
797 				if (ip6 && !ip6_use_deprecated) {
798 					struct in6_ifaddr *ia6;
799 
800 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
801 					    &ip6->ip6_dst)) &&
802 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
803 						tp = NULL;
804 						goto dropwithreset;
805 					}
806 				}
807 #endif
808 
809 				/*
810 				 * LISTEN socket received a SYN
811 				 * from itself?  This can't possibly
812 				 * be valid; drop the packet.
813 				 */
814 				if (th->th_dport == th->th_sport) {
815 					switch (af) {
816 #ifdef INET6
817 					case AF_INET6:
818 						if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
819 						    &ip6->ip6_dst)) {
820 							tcpstat.tcps_badsyn++;
821 							goto drop;
822 						}
823 						break;
824 #endif /* INET6 */
825 					case AF_INET:
826 						if (ip->ip_dst.s_addr == ip->ip_src.s_addr) {
827 							tcpstat.tcps_badsyn++;
828 							goto drop;
829 						}
830 						break;
831 					}
832 				}
833 
834 				/*
835 				 * SYN looks ok; create compressed TCP
836 				 * state for it.
837 				 */
838 				if (so->so_qlen <= so->so_qlimit &&
839 				    syn_cache_add(&src.sa, &dst.sa, th, iphlen,
840 						so, m, optp, optlen, &opti))
841 					m = NULL;
842 			}
843 			goto drop;
844 		}
845 	}
846 
847 after_listen:
848 #ifdef DIAGNOSTIC
849 	/*
850 	 * Should not happen now that all embryonic connections
851 	 * are handled with compressed state.
852 	 */
853 	if (tp->t_state == TCPS_LISTEN)
854 		panic("tcp_input: TCPS_LISTEN");
855 #endif
856 
857 #ifdef IPSEC
858 	/* Find most recent IPsec tag */
859 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
860         s = splnet();
861 	if (mtag != NULL) {
862 		tdbi = (struct tdb_ident *)(mtag + 1);
863 	        tdb = gettdb(tdbi->spi, &tdbi->dst, tdbi->proto);
864 	} else
865 		tdb = NULL;
866 	ipsp_spd_lookup(m, af, iphlen, &error, IPSP_DIRECTION_IN,
867 	    tdb, inp);
868 	if (error) {
869 		splx(s);
870 		goto drop;
871 	}
872 
873 	/* Latch SA */
874 	if (inp->inp_tdb_in != tdb) {
875 		if (tdb) {
876 		        tdb_add_inp(tdb, inp, 1);
877 			if (inp->inp_ipo == NULL) {
878 				inp->inp_ipo = ipsec_add_policy(inp, af,
879 				    IPSP_DIRECTION_OUT);
880 				if (inp->inp_ipo == NULL) {
881 					splx(s);
882 					goto drop;
883 				}
884 			}
885 			if (inp->inp_ipo->ipo_dstid == NULL &&
886 			    tdb->tdb_srcid != NULL) {
887 				inp->inp_ipo->ipo_dstid = tdb->tdb_srcid;
888 				tdb->tdb_srcid->ref_count++;
889 			}
890 			if (inp->inp_ipsec_remotecred == NULL &&
891 			    tdb->tdb_remote_cred != NULL) {
892 				inp->inp_ipsec_remotecred =
893 				    tdb->tdb_remote_cred;
894 				tdb->tdb_remote_cred->ref_count++;
895 			}
896 			if (inp->inp_ipsec_remoteauth == NULL &&
897 			    tdb->tdb_remote_auth != NULL) {
898 				inp->inp_ipsec_remoteauth =
899 				    tdb->tdb_remote_auth;
900 				tdb->tdb_remote_auth->ref_count++;
901 			}
902 		} else { /* Just reset */
903 		        TAILQ_REMOVE(&inp->inp_tdb_in->tdb_inp_in, inp,
904 				     inp_tdb_in_next);
905 			inp->inp_tdb_in = NULL;
906 		}
907 	}
908         splx(s);
909 #endif /* IPSEC */
910 
911 	/*
912 	 * Segment received on connection.
913 	 * Reset idle time and keep-alive timer.
914 	 */
915 	tp->t_rcvtime = tcp_now;
916 	if (TCPS_HAVEESTABLISHED(tp->t_state))
917 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
918 
919 #ifdef TCP_SACK
920 	if (tp->sack_enable)
921 		tcp_del_sackholes(tp, th); /* Delete stale SACK holes */
922 #endif /* TCP_SACK */
923 
924 	/*
925 	 * Process options.
926 	 */
927 #ifdef TCP_SIGNATURE
928 	if (optp || (tp->t_flags & TF_SIGNATURE))
929 #else
930 	if (optp)
931 #endif
932 		if (tcp_dooptions(tp, optp, optlen, th, m, iphlen, &opti))
933 			goto drop;
934 
935 #ifdef TCP_SACK
936 	if (tp->sack_enable) {
937 		tp->rcv_laststart = th->th_seq; /* last rec'vd segment*/
938 		tp->rcv_lastend = th->th_seq + tlen;
939 	}
940 #endif /* TCP_SACK */
941 #ifdef TCP_ECN
942 	/* if congestion experienced, set ECE bit in subsequent packets. */
943 	if ((iptos & IPTOS_ECN_MASK) == IPTOS_ECN_CE) {
944 		tp->t_flags |= TF_RCVD_CE;
945 		tcpstat.tcps_ecn_rcvce++;
946 	}
947 #endif
948 	/*
949 	 * Header prediction: check for the two common cases
950 	 * of a uni-directional data xfer.  If the packet has
951 	 * no control flags, is in-sequence, the window didn't
952 	 * change and we're not retransmitting, it's a
953 	 * candidate.  If the length is zero and the ack moved
954 	 * forward, we're the sender side of the xfer.  Just
955 	 * free the data acked & wake any higher level process
956 	 * that was blocked waiting for space.  If the length
957 	 * is non-zero and the ack didn't move, we're the
958 	 * receiver side.  If we're getting packets in-order
959 	 * (the reassembly queue is empty), add the data to
960 	 * the socket buffer and note that we need a delayed ack.
961 	 */
962 	if (tp->t_state == TCPS_ESTABLISHED &&
963 #ifdef TCP_ECN
964 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK)) == TH_ACK &&
965 #else
966 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
967 #endif
968 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
969 	    th->th_seq == tp->rcv_nxt &&
970 	    tiwin && tiwin == tp->snd_wnd &&
971 	    tp->snd_nxt == tp->snd_max) {
972 
973 		/*
974 		 * If last ACK falls within this segment's sequence numbers,
975 		 *  record the timestamp.
976 		 * Fix from Braden, see Stevens p. 870
977 		 */
978 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
979 			tp->ts_recent_age = tcp_now;
980 			tp->ts_recent = opti.ts_val;
981 		}
982 
983 		if (tlen == 0) {
984 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
985 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
986 			    tp->snd_cwnd >= tp->snd_wnd &&
987 			    tp->t_dupacks == 0) {
988 				/*
989 				 * this is a pure ack for outstanding data.
990 				 */
991 				++tcpstat.tcps_predack;
992 				if (opti.ts_present)
993 					tcp_xmit_timer(tp, tcp_now-opti.ts_ecr+1);
994 				else if (tp->t_rtttime &&
995 					    SEQ_GT(th->th_ack, tp->t_rtseq))
996 					tcp_xmit_timer(tp,
997 					    tcp_now - tp->t_rtttime);
998 				acked = th->th_ack - tp->snd_una;
999 				tcpstat.tcps_rcvackpack++;
1000 				tcpstat.tcps_rcvackbyte += acked;
1001 				ND6_HINT(tp);
1002 				sbdrop(&so->so_snd, acked);
1003 				tp->snd_una = th->th_ack;
1004 #if defined(TCP_SACK) || defined(TCP_ECN)
1005 				/*
1006 				 * We want snd_last to track snd_una so
1007 				 * as to avoid sequence wraparound problems
1008 				 * for very large transfers.
1009 				 */
1010 #ifdef TCP_ECN
1011 				if (SEQ_GT(tp->snd_una, tp->snd_last))
1012 #endif
1013 				tp->snd_last = tp->snd_una;
1014 #endif /* TCP_SACK */
1015 #if defined(TCP_SACK) && defined(TCP_FACK)
1016 				tp->snd_fack = tp->snd_una;
1017 				tp->retran_data = 0;
1018 #endif /* TCP_FACK */
1019 				m_freem(m);
1020 
1021 				/*
1022 				 * If all outstanding data are acked, stop
1023 				 * retransmit timer, otherwise restart timer
1024 				 * using current (possibly backed-off) value.
1025 				 * If process is waiting for space,
1026 				 * wakeup/selwakeup/signal.  If data
1027 				 * are ready to send, let tcp_output
1028 				 * decide between more output or persist.
1029 				 */
1030 				if (tp->snd_una == tp->snd_max)
1031 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1032 				else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1033 					TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1034 
1035 				if (sb_notify(&so->so_snd))
1036 					sowwakeup(so);
1037 				if (so->so_snd.sb_cc)
1038 					(void) tcp_output(tp);
1039 				return;
1040 			}
1041 		} else if (th->th_ack == tp->snd_una &&
1042 		    tp->segq.lh_first == NULL &&
1043 		    tlen <= sbspace(&so->so_rcv)) {
1044 			/*
1045 			 * This is a pure, in-sequence data packet
1046 			 * with nothing on the reassembly queue and
1047 			 * we have enough buffer space to take it.
1048 			 */
1049 #ifdef TCP_SACK
1050 			/* Clean receiver SACK report if present */
1051 			if (tp->sack_enable && tp->rcv_numsacks)
1052 				tcp_clean_sackreport(tp);
1053 #endif /* TCP_SACK */
1054 			++tcpstat.tcps_preddat;
1055 			tp->rcv_nxt += tlen;
1056 			tcpstat.tcps_rcvpack++;
1057 			tcpstat.tcps_rcvbyte += tlen;
1058 			ND6_HINT(tp);
1059 			/*
1060 			 * Drop TCP, IP headers and TCP options then add data
1061 			 * to socket buffer.
1062 			 */
1063 			if (so->so_state & SS_CANTRCVMORE)
1064 				m_freem(m);
1065 			else {
1066 				m_adj(m, iphlen + off);
1067 				sbappendstream(&so->so_rcv, m);
1068 			}
1069 			sorwakeup(so);
1070 			TCP_SETUP_ACK(tp, tiflags);
1071 			if (tp->t_flags & TF_ACKNOW)
1072 				(void) tcp_output(tp);
1073 			return;
1074 		}
1075 	}
1076 
1077 	/*
1078 	 * Compute mbuf offset to TCP data segment.
1079 	 */
1080 	hdroptlen = iphlen + off;
1081 
1082 	/*
1083 	 * Calculate amount of space in receive window,
1084 	 * and then do TCP input processing.
1085 	 * Receive window is amount of space in rcv queue,
1086 	 * but not less than advertised window.
1087 	 */
1088 	{ int win;
1089 
1090 	win = sbspace(&so->so_rcv);
1091 	if (win < 0)
1092 		win = 0;
1093 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1094 	}
1095 
1096 	switch (tp->t_state) {
1097 
1098 	/*
1099 	 * If the state is SYN_RECEIVED:
1100 	 * 	if seg contains SYN/ACK, send an RST.
1101 	 *	if seg contains an ACK, but not for our SYN/ACK, send an RST
1102 	 */
1103 
1104 	case TCPS_SYN_RECEIVED:
1105 		if (tiflags & TH_ACK) {
1106 			if (tiflags & TH_SYN) {
1107 				tcpstat.tcps_badsyn++;
1108 				goto dropwithreset;
1109 			}
1110 			if (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1111 			    SEQ_GT(th->th_ack, tp->snd_max))
1112 				goto dropwithreset;
1113 		}
1114 		break;
1115 
1116 	/*
1117 	 * If the state is SYN_SENT:
1118 	 *	if seg contains an ACK, but not for our SYN, drop the input.
1119 	 *	if seg contains a RST, then drop the connection.
1120 	 *	if seg does not contain SYN, then drop it.
1121 	 * Otherwise this is an acceptable SYN segment
1122 	 *	initialize tp->rcv_nxt and tp->irs
1123 	 *	if seg contains ack then advance tp->snd_una
1124 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1125 	 *	arrange for segment to be acked (eventually)
1126 	 *	continue processing rest of data/controls, beginning with URG
1127 	 */
1128 	case TCPS_SYN_SENT:
1129 		if ((tiflags & TH_ACK) &&
1130 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
1131 		     SEQ_GT(th->th_ack, tp->snd_max)))
1132 			goto dropwithreset;
1133 		if (tiflags & TH_RST) {
1134 #ifdef TCP_ECN
1135 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1136 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1137 				goto drop;
1138 #endif
1139 			if (tiflags & TH_ACK)
1140 				tp = tcp_drop(tp, ECONNREFUSED);
1141 			goto drop;
1142 		}
1143 		if ((tiflags & TH_SYN) == 0)
1144 			goto drop;
1145 		if (tiflags & TH_ACK) {
1146 			tp->snd_una = th->th_ack;
1147 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1148 				tp->snd_nxt = tp->snd_una;
1149 		}
1150 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
1151 		tp->irs = th->th_seq;
1152 		tcp_mss(tp, opti.maxseg);
1153 		/* Reset initial window to 1 segment for retransmit */
1154 		if (tp->t_rxtshift > 0)
1155 			tp->snd_cwnd = tp->t_maxseg;
1156 		tcp_rcvseqinit(tp);
1157 		tp->t_flags |= TF_ACKNOW;
1158 #ifdef TCP_SACK
1159                 /*
1160                  * If we've sent a SACK_PERMITTED option, and the peer
1161                  * also replied with one, then TF_SACK_PERMIT should have
1162                  * been set in tcp_dooptions().  If it was not, disable SACKs.
1163                  */
1164 		if (tp->sack_enable)
1165 			tp->sack_enable = tp->t_flags & TF_SACK_PERMIT;
1166 #endif
1167 #ifdef TCP_ECN
1168 		/*
1169 		 * if ECE is set but CWR is not set for SYN-ACK, or
1170 		 * both ECE and CWR are set for simultaneous open,
1171 		 * peer is ECN capable.
1172 		 */
1173 		if (tcp_do_ecn) {
1174 			if ((tiflags & (TH_ACK|TH_ECE|TH_CWR))
1175 			    == (TH_ACK|TH_ECE) ||
1176 			    (tiflags & (TH_ACK|TH_ECE|TH_CWR))
1177 			    == (TH_ECE|TH_CWR)) {
1178 				tp->t_flags |= TF_ECN_PERMIT;
1179 				tiflags &= ~(TH_ECE|TH_CWR);
1180 				tcpstat.tcps_ecn_accepts++;
1181 			}
1182 		}
1183 #endif
1184 
1185 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
1186 			tcpstat.tcps_connects++;
1187 			soisconnected(so);
1188 			tp->t_state = TCPS_ESTABLISHED;
1189 			TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1190 			/* Do window scaling on this connection? */
1191 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1192 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1193 				tp->snd_scale = tp->requested_s_scale;
1194 				tp->rcv_scale = tp->request_r_scale;
1195 			}
1196 			tcp_reass_lock(tp);
1197 			(void) tcp_reass(tp, (struct tcphdr *)0,
1198 				(struct mbuf *)0, &tlen);
1199 			tcp_reass_unlock(tp);
1200 			/*
1201 			 * if we didn't have to retransmit the SYN,
1202 			 * use its rtt as our initial srtt & rtt var.
1203 			 */
1204 			if (tp->t_rtttime)
1205 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1206 			/*
1207 			 * Since new data was acked (the SYN), open the
1208 			 * congestion window by one MSS.  We do this
1209 			 * here, because we won't go through the normal
1210 			 * ACK processing below.  And since this is the
1211 			 * start of the connection, we know we are in
1212 			 * the exponential phase of slow-start.
1213 			 */
1214 			tp->snd_cwnd += tp->t_maxseg;
1215 		} else
1216 			tp->t_state = TCPS_SYN_RECEIVED;
1217 
1218 #if 0
1219 trimthenstep6:
1220 #endif
1221 		/*
1222 		 * Advance th->th_seq to correspond to first data byte.
1223 		 * If data, trim to stay within window,
1224 		 * dropping FIN if necessary.
1225 		 */
1226 		th->th_seq++;
1227 		if (tlen > tp->rcv_wnd) {
1228 			todrop = tlen - tp->rcv_wnd;
1229 			m_adj(m, -todrop);
1230 			tlen = tp->rcv_wnd;
1231 			tiflags &= ~TH_FIN;
1232 			tcpstat.tcps_rcvpackafterwin++;
1233 			tcpstat.tcps_rcvbyteafterwin += todrop;
1234 		}
1235 		tp->snd_wl1 = th->th_seq - 1;
1236 		tp->rcv_up = th->th_seq;
1237 		goto step6;
1238 	}
1239 
1240 	/*
1241 	 * States other than LISTEN or SYN_SENT.
1242 	 * First check timestamp, if present.
1243 	 * Then check that at least some bytes of segment are within
1244 	 * receive window.  If segment begins before rcv_nxt,
1245 	 * drop leading data (and SYN); if nothing left, just ack.
1246 	 *
1247 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1248 	 * and it's less than opti.ts_recent, drop it.
1249 	 */
1250 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1251 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1252 
1253 		/* Check to see if ts_recent is over 24 days old.  */
1254 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
1255 			/*
1256 			 * Invalidate ts_recent.  If this segment updates
1257 			 * ts_recent, the age will be reset later and ts_recent
1258 			 * will get a valid value.  If it does not, setting
1259 			 * ts_recent to zero will at least satisfy the
1260 			 * requirement that zero be placed in the timestamp
1261 			 * echo reply when ts_recent isn't valid.  The
1262 			 * age isn't reset until we get a valid ts_recent
1263 			 * because we don't want out-of-order segments to be
1264 			 * dropped when ts_recent is old.
1265 			 */
1266 			tp->ts_recent = 0;
1267 		} else {
1268 			tcpstat.tcps_rcvduppack++;
1269 			tcpstat.tcps_rcvdupbyte += tlen;
1270 			tcpstat.tcps_pawsdrop++;
1271 			goto dropafterack;
1272 		}
1273 	}
1274 
1275 	todrop = tp->rcv_nxt - th->th_seq;
1276 	if (todrop > 0) {
1277 		if (tiflags & TH_SYN) {
1278 			tiflags &= ~TH_SYN;
1279 			th->th_seq++;
1280 			if (th->th_urp > 1)
1281 				th->th_urp--;
1282 			else
1283 				tiflags &= ~TH_URG;
1284 			todrop--;
1285 		}
1286 		if (todrop > tlen ||
1287 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1288 			/*
1289 			 * Any valid FIN must be to the left of the
1290 			 * window.  At this point, FIN must be a
1291 			 * duplicate or out-of-sequence, so drop it.
1292 			 */
1293 			tiflags &= ~TH_FIN;
1294 			/*
1295 			 * Send ACK to resynchronize, and drop any data,
1296 			 * but keep on processing for RST or ACK.
1297 			 */
1298 			tp->t_flags |= TF_ACKNOW;
1299 			tcpstat.tcps_rcvdupbyte += todrop = tlen;
1300 			tcpstat.tcps_rcvduppack++;
1301 		} else {
1302 			tcpstat.tcps_rcvpartduppack++;
1303 			tcpstat.tcps_rcvpartdupbyte += todrop;
1304 		}
1305 		hdroptlen += todrop;	/* drop from head afterwards */
1306 		th->th_seq += todrop;
1307 		tlen -= todrop;
1308 		if (th->th_urp > todrop)
1309 			th->th_urp -= todrop;
1310 		else {
1311 			tiflags &= ~TH_URG;
1312 			th->th_urp = 0;
1313 		}
1314 	}
1315 
1316 	/*
1317 	 * If new data are received on a connection after the
1318 	 * user processes are gone, then RST the other end.
1319 	 */
1320 	if ((so->so_state & SS_NOFDREF) &&
1321 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1322 		tp = tcp_close(tp);
1323 		tcpstat.tcps_rcvafterclose++;
1324 		goto dropwithreset;
1325 	}
1326 
1327 	/*
1328 	 * If segment ends after window, drop trailing data
1329 	 * (and PUSH and FIN); if nothing left, just ACK.
1330 	 */
1331 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1332 	if (todrop > 0) {
1333 		tcpstat.tcps_rcvpackafterwin++;
1334 		if (todrop >= tlen) {
1335 			tcpstat.tcps_rcvbyteafterwin += tlen;
1336 			/*
1337 			 * If a new connection request is received
1338 			 * while in TIME_WAIT, drop the old connection
1339 			 * and start over if the sequence numbers
1340 			 * are above the previous ones.
1341 			 */
1342 			if (tiflags & TH_SYN &&
1343 			    tp->t_state == TCPS_TIME_WAIT &&
1344 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1345 				iss = tp->snd_nxt + TCP_ISSINCR;
1346 				tp = tcp_close(tp);
1347 				goto findpcb;
1348 			}
1349 			/*
1350 			 * If window is closed can only take segments at
1351 			 * window edge, and have to drop data and PUSH from
1352 			 * incoming segments.  Continue processing, but
1353 			 * remember to ack.  Otherwise, drop segment
1354 			 * and ack.
1355 			 */
1356 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1357 				tp->t_flags |= TF_ACKNOW;
1358 				tcpstat.tcps_rcvwinprobe++;
1359 			} else
1360 				goto dropafterack;
1361 		} else
1362 			tcpstat.tcps_rcvbyteafterwin += todrop;
1363 		m_adj(m, -todrop);
1364 		tlen -= todrop;
1365 		tiflags &= ~(TH_PUSH|TH_FIN);
1366 	}
1367 
1368 	/*
1369 	 * If last ACK falls within this segment's sequence numbers,
1370 	 * record its timestamp.
1371 	 * Fix from Braden, see Stevens p. 870
1372 	 */
1373 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1374 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1375 		tp->ts_recent_age = tcp_now;
1376 		tp->ts_recent = opti.ts_val;
1377 	}
1378 
1379 	/*
1380 	 * If the RST bit is set examine the state:
1381 	 *    SYN_RECEIVED STATE:
1382 	 *	If passive open, return to LISTEN state.
1383 	 *	If active open, inform user that connection was refused.
1384 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1385 	 *	Inform user that connection was reset, and close tcb.
1386 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
1387 	 *	Close the tcb.
1388 	 */
1389 	if (tiflags & TH_RST) {
1390 		if (th->th_seq != tp->last_ack_sent)
1391 			goto drop;
1392 
1393 		switch (tp->t_state) {
1394 		case TCPS_SYN_RECEIVED:
1395 #ifdef TCP_ECN
1396 			/* if ECN is enabled, fall back to non-ecn at rexmit */
1397 			if (tcp_do_ecn && !(tp->t_flags & TF_DISABLE_ECN))
1398 				goto drop;
1399 #endif
1400 			so->so_error = ECONNREFUSED;
1401 			goto close;
1402 
1403 		case TCPS_ESTABLISHED:
1404 		case TCPS_FIN_WAIT_1:
1405 		case TCPS_FIN_WAIT_2:
1406 		case TCPS_CLOSE_WAIT:
1407 			so->so_error = ECONNRESET;
1408 		close:
1409 			tp->t_state = TCPS_CLOSED;
1410 			tcpstat.tcps_drops++;
1411 			tp = tcp_close(tp);
1412 			goto drop;
1413 		case TCPS_CLOSING:
1414 		case TCPS_LAST_ACK:
1415 		case TCPS_TIME_WAIT:
1416 			tp = tcp_close(tp);
1417 			goto drop;
1418 		}
1419 	}
1420 
1421 	/*
1422 	 * If a SYN is in the window, then this is an
1423 	 * error and we ACK and drop the packet.
1424 	 */
1425 	if (tiflags & TH_SYN)
1426 		goto dropafterack_ratelim;
1427 
1428 	/*
1429 	 * If the ACK bit is off we drop the segment and return.
1430 	 */
1431 	if ((tiflags & TH_ACK) == 0) {
1432 		if (tp->t_flags & TF_ACKNOW)
1433 			goto dropafterack;
1434 		else
1435 			goto drop;
1436 	}
1437 
1438 	/*
1439 	 * Ack processing.
1440 	 */
1441 	switch (tp->t_state) {
1442 
1443 	/*
1444 	 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
1445 	 * ESTABLISHED state and continue processing.
1446 	 * The ACK was checked above.
1447 	 */
1448 	case TCPS_SYN_RECEIVED:
1449 		tcpstat.tcps_connects++;
1450 		soisconnected(so);
1451 		tp->t_state = TCPS_ESTABLISHED;
1452 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1453 		/* Do window scaling? */
1454 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1455 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
1456 			tp->snd_scale = tp->requested_s_scale;
1457 			tp->rcv_scale = tp->request_r_scale;
1458 		}
1459 		tcp_reass_lock(tp);
1460 		(void) tcp_reass(tp, (struct tcphdr *)0, (struct mbuf *)0,
1461 				 &tlen);
1462 		tcp_reass_unlock(tp);
1463 		tp->snd_wl1 = th->th_seq - 1;
1464 		/* fall into ... */
1465 
1466 	/*
1467 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1468 	 * ACKs.  If the ack is in the range
1469 	 *	tp->snd_una < th->th_ack <= tp->snd_max
1470 	 * then advance tp->snd_una to th->th_ack and drop
1471 	 * data from the retransmission queue.  If this ACK reflects
1472 	 * more up to date window information we update our window information.
1473 	 */
1474 	case TCPS_ESTABLISHED:
1475 	case TCPS_FIN_WAIT_1:
1476 	case TCPS_FIN_WAIT_2:
1477 	case TCPS_CLOSE_WAIT:
1478 	case TCPS_CLOSING:
1479 	case TCPS_LAST_ACK:
1480 	case TCPS_TIME_WAIT:
1481 #ifdef TCP_ECN
1482 		/*
1483 		 * if we receive ECE and are not already in recovery phase,
1484 		 * reduce cwnd by half but don't slow-start.
1485 		 * advance snd_last to snd_max not to reduce cwnd again
1486 		 * until all outstanding packets are acked.
1487 		 */
1488 		if (tcp_do_ecn && (tiflags & TH_ECE)) {
1489 			if ((tp->t_flags & TF_ECN_PERMIT) &&
1490 			    SEQ_GEQ(tp->snd_una, tp->snd_last)) {
1491 				u_int win;
1492 
1493 				win = min(tp->snd_wnd, tp->snd_cwnd) / tp->t_maxseg;
1494 				if (win > 1) {
1495 					tp->snd_ssthresh = win / 2 * tp->t_maxseg;
1496 					tp->snd_cwnd = tp->snd_ssthresh;
1497 					tp->snd_last = tp->snd_max;
1498 					tp->t_flags |= TF_SEND_CWR;
1499 					tcpstat.tcps_cwr_ecn++;
1500 				}
1501 			}
1502 			tcpstat.tcps_ecn_rcvece++;
1503 		}
1504 		/*
1505 		 * if we receive CWR, we know that the peer has reduced
1506 		 * its congestion window.  stop sending ecn-echo.
1507 		 */
1508 		if ((tiflags & TH_CWR)) {
1509 			tp->t_flags &= ~TF_RCVD_CE;
1510 			tcpstat.tcps_ecn_rcvcwr++;
1511 		}
1512 #endif /* TCP_ECN */
1513 
1514 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
1515 			/*
1516 			 * Duplicate/old ACK processing.
1517 			 * Increments t_dupacks:
1518 			 *	Pure duplicate (same seq/ack/window, no data)
1519 			 * Doesn't affect t_dupacks:
1520 			 *	Data packets.
1521 			 *	Normal window updates (window opens)
1522 			 * Resets t_dupacks:
1523 			 *	New data ACKed.
1524 			 *	Window shrinks
1525 			 *	Old ACK
1526 			 */
1527 			if (tlen) {
1528 				/* Drop very old ACKs unless th_seq matches */
1529 				if (th->th_seq != tp->rcv_nxt &&
1530 				   SEQ_LT(th->th_ack,
1531 				   tp->snd_una - tp->max_sndwnd)) {
1532 					tcpstat.tcps_rcvacktooold++;
1533 					goto drop;
1534 				}
1535 				break;
1536 			}
1537 			/*
1538 			 * If we get an old ACK, there is probably packet
1539 			 * reordering going on.  Be conservative and reset
1540 			 * t_dupacks so that we are less agressive in
1541 			 * doing a fast retransmit.
1542 			 */
1543 			if (th->th_ack != tp->snd_una) {
1544 				tp->t_dupacks = 0;
1545 				break;
1546 			}
1547 			if (tiwin == tp->snd_wnd) {
1548 				tcpstat.tcps_rcvdupack++;
1549 				/*
1550 				 * If we have outstanding data (other than
1551 				 * a window probe), this is a completely
1552 				 * duplicate ack (ie, window info didn't
1553 				 * change), the ack is the biggest we've
1554 				 * seen and we've seen exactly our rexmt
1555 				 * threshhold of them, assume a packet
1556 				 * has been dropped and retransmit it.
1557 				 * Kludge snd_nxt & the congestion
1558 				 * window so we send only this one
1559 				 * packet.
1560 				 *
1561 				 * We know we're losing at the current
1562 				 * window size so do congestion avoidance
1563 				 * (set ssthresh to half the current window
1564 				 * and pull our congestion window back to
1565 				 * the new ssthresh).
1566 				 *
1567 				 * Dup acks mean that packets have left the
1568 				 * network (they're now cached at the receiver)
1569 				 * so bump cwnd by the amount in the receiver
1570 				 * to keep a constant cwnd packets in the
1571 				 * network.
1572 				 */
1573 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0)
1574 					tp->t_dupacks = 0;
1575 #if defined(TCP_SACK) && defined(TCP_FACK)
1576 				/*
1577 				 * In FACK, can enter fast rec. if the receiver
1578 				 * reports a reass. queue longer than 3 segs.
1579 				 */
1580 				else if (++tp->t_dupacks == tcprexmtthresh ||
1581 				    ((SEQ_GT(tp->snd_fack, tcprexmtthresh *
1582 				    tp->t_maxseg + tp->snd_una)) &&
1583 				    SEQ_GT(tp->snd_una, tp->snd_last))) {
1584 #else
1585 				else if (++tp->t_dupacks == tcprexmtthresh) {
1586 #endif /* TCP_FACK */
1587 					tcp_seq onxt = tp->snd_nxt;
1588 					u_long win =
1589 					    ulmin(tp->snd_wnd, tp->snd_cwnd) /
1590 						2 / tp->t_maxseg;
1591 
1592 #if defined(TCP_SACK) || defined(TCP_ECN)
1593 					if (SEQ_LT(th->th_ack, tp->snd_last)){
1594 					    	/*
1595 						 * False fast retx after
1596 						 * timeout.  Do not cut window.
1597 						 */
1598 						tp->t_dupacks = 0;
1599 						goto drop;
1600 					}
1601 #endif
1602 					if (win < 2)
1603 						win = 2;
1604 					tp->snd_ssthresh = win * tp->t_maxseg;
1605 #if defined(TCP_SACK)
1606 					tp->snd_last = tp->snd_max;
1607 #endif
1608 #ifdef TCP_SACK
1609                     			if (tp->sack_enable) {
1610 						TCP_TIMER_DISARM(tp, TCPT_REXMT);
1611 						tp->t_rtttime = 0;
1612 #ifdef TCP_ECN
1613 						tp->t_flags |= TF_SEND_CWR;
1614 #endif
1615 #if 1 /* TCP_ECN */
1616 						tcpstat.tcps_cwr_frecovery++;
1617 #endif
1618 						tcpstat.tcps_sndrexmitfast++;
1619 #if defined(TCP_SACK) && defined(TCP_FACK)
1620 						tp->t_dupacks = tcprexmtthresh;
1621 						(void) tcp_output(tp);
1622 						/*
1623 						 * During FR, snd_cwnd is held
1624 						 * constant for FACK.
1625 						 */
1626 						tp->snd_cwnd = tp->snd_ssthresh;
1627 #else
1628 						/*
1629 						 * tcp_output() will send
1630 						 * oldest SACK-eligible rtx.
1631 						 */
1632 						(void) tcp_output(tp);
1633 						tp->snd_cwnd = tp->snd_ssthresh+
1634 					           tp->t_maxseg * tp->t_dupacks;
1635 #endif /* TCP_FACK */
1636 						goto drop;
1637 					}
1638 #endif /* TCP_SACK */
1639 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
1640 					tp->t_rtttime = 0;
1641 					tp->snd_nxt = th->th_ack;
1642 					tp->snd_cwnd = tp->t_maxseg;
1643 #ifdef TCP_ECN
1644 					tp->t_flags |= TF_SEND_CWR;
1645 #endif
1646 #if 1 /* TCP_ECN */
1647 					tcpstat.tcps_cwr_frecovery++;
1648 #endif
1649 					tcpstat.tcps_sndrexmitfast++;
1650 					(void) tcp_output(tp);
1651 
1652 					tp->snd_cwnd = tp->snd_ssthresh +
1653 					    tp->t_maxseg * tp->t_dupacks;
1654 					if (SEQ_GT(onxt, tp->snd_nxt))
1655 						tp->snd_nxt = onxt;
1656 					goto drop;
1657 				} else if (tp->t_dupacks > tcprexmtthresh) {
1658 #if defined(TCP_SACK) && defined(TCP_FACK)
1659 					/*
1660 					 * while (awnd < cwnd)
1661 					 *         sendsomething();
1662 					 */
1663 					if (tp->sack_enable) {
1664 						if (tp->snd_awnd < tp->snd_cwnd)
1665 							tcp_output(tp);
1666 						goto drop;
1667 					}
1668 #endif /* TCP_FACK */
1669 					tp->snd_cwnd += tp->t_maxseg;
1670 					(void) tcp_output(tp);
1671 					goto drop;
1672 				}
1673 			} else if (tiwin < tp->snd_wnd) {
1674 				/*
1675 				 * The window was retracted!  Previous dup
1676 				 * ACKs may have been due to packets arriving
1677 				 * after the shrunken window, not a missing
1678 				 * packet, so play it safe and reset t_dupacks
1679 				 */
1680 				tp->t_dupacks = 0;
1681 			}
1682 			break;
1683 		}
1684 		/*
1685 		 * If the congestion window was inflated to account
1686 		 * for the other side's cached packets, retract it.
1687 		 */
1688 #if defined(TCP_SACK)
1689 		if (tp->sack_enable) {
1690 			if (tp->t_dupacks >= tcprexmtthresh) {
1691 				/* Check for a partial ACK */
1692 				if (tcp_sack_partialack(tp, th)) {
1693 #if defined(TCP_SACK) && defined(TCP_FACK)
1694 					/* Force call to tcp_output */
1695 					if (tp->snd_awnd < tp->snd_cwnd)
1696 						needoutput = 1;
1697 #else
1698 					tp->snd_cwnd += tp->t_maxseg;
1699 					needoutput = 1;
1700 #endif /* TCP_FACK */
1701 				} else {
1702 					/* Out of fast recovery */
1703 					tp->snd_cwnd = tp->snd_ssthresh;
1704 					if (tcp_seq_subtract(tp->snd_max,
1705 					    th->th_ack) < tp->snd_ssthresh)
1706 						tp->snd_cwnd =
1707 						   tcp_seq_subtract(tp->snd_max,
1708 					           th->th_ack);
1709 					tp->t_dupacks = 0;
1710 #if defined(TCP_SACK) && defined(TCP_FACK)
1711 					if (SEQ_GT(th->th_ack, tp->snd_fack))
1712 						tp->snd_fack = th->th_ack;
1713 #endif /* TCP_FACK */
1714 				}
1715 			}
1716 		} else {
1717 			if (tp->t_dupacks >= tcprexmtthresh &&
1718 			    !tcp_newreno(tp, th)) {
1719 				/* Out of fast recovery */
1720 				tp->snd_cwnd = tp->snd_ssthresh;
1721 				if (tcp_seq_subtract(tp->snd_max, th->th_ack) <
1722 			  	    tp->snd_ssthresh)
1723 					tp->snd_cwnd =
1724 					    tcp_seq_subtract(tp->snd_max,
1725 					    th->th_ack);
1726 				tp->t_dupacks = 0;
1727 			}
1728 		}
1729 		if (tp->t_dupacks < tcprexmtthresh)
1730 			tp->t_dupacks = 0;
1731 #else /* else no TCP_SACK */
1732 		if (tp->t_dupacks >= tcprexmtthresh &&
1733 		    tp->snd_cwnd > tp->snd_ssthresh)
1734 			tp->snd_cwnd = tp->snd_ssthresh;
1735 		tp->t_dupacks = 0;
1736 #endif
1737 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
1738 			tcpstat.tcps_rcvacktoomuch++;
1739 			goto dropafterack_ratelim;
1740 		}
1741 		acked = th->th_ack - tp->snd_una;
1742 		tcpstat.tcps_rcvackpack++;
1743 		tcpstat.tcps_rcvackbyte += acked;
1744 
1745 		/*
1746 		 * If we have a timestamp reply, update smoothed
1747 		 * round trip time.  If no timestamp is present but
1748 		 * transmit timer is running and timed sequence
1749 		 * number was acked, update smoothed round trip time.
1750 		 * Since we now have an rtt measurement, cancel the
1751 		 * timer backoff (cf., Phil Karn's retransmit alg.).
1752 		 * Recompute the initial retransmit timer.
1753 		 */
1754 		if (opti.ts_present)
1755 			tcp_xmit_timer(tp, tcp_now-opti.ts_ecr+1);
1756 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
1757 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1758 
1759 		/*
1760 		 * If all outstanding data is acked, stop retransmit
1761 		 * timer and remember to restart (more output or persist).
1762 		 * If there is more data to be acked, restart retransmit
1763 		 * timer, using current (possibly backed-off) value.
1764 		 */
1765 		if (th->th_ack == tp->snd_max) {
1766 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
1767 			needoutput = 1;
1768 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1769 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1770 		/*
1771 		 * When new data is acked, open the congestion window.
1772 		 * If the window gives us less than ssthresh packets
1773 		 * in flight, open exponentially (maxseg per packet).
1774 		 * Otherwise open linearly: maxseg per window
1775 		 * (maxseg^2 / cwnd per packet).
1776 		 */
1777 		{
1778 		u_int cw = tp->snd_cwnd;
1779 		u_int incr = tp->t_maxseg;
1780 
1781 		if (cw > tp->snd_ssthresh)
1782 			incr = incr * incr / cw;
1783 #if defined (TCP_SACK)
1784 		if (tp->t_dupacks < tcprexmtthresh)
1785 #endif
1786 		tp->snd_cwnd = ulmin(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1787 		}
1788 		ND6_HINT(tp);
1789 		if (acked > so->so_snd.sb_cc) {
1790 			tp->snd_wnd -= so->so_snd.sb_cc;
1791 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1792 			ourfinisacked = 1;
1793 		} else {
1794 			sbdrop(&so->so_snd, acked);
1795 			tp->snd_wnd -= acked;
1796 			ourfinisacked = 0;
1797 		}
1798 		if (sb_notify(&so->so_snd))
1799 			sowwakeup(so);
1800 		tp->snd_una = th->th_ack;
1801 #ifdef TCP_ECN
1802 		/* sync snd_last with snd_una */
1803 		if (SEQ_GT(tp->snd_una, tp->snd_last))
1804 			tp->snd_last = tp->snd_una;
1805 #endif
1806 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1807 			tp->snd_nxt = tp->snd_una;
1808 #if defined (TCP_SACK) && defined (TCP_FACK)
1809 		if (SEQ_GT(tp->snd_una, tp->snd_fack)) {
1810 			tp->snd_fack = tp->snd_una;
1811 			/* Update snd_awnd for partial ACK
1812 			 * without any SACK blocks.
1813 			 */
1814 			tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt,
1815 				tp->snd_fack) + tp->retran_data;
1816 		}
1817 #endif
1818 
1819 		switch (tp->t_state) {
1820 
1821 		/*
1822 		 * In FIN_WAIT_1 STATE in addition to the processing
1823 		 * for the ESTABLISHED state if our FIN is now acknowledged
1824 		 * then enter FIN_WAIT_2.
1825 		 */
1826 		case TCPS_FIN_WAIT_1:
1827 			if (ourfinisacked) {
1828 				/*
1829 				 * If we can't receive any more
1830 				 * data, then closing user can proceed.
1831 				 * Starting the timer is contrary to the
1832 				 * specification, but if we don't get a FIN
1833 				 * we'll hang forever.
1834 				 */
1835 				if (so->so_state & SS_CANTRCVMORE) {
1836 					soisdisconnected(so);
1837 					TCP_TIMER_ARM(tp, TCPT_2MSL, tcp_maxidle);
1838 				}
1839 				tp->t_state = TCPS_FIN_WAIT_2;
1840 			}
1841 			break;
1842 
1843 		/*
1844 		 * In CLOSING STATE in addition to the processing for
1845 		 * the ESTABLISHED state if the ACK acknowledges our FIN
1846 		 * then enter the TIME-WAIT state, otherwise ignore
1847 		 * the segment.
1848 		 */
1849 		case TCPS_CLOSING:
1850 			if (ourfinisacked) {
1851 				tp->t_state = TCPS_TIME_WAIT;
1852 				tcp_canceltimers(tp);
1853 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1854 				soisdisconnected(so);
1855 			}
1856 			break;
1857 
1858 		/*
1859 		 * In LAST_ACK, we may still be waiting for data to drain
1860 		 * and/or to be acked, as well as for the ack of our FIN.
1861 		 * If our FIN is now acknowledged, delete the TCB,
1862 		 * enter the closed state and return.
1863 		 */
1864 		case TCPS_LAST_ACK:
1865 			if (ourfinisacked) {
1866 				tp = tcp_close(tp);
1867 				goto drop;
1868 			}
1869 			break;
1870 
1871 		/*
1872 		 * In TIME_WAIT state the only thing that should arrive
1873 		 * is a retransmission of the remote FIN.  Acknowledge
1874 		 * it and restart the finack timer.
1875 		 */
1876 		case TCPS_TIME_WAIT:
1877 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1878 			goto dropafterack;
1879 		}
1880 	}
1881 
1882 step6:
1883 	/*
1884 	 * Update window information.
1885 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1886 	 */
1887 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
1888 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
1889 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
1890 		/* keep track of pure window updates */
1891 		if (tlen == 0 &&
1892 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
1893 			tcpstat.tcps_rcvwinupd++;
1894 		tp->snd_wnd = tiwin;
1895 		tp->snd_wl1 = th->th_seq;
1896 		tp->snd_wl2 = th->th_ack;
1897 		if (tp->snd_wnd > tp->max_sndwnd)
1898 			tp->max_sndwnd = tp->snd_wnd;
1899 		needoutput = 1;
1900 	}
1901 
1902 	/*
1903 	 * Process segments with URG.
1904 	 */
1905 	if ((tiflags & TH_URG) && th->th_urp &&
1906 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1907 		/*
1908 		 * This is a kludge, but if we receive and accept
1909 		 * random urgent pointers, we'll crash in
1910 		 * soreceive.  It's hard to imagine someone
1911 		 * actually wanting to send this much urgent data.
1912 		 */
1913 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
1914 			th->th_urp = 0;			/* XXX */
1915 			tiflags &= ~TH_URG;		/* XXX */
1916 			goto dodata;			/* XXX */
1917 		}
1918 		/*
1919 		 * If this segment advances the known urgent pointer,
1920 		 * then mark the data stream.  This should not happen
1921 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1922 		 * a FIN has been received from the remote side.
1923 		 * In these states we ignore the URG.
1924 		 *
1925 		 * According to RFC961 (Assigned Protocols),
1926 		 * the urgent pointer points to the last octet
1927 		 * of urgent data.  We continue, however,
1928 		 * to consider it to indicate the first octet
1929 		 * of data past the urgent section as the original
1930 		 * spec states (in one of two places).
1931 		 */
1932 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
1933 			tp->rcv_up = th->th_seq + th->th_urp;
1934 			so->so_oobmark = so->so_rcv.sb_cc +
1935 			    (tp->rcv_up - tp->rcv_nxt) - 1;
1936 			if (so->so_oobmark == 0)
1937 				so->so_state |= SS_RCVATMARK;
1938 			sohasoutofband(so);
1939 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1940 		}
1941 		/*
1942 		 * Remove out of band data so doesn't get presented to user.
1943 		 * This can happen independent of advancing the URG pointer,
1944 		 * but if two URG's are pending at once, some out-of-band
1945 		 * data may creep in... ick.
1946 		 */
1947 		if (th->th_urp <= (u_int16_t) tlen
1948 #ifdef SO_OOBINLINE
1949 		     && (so->so_options & SO_OOBINLINE) == 0
1950 #endif
1951 		     )
1952 		        tcp_pulloutofband(so, th->th_urp, m, hdroptlen);
1953 	} else
1954 		/*
1955 		 * If no out of band data is expected,
1956 		 * pull receive urgent pointer along
1957 		 * with the receive window.
1958 		 */
1959 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1960 			tp->rcv_up = tp->rcv_nxt;
1961 dodata:							/* XXX */
1962 
1963 	/*
1964 	 * Process the segment text, merging it into the TCP sequencing queue,
1965 	 * and arranging for acknowledgment of receipt if necessary.
1966 	 * This process logically involves adjusting tp->rcv_wnd as data
1967 	 * is presented to the user (this happens in tcp_usrreq.c,
1968 	 * case PRU_RCVD).  If a FIN has already been received on this
1969 	 * connection then we just ignore the text.
1970 	 */
1971 	if ((tlen || (tiflags & TH_FIN)) &&
1972 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1973 		tcp_reass_lock(tp);
1974 		if (th->th_seq == tp->rcv_nxt && tp->segq.lh_first == NULL &&
1975 		    tp->t_state == TCPS_ESTABLISHED) {
1976 			tcp_reass_unlock(tp);
1977 			TCP_SETUP_ACK(tp, tiflags);
1978 			tp->rcv_nxt += tlen;
1979 			tiflags = th->th_flags & TH_FIN;
1980 			tcpstat.tcps_rcvpack++;
1981 			tcpstat.tcps_rcvbyte += tlen;
1982 			ND6_HINT(tp);
1983 			if (so->so_state & SS_CANTRCVMORE)
1984 				m_freem(m);
1985 			else {
1986 				m_adj(m, hdroptlen);
1987 				sbappendstream(&so->so_rcv, m);
1988 			}
1989 			sorwakeup(so);
1990 		} else {
1991 			m_adj(m, hdroptlen);
1992 			tiflags = tcp_reass(tp, th, m, &tlen);
1993 			tcp_reass_unlock(tp);
1994 			tp->t_flags |= TF_ACKNOW;
1995 		}
1996 #ifdef TCP_SACK
1997 		if (tp->sack_enable)
1998 			tcp_update_sack_list(tp);
1999 #endif
2000 
2001 		/*
2002 		 * variable len never referenced again in modern BSD,
2003 		 * so why bother computing it ??
2004 		 */
2005 #if 0
2006 		/*
2007 		 * Note the amount of data that peer has sent into
2008 		 * our window, in order to estimate the sender's
2009 		 * buffer size.
2010 		 */
2011 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2012 #endif /* 0 */
2013 	} else {
2014 		m_freem(m);
2015 		tiflags &= ~TH_FIN;
2016 	}
2017 
2018 	/*
2019 	 * If FIN is received ACK the FIN and let the user know
2020 	 * that the connection is closing.  Ignore a FIN received before
2021 	 * the connection is fully established.
2022 	 */
2023 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2024 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2025 			socantrcvmore(so);
2026 			tp->t_flags |= TF_ACKNOW;
2027 			tp->rcv_nxt++;
2028 		}
2029 		switch (tp->t_state) {
2030 
2031 		/*
2032 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2033 		 */
2034 		case TCPS_ESTABLISHED:
2035 			tp->t_state = TCPS_CLOSE_WAIT;
2036 			break;
2037 
2038 		/*
2039 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2040 		 * enter the CLOSING state.
2041 		 */
2042 		case TCPS_FIN_WAIT_1:
2043 			tp->t_state = TCPS_CLOSING;
2044 			break;
2045 
2046 		/*
2047 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2048 		 * starting the time-wait timer, turning off the other
2049 		 * standard timers.
2050 		 */
2051 		case TCPS_FIN_WAIT_2:
2052 			tp->t_state = TCPS_TIME_WAIT;
2053 			tcp_canceltimers(tp);
2054 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2055 			soisdisconnected(so);
2056 			break;
2057 
2058 		/*
2059 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2060 		 */
2061 		case TCPS_TIME_WAIT:
2062 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2063 			break;
2064 		}
2065 	}
2066 	if (so->so_options & SO_DEBUG) {
2067 		switch (tp->pf) {
2068 #ifdef INET6
2069 		case PF_INET6:
2070 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti6,
2071 			    0, tlen);
2072 			break;
2073 #endif /* INET6 */
2074 		case PF_INET:
2075 			tcp_trace(TA_INPUT, ostate, tp, (caddr_t) &tcp_saveti,
2076 			    0, tlen);
2077 			break;
2078 		}
2079 	}
2080 
2081 	/*
2082 	 * Return any desired output.
2083 	 */
2084 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2085 		(void) tcp_output(tp);
2086 	}
2087 	return;
2088 
2089 badsyn:
2090 	/*
2091 	 * Received a bad SYN.  Increment counters and dropwithreset.
2092 	 */
2093 	tcpstat.tcps_badsyn++;
2094 	tp = NULL;
2095 	goto dropwithreset;
2096 
2097 dropafterack_ratelim:
2098 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2099 	    tcp_ackdrop_ppslim) == 0) {
2100 		/* XXX stat */
2101 		goto drop;
2102 	}
2103 	/* ...fall into dropafterack... */
2104 
2105 dropafterack:
2106 	/*
2107 	 * Generate an ACK dropping incoming segment if it occupies
2108 	 * sequence space, where the ACK reflects our state.
2109 	 */
2110 	if (tiflags & TH_RST)
2111 		goto drop;
2112 	m_freem(m);
2113 	tp->t_flags |= TF_ACKNOW;
2114 	(void) tcp_output(tp);
2115 	return;
2116 
2117 dropwithreset_ratelim:
2118 	/*
2119 	 * We may want to rate-limit RSTs in certain situations,
2120 	 * particularly if we are sending an RST in response to
2121 	 * an attempt to connect to or otherwise communicate with
2122 	 * a port for which we have no socket.
2123 	 */
2124 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2125 	    tcp_rst_ppslim) == 0) {
2126 		/* XXX stat */
2127 		goto drop;
2128 	}
2129 	/* ...fall into dropwithreset... */
2130 
2131 dropwithreset:
2132 	/*
2133 	 * Generate a RST, dropping incoming segment.
2134 	 * Make ACK acceptable to originator of segment.
2135 	 * Don't bother to respond to RST.
2136 	 */
2137 	if (tiflags & TH_RST)
2138 		goto drop;
2139 	if (tiflags & TH_ACK) {
2140 		tcp_respond(tp, mtod(m, caddr_t), m, (tcp_seq)0, th->th_ack,
2141 		    TH_RST);
2142 	} else {
2143 		if (tiflags & TH_SYN)
2144 			tlen++;
2145 		tcp_respond(tp, mtod(m, caddr_t), m, th->th_seq + tlen,
2146 		    (tcp_seq)0, TH_RST|TH_ACK);
2147 	}
2148 	return;
2149 
2150 drop:
2151 	/*
2152 	 * Drop space held by incoming segment and return.
2153 	 */
2154 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG)) {
2155 		switch (tp->pf) {
2156 #ifdef INET6
2157 		case PF_INET6:
2158 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti6,
2159 			    0, tlen);
2160 			break;
2161 #endif /* INET6 */
2162 		case PF_INET:
2163 			tcp_trace(TA_DROP, ostate, tp, (caddr_t) &tcp_saveti,
2164 			    0, tlen);
2165 			break;
2166 		}
2167 	}
2168 
2169 	m_freem(m);
2170 	return;
2171 }
2172 
2173 int
2174 tcp_dooptions(tp, cp, cnt, th, m, iphlen, oi)
2175 	struct tcpcb *tp;
2176 	u_char *cp;
2177 	int cnt;
2178 	struct tcphdr *th;
2179 	struct mbuf *m;
2180 	int iphlen;
2181 	struct tcp_opt_info *oi;
2182 {
2183 	u_int16_t mss = 0;
2184 	int opt, optlen;
2185 #ifdef TCP_SIGNATURE
2186 	caddr_t sigp = NULL;
2187 	struct tdb *tdb = NULL;
2188 #endif /* TCP_SIGNATURE */
2189 
2190 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2191 		opt = cp[0];
2192 		if (opt == TCPOPT_EOL)
2193 			break;
2194 		if (opt == TCPOPT_NOP)
2195 			optlen = 1;
2196 		else {
2197 			if (cnt < 2)
2198 				break;
2199 			optlen = cp[1];
2200 			if (optlen < 2 || optlen > cnt)
2201 				break;
2202 		}
2203 		switch (opt) {
2204 
2205 		default:
2206 			continue;
2207 
2208 		case TCPOPT_MAXSEG:
2209 			if (optlen != TCPOLEN_MAXSEG)
2210 				continue;
2211 			if (!(th->th_flags & TH_SYN))
2212 				continue;
2213 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
2214 			NTOHS(mss);
2215 			oi->maxseg = mss;
2216 			break;
2217 
2218 		case TCPOPT_WINDOW:
2219 			if (optlen != TCPOLEN_WINDOW)
2220 				continue;
2221 			if (!(th->th_flags & TH_SYN))
2222 				continue;
2223 			tp->t_flags |= TF_RCVD_SCALE;
2224 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
2225 			break;
2226 
2227 		case TCPOPT_TIMESTAMP:
2228 			if (optlen != TCPOLEN_TIMESTAMP)
2229 				continue;
2230 			oi->ts_present = 1;
2231 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2232 			NTOHL(oi->ts_val);
2233 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2234 			NTOHL(oi->ts_ecr);
2235 
2236 			/*
2237 			 * A timestamp received in a SYN makes
2238 			 * it ok to send timestamp requests and replies.
2239 			 */
2240 			if (th->th_flags & TH_SYN) {
2241 				tp->t_flags |= TF_RCVD_TSTMP;
2242 				tp->ts_recent = oi->ts_val;
2243 				tp->ts_recent_age = tcp_now;
2244 			}
2245 			break;
2246 
2247 #ifdef TCP_SACK
2248 		case TCPOPT_SACK_PERMITTED:
2249 			if (!tp->sack_enable || optlen!=TCPOLEN_SACK_PERMITTED)
2250 				continue;
2251 			if (th->th_flags & TH_SYN)
2252 				/* MUST only be set on SYN */
2253 				tp->t_flags |= TF_SACK_PERMIT;
2254 			break;
2255 		case TCPOPT_SACK:
2256 			if (tcp_sack_option(tp, th, cp, optlen))
2257 				continue;
2258 			break;
2259 #endif
2260 #ifdef TCP_SIGNATURE
2261 		case TCPOPT_SIGNATURE:
2262 			if (optlen != TCPOLEN_SIGNATURE)
2263 				continue;
2264 
2265 			if (sigp && bcmp(sigp, cp + 2, 16))
2266 				return (-1);
2267 
2268 			sigp = cp + 2;
2269 			break;
2270 #endif /* TCP_SIGNATURE */
2271 		}
2272 	}
2273 
2274 #ifdef TCP_SIGNATURE
2275 	if (tp->t_flags & TF_SIGNATURE) {
2276 		union sockaddr_union src, dst;
2277 
2278 		memset(&src, 0, sizeof(union sockaddr_union));
2279 		memset(&dst, 0, sizeof(union sockaddr_union));
2280 
2281 		switch (tp->pf) {
2282 		case 0:
2283 #ifdef INET
2284 		case AF_INET:
2285 			src.sa.sa_len = sizeof(struct sockaddr_in);
2286 			src.sa.sa_family = AF_INET;
2287 			src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
2288 			dst.sa.sa_len = sizeof(struct sockaddr_in);
2289 			dst.sa.sa_family = AF_INET;
2290 			dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
2291 			break;
2292 #endif
2293 #ifdef INET6
2294 		case AF_INET6:
2295 			src.sa.sa_len = sizeof(struct sockaddr_in6);
2296 			src.sa.sa_family = AF_INET6;
2297 			src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
2298 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
2299 			dst.sa.sa_family = AF_INET6;
2300 			dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
2301 			break;
2302 #endif /* INET6 */
2303 		}
2304 
2305 		tdb = gettdbbysrcdst(0, &src, &dst, IPPROTO_TCP);
2306 
2307 		/*
2308 		 * We don't have an SA for this peer, so we turn off
2309 		 * TF_SIGNATURE on the listen socket
2310 		 */
2311 		if (tdb == NULL && tp->t_state == TCPS_LISTEN)
2312 			tp->t_flags &= ~TF_SIGNATURE;
2313 
2314 	}
2315 
2316 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2317 		tcpstat.tcps_rcvbadsig++;
2318 		return (-1);
2319 	}
2320 
2321 	if (sigp) {
2322 		char sig[16];
2323 
2324 		if (tdb == NULL) {
2325 			tcpstat.tcps_rcvbadsig++;
2326 			return (-1);
2327 		}
2328 
2329 		if (tcp_signature(tdb, tp->pf, m, th, iphlen, 1, sig) < 0)
2330 			return (-1);
2331 
2332 		if (bcmp(sig, sigp, 16)) {
2333 			tcpstat.tcps_rcvbadsig++;
2334 			return (-1);
2335 		}
2336 
2337 		tcpstat.tcps_rcvgoodsig++;
2338 	}
2339 #endif /* TCP_SIGNATURE */
2340 
2341 	return (0);
2342 }
2343 
2344 #if defined(TCP_SACK)
2345 u_long
2346 tcp_seq_subtract(a, b)
2347 	u_long a, b;
2348 {
2349 	return ((long)(a - b));
2350 }
2351 #endif
2352 
2353 
2354 #ifdef TCP_SACK
2355 /*
2356  * This function is called upon receipt of new valid data (while not in header
2357  * prediction mode), and it updates the ordered list of sacks.
2358  */
2359 void
2360 tcp_update_sack_list(tp)
2361 	struct tcpcb *tp;
2362 {
2363 	/*
2364 	 * First reported block MUST be the most recent one.  Subsequent
2365 	 * blocks SHOULD be in the order in which they arrived at the
2366 	 * receiver.  These two conditions make the implementation fully
2367 	 * compliant with RFC 2018.
2368 	 */
2369 	int i, j = 0, count = 0, lastpos = -1;
2370 	struct sackblk sack, firstsack, temp[MAX_SACK_BLKS];
2371 
2372 	/* First clean up current list of sacks */
2373 	for (i = 0; i < tp->rcv_numsacks; i++) {
2374 		sack = tp->sackblks[i];
2375 		if (sack.start == 0 && sack.end == 0) {
2376 			count++; /* count = number of blocks to be discarded */
2377 			continue;
2378 		}
2379 		if (SEQ_LEQ(sack.end, tp->rcv_nxt)) {
2380 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2381 			count++;
2382 		} else {
2383 			temp[j].start = tp->sackblks[i].start;
2384 			temp[j++].end = tp->sackblks[i].end;
2385 		}
2386 	}
2387 	tp->rcv_numsacks -= count;
2388 	if (tp->rcv_numsacks == 0) { /* no sack blocks currently (fast path) */
2389 		tcp_clean_sackreport(tp);
2390 		if (SEQ_LT(tp->rcv_nxt, tp->rcv_laststart)) {
2391 			/* ==> need first sack block */
2392 			tp->sackblks[0].start = tp->rcv_laststart;
2393 			tp->sackblks[0].end = tp->rcv_lastend;
2394 			tp->rcv_numsacks = 1;
2395 		}
2396 		return;
2397 	}
2398 	/* Otherwise, sack blocks are already present. */
2399 	for (i = 0; i < tp->rcv_numsacks; i++)
2400 		tp->sackblks[i] = temp[i]; /* first copy back sack list */
2401 	if (SEQ_GEQ(tp->rcv_nxt, tp->rcv_lastend))
2402 		return;     /* sack list remains unchanged */
2403 	/*
2404 	 * From here, segment just received should be (part of) the 1st sack.
2405 	 * Go through list, possibly coalescing sack block entries.
2406 	 */
2407 	firstsack.start = tp->rcv_laststart;
2408 	firstsack.end = tp->rcv_lastend;
2409 	for (i = 0; i < tp->rcv_numsacks; i++) {
2410 		sack = tp->sackblks[i];
2411 		if (SEQ_LT(sack.end, firstsack.start) ||
2412 		    SEQ_GT(sack.start, firstsack.end))
2413 			continue; /* no overlap */
2414 		if (sack.start == firstsack.start && sack.end == firstsack.end){
2415 			/*
2416 			 * identical block; delete it here since we will
2417 			 * move it to the front of the list.
2418 			 */
2419 			tp->sackblks[i].start = tp->sackblks[i].end = 0;
2420 			lastpos = i;    /* last posn with a zero entry */
2421 			continue;
2422 		}
2423 		if (SEQ_LEQ(sack.start, firstsack.start))
2424 			firstsack.start = sack.start; /* merge blocks */
2425 		if (SEQ_GEQ(sack.end, firstsack.end))
2426 			firstsack.end = sack.end;     /* merge blocks */
2427 		tp->sackblks[i].start = tp->sackblks[i].end = 0;
2428 		lastpos = i;    /* last posn with a zero entry */
2429 	}
2430 	if (lastpos != -1) {    /* at least one merge */
2431 		for (i = 0, j = 1; i < tp->rcv_numsacks; i++) {
2432 			sack = tp->sackblks[i];
2433 			if (sack.start == 0 && sack.end == 0)
2434 				continue;
2435 			temp[j++] = sack;
2436 		}
2437 		tp->rcv_numsacks = j; /* including first blk (added later) */
2438 		for (i = 1; i < tp->rcv_numsacks; i++) /* now copy back */
2439 			tp->sackblks[i] = temp[i];
2440 	} else {        /* no merges -- shift sacks by 1 */
2441 		if (tp->rcv_numsacks < MAX_SACK_BLKS)
2442 			tp->rcv_numsacks++;
2443 		for (i = tp->rcv_numsacks-1; i > 0; i--)
2444 			tp->sackblks[i] = tp->sackblks[i-1];
2445 	}
2446 	tp->sackblks[0] = firstsack;
2447 	return;
2448 }
2449 
2450 /*
2451  * Process the TCP SACK option.  Returns 1 if tcp_dooptions() should continue,
2452  * and 0 otherwise, if the option was fine.  tp->snd_holes is an ordered list
2453  * of holes (oldest to newest, in terms of the sequence space).
2454  */
2455 int
2456 tcp_sack_option(struct tcpcb *tp, struct tcphdr *th, u_char *cp, int optlen)
2457 {
2458 	int tmp_olen;
2459 	u_char *tmp_cp;
2460 	struct sackhole *cur, *p, *temp;
2461 
2462 	if (!tp->sack_enable)
2463 		return (1);
2464 
2465 	/* Note: TCPOLEN_SACK must be 2*sizeof(tcp_seq) */
2466 	if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
2467 		return (1);
2468 	tmp_cp = cp + 2;
2469 	tmp_olen = optlen - 2;
2470 	if (tp->snd_numholes < 0)
2471 		tp->snd_numholes = 0;
2472 	if (tp->t_maxseg == 0)
2473 		panic("tcp_sack_option"); /* Should never happen */
2474 	while (tmp_olen > 0) {
2475 		struct sackblk sack;
2476 
2477 		bcopy(tmp_cp, (char *) &(sack.start), sizeof(tcp_seq));
2478 		NTOHL(sack.start);
2479 		bcopy(tmp_cp + sizeof(tcp_seq),
2480 		    (char *) &(sack.end), sizeof(tcp_seq));
2481 		NTOHL(sack.end);
2482 		tmp_olen -= TCPOLEN_SACK;
2483 		tmp_cp += TCPOLEN_SACK;
2484 		if (SEQ_LEQ(sack.end, sack.start))
2485 			continue; /* bad SACK fields */
2486 		if (SEQ_LEQ(sack.end, tp->snd_una))
2487 			continue; /* old block */
2488 #if defined(TCP_SACK) && defined(TCP_FACK)
2489 		/* Updates snd_fack.  */
2490 		if (SEQ_GT(sack.end, tp->snd_fack))
2491 			tp->snd_fack = sack.end;
2492 #endif /* TCP_FACK */
2493 		if (SEQ_GT(th->th_ack, tp->snd_una)) {
2494 			if (SEQ_LT(sack.start, th->th_ack))
2495 				continue;
2496 		}
2497 		if (SEQ_GT(sack.end, tp->snd_max))
2498 			continue;
2499 		if (tp->snd_holes == NULL) { /* first hole */
2500 			tp->snd_holes = (struct sackhole *)
2501 			    pool_get(&sackhl_pool, PR_NOWAIT);
2502 			if (tp->snd_holes == NULL) {
2503 				/* ENOBUFS, so ignore SACKed block for now*/
2504 				continue;
2505 			}
2506 			cur = tp->snd_holes;
2507 			cur->start = th->th_ack;
2508 			cur->end = sack.start;
2509 			cur->rxmit = cur->start;
2510 			cur->next = NULL;
2511 			tp->snd_numholes = 1;
2512 			tp->rcv_lastsack = sack.end;
2513 			/*
2514 			 * dups is at least one.  If more data has been
2515 			 * SACKed, it can be greater than one.
2516 			 */
2517 			cur->dups = min(tcprexmtthresh,
2518 			    ((sack.end - cur->end)/tp->t_maxseg));
2519 			if (cur->dups < 1)
2520 				cur->dups = 1;
2521 			continue; /* with next sack block */
2522 		}
2523 		/* Go thru list of holes:  p = previous,  cur = current */
2524 		p = cur = tp->snd_holes;
2525 		while (cur) {
2526 			if (SEQ_LEQ(sack.end, cur->start))
2527 				/* SACKs data before the current hole */
2528 				break; /* no use going through more holes */
2529 			if (SEQ_GEQ(sack.start, cur->end)) {
2530 				/* SACKs data beyond the current hole */
2531 				cur->dups++;
2532 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2533 				    tcprexmtthresh)
2534 					cur->dups = tcprexmtthresh;
2535 				p = cur;
2536 				cur = cur->next;
2537 				continue;
2538 			}
2539 			if (SEQ_LEQ(sack.start, cur->start)) {
2540 				/* Data acks at least the beginning of hole */
2541 #if defined(TCP_SACK) && defined(TCP_FACK)
2542 				if (SEQ_GT(sack.end, cur->rxmit))
2543 					tp->retran_data -=
2544 				    	    tcp_seq_subtract(cur->rxmit,
2545 					    cur->start);
2546 				else
2547 					tp->retran_data -=
2548 					    tcp_seq_subtract(sack.end,
2549 					    cur->start);
2550 #endif /* TCP_FACK */
2551 				if (SEQ_GEQ(sack.end, cur->end)) {
2552 					/* Acks entire hole, so delete hole */
2553 					if (p != cur) {
2554 						p->next = cur->next;
2555 						pool_put(&sackhl_pool, cur);
2556 						cur = p->next;
2557 					} else {
2558 						cur = cur->next;
2559 						pool_put(&sackhl_pool, p);
2560 						p = cur;
2561 						tp->snd_holes = p;
2562 					}
2563 					tp->snd_numholes--;
2564 					continue;
2565 				}
2566 				/* otherwise, move start of hole forward */
2567 				cur->start = sack.end;
2568 				cur->rxmit = max (cur->rxmit, cur->start);
2569 				p = cur;
2570 				cur = cur->next;
2571 				continue;
2572 			}
2573 			/* move end of hole backward */
2574 			if (SEQ_GEQ(sack.end, cur->end)) {
2575 #if defined(TCP_SACK) && defined(TCP_FACK)
2576 				if (SEQ_GT(cur->rxmit, sack.start))
2577 					tp->retran_data -=
2578 					    tcp_seq_subtract(cur->rxmit,
2579 					    sack.start);
2580 #endif /* TCP_FACK */
2581 				cur->end = sack.start;
2582 				cur->rxmit = min(cur->rxmit, cur->end);
2583 				cur->dups++;
2584 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2585 				    tcprexmtthresh)
2586 					cur->dups = tcprexmtthresh;
2587 				p = cur;
2588 				cur = cur->next;
2589 				continue;
2590 			}
2591 			if (SEQ_LT(cur->start, sack.start) &&
2592 			    SEQ_GT(cur->end, sack.end)) {
2593 				/*
2594 				 * ACKs some data in middle of a hole; need to
2595 				 * split current hole
2596 				 */
2597 				temp = (struct sackhole *)
2598 				    pool_get(&sackhl_pool, PR_NOWAIT);
2599 				if (temp == NULL)
2600 					continue; /* ENOBUFS */
2601 #if defined(TCP_SACK) && defined(TCP_FACK)
2602 				if (SEQ_GT(cur->rxmit, sack.end))
2603 					tp->retran_data -=
2604 					    tcp_seq_subtract(sack.end,
2605 					    sack.start);
2606 				else if (SEQ_GT(cur->rxmit, sack.start))
2607 					tp->retran_data -=
2608 					    tcp_seq_subtract(cur->rxmit,
2609 					    sack.start);
2610 #endif /* TCP_FACK */
2611 				temp->next = cur->next;
2612 				temp->start = sack.end;
2613 				temp->end = cur->end;
2614 				temp->dups = cur->dups;
2615 				temp->rxmit = max(cur->rxmit, temp->start);
2616 				cur->end = sack.start;
2617 				cur->rxmit = min(cur->rxmit, cur->end);
2618 				cur->dups++;
2619 				if (((sack.end - cur->end)/tp->t_maxseg) >=
2620 					tcprexmtthresh)
2621 					cur->dups = tcprexmtthresh;
2622 				cur->next = temp;
2623 				p = temp;
2624 				cur = p->next;
2625 				tp->snd_numholes++;
2626 			}
2627 		}
2628 		/* At this point, p points to the last hole on the list */
2629 		if (SEQ_LT(tp->rcv_lastsack, sack.start)) {
2630 			/*
2631 			 * Need to append new hole at end.
2632 			 * Last hole is p (and it's not NULL).
2633 			 */
2634 			temp = (struct sackhole *)
2635 			    pool_get(&sackhl_pool, PR_NOWAIT);
2636 			if (temp == NULL)
2637 				continue; /* ENOBUFS */
2638 			temp->start = tp->rcv_lastsack;
2639 			temp->end = sack.start;
2640 			temp->dups = min(tcprexmtthresh,
2641 			    ((sack.end - sack.start)/tp->t_maxseg));
2642 			if (temp->dups < 1)
2643 				temp->dups = 1;
2644 			temp->rxmit = temp->start;
2645 			temp->next = 0;
2646 			p->next = temp;
2647 			tp->rcv_lastsack = sack.end;
2648 			tp->snd_numholes++;
2649 		}
2650 	}
2651 #if defined(TCP_SACK) && defined(TCP_FACK)
2652 	/*
2653 	 * Update retran_data and snd_awnd.  Go through the list of
2654 	 * holes.   Increment retran_data by (hole->rxmit - hole->start).
2655 	 */
2656 	tp->retran_data = 0;
2657 	cur = tp->snd_holes;
2658 	while (cur) {
2659 		tp->retran_data += cur->rxmit - cur->start;
2660 		cur = cur->next;
2661 	}
2662 	tp->snd_awnd = tcp_seq_subtract(tp->snd_nxt, tp->snd_fack) +
2663 	    tp->retran_data;
2664 #endif /* TCP_FACK */
2665 
2666 	return (0);
2667 }
2668 
2669 /*
2670  * Delete stale (i.e, cumulatively ack'd) holes.  Hole is deleted only if
2671  * it is completely acked; otherwise, tcp_sack_option(), called from
2672  * tcp_dooptions(), will fix up the hole.
2673  */
2674 void
2675 tcp_del_sackholes(tp, th)
2676 	struct tcpcb *tp;
2677 	struct tcphdr *th;
2678 {
2679 	if (tp->sack_enable && tp->t_state != TCPS_LISTEN) {
2680 		/* max because this could be an older ack just arrived */
2681 		tcp_seq lastack = SEQ_GT(th->th_ack, tp->snd_una) ?
2682 			th->th_ack : tp->snd_una;
2683 		struct sackhole *cur = tp->snd_holes;
2684 		struct sackhole *prev;
2685 		while (cur)
2686 			if (SEQ_LEQ(cur->end, lastack)) {
2687 				prev = cur;
2688 				cur = cur->next;
2689 				pool_put(&sackhl_pool, prev);
2690 				tp->snd_numholes--;
2691 			} else if (SEQ_LT(cur->start, lastack)) {
2692 				cur->start = lastack;
2693 				if (SEQ_LT(cur->rxmit, cur->start))
2694 					cur->rxmit = cur->start;
2695 				break;
2696 			} else
2697 				break;
2698 		tp->snd_holes = cur;
2699 	}
2700 }
2701 
2702 /*
2703  * Delete all receiver-side SACK information.
2704  */
2705 void
2706 tcp_clean_sackreport(tp)
2707 	struct tcpcb *tp;
2708 {
2709 	int i;
2710 
2711 	tp->rcv_numsacks = 0;
2712 	for (i = 0; i < MAX_SACK_BLKS; i++)
2713 		tp->sackblks[i].start = tp->sackblks[i].end=0;
2714 
2715 }
2716 
2717 /*
2718  * Checks for partial ack.  If partial ack arrives, turn off retransmission
2719  * timer, deflate the window, do not clear tp->t_dupacks, and return 1.
2720  * If the ack advances at least to tp->snd_last, return 0.
2721  */
2722 int
2723 tcp_sack_partialack(tp, th)
2724 	struct tcpcb *tp;
2725 	struct tcphdr *th;
2726 {
2727 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
2728 		/* Turn off retx. timer (will start again next segment) */
2729 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
2730 		tp->t_rtttime = 0;
2731 #ifndef TCP_FACK
2732 		/*
2733 		 * Partial window deflation.  This statement relies on the
2734 		 * fact that tp->snd_una has not been updated yet.  In FACK
2735 		 * hold snd_cwnd constant during fast recovery.
2736 		 */
2737 		if (tp->snd_cwnd > (th->th_ack - tp->snd_una)) {
2738 			tp->snd_cwnd -= th->th_ack - tp->snd_una;
2739 			tp->snd_cwnd += tp->t_maxseg;
2740 		} else
2741 			tp->snd_cwnd = tp->t_maxseg;
2742 #endif
2743 		return (1);
2744 	}
2745 	return (0);
2746 }
2747 #endif /* TCP_SACK */
2748 
2749 /*
2750  * Pull out of band byte out of a segment so
2751  * it doesn't appear in the user's data queue.
2752  * It is still reflected in the segment length for
2753  * sequencing purposes.
2754  */
2755 void
2756 tcp_pulloutofband(so, urgent, m, off)
2757 	struct socket *so;
2758 	u_int urgent;
2759 	struct mbuf *m;
2760 	int off;
2761 {
2762         int cnt = off + urgent - 1;
2763 
2764 	while (cnt >= 0) {
2765 		if (m->m_len > cnt) {
2766 			char *cp = mtod(m, caddr_t) + cnt;
2767 			struct tcpcb *tp = sototcpcb(so);
2768 
2769 			tp->t_iobc = *cp;
2770 			tp->t_oobflags |= TCPOOB_HAVEDATA;
2771 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2772 			m->m_len--;
2773 			return;
2774 		}
2775 		cnt -= m->m_len;
2776 		m = m->m_next;
2777 		if (m == 0)
2778 			break;
2779 	}
2780 	panic("tcp_pulloutofband");
2781 }
2782 
2783 /*
2784  * Collect new round-trip time estimate
2785  * and update averages and current timeout.
2786  */
2787 void
2788 tcp_xmit_timer(tp, rtt)
2789 	struct tcpcb *tp;
2790 	short rtt;
2791 {
2792 	short delta;
2793 	short rttmin;
2794 
2795 	tcpstat.tcps_rttupdated++;
2796 	--rtt;
2797 	if (tp->t_srtt != 0) {
2798 		/*
2799 		 * srtt is stored as fixed point with 3 bits after the
2800 		 * binary point (i.e., scaled by 8).  The following magic
2801 		 * is equivalent to the smoothing algorithm in rfc793 with
2802 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2803 		 * point).  Adjust rtt to origin 0.
2804 		 */
2805 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2806 		if ((tp->t_srtt += delta) <= 0)
2807 			tp->t_srtt = 1;
2808 		/*
2809 		 * We accumulate a smoothed rtt variance (actually, a
2810 		 * smoothed mean difference), then set the retransmit
2811 		 * timer to smoothed rtt + 4 times the smoothed variance.
2812 		 * rttvar is stored as fixed point with 2 bits after the
2813 		 * binary point (scaled by 4).  The following is
2814 		 * equivalent to rfc793 smoothing with an alpha of .75
2815 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
2816 		 * rfc793's wired-in beta.
2817 		 */
2818 		if (delta < 0)
2819 			delta = -delta;
2820 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2821 		if ((tp->t_rttvar += delta) <= 0)
2822 			tp->t_rttvar = 1;
2823 	} else {
2824 		/*
2825 		 * No rtt measurement yet - use the unsmoothed rtt.
2826 		 * Set the variance to half the rtt (so our first
2827 		 * retransmit happens at 3*rtt).
2828 		 */
2829 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2830 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2831 	}
2832 	tp->t_rtttime = 0;
2833 	tp->t_rxtshift = 0;
2834 
2835 	/*
2836 	 * the retransmit should happen at rtt + 4 * rttvar.
2837 	 * Because of the way we do the smoothing, srtt and rttvar
2838 	 * will each average +1/2 tick of bias.  When we compute
2839 	 * the retransmit timer, we want 1/2 tick of rounding and
2840 	 * 1 extra tick because of +-1/2 tick uncertainty in the
2841 	 * firing of the timer.  The bias will give us exactly the
2842 	 * 1.5 tick we need.  But, because the bias is
2843 	 * statistical, we have to test that we don't drop below
2844 	 * the minimum feasible timer (which is 2 ticks).
2845 	 */
2846 	if (tp->t_rttmin > rtt + 2)
2847 		rttmin = tp->t_rttmin;
2848 	else
2849 		rttmin = rtt + 2;
2850 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
2851 
2852 	/*
2853 	 * We received an ack for a packet that wasn't retransmitted;
2854 	 * it is probably safe to discard any error indications we've
2855 	 * received recently.  This isn't quite right, but close enough
2856 	 * for now (a route might have failed after we sent a segment,
2857 	 * and the return path might not be symmetrical).
2858 	 */
2859 	tp->t_softerror = 0;
2860 }
2861 
2862 /*
2863  * Determine a reasonable value for maxseg size.
2864  * If the route is known, check route for mtu.
2865  * If none, use an mss that can be handled on the outgoing
2866  * interface without forcing IP to fragment; if bigger than
2867  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
2868  * to utilize large mbufs.  If no route is found, route has no mtu,
2869  * or the destination isn't local, use a default, hopefully conservative
2870  * size (usually 512 or the default IP max size, but no more than the mtu
2871  * of the interface), as we can't discover anything about intervening
2872  * gateways or networks.  We also initialize the congestion/slow start
2873  * window to be a single segment if the destination isn't local.
2874  * While looking at the routing entry, we also initialize other path-dependent
2875  * parameters from pre-set or cached values in the routing entry.
2876  *
2877  * Also take into account the space needed for options that we
2878  * send regularly.  Make maxseg shorter by that amount to assure
2879  * that we can send maxseg amount of data even when the options
2880  * are present.  Store the upper limit of the length of options plus
2881  * data in maxopd.
2882  *
2883  * NOTE: offer == -1 indicates that the maxseg size changed due to
2884  * Path MTU discovery.
2885  */
2886 int
2887 tcp_mss(tp, offer)
2888 	struct tcpcb *tp;
2889 	int offer;
2890 {
2891 	struct rtentry *rt;
2892 	struct ifnet *ifp;
2893 	int mss, mssopt;
2894 	int iphlen;
2895 	struct inpcb *inp;
2896 
2897 	inp = tp->t_inpcb;
2898 
2899 	mssopt = mss = tcp_mssdflt;
2900 
2901 	rt = in_pcbrtentry(inp);
2902 
2903 	if (rt == NULL)
2904 		goto out;
2905 
2906 	ifp = rt->rt_ifp;
2907 
2908 	switch (tp->pf) {
2909 #ifdef INET6
2910 	case AF_INET6:
2911 		iphlen = sizeof(struct ip6_hdr);
2912 		break;
2913 #endif
2914 	case AF_INET:
2915 		iphlen = sizeof(struct ip);
2916 		break;
2917 	default:
2918 		/* the family does not support path MTU discovery */
2919 		goto out;
2920 	}
2921 
2922 #ifdef RTV_MTU
2923 	/*
2924 	 * if there's an mtu associated with the route and we support
2925 	 * path MTU discovery for the underlying protocol family, use it.
2926 	 */
2927 	if (rt->rt_rmx.rmx_mtu) {
2928 		/*
2929 		 * One may wish to lower MSS to take into account options,
2930 		 * especially security-related options.
2931 		 */
2932 		if (tp->pf == AF_INET6 && rt->rt_rmx.rmx_mtu < IPV6_MMTU) {
2933 			/*
2934 			 * RFC2460 section 5, last paragraph: if path MTU is
2935 			 * smaller than 1280, use 1280 as packet size and
2936 			 * attach fragment header.
2937 			 */
2938 			mss = IPV6_MMTU - iphlen - sizeof(struct ip6_frag) -
2939 			    sizeof(struct tcphdr);
2940 		} else
2941 			mss = rt->rt_rmx.rmx_mtu - iphlen - sizeof(struct tcphdr);
2942 	} else
2943 #endif /* RTV_MTU */
2944 	if (!ifp)
2945 		/*
2946 		 * ifp may be null and rmx_mtu may be zero in certain
2947 		 * v6 cases (e.g., if ND wasn't able to resolve the
2948 		 * destination host.
2949 		 */
2950 		goto out;
2951 	else if (ifp->if_flags & IFF_LOOPBACK)
2952 		mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
2953 	else if (tp->pf == AF_INET) {
2954 		if (ip_mtudisc)
2955 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
2956 		else if (inp && in_localaddr(inp->inp_faddr))
2957 			mss = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
2958 	}
2959 #ifdef INET6
2960 	else if (tp->pf == AF_INET6) {
2961 		/*
2962 		 * for IPv6, path MTU discovery is always turned on,
2963 		 * or the node must use packet size <= 1280.
2964 		 */
2965 		mss = IN6_LINKMTU(ifp) - iphlen - sizeof(struct tcphdr);
2966 	}
2967 #endif /* INET6 */
2968 
2969 	/* Calculate the value that we offer in TCPOPT_MAXSEG */
2970 	if (offer != -1) {
2971 #ifndef INET6
2972 		mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
2973 #else
2974 		if (tp->pf == AF_INET6)
2975 			mssopt = IN6_LINKMTU(ifp) - iphlen -
2976 			    sizeof(struct tcphdr);
2977 		else
2978 			mssopt = ifp->if_mtu - iphlen - sizeof(struct tcphdr);
2979 #endif
2980 
2981 		mssopt = max(tcp_mssdflt, mssopt);
2982 	}
2983 
2984  out:
2985 	/*
2986 	 * The current mss, t_maxseg, is initialized to the default value.
2987 	 * If we compute a smaller value, reduce the current mss.
2988 	 * If we compute a larger value, return it for use in sending
2989 	 * a max seg size option, but don't store it for use
2990 	 * unless we received an offer at least that large from peer.
2991 	 *
2992 	 * However, do not accept offers lower than the minimum of
2993 	 * the interface MTU and 216.
2994 	 */
2995 	if (offer > 0)
2996 		tp->t_peermss = offer;
2997 	if (tp->t_peermss)
2998 		mss = min(mss, max(tp->t_peermss, 216));
2999 
3000 	/* sanity - at least max opt. space */
3001 	mss = max(mss, 64);
3002 
3003 	/*
3004 	 * maxopd stores the maximum length of data AND options
3005 	 * in a segment; maxseg is the amount of data in a normal
3006 	 * segment.  We need to store this value (maxopd) apart
3007 	 * from maxseg, because now every segment carries options
3008 	 * and thus we normally have somewhat less data in segments.
3009 	 */
3010 	tp->t_maxopd = mss;
3011 
3012 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3013 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
3014 		mss -= TCPOLEN_TSTAMP_APPA;
3015 #ifdef TCP_SIGNATURE
3016 	if (tp->t_flags & TF_SIGNATURE)
3017 		mss -= TCPOLEN_SIGLEN;
3018 #endif
3019 
3020 	if (offer == -1) {
3021 		/* mss changed due to Path MTU discovery */
3022 		if (mss < tp->t_maxseg) {
3023 			/*
3024 			 * Follow suggestion in RFC 2414 to reduce the
3025 			 * congestion window by the ratio of the old
3026 			 * segment size to the new segment size.
3027 			 */
3028 			tp->snd_cwnd = ulmax((tp->snd_cwnd / tp->t_maxseg) *
3029 					     mss, mss);
3030 		}
3031 	} else if (tcp_do_rfc3390) {
3032 		/* increase initial window  */
3033 		tp->snd_cwnd = ulmin(4 * mss, ulmax(2 * mss, 4380));
3034 	} else
3035 		tp->snd_cwnd = mss;
3036 
3037 	tp->t_maxseg = mss;
3038 
3039 	return (offer != -1 ? mssopt : mss);
3040 }
3041 
3042 /*
3043  * Set connection variables based on the effective MSS.
3044  * We are passed the TCPCB for the actual connection.  If we
3045  * are the server, we are called by the compressed state engine
3046  * when the 3-way handshake is complete.  If we are the client,
3047  * we are called when we receive the SYN,ACK from the server.
3048  *
3049  * NOTE: The t_maxseg value must be initialized in the TCPCB
3050  * before this routine is called!
3051  */
3052 void
3053 tcp_mss_update(tp)
3054 	struct tcpcb *tp;
3055 {
3056 	int mss;
3057 	u_long bufsize;
3058 	struct rtentry *rt;
3059 	struct socket *so;
3060 
3061 	so = tp->t_inpcb->inp_socket;
3062 	mss = tp->t_maxseg;
3063 
3064 	rt = in_pcbrtentry(tp->t_inpcb);
3065 
3066 	if (rt == NULL)
3067 		return;
3068 
3069 	bufsize = so->so_snd.sb_hiwat;
3070 	if (bufsize < mss) {
3071 		mss = bufsize;
3072 		/* Update t_maxseg and t_maxopd */
3073 		tcp_mss(tp, mss);
3074 	} else {
3075 		bufsize = roundup(bufsize, mss);
3076 		if (bufsize > sb_max)
3077 			bufsize = sb_max;
3078 		(void)sbreserve(&so->so_snd, bufsize);
3079 	}
3080 
3081 	bufsize = so->so_rcv.sb_hiwat;
3082 	if (bufsize > mss) {
3083 		bufsize = roundup(bufsize, mss);
3084 		if (bufsize > sb_max)
3085 			bufsize = sb_max;
3086 		(void)sbreserve(&so->so_rcv, bufsize);
3087 	}
3088 
3089 }
3090 
3091 #if defined (TCP_SACK)
3092 /*
3093  * Checks for partial ack.  If partial ack arrives, force the retransmission
3094  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
3095  * 1.  By setting snd_nxt to ti_ack, this forces retransmission timer to
3096  * be started again.  If the ack advances at least to tp->snd_last, return 0.
3097  */
3098 int
3099 tcp_newreno(tp, th)
3100 	struct tcpcb *tp;
3101 	struct tcphdr *th;
3102 {
3103 	if (SEQ_LT(th->th_ack, tp->snd_last)) {
3104 		/*
3105 		 * snd_una has not been updated and the socket send buffer
3106 		 * not yet drained of the acked data, so we have to leave
3107 		 * snd_una as it was to get the correct data offset in
3108 		 * tcp_output().
3109 		 */
3110 		tcp_seq onxt = tp->snd_nxt;
3111 		u_long  ocwnd = tp->snd_cwnd;
3112 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
3113 		tp->t_rtttime = 0;
3114 		tp->snd_nxt = th->th_ack;
3115 		/*
3116 		 * Set snd_cwnd to one segment beyond acknowledged offset
3117 		 * (tp->snd_una not yet updated when this function is called)
3118 		 */
3119 		tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3120 		(void) tcp_output(tp);
3121 		tp->snd_cwnd = ocwnd;
3122 		if (SEQ_GT(onxt, tp->snd_nxt))
3123 			tp->snd_nxt = onxt;
3124 		/*
3125 		 * Partial window deflation.  Relies on fact that tp->snd_una
3126 		 * not updated yet.
3127 		 */
3128 		tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);
3129 		return 1;
3130 	}
3131 	return 0;
3132 }
3133 #endif /* TCP_SACK */
3134 
3135 static int
3136 tcp_mss_adv(struct ifnet *ifp, int af)
3137 {
3138 	int mss = 0;
3139 	int iphlen;
3140 
3141 	switch (af) {
3142 	case AF_INET:
3143 		if (ifp != NULL)
3144 			mss = ifp->if_mtu;
3145 		iphlen = sizeof(struct ip);
3146 		break;
3147 #ifdef INET6
3148 	case AF_INET6:
3149 		if (ifp != NULL)
3150 			mss = IN6_LINKMTU(ifp);
3151 		iphlen = sizeof(struct ip6_hdr);
3152 		break;
3153 #endif
3154 	}
3155 	mss = mss - iphlen - sizeof(struct tcphdr);
3156 	return (max(mss, tcp_mssdflt));
3157 }
3158 
3159 /*
3160  * TCP compressed state engine.  Currently used to hold compressed
3161  * state for SYN_RECEIVED.
3162  */
3163 
3164 u_long	syn_cache_count;
3165 u_int32_t syn_hash1, syn_hash2;
3166 
3167 #define SYN_HASH(sa, sp, dp) \
3168 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3169 				     ((u_int32_t)(sp)))^syn_hash2)))
3170 #ifndef INET6
3171 #define	SYN_HASHALL(hash, src, dst) \
3172 do {									\
3173 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
3174 		((struct sockaddr_in *)(src))->sin_port,		\
3175 		((struct sockaddr_in *)(dst))->sin_port);		\
3176 } while (/*CONSTCOND*/ 0)
3177 #else
3178 #define SYN_HASH6(sa, sp, dp) \
3179 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3180 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3181 	 & 0x7fffffff)
3182 
3183 #define SYN_HASHALL(hash, src, dst) \
3184 do {									\
3185 	switch ((src)->sa_family) {					\
3186 	case AF_INET:							\
3187 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3188 			((struct sockaddr_in *)(src))->sin_port,	\
3189 			((struct sockaddr_in *)(dst))->sin_port);	\
3190 		break;							\
3191 	case AF_INET6:							\
3192 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3193 			((struct sockaddr_in6 *)(src))->sin6_port,	\
3194 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
3195 		break;							\
3196 	default:							\
3197 		hash = 0;						\
3198 	}								\
3199 } while (/*CONSTCOND*/0)
3200 #endif /* INET6 */
3201 
3202 #define	SYN_CACHE_RM(sc)						\
3203 do {									\
3204 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
3205 	    (sc), sc_bucketq);						\
3206 	(sc)->sc_tp = NULL;						\
3207 	LIST_REMOVE((sc), sc_tpq);					\
3208 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
3209 	timeout_del(&(sc)->sc_timer);					\
3210 	syn_cache_count--;						\
3211 } while (/*CONSTCOND*/0)
3212 
3213 #define	SYN_CACHE_PUT(sc)						\
3214 do {									\
3215 	if ((sc)->sc_ipopts)						\
3216 		(void) m_free((sc)->sc_ipopts);				\
3217 	if ((sc)->sc_route4.ro_rt != NULL)				\
3218 		RTFREE((sc)->sc_route4.ro_rt);				\
3219 	pool_put(&syn_cache_pool, (sc));				\
3220 } while (/*CONSTCOND*/0)
3221 
3222 struct pool syn_cache_pool;
3223 
3224 /*
3225  * We don't estimate RTT with SYNs, so each packet starts with the default
3226  * RTT and each timer step has a fixed timeout value.
3227  */
3228 #define	SYN_CACHE_TIMER_ARM(sc)						\
3229 do {									\
3230 	TCPT_RANGESET((sc)->sc_rxtcur,					\
3231 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
3232 	    TCPTV_REXMTMAX);						\
3233 	if (!timeout_initialized(&(sc)->sc_timer))			\
3234 		timeout_set(&(sc)->sc_timer, syn_cache_timer, (sc));	\
3235 	timeout_add(&(sc)->sc_timer, (sc)->sc_rxtcur * (hz / PR_SLOWHZ)); \
3236 } while (/*CONSTCOND*/0)
3237 
3238 #define	SYN_CACHE_TIMESTAMP(sc)	tcp_now
3239 
3240 void
3241 syn_cache_init()
3242 {
3243 	int i;
3244 
3245 	/* Initialize the hash buckets. */
3246 	for (i = 0; i < tcp_syn_cache_size; i++)
3247 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3248 
3249 	/* Initialize the syn cache pool. */
3250 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3251 	    "synpl", NULL);
3252 }
3253 
3254 void
3255 syn_cache_insert(sc, tp)
3256 	struct syn_cache *sc;
3257 	struct tcpcb *tp;
3258 {
3259 	struct syn_cache_head *scp;
3260 	struct syn_cache *sc2;
3261 	int s;
3262 
3263 	/*
3264 	 * If there are no entries in the hash table, reinitialize
3265 	 * the hash secrets.
3266 	 */
3267 	if (syn_cache_count == 0) {
3268 		syn_hash1 = arc4random();
3269 		syn_hash2 = arc4random();
3270 	}
3271 
3272 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3273 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3274 	scp = &tcp_syn_cache[sc->sc_bucketidx];
3275 
3276 	/*
3277 	 * Make sure that we don't overflow the per-bucket
3278 	 * limit or the total cache size limit.
3279 	 */
3280 	s = splsoftnet();
3281 	if (scp->sch_length >= tcp_syn_bucket_limit) {
3282 		tcpstat.tcps_sc_bucketoverflow++;
3283 		/*
3284 		 * The bucket is full.  Toss the oldest element in the
3285 		 * bucket.  This will be the first entry in the bucket.
3286 		 */
3287 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
3288 #ifdef DIAGNOSTIC
3289 		/*
3290 		 * This should never happen; we should always find an
3291 		 * entry in our bucket.
3292 		 */
3293 		if (sc2 == NULL)
3294 			panic("syn_cache_insert: bucketoverflow: impossible");
3295 #endif
3296 		SYN_CACHE_RM(sc2);
3297 		SYN_CACHE_PUT(sc2);
3298 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
3299 		struct syn_cache_head *scp2, *sce;
3300 
3301 		tcpstat.tcps_sc_overflowed++;
3302 		/*
3303 		 * The cache is full.  Toss the oldest entry in the
3304 		 * first non-empty bucket we can find.
3305 		 *
3306 		 * XXX We would really like to toss the oldest
3307 		 * entry in the cache, but we hope that this
3308 		 * condition doesn't happen very often.
3309 		 */
3310 		scp2 = scp;
3311 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3312 			sce = &tcp_syn_cache[tcp_syn_cache_size];
3313 			for (++scp2; scp2 != scp; scp2++) {
3314 				if (scp2 >= sce)
3315 					scp2 = &tcp_syn_cache[0];
3316 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
3317 					break;
3318 			}
3319 #ifdef DIAGNOSTIC
3320 			/*
3321 			 * This should never happen; we should always find a
3322 			 * non-empty bucket.
3323 			 */
3324 			if (scp2 == scp)
3325 				panic("syn_cache_insert: cacheoverflow: "
3326 				    "impossible");
3327 #endif
3328 		}
3329 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3330 		SYN_CACHE_RM(sc2);
3331 		SYN_CACHE_PUT(sc2);
3332 	}
3333 
3334 	/*
3335 	 * Initialize the entry's timer.
3336 	 */
3337 	sc->sc_rxttot = 0;
3338 	sc->sc_rxtshift = 0;
3339 	SYN_CACHE_TIMER_ARM(sc);
3340 
3341 	/* Link it from tcpcb entry */
3342 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3343 
3344 	/* Put it into the bucket. */
3345 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3346 	scp->sch_length++;
3347 	syn_cache_count++;
3348 
3349 	tcpstat.tcps_sc_added++;
3350 	splx(s);
3351 }
3352 
3353 /*
3354  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3355  * If we have retransmitted an entry the maximum number of times, expire
3356  * that entry.
3357  */
3358 void
3359 syn_cache_timer(void *arg)
3360 {
3361 	struct syn_cache *sc = arg;
3362 	int s;
3363 
3364 	s = splsoftnet();
3365 
3366 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3367 		/* Drop it -- too many retransmissions. */
3368 		goto dropit;
3369 	}
3370 
3371 	/*
3372 	 * Compute the total amount of time this entry has
3373 	 * been on a queue.  If this entry has been on longer
3374 	 * than the keep alive timer would allow, expire it.
3375 	 */
3376 	sc->sc_rxttot += sc->sc_rxtcur;
3377 	if (sc->sc_rxttot >= tcptv_keep_init)
3378 		goto dropit;
3379 
3380 	tcpstat.tcps_sc_retransmitted++;
3381 	(void) syn_cache_respond(sc, NULL);
3382 
3383 	/* Advance the timer back-off. */
3384 	sc->sc_rxtshift++;
3385 	SYN_CACHE_TIMER_ARM(sc);
3386 
3387 	splx(s);
3388 	return;
3389 
3390  dropit:
3391 	tcpstat.tcps_sc_timed_out++;
3392 	SYN_CACHE_RM(sc);
3393 	SYN_CACHE_PUT(sc);
3394 	splx(s);
3395 }
3396 
3397 /*
3398  * Remove syn cache created by the specified tcb entry,
3399  * because this does not make sense to keep them
3400  * (if there's no tcb entry, syn cache entry will never be used)
3401  */
3402 void
3403 syn_cache_cleanup(tp)
3404 	struct tcpcb *tp;
3405 {
3406 	struct syn_cache *sc, *nsc;
3407 	int s;
3408 
3409 	s = splsoftnet();
3410 
3411 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3412 		nsc = LIST_NEXT(sc, sc_tpq);
3413 
3414 #ifdef DIAGNOSTIC
3415 		if (sc->sc_tp != tp)
3416 			panic("invalid sc_tp in syn_cache_cleanup");
3417 #endif
3418 		SYN_CACHE_RM(sc);
3419 		SYN_CACHE_PUT(sc);
3420 	}
3421 	/* just for safety */
3422 	LIST_INIT(&tp->t_sc);
3423 
3424 	splx(s);
3425 }
3426 
3427 /*
3428  * Find an entry in the syn cache.
3429  */
3430 struct syn_cache *
3431 syn_cache_lookup(src, dst, headp)
3432 	struct sockaddr *src;
3433 	struct sockaddr *dst;
3434 	struct syn_cache_head **headp;
3435 {
3436 	struct syn_cache *sc;
3437 	struct syn_cache_head *scp;
3438 	u_int32_t hash;
3439 	int s;
3440 
3441 	SYN_HASHALL(hash, src, dst);
3442 
3443 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3444 	*headp = scp;
3445 	s = splsoftnet();
3446 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3447 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
3448 		if (sc->sc_hash != hash)
3449 			continue;
3450 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3451 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3452 			splx(s);
3453 			return (sc);
3454 		}
3455 	}
3456 	splx(s);
3457 	return (NULL);
3458 }
3459 
3460 /*
3461  * This function gets called when we receive an ACK for a
3462  * socket in the LISTEN state.  We look up the connection
3463  * in the syn cache, and if its there, we pull it out of
3464  * the cache and turn it into a full-blown connection in
3465  * the SYN-RECEIVED state.
3466  *
3467  * The return values may not be immediately obvious, and their effects
3468  * can be subtle, so here they are:
3469  *
3470  *	NULL	SYN was not found in cache; caller should drop the
3471  *		packet and send an RST.
3472  *
3473  *	-1	We were unable to create the new connection, and are
3474  *		aborting it.  An ACK,RST is being sent to the peer
3475  *		(unless we got screwey sequence numbners; see below),
3476  *		because the 3-way handshake has been completed.  Caller
3477  *		should not free the mbuf, since we may be using it.  If
3478  *		we are not, we will free it.
3479  *
3480  *	Otherwise, the return value is a pointer to the new socket
3481  *	associated with the connection.
3482  */
3483 struct socket *
3484 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3485 	struct sockaddr *src;
3486 	struct sockaddr *dst;
3487 	struct tcphdr *th;
3488 	unsigned int hlen, tlen;
3489 	struct socket *so;
3490 	struct mbuf *m;
3491 {
3492 	struct syn_cache *sc;
3493 	struct syn_cache_head *scp;
3494 	struct inpcb *inp = NULL;
3495 	struct tcpcb *tp = 0;
3496 	struct mbuf *am;
3497 	int s;
3498 	struct socket *oso;
3499 
3500 	s = splsoftnet();
3501 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3502 		splx(s);
3503 		return (NULL);
3504 	}
3505 
3506 	/*
3507 	 * Verify the sequence and ack numbers.  Try getting the correct
3508 	 * response again.
3509 	 */
3510 	if ((th->th_ack != sc->sc_iss + 1) ||
3511 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3512 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3513 		(void) syn_cache_respond(sc, m);
3514 		splx(s);
3515 		return ((struct socket *)(-1));
3516 	}
3517 
3518 	/* Remove this cache entry */
3519 	SYN_CACHE_RM(sc);
3520 	splx(s);
3521 
3522 	/*
3523 	 * Ok, create the full blown connection, and set things up
3524 	 * as they would have been set up if we had created the
3525 	 * connection when the SYN arrived.  If we can't create
3526 	 * the connection, abort it.
3527 	 */
3528 	oso = so;
3529 	so = sonewconn(so, SS_ISCONNECTED);
3530 	if (so == NULL)
3531 		goto resetandabort;
3532 
3533 	inp = sotoinpcb(oso);
3534 #ifdef IPSEC
3535 	/*
3536 	 * We need to copy the required security levels
3537 	 * from the old pcb. Ditto for any other
3538 	 * IPsec-related information.
3539 	 */
3540 	{
3541 	  struct inpcb *newinp = (struct inpcb *)so->so_pcb;
3542 	  bcopy(inp->inp_seclevel, newinp->inp_seclevel,
3543 		sizeof(inp->inp_seclevel));
3544 	  newinp->inp_secrequire = inp->inp_secrequire;
3545 	  if (inp->inp_ipo != NULL) {
3546 		  newinp->inp_ipo = inp->inp_ipo;
3547 		  inp->inp_ipo->ipo_ref_count++;
3548 	  }
3549 	  if (inp->inp_ipsec_remotecred != NULL) {
3550 		  newinp->inp_ipsec_remotecred = inp->inp_ipsec_remotecred;
3551 		  inp->inp_ipsec_remotecred->ref_count++;
3552 	  }
3553 	  if (inp->inp_ipsec_remoteauth != NULL) {
3554 		  newinp->inp_ipsec_remoteauth
3555 		      = inp->inp_ipsec_remoteauth;
3556 		  inp->inp_ipsec_remoteauth->ref_count++;
3557 	  }
3558 	}
3559 #endif /* IPSEC */
3560 #ifdef INET6
3561 	/*
3562 	 * inp still has the OLD in_pcb stuff, set the
3563 	 * v6-related flags on the new guy, too.
3564 	 */
3565 	{
3566 	  int flags = inp->inp_flags;
3567 	  struct inpcb *oldinpcb = inp;
3568 
3569 	  inp = (struct inpcb *)so->so_pcb;
3570 	  inp->inp_flags |= (flags & INP_IPV6);
3571 	  if ((inp->inp_flags & INP_IPV6) != 0) {
3572 	    inp->inp_ipv6.ip6_hlim =
3573 	      oldinpcb->inp_ipv6.ip6_hlim;
3574 	  }
3575 	}
3576 #else /* INET6 */
3577 	inp = (struct inpcb *)so->so_pcb;
3578 #endif /* INET6 */
3579 
3580 	inp->inp_lport = th->th_dport;
3581 	switch (src->sa_family) {
3582 #ifdef INET6
3583 	case AF_INET6:
3584 		inp->inp_laddr6 = ((struct sockaddr_in6 *)dst)->sin6_addr;
3585 		break;
3586 #endif /* INET6 */
3587 	case AF_INET:
3588 
3589 		inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3590 		inp->inp_options = ip_srcroute();
3591 		if (inp->inp_options == NULL) {
3592 			inp->inp_options = sc->sc_ipopts;
3593 			sc->sc_ipopts = NULL;
3594 		}
3595 		break;
3596 	}
3597 	in_pcbrehash(inp);
3598 
3599 	/*
3600 	 * Give the new socket our cached route reference.
3601 	 */
3602 	if (src->sa_family == AF_INET)
3603 		inp->inp_route = sc->sc_route4;         /* struct assignment */
3604 #ifdef INET6
3605 	else
3606 		inp->inp_route6 = sc->sc_route6;
3607 #endif
3608 	sc->sc_route4.ro_rt = NULL;
3609 
3610 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
3611 	if (am == NULL)
3612 		goto resetandabort;
3613 	am->m_len = src->sa_len;
3614 	bcopy(src, mtod(am, caddr_t), src->sa_len);
3615 
3616 	switch (src->sa_family) {
3617 	case AF_INET:
3618 		/* drop IPv4 packet to AF_INET6 socket */
3619 		if (inp->inp_flags & INP_IPV6) {
3620 			(void) m_free(am);
3621 			goto resetandabort;
3622 		}
3623 		if (in_pcbconnect(inp, am)) {
3624 			(void) m_free(am);
3625 			goto resetandabort;
3626 		}
3627 		break;
3628 #ifdef INET6
3629 	case AF_INET6:
3630 		if (in6_pcbconnect(inp, am)) {
3631 			(void) m_free(am);
3632 			goto resetandabort;
3633 		}
3634 		break;
3635 #endif
3636 	}
3637 	(void) m_free(am);
3638 
3639 	tp = intotcpcb(inp);
3640 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3641 	if (sc->sc_request_r_scale != 15) {
3642 		tp->requested_s_scale = sc->sc_requested_s_scale;
3643 		tp->request_r_scale = sc->sc_request_r_scale;
3644 		tp->snd_scale = sc->sc_requested_s_scale;
3645 		tp->rcv_scale = sc->sc_request_r_scale;
3646 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3647 	}
3648 	if (sc->sc_flags & SCF_TIMESTAMP)
3649 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3650 
3651 	tp->t_template = tcp_template(tp);
3652 	if (tp->t_template == 0) {
3653 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
3654 		so = NULL;
3655 		m_freem(m);
3656 		goto abort;
3657 	}
3658 #ifdef TCP_SACK
3659 	tp->sack_enable = sc->sc_flags & SCF_SACK_PERMIT;
3660 #endif
3661 
3662 	tp->iss = sc->sc_iss;
3663 	tp->irs = sc->sc_irs;
3664 	tcp_sendseqinit(tp);
3665 #if defined (TCP_SACK) || defined(TCP_ECN)
3666 	tp->snd_last = tp->snd_una;
3667 #endif /* TCP_SACK */
3668 #if defined(TCP_SACK) && defined(TCP_FACK)
3669 	tp->snd_fack = tp->snd_una;
3670 	tp->retran_data = 0;
3671 	tp->snd_awnd = 0;
3672 #endif /* TCP_FACK */
3673 #ifdef TCP_ECN
3674 	if (sc->sc_flags & SCF_ECN_PERMIT) {
3675 		tp->t_flags |= TF_ECN_PERMIT;
3676 		tcpstat.tcps_ecn_accepts++;
3677 	}
3678 #endif
3679 #ifdef TCP_SACK
3680 	if (sc->sc_flags & SCF_SACK_PERMIT)
3681 		tp->t_flags |= TF_SACK_PERMIT;
3682 #endif
3683 #ifdef TCP_SIGNATURE
3684 	if (sc->sc_flags & SCF_SIGNATURE)
3685 		tp->t_flags |= TF_SIGNATURE;
3686 #endif
3687 	tcp_rcvseqinit(tp);
3688 	tp->t_state = TCPS_SYN_RECEIVED;
3689 	tp->t_rcvtime = tcp_now;
3690 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcptv_keep_init);
3691 	tcpstat.tcps_accepts++;
3692 
3693 	tcp_mss(tp, sc->sc_peermaxseg);	 /* sets t_maxseg */
3694 	if (sc->sc_peermaxseg)
3695 		tcp_mss_update(tp);
3696 	/* Reset initial window to 1 segment for retransmit */
3697 	if (sc->sc_rxtshift > 0)
3698 		tp->snd_cwnd = tp->t_maxseg;
3699 	tp->snd_wl1 = sc->sc_irs;
3700 	tp->rcv_up = sc->sc_irs + 1;
3701 
3702 	/*
3703 	 * This is what whould have happened in tcp_output() when
3704 	 * the SYN,ACK was sent.
3705 	 */
3706 	tp->snd_up = tp->snd_una;
3707 	tp->snd_max = tp->snd_nxt = tp->iss+1;
3708 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3709 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3710 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3711 	tp->last_ack_sent = tp->rcv_nxt;
3712 
3713 	tcpstat.tcps_sc_completed++;
3714 	SYN_CACHE_PUT(sc);
3715 	return (so);
3716 
3717 resetandabort:
3718 	tcp_respond(NULL, mtod(m, caddr_t), m, (tcp_seq)0, th->th_ack, TH_RST);
3719 abort:
3720 	if (so != NULL)
3721 		(void) soabort(so);
3722 	SYN_CACHE_PUT(sc);
3723 	tcpstat.tcps_sc_aborted++;
3724 	return ((struct socket *)(-1));
3725 }
3726 
3727 /*
3728  * This function is called when we get a RST for a
3729  * non-existent connection, so that we can see if the
3730  * connection is in the syn cache.  If it is, zap it.
3731  */
3732 
3733 void
3734 syn_cache_reset(src, dst, th)
3735 	struct sockaddr *src;
3736 	struct sockaddr *dst;
3737 	struct tcphdr *th;
3738 {
3739 	struct syn_cache *sc;
3740 	struct syn_cache_head *scp;
3741 	int s = splsoftnet();
3742 
3743 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3744 		splx(s);
3745 		return;
3746 	}
3747 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3748 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3749 		splx(s);
3750 		return;
3751 	}
3752 	SYN_CACHE_RM(sc);
3753 	splx(s);
3754 	tcpstat.tcps_sc_reset++;
3755 	SYN_CACHE_PUT(sc);
3756 }
3757 
3758 void
3759 syn_cache_unreach(src, dst, th)
3760 	struct sockaddr *src;
3761 	struct sockaddr *dst;
3762 	struct tcphdr *th;
3763 {
3764 	struct syn_cache *sc;
3765 	struct syn_cache_head *scp;
3766 	int s;
3767 
3768 	s = splsoftnet();
3769 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3770 		splx(s);
3771 		return;
3772 	}
3773 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3774 	if (ntohl (th->th_seq) != sc->sc_iss) {
3775 		splx(s);
3776 		return;
3777 	}
3778 
3779 	/*
3780 	 * If we've retransmitted 3 times and this is our second error,
3781 	 * we remove the entry.  Otherwise, we allow it to continue on.
3782 	 * This prevents us from incorrectly nuking an entry during a
3783 	 * spurious network outage.
3784 	 *
3785 	 * See tcp_notify().
3786 	 */
3787 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3788 		sc->sc_flags |= SCF_UNREACH;
3789 		splx(s);
3790 		return;
3791 	}
3792 
3793 	SYN_CACHE_RM(sc);
3794 	splx(s);
3795 	tcpstat.tcps_sc_unreach++;
3796 	SYN_CACHE_PUT(sc);
3797 }
3798 
3799 /*
3800  * Given a LISTEN socket and an inbound SYN request, add
3801  * this to the syn cache, and send back a segment:
3802  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3803  * to the source.
3804  *
3805  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3806  * Doing so would require that we hold onto the data and deliver it
3807  * to the application.  However, if we are the target of a SYN-flood
3808  * DoS attack, an attacker could send data which would eventually
3809  * consume all available buffer space if it were ACKed.  By not ACKing
3810  * the data, we avoid this DoS scenario.
3811  */
3812 
3813 int
3814 syn_cache_add(src, dst, th, iphlen, so, m, optp, optlen, oi)
3815 	struct sockaddr *src;
3816 	struct sockaddr *dst;
3817 	struct tcphdr *th;
3818 	unsigned int iphlen;
3819 	struct socket *so;
3820 	struct mbuf *m;
3821 	u_char *optp;
3822 	int optlen;
3823 	struct tcp_opt_info *oi;
3824 {
3825 	struct tcpcb tb, *tp;
3826 	long win;
3827 	struct syn_cache *sc;
3828 	struct syn_cache_head *scp;
3829 	struct mbuf *ipopts;
3830 
3831 	tp = sototcpcb(so);
3832 
3833 	/*
3834 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3835 	 *
3836 	 * Note this check is performed in tcp_input() very early on.
3837 	 */
3838 
3839 	/*
3840 	 * Initialize some local state.
3841 	 */
3842 	win = sbspace(&so->so_rcv);
3843 	if (win > TCP_MAXWIN)
3844 		win = TCP_MAXWIN;
3845 
3846 #ifdef TCP_SIGNATURE
3847 	if (optp || (tp->t_flags & TF_SIGNATURE)) {
3848 #else
3849 	if (optp) {
3850 #endif
3851 		tb.pf = tp->pf;
3852 #ifdef TCP_SACK
3853 		tb.sack_enable = tcp_do_sack;
3854 #endif
3855 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3856 #ifdef TCP_SIGNATURE
3857 		tb.t_state = TCPS_LISTEN;
3858 		if (tp->t_flags & TF_SIGNATURE)
3859 			tb.t_flags |= TF_SIGNATURE;
3860 #endif
3861 		if (tcp_dooptions(&tb, optp, optlen, th, m, iphlen, oi))
3862 			return (0);
3863 	} else
3864 		tb.t_flags = 0;
3865 
3866 	switch (src->sa_family) {
3867 #ifdef INET
3868 	case AF_INET:
3869 		/*
3870 		 * Remember the IP options, if any.
3871 		 */
3872 		ipopts = ip_srcroute();
3873 		break;
3874 #endif
3875 	default:
3876 		ipopts = NULL;
3877 	}
3878 
3879 	/*
3880 	 * See if we already have an entry for this connection.
3881 	 * If we do, resend the SYN,ACK.  We do not count this
3882 	 * as a retransmission (XXX though maybe we should).
3883 	 */
3884 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3885 		tcpstat.tcps_sc_dupesyn++;
3886 		if (ipopts) {
3887 			/*
3888 			 * If we were remembering a previous source route,
3889 			 * forget it and use the new one we've been given.
3890 			 */
3891 			if (sc->sc_ipopts)
3892 				(void) m_free(sc->sc_ipopts);
3893 			sc->sc_ipopts = ipopts;
3894 		}
3895 		sc->sc_timestamp = tb.ts_recent;
3896 		if (syn_cache_respond(sc, m) == 0) {
3897 			tcpstat.tcps_sndacks++;
3898 			tcpstat.tcps_sndtotal++;
3899 		}
3900 		return (1);
3901 	}
3902 
3903 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3904 	if (sc == NULL) {
3905 		if (ipopts)
3906 			(void) m_free(ipopts);
3907 		return (0);
3908 	}
3909 
3910 	/*
3911 	 * Fill in the cache, and put the necessary IP and TCP
3912 	 * options into the reply.
3913 	 */
3914 	bzero(sc, sizeof(struct syn_cache));
3915 	bzero(&sc->sc_timer, sizeof(sc->sc_timer));
3916 	bcopy(src, &sc->sc_src, src->sa_len);
3917 	bcopy(dst, &sc->sc_dst, dst->sa_len);
3918 	sc->sc_flags = 0;
3919 	sc->sc_ipopts = ipopts;
3920 	sc->sc_irs = th->th_seq;
3921 
3922 #ifdef TCP_COMPAT_42
3923 	tcp_iss += TCP_ISSINCR/2;
3924 	sc->sc_iss = tcp_iss;
3925 #else
3926 	sc->sc_iss = tcp_rndiss_next();
3927 #endif
3928 	sc->sc_peermaxseg = oi->maxseg;
3929 	sc->sc_ourmaxseg = tcp_mss_adv(m->m_flags & M_PKTHDR ?
3930 	    m->m_pkthdr.rcvif : NULL, sc->sc_src.sa.sa_family);
3931 	sc->sc_win = win;
3932 	sc->sc_timestamp = tb.ts_recent;
3933 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3934 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3935 		sc->sc_flags |= SCF_TIMESTAMP;
3936 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3937 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3938 		sc->sc_requested_s_scale = tb.requested_s_scale;
3939 		sc->sc_request_r_scale = 0;
3940 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3941 		    TCP_MAXWIN << sc->sc_request_r_scale <
3942 		    so->so_rcv.sb_hiwat)
3943 			sc->sc_request_r_scale++;
3944 	} else {
3945 		sc->sc_requested_s_scale = 15;
3946 		sc->sc_request_r_scale = 15;
3947 	}
3948 #ifdef TCP_ECN
3949 	/*
3950 	 * if both ECE and CWR flag bits are set, peer is ECN capable.
3951 	 */
3952 	if (tcp_do_ecn &&
3953 	    (th->th_flags & (TH_ECE|TH_CWR)) == (TH_ECE|TH_CWR))
3954 		sc->sc_flags |= SCF_ECN_PERMIT;
3955 #endif
3956 #ifdef TCP_SACK
3957 	/*
3958 	 * Set SCF_SACK_PERMIT if peer did send a SACK_PERMITTED option
3959 	 * (i.e., if tcp_dooptions() did set TF_SACK_PERMIT).
3960 	 */
3961 	if (tb.sack_enable && (tb.t_flags & TF_SACK_PERMIT))
3962 		sc->sc_flags |= SCF_SACK_PERMIT;
3963 #endif
3964 #ifdef TCP_SIGNATURE
3965 	if (tb.t_flags & TF_SIGNATURE)
3966 		sc->sc_flags |= SCF_SIGNATURE;
3967 #endif
3968 	sc->sc_tp = tp;
3969 	if (syn_cache_respond(sc, m) == 0) {
3970 		syn_cache_insert(sc, tp);
3971 		tcpstat.tcps_sndacks++;
3972 		tcpstat.tcps_sndtotal++;
3973 	} else {
3974 		SYN_CACHE_PUT(sc);
3975 		tcpstat.tcps_sc_dropped++;
3976 	}
3977 	return (1);
3978 }
3979 
3980 int
3981 syn_cache_respond(sc, m)
3982 	struct syn_cache *sc;
3983 	struct mbuf *m;
3984 {
3985 	struct route *ro;
3986 	u_int8_t *optp;
3987 	int optlen, error;
3988 	u_int16_t tlen;
3989 	struct ip *ip = NULL;
3990 #ifdef INET6
3991 	struct ip6_hdr *ip6 = NULL;
3992 #endif
3993 	struct tcphdr *th;
3994 	u_int hlen;
3995 	struct inpcb *inp;
3996 
3997 	switch (sc->sc_src.sa.sa_family) {
3998 	case AF_INET:
3999 		hlen = sizeof(struct ip);
4000 		ro = &sc->sc_route4;
4001 		break;
4002 #ifdef INET6
4003 	case AF_INET6:
4004 		hlen = sizeof(struct ip6_hdr);
4005 		ro = (struct route *)&sc->sc_route6;
4006 		break;
4007 #endif
4008 	default:
4009 		if (m)
4010 			m_freem(m);
4011 		return (EAFNOSUPPORT);
4012 	}
4013 
4014 	/* Compute the size of the TCP options. */
4015 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4016 #ifdef TCP_SACK
4017 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? 4 : 0) +
4018 #endif
4019 #ifdef TCP_SIGNATURE
4020 	    ((sc->sc_flags & SCF_SIGNATURE) ? TCPOLEN_SIGLEN : 0) +
4021 #endif
4022 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4023 
4024 	tlen = hlen + sizeof(struct tcphdr) + optlen;
4025 
4026 	/*
4027 	 * Create the IP+TCP header from scratch.
4028 	 */
4029 	if (m)
4030 		m_freem(m);
4031 #ifdef DIAGNOSTIC
4032 	if (max_linkhdr + tlen > MCLBYTES)
4033 		return (ENOBUFS);
4034 #endif
4035 	MGETHDR(m, M_DONTWAIT, MT_DATA);
4036 	if (m && tlen > MHLEN) {
4037 		MCLGET(m, M_DONTWAIT);
4038 		if ((m->m_flags & M_EXT) == 0) {
4039 			m_freem(m);
4040 			m = NULL;
4041 		}
4042 	}
4043 	if (m == NULL)
4044 		return (ENOBUFS);
4045 
4046 	/* Fixup the mbuf. */
4047 	m->m_data += max_linkhdr;
4048 	m->m_len = m->m_pkthdr.len = tlen;
4049 	m->m_pkthdr.rcvif = NULL;
4050 	memset(mtod(m, u_char *), 0, tlen);
4051 
4052 	switch (sc->sc_src.sa.sa_family) {
4053 	case AF_INET:
4054 		ip = mtod(m, struct ip *);
4055 		ip->ip_dst = sc->sc_src.sin.sin_addr;
4056 		ip->ip_src = sc->sc_dst.sin.sin_addr;
4057 		ip->ip_p = IPPROTO_TCP;
4058 		th = (struct tcphdr *)(ip + 1);
4059 		th->th_dport = sc->sc_src.sin.sin_port;
4060 		th->th_sport = sc->sc_dst.sin.sin_port;
4061 		break;
4062 #ifdef INET6
4063 	case AF_INET6:
4064 		ip6 = mtod(m, struct ip6_hdr *);
4065 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4066 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4067 		ip6->ip6_nxt = IPPROTO_TCP;
4068 		/* ip6_plen will be updated in ip6_output() */
4069 		th = (struct tcphdr *)(ip6 + 1);
4070 		th->th_dport = sc->sc_src.sin6.sin6_port;
4071 		th->th_sport = sc->sc_dst.sin6.sin6_port;
4072 		break;
4073 #endif
4074 	default:
4075 		th = NULL;
4076 	}
4077 
4078 	th->th_seq = htonl(sc->sc_iss);
4079 	th->th_ack = htonl(sc->sc_irs + 1);
4080 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4081 	th->th_flags = TH_SYN|TH_ACK;
4082 #ifdef TCP_ECN
4083 	/* Set ECE for SYN-ACK if peer supports ECN. */
4084 	if (tcp_do_ecn && (sc->sc_flags & SCF_ECN_PERMIT))
4085 		th->th_flags |= TH_ECE;
4086 #endif
4087 	th->th_win = htons(sc->sc_win);
4088 	/* th_sum already 0 */
4089 	/* th_urp already 0 */
4090 
4091 	/* Tack on the TCP options. */
4092 	optp = (u_int8_t *)(th + 1);
4093 	*optp++ = TCPOPT_MAXSEG;
4094 	*optp++ = 4;
4095 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4096 	*optp++ = sc->sc_ourmaxseg & 0xff;
4097 
4098 #ifdef TCP_SACK
4099 	/* Include SACK_PERMIT_HDR option if peer has already done so. */
4100 	if (sc->sc_flags & SCF_SACK_PERMIT) {
4101 		*((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMIT_HDR);
4102 		optp += 4;
4103 	}
4104 #endif
4105 
4106 	if (sc->sc_request_r_scale != 15) {
4107 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4108 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4109 		    sc->sc_request_r_scale);
4110 		optp += 4;
4111 	}
4112 
4113 	if (sc->sc_flags & SCF_TIMESTAMP) {
4114 		u_int32_t *lp = (u_int32_t *)(optp);
4115 		/* Form timestamp option as shown in appendix A of RFC 1323. */
4116 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
4117 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4118 		*lp   = htonl(sc->sc_timestamp);
4119 		optp += TCPOLEN_TSTAMP_APPA;
4120 	}
4121 
4122 #ifdef TCP_SIGNATURE
4123 	if (sc->sc_flags & SCF_SIGNATURE) {
4124 		union sockaddr_union src, dst;
4125 		struct tdb *tdb;
4126 
4127 		bzero(&src, sizeof(union sockaddr_union));
4128 		bzero(&dst, sizeof(union sockaddr_union));
4129 		src.sa.sa_len = sc->sc_src.sa.sa_len;
4130 		src.sa.sa_family = sc->sc_src.sa.sa_family;
4131 		dst.sa.sa_len = sc->sc_dst.sa.sa_len;
4132 		dst.sa.sa_family = sc->sc_dst.sa.sa_family;
4133 
4134 		switch (sc->sc_src.sa.sa_family) {
4135 		case 0:	/*default to PF_INET*/
4136 #ifdef INET
4137 		case AF_INET:
4138 			src.sin.sin_addr = mtod(m, struct ip *)->ip_src;
4139 			dst.sin.sin_addr = mtod(m, struct ip *)->ip_dst;
4140 			break;
4141 #endif /* INET */
4142 #ifdef INET6
4143 		case AF_INET6:
4144 			src.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_src;
4145 			dst.sin6.sin6_addr = mtod(m, struct ip6_hdr *)->ip6_dst;
4146 			break;
4147 #endif /* INET6 */
4148 		}
4149 
4150 		tdb = gettdbbysrcdst(0, &src, &dst, IPPROTO_TCP);
4151 		if (tdb == NULL) {
4152 			if (m)
4153 				m_freem(m);
4154 			return (EPERM);
4155 		}
4156 
4157 		/* Send signature option */
4158 		*(optp++) = TCPOPT_SIGNATURE;
4159 		*(optp++) = TCPOLEN_SIGNATURE;
4160 
4161 		if (tcp_signature(tdb, sc->sc_src.sa.sa_family, m, th,
4162 		    hlen, 0, optp) < 0) {
4163 			if (m)
4164 				m_freem(m);
4165 			return (EINVAL);
4166 		}
4167 		optp += 16;
4168 
4169 		/* Pad options list to the next 32 bit boundary and
4170 		 * terminate it.
4171 		 */
4172 		*optp++ = TCPOPT_NOP;
4173 		*optp++ = TCPOPT_EOL;
4174 	}
4175 #endif /* TCP_SIGNATURE */
4176 
4177 	/* Compute the packet's checksum. */
4178 	switch (sc->sc_src.sa.sa_family) {
4179 	case AF_INET:
4180 		ip->ip_len = htons(tlen - hlen);
4181 		th->th_sum = 0;
4182 		th->th_sum = in_cksum(m, tlen);
4183 		break;
4184 #ifdef INET6
4185 	case AF_INET6:
4186 		ip6->ip6_plen = htons(tlen - hlen);
4187 		th->th_sum = 0;
4188 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4189 		break;
4190 #endif
4191 	}
4192 
4193 	/*
4194 	 * Fill in some straggling IP bits.  Note the stack expects
4195 	 * ip_len to be in host order, for convenience.
4196 	 */
4197 	switch (sc->sc_src.sa.sa_family) {
4198 #ifdef INET
4199 	case AF_INET:
4200 		ip->ip_len = htons(tlen);
4201 		ip->ip_ttl = ip_defttl;
4202 		/* XXX tos? */
4203 		break;
4204 #endif
4205 #ifdef INET6
4206 	case AF_INET6:
4207 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4208 		ip6->ip6_vfc |= IPV6_VERSION;
4209 		ip6->ip6_plen = htons(tlen - hlen);
4210 		/* ip6_hlim will be initialized afterwards */
4211 		/* leave flowlabel = 0, it is legal and require no state mgmt */
4212 		break;
4213 #endif
4214 	}
4215 
4216 	/* use IPsec policy from listening socket, on SYN ACK */
4217 	inp = sc->sc_tp ? sc->sc_tp->t_inpcb : NULL;
4218 
4219 	switch (sc->sc_src.sa.sa_family) {
4220 #ifdef INET
4221 	case AF_INET:
4222 		error = ip_output(m, sc->sc_ipopts, ro,
4223 		    (ip_mtudisc ? IP_MTUDISC : 0),
4224 		    (struct ip_moptions *)NULL, inp);
4225 		break;
4226 #endif
4227 #ifdef INET6
4228 	case AF_INET6:
4229 		ip6->ip6_hlim = in6_selecthlim(NULL,
4230 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4231 
4232 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4233 			(struct ip6_moptions *)0, NULL);
4234 		break;
4235 #endif
4236 	default:
4237 		error = EAFNOSUPPORT;
4238 		break;
4239 	}
4240 	return (error);
4241 }
4242