xref: /openbsd-src/sys/netinet/ip_output.c (revision b99ef4df7fac99f3475b694d6cd4990521c99ae6)
1 /*	$OpenBSD: ip_output.c,v 1.364 2021/02/06 13:15:37 bluhm Exp $	*/
2 /*	$NetBSD: ip_output.c,v 1.28 1996/02/13 23:43:07 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
33  */
34 
35 #include "pf.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mbuf.h>
40 #include <sys/protosw.h>
41 #include <sys/socket.h>
42 #include <sys/socketvar.h>
43 #include <sys/proc.h>
44 #include <sys/kernel.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_enc.h>
49 #include <net/route.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/ip.h>
53 #include <netinet/in_pcb.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip_var.h>
56 #include <netinet/ip_icmp.h>
57 #include <netinet/tcp.h>
58 #include <netinet/udp.h>
59 #include <netinet/tcp_timer.h>
60 #include <netinet/tcp_var.h>
61 #include <netinet/udp_var.h>
62 
63 #if NPF > 0
64 #include <net/pfvar.h>
65 #endif
66 
67 #ifdef IPSEC
68 #ifdef ENCDEBUG
69 #define DPRINTF(x)    do { if (encdebug) printf x ; } while (0)
70 #else
71 #define DPRINTF(x)
72 #endif
73 #endif /* IPSEC */
74 
75 int ip_pcbopts(struct mbuf **, struct mbuf *);
76 int ip_multicast_if(struct ip_mreqn *, u_int, unsigned int *);
77 int ip_setmoptions(int, struct ip_moptions **, struct mbuf *, u_int);
78 void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
79 static __inline u_int16_t __attribute__((__unused__))
80     in_cksum_phdr(u_int32_t, u_int32_t, u_int32_t);
81 void in_delayed_cksum(struct mbuf *);
82 int in_ifcap_cksum(struct mbuf *, struct ifnet *, int);
83 
84 #ifdef IPSEC
85 struct tdb *
86 ip_output_ipsec_lookup(struct mbuf *m, int hlen, int *error, struct inpcb *inp,
87     int ipsecflowinfo);
88 int
89 ip_output_ipsec_send(struct tdb *, struct mbuf *, struct route *, int);
90 #endif /* IPSEC */
91 
92 /*
93  * IP output.  The packet in mbuf chain m contains a skeletal IP
94  * header (with len, off, ttl, proto, tos, src, dst).
95  * The mbuf chain containing the packet will be freed.
96  * The mbuf opt, if present, will not be freed.
97  */
98 int
99 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
100     struct ip_moptions *imo, struct inpcb *inp, u_int32_t ipsecflowinfo)
101 {
102 	struct ip *ip;
103 	struct ifnet *ifp = NULL;
104 	struct mbuf *m = m0;
105 	int hlen = sizeof (struct ip);
106 	int error = 0;
107 	struct route iproute;
108 	struct sockaddr_in *dst;
109 	struct tdb *tdb = NULL;
110 	u_long mtu;
111 #if defined(MROUTING)
112 	int rv;
113 #endif
114 
115 	NET_ASSERT_LOCKED();
116 
117 #ifdef IPSEC
118 	if (inp && (inp->inp_flags & INP_IPV6) != 0)
119 		panic("ip_output: IPv6 pcb is passed");
120 #endif /* IPSEC */
121 
122 #ifdef	DIAGNOSTIC
123 	if ((m->m_flags & M_PKTHDR) == 0)
124 		panic("ip_output no HDR");
125 #endif
126 	if (opt)
127 		m = ip_insertoptions(m, opt, &hlen);
128 
129 	ip = mtod(m, struct ip *);
130 
131 	/*
132 	 * Fill in IP header.
133 	 */
134 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
135 		ip->ip_v = IPVERSION;
136 		ip->ip_off &= htons(IP_DF);
137 		ip->ip_id = htons(ip_randomid());
138 		ip->ip_hl = hlen >> 2;
139 		ipstat_inc(ips_localout);
140 	} else {
141 		hlen = ip->ip_hl << 2;
142 	}
143 
144 	/*
145 	 * We should not send traffic to 0/8 say both Stevens and RFCs
146 	 * 5735 section 3 and 1122 sections 3.2.1.3 and 3.3.6.
147 	 */
148 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == 0) {
149 		error = ENETUNREACH;
150 		goto bad;
151 	}
152 
153 #if NPF > 0
154 reroute:
155 #endif
156 
157 	/*
158 	 * Do a route lookup now in case we need the source address to
159 	 * do an SPD lookup in IPsec; for most packets, the source address
160 	 * is set at a higher level protocol. ICMPs and other packets
161 	 * though (e.g., traceroute) have a source address of zeroes.
162 	 */
163 	if (ro == NULL) {
164 		ro = &iproute;
165 		memset(ro, 0, sizeof(*ro));
166 	}
167 
168 	dst = satosin(&ro->ro_dst);
169 
170 	/*
171 	 * If there is a cached route, check that it is to the same
172 	 * destination and is still up.  If not, free it and try again.
173 	 */
174 	if (!rtisvalid(ro->ro_rt) ||
175 	    dst->sin_addr.s_addr != ip->ip_dst.s_addr ||
176 	    ro->ro_tableid != m->m_pkthdr.ph_rtableid) {
177 		rtfree(ro->ro_rt);
178 		ro->ro_rt = NULL;
179 	}
180 
181 	if (ro->ro_rt == NULL) {
182 		dst->sin_family = AF_INET;
183 		dst->sin_len = sizeof(*dst);
184 		dst->sin_addr = ip->ip_dst;
185 		ro->ro_tableid = m->m_pkthdr.ph_rtableid;
186 	}
187 
188 	if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
189 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) &&
190 	    imo != NULL && (ifp = if_get(imo->imo_ifidx)) != NULL) {
191 
192 		mtu = ifp->if_mtu;
193 		if (ip->ip_src.s_addr == INADDR_ANY) {
194 			struct in_ifaddr *ia;
195 
196 			IFP_TO_IA(ifp, ia);
197 			if (ia != NULL)
198 				ip->ip_src = ia->ia_addr.sin_addr;
199 		}
200 	} else {
201 		struct in_ifaddr *ia;
202 
203 		if (ro->ro_rt == NULL)
204 			ro->ro_rt = rtalloc_mpath(&ro->ro_dst,
205 			    &ip->ip_src.s_addr, ro->ro_tableid);
206 
207 		if (ro->ro_rt == NULL) {
208 			ipstat_inc(ips_noroute);
209 			error = EHOSTUNREACH;
210 			goto bad;
211 		}
212 
213 		ia = ifatoia(ro->ro_rt->rt_ifa);
214 		if (ISSET(ro->ro_rt->rt_flags, RTF_LOCAL))
215 			ifp = if_get(rtable_loindex(m->m_pkthdr.ph_rtableid));
216 		else
217 			ifp = if_get(ro->ro_rt->rt_ifidx);
218 		/*
219 		 * We aren't using rtisvalid() here because the UP/DOWN state
220 		 * machine is broken with some Ethernet drivers like em(4).
221 		 * As a result we might try to use an invalid cached route
222 		 * entry while an interface is being detached.
223 		 */
224 		if (ifp == NULL) {
225 			ipstat_inc(ips_noroute);
226 			error = EHOSTUNREACH;
227 			goto bad;
228 		}
229 		if ((mtu = ro->ro_rt->rt_mtu) == 0)
230 			mtu = ifp->if_mtu;
231 
232 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
233 			dst = satosin(ro->ro_rt->rt_gateway);
234 
235 		/* Set the source IP address */
236 		if (ip->ip_src.s_addr == INADDR_ANY && ia)
237 			ip->ip_src = ia->ia_addr.sin_addr;
238 	}
239 
240 #ifdef IPSEC
241 	if (ipsec_in_use || inp != NULL) {
242 		/* Do we have any pending SAs to apply ? */
243 		tdb = ip_output_ipsec_lookup(m, hlen, &error, inp,
244 		    ipsecflowinfo);
245 		if (error != 0) {
246 			/* Should silently drop packet */
247 			if (error == -EINVAL)
248 				error = 0;
249 			m_freem(m);
250 			goto done;
251 		}
252 		if (tdb != NULL) {
253 			/*
254 			 * If it needs TCP/UDP hardware-checksumming, do the
255 			 * computation now.
256 			 */
257 			in_proto_cksum_out(m, NULL);
258 		}
259 	}
260 #endif /* IPSEC */
261 
262 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
263 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
264 
265 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
266 			M_BCAST : M_MCAST;
267 
268 		/*
269 		 * IP destination address is multicast.  Make sure "dst"
270 		 * still points to the address in "ro".  (It may have been
271 		 * changed to point to a gateway address, above.)
272 		 */
273 		dst = satosin(&ro->ro_dst);
274 
275 		/*
276 		 * See if the caller provided any multicast options
277 		 */
278 		if (imo != NULL)
279 			ip->ip_ttl = imo->imo_ttl;
280 		else
281 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
282 
283 		/*
284 		 * if we don't know the outgoing ifp yet, we can't generate
285 		 * output
286 		 */
287 		if (!ifp) {
288 			ipstat_inc(ips_noroute);
289 			error = EHOSTUNREACH;
290 			goto bad;
291 		}
292 
293 		/*
294 		 * Confirm that the outgoing interface supports multicast,
295 		 * but only if the packet actually is going out on that
296 		 * interface (i.e., no IPsec is applied).
297 		 */
298 		if ((((m->m_flags & M_MCAST) &&
299 		      (ifp->if_flags & IFF_MULTICAST) == 0) ||
300 		     ((m->m_flags & M_BCAST) &&
301 		      (ifp->if_flags & IFF_BROADCAST) == 0)) && (tdb == NULL)) {
302 			ipstat_inc(ips_noroute);
303 			error = ENETUNREACH;
304 			goto bad;
305 		}
306 
307 		/*
308 		 * If source address not specified yet, use address
309 		 * of outgoing interface.
310 		 */
311 		if (ip->ip_src.s_addr == INADDR_ANY) {
312 			struct in_ifaddr *ia;
313 
314 			IFP_TO_IA(ifp, ia);
315 			if (ia != NULL)
316 				ip->ip_src = ia->ia_addr.sin_addr;
317 		}
318 
319 		if ((imo == NULL || imo->imo_loop) &&
320 		    in_hasmulti(&ip->ip_dst, ifp)) {
321 			/*
322 			 * If we belong to the destination multicast group
323 			 * on the outgoing interface, and the caller did not
324 			 * forbid loopback, loop back a copy.
325 			 * Can't defer TCP/UDP checksumming, do the
326 			 * computation now.
327 			 */
328 			in_proto_cksum_out(m, NULL);
329 			ip_mloopback(ifp, m, dst);
330 		}
331 #ifdef MROUTING
332 		else {
333 			/*
334 			 * If we are acting as a multicast router, perform
335 			 * multicast forwarding as if the packet had just
336 			 * arrived on the interface to which we are about
337 			 * to send.  The multicast forwarding function
338 			 * recursively calls this function, using the
339 			 * IP_FORWARDING flag to prevent infinite recursion.
340 			 *
341 			 * Multicasts that are looped back by ip_mloopback(),
342 			 * above, will be forwarded by the ip_input() routine,
343 			 * if necessary.
344 			 */
345 			if (ipmforwarding && ip_mrouter[ifp->if_rdomain] &&
346 			    (flags & IP_FORWARDING) == 0) {
347 				KERNEL_LOCK();
348 				rv = ip_mforward(m, ifp);
349 				KERNEL_UNLOCK();
350 				if (rv != 0) {
351 					m_freem(m);
352 					goto done;
353 				}
354 			}
355 		}
356 #endif
357 		/*
358 		 * Multicasts with a time-to-live of zero may be looped-
359 		 * back, above, but must not be transmitted on a network.
360 		 * Also, multicasts addressed to the loopback interface
361 		 * are not sent -- the above call to ip_mloopback() will
362 		 * loop back a copy if this host actually belongs to the
363 		 * destination group on the loopback interface.
364 		 */
365 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
366 			m_freem(m);
367 			goto done;
368 		}
369 
370 		goto sendit;
371 	}
372 
373 	/*
374 	 * Look for broadcast address and verify user is allowed to send
375 	 * such a packet; if the packet is going in an IPsec tunnel, skip
376 	 * this check.
377 	 */
378 	if ((tdb == NULL) && ((dst->sin_addr.s_addr == INADDR_BROADCAST) ||
379 	    (ro && ro->ro_rt && ISSET(ro->ro_rt->rt_flags, RTF_BROADCAST)))) {
380 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
381 			error = EADDRNOTAVAIL;
382 			goto bad;
383 		}
384 		if ((flags & IP_ALLOWBROADCAST) == 0) {
385 			error = EACCES;
386 			goto bad;
387 		}
388 
389 		/* Don't allow broadcast messages to be fragmented */
390 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
391 			error = EMSGSIZE;
392 			goto bad;
393 		}
394 		m->m_flags |= M_BCAST;
395 	} else
396 		m->m_flags &= ~M_BCAST;
397 
398 sendit:
399 	/*
400 	 * If we're doing Path MTU discovery, we need to set DF unless
401 	 * the route's MTU is locked.
402 	 */
403 	if ((flags & IP_MTUDISC) && ro && ro->ro_rt &&
404 	    (ro->ro_rt->rt_locks & RTV_MTU) == 0)
405 		ip->ip_off |= htons(IP_DF);
406 
407 #ifdef IPSEC
408 	/*
409 	 * Check if the packet needs encapsulation.
410 	 */
411 	if (tdb != NULL) {
412 		/* Callee frees mbuf */
413 		error = ip_output_ipsec_send(tdb, m, ro,
414 		    (flags & IP_FORWARDING) ? 1 : 0);
415 		goto done;
416 	}
417 #endif /* IPSEC */
418 
419 	/*
420 	 * Packet filter
421 	 */
422 #if NPF > 0
423 	if (pf_test(AF_INET, (flags & IP_FORWARDING) ? PF_FWD : PF_OUT,
424 	    ifp, &m) != PF_PASS) {
425 		error = EACCES;
426 		m_freem(m);
427 		goto done;
428 	}
429 	if (m == NULL)
430 		goto done;
431 	ip = mtod(m, struct ip *);
432 	hlen = ip->ip_hl << 2;
433 	if ((m->m_pkthdr.pf.flags & (PF_TAG_REROUTE | PF_TAG_GENERATED)) ==
434 	    (PF_TAG_REROUTE | PF_TAG_GENERATED))
435 		/* already rerun the route lookup, go on */
436 		m->m_pkthdr.pf.flags &= ~(PF_TAG_GENERATED | PF_TAG_REROUTE);
437 	else if (m->m_pkthdr.pf.flags & PF_TAG_REROUTE) {
438 		/* tag as generated to skip over pf_test on rerun */
439 		m->m_pkthdr.pf.flags |= PF_TAG_GENERATED;
440 		ro = NULL;
441 		if_put(ifp); /* drop reference since target changed */
442 		ifp = NULL;
443 		goto reroute;
444 	}
445 #endif
446 	in_proto_cksum_out(m, ifp);
447 
448 #ifdef IPSEC
449 	if (ipsec_in_use && (flags & IP_FORWARDING) && (ipforwarding == 2) &&
450 	    (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) == NULL)) {
451 		error = EHOSTUNREACH;
452 		m_freem(m);
453 		goto done;
454 	}
455 #endif
456 
457 	/*
458 	 * If small enough for interface, can just send directly.
459 	 */
460 	if (ntohs(ip->ip_len) <= mtu) {
461 		ip->ip_sum = 0;
462 		if (in_ifcap_cksum(m, ifp, IFCAP_CSUM_IPv4))
463 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_OUT;
464 		else {
465 			ipstat_inc(ips_outswcsum);
466 			ip->ip_sum = in_cksum(m, hlen);
467 		}
468 
469 		error = ifp->if_output(ifp, m, sintosa(dst), ro->ro_rt);
470 		goto done;
471 	}
472 
473 	/*
474 	 * Too large for interface; fragment if possible.
475 	 * Must be able to put at least 8 bytes per fragment.
476 	 */
477 	if (ip->ip_off & htons(IP_DF)) {
478 #ifdef IPSEC
479 		if (ip_mtudisc)
480 			ipsec_adjust_mtu(m, ifp->if_mtu);
481 #endif
482 		error = EMSGSIZE;
483 		/*
484 		 * This case can happen if the user changed the MTU
485 		 * of an interface after enabling IP on it.  Because
486 		 * most netifs don't keep track of routes pointing to
487 		 * them, there is no way for one to update all its
488 		 * routes when the MTU is changed.
489 		 */
490 		if (rtisvalid(ro->ro_rt) &&
491 		    ISSET(ro->ro_rt->rt_flags, RTF_HOST) &&
492 		    !(ro->ro_rt->rt_locks & RTV_MTU) &&
493 		    (ro->ro_rt->rt_mtu > ifp->if_mtu)) {
494 			ro->ro_rt->rt_mtu = ifp->if_mtu;
495 		}
496 		ipstat_inc(ips_cantfrag);
497 		goto bad;
498 	}
499 
500 	error = ip_fragment(m, ifp, mtu);
501 	if (error) {
502 		m = m0 = NULL;
503 		goto bad;
504 	}
505 
506 	for (; m; m = m0) {
507 		m0 = m->m_nextpkt;
508 		m->m_nextpkt = 0;
509 		if (error == 0)
510 			error = ifp->if_output(ifp, m, sintosa(dst), ro->ro_rt);
511 		else
512 			m_freem(m);
513 	}
514 
515 	if (error == 0)
516 		ipstat_inc(ips_fragmented);
517 
518 done:
519 	if (ro == &iproute && ro->ro_rt)
520 		rtfree(ro->ro_rt);
521 	if_put(ifp);
522 	return (error);
523 bad:
524 	m_freem(m0);
525 	goto done;
526 }
527 
528 #ifdef IPSEC
529 struct tdb *
530 ip_output_ipsec_lookup(struct mbuf *m, int hlen, int *error, struct inpcb *inp,
531     int ipsecflowinfo)
532 {
533 	struct m_tag *mtag;
534 	struct tdb_ident *tdbi;
535 	struct tdb *tdb;
536 
537 	/* Do we have any pending SAs to apply ? */
538 	tdb = ipsp_spd_lookup(m, AF_INET, hlen, error, IPSP_DIRECTION_OUT,
539 	    NULL, inp, ipsecflowinfo);
540 	if (tdb == NULL)
541 		return NULL;
542 	/* Loop detection */
543 	for (mtag = m_tag_first(m); mtag != NULL; mtag = m_tag_next(m, mtag)) {
544 		if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE)
545 			continue;
546 		tdbi = (struct tdb_ident *)(mtag + 1);
547 		if (tdbi->spi == tdb->tdb_spi &&
548 		    tdbi->proto == tdb->tdb_sproto &&
549 		    tdbi->rdomain == tdb->tdb_rdomain &&
550 		    !memcmp(&tdbi->dst, &tdb->tdb_dst,
551 		    sizeof(union sockaddr_union))) {
552 			/* no IPsec needed */
553 			return NULL;
554 		}
555 	}
556 	return tdb;
557 }
558 
559 int
560 ip_output_ipsec_send(struct tdb *tdb, struct mbuf *m, struct route *ro, int fwd)
561 {
562 #if NPF > 0
563 	struct ifnet *encif;
564 #endif
565 	struct ip *ip;
566 	int error;
567 
568 #if NPF > 0
569 	/*
570 	 * Packet filter
571 	 */
572 	if ((encif = enc_getif(tdb->tdb_rdomain, tdb->tdb_tap)) == NULL ||
573 	    pf_test(AF_INET, fwd ? PF_FWD : PF_OUT, encif, &m) != PF_PASS) {
574 		m_freem(m);
575 		return EACCES;
576 	}
577 	if (m == NULL)
578 		return 0;
579 	/*
580 	 * PF_TAG_REROUTE handling or not...
581 	 * Packet is entering IPsec so the routing is
582 	 * already overruled by the IPsec policy.
583 	 * Until now the change was not reconsidered.
584 	 * What's the behaviour?
585 	 */
586 	in_proto_cksum_out(m, encif);
587 #endif
588 
589 	/* Check if we are allowed to fragment */
590 	ip = mtod(m, struct ip *);
591 	if (ip_mtudisc && (ip->ip_off & htons(IP_DF)) && tdb->tdb_mtu &&
592 	    ntohs(ip->ip_len) > tdb->tdb_mtu &&
593 	    tdb->tdb_mtutimeout > gettime()) {
594 		struct rtentry *rt = NULL;
595 		int rt_mtucloned = 0;
596 		int transportmode = 0;
597 
598 		transportmode = (tdb->tdb_dst.sa.sa_family == AF_INET) &&
599 		    (tdb->tdb_dst.sin.sin_addr.s_addr == ip->ip_dst.s_addr);
600 
601 		/* Find a host route to store the mtu in */
602 		if (ro != NULL)
603 			rt = ro->ro_rt;
604 		/* but don't add a PMTU route for transport mode SAs */
605 		if (transportmode)
606 			rt = NULL;
607 		else if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0) {
608 			rt = icmp_mtudisc_clone(ip->ip_dst,
609 			    m->m_pkthdr.ph_rtableid, 1);
610 			rt_mtucloned = 1;
611 		}
612 		DPRINTF(("%s: spi %08x mtu %d rt %p cloned %d\n", __func__,
613 		    ntohl(tdb->tdb_spi), tdb->tdb_mtu, rt, rt_mtucloned));
614 		if (rt != NULL) {
615 			rt->rt_mtu = tdb->tdb_mtu;
616 			if (ro != NULL && ro->ro_rt != NULL) {
617 				rtfree(ro->ro_rt);
618 				ro->ro_rt = rtalloc(&ro->ro_dst, RT_RESOLVE,
619 				    m->m_pkthdr.ph_rtableid);
620 			}
621 			if (rt_mtucloned)
622 				rtfree(rt);
623 		}
624 		ipsec_adjust_mtu(m, tdb->tdb_mtu);
625 		m_freem(m);
626 		return EMSGSIZE;
627 	}
628 	/* propagate IP_DF for v4-over-v6 */
629 	if (ip_mtudisc && ip->ip_off & htons(IP_DF))
630 		SET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT);
631 
632 	/*
633 	 * Clear these -- they'll be set in the recursive invocation
634 	 * as needed.
635 	 */
636 	m->m_flags &= ~(M_MCAST | M_BCAST);
637 
638 	/* Callee frees mbuf */
639 	error = ipsp_process_packet(m, tdb, AF_INET, 0);
640 	if (error) {
641 		ipsecstat_inc(ipsec_odrops);
642 		tdb->tdb_odrops++;
643 	}
644 	return error;
645 }
646 #endif /* IPSEC */
647 
648 int
649 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
650 {
651 	struct ip *ip, *mhip;
652 	struct mbuf *m0;
653 	int len, hlen, off;
654 	int mhlen, firstlen;
655 	struct mbuf **mnext;
656 	int fragments = 0;
657 	int error = 0;
658 
659 	ip = mtod(m, struct ip *);
660 	hlen = ip->ip_hl << 2;
661 
662 	len = (mtu - hlen) &~ 7;
663 	if (len < 8) {
664 		m_freem(m);
665 		return (EMSGSIZE);
666 	}
667 
668 	/*
669 	 * If we are doing fragmentation, we can't defer TCP/UDP
670 	 * checksumming; compute the checksum and clear the flag.
671 	 */
672 	in_proto_cksum_out(m, NULL);
673 	firstlen = len;
674 	mnext = &m->m_nextpkt;
675 
676 	/*
677 	 * Loop through length of segment after first fragment,
678 	 * make new header and copy data of each part and link onto chain.
679 	 */
680 	m0 = m;
681 	mhlen = sizeof (struct ip);
682 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
683 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
684 		if (m == NULL) {
685 			ipstat_inc(ips_odropped);
686 			error = ENOBUFS;
687 			goto sendorfree;
688 		}
689 		*mnext = m;
690 		mnext = &m->m_nextpkt;
691 		m->m_data += max_linkhdr;
692 		mhip = mtod(m, struct ip *);
693 		*mhip = *ip;
694 		/* we must inherit MCAST/BCAST flags, routing table and prio */
695 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
696 		m->m_pkthdr.ph_rtableid = m0->m_pkthdr.ph_rtableid;
697 		m->m_pkthdr.pf.prio = m0->m_pkthdr.pf.prio;
698 		if (hlen > sizeof (struct ip)) {
699 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
700 			mhip->ip_hl = mhlen >> 2;
701 		}
702 		m->m_len = mhlen;
703 		mhip->ip_off = ((off - hlen) >> 3) +
704 		    (ntohs(ip->ip_off) & ~IP_MF);
705 		if (ip->ip_off & htons(IP_MF))
706 			mhip->ip_off |= IP_MF;
707 		if (off + len >= ntohs(ip->ip_len))
708 			len = ntohs(ip->ip_len) - off;
709 		else
710 			mhip->ip_off |= IP_MF;
711 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
712 		m->m_next = m_copym(m0, off, len, M_NOWAIT);
713 		if (m->m_next == 0) {
714 			ipstat_inc(ips_odropped);
715 			error = ENOBUFS;
716 			goto sendorfree;
717 		}
718 		m->m_pkthdr.len = mhlen + len;
719 		m->m_pkthdr.ph_ifidx = 0;
720 		mhip->ip_off = htons((u_int16_t)mhip->ip_off);
721 		mhip->ip_sum = 0;
722 		if (in_ifcap_cksum(m, ifp, IFCAP_CSUM_IPv4))
723 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_OUT;
724 		else {
725 			ipstat_inc(ips_outswcsum);
726 			mhip->ip_sum = in_cksum(m, mhlen);
727 		}
728 		ipstat_inc(ips_ofragments);
729 		fragments++;
730 	}
731 	/*
732 	 * Update first fragment by trimming what's been copied out
733 	 * and updating header, then send each fragment (in order).
734 	 */
735 	m = m0;
736 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
737 	m->m_pkthdr.len = hlen + firstlen;
738 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
739 	ip->ip_off |= htons(IP_MF);
740 	ip->ip_sum = 0;
741 	if (in_ifcap_cksum(m, ifp, IFCAP_CSUM_IPv4))
742 		m->m_pkthdr.csum_flags |= M_IPV4_CSUM_OUT;
743 	else {
744 		ipstat_inc(ips_outswcsum);
745 		ip->ip_sum = in_cksum(m, hlen);
746 	}
747 sendorfree:
748 	if (error) {
749 		for (m = m0; m; m = m0) {
750 			m0 = m->m_nextpkt;
751 			m->m_nextpkt = NULL;
752 			m_freem(m);
753 		}
754 	}
755 
756 	return (error);
757 }
758 
759 /*
760  * Insert IP options into preformed packet.
761  * Adjust IP destination as required for IP source routing,
762  * as indicated by a non-zero in_addr at the start of the options.
763  */
764 struct mbuf *
765 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
766 {
767 	struct ipoption *p = mtod(opt, struct ipoption *);
768 	struct mbuf *n;
769 	struct ip *ip = mtod(m, struct ip *);
770 	unsigned int optlen;
771 
772 	optlen = opt->m_len - sizeof(p->ipopt_dst);
773 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
774 		return (m);		/* XXX should fail */
775 	if (p->ipopt_dst.s_addr)
776 		ip->ip_dst = p->ipopt_dst;
777 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
778 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
779 		if (n == NULL)
780 			return (m);
781 		M_MOVE_HDR(n, m);
782 		n->m_pkthdr.len += optlen;
783 		m->m_len -= sizeof(struct ip);
784 		m->m_data += sizeof(struct ip);
785 		n->m_next = m;
786 		m = n;
787 		m->m_len = optlen + sizeof(struct ip);
788 		m->m_data += max_linkhdr;
789 		memcpy(mtod(m, caddr_t), ip, sizeof(struct ip));
790 	} else {
791 		m->m_data -= optlen;
792 		m->m_len += optlen;
793 		m->m_pkthdr.len += optlen;
794 		memmove(mtod(m, caddr_t), (caddr_t)ip, sizeof(struct ip));
795 	}
796 	ip = mtod(m, struct ip *);
797 	memcpy(ip + 1, p->ipopt_list, optlen);
798 	*phlen = sizeof(struct ip) + optlen;
799 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
800 	return (m);
801 }
802 
803 /*
804  * Copy options from ip to jp,
805  * omitting those not copied during fragmentation.
806  */
807 int
808 ip_optcopy(struct ip *ip, struct ip *jp)
809 {
810 	u_char *cp, *dp;
811 	int opt, optlen, cnt;
812 
813 	cp = (u_char *)(ip + 1);
814 	dp = (u_char *)(jp + 1);
815 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
816 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
817 		opt = cp[0];
818 		if (opt == IPOPT_EOL)
819 			break;
820 		if (opt == IPOPT_NOP) {
821 			/* Preserve for IP mcast tunnel's LSRR alignment. */
822 			*dp++ = IPOPT_NOP;
823 			optlen = 1;
824 			continue;
825 		}
826 #ifdef DIAGNOSTIC
827 		if (cnt < IPOPT_OLEN + sizeof(*cp))
828 			panic("malformed IPv4 option passed to ip_optcopy");
829 #endif
830 		optlen = cp[IPOPT_OLEN];
831 #ifdef DIAGNOSTIC
832 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
833 			panic("malformed IPv4 option passed to ip_optcopy");
834 #endif
835 		/* bogus lengths should have been caught by ip_dooptions */
836 		if (optlen > cnt)
837 			optlen = cnt;
838 		if (IPOPT_COPIED(opt)) {
839 			memcpy(dp, cp, optlen);
840 			dp += optlen;
841 		}
842 	}
843 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
844 		*dp++ = IPOPT_EOL;
845 	return (optlen);
846 }
847 
848 /*
849  * IP socket option processing.
850  */
851 int
852 ip_ctloutput(int op, struct socket *so, int level, int optname,
853     struct mbuf *m)
854 {
855 	struct inpcb *inp = sotoinpcb(so);
856 	int optval = 0;
857 	struct proc *p = curproc; /* XXX */
858 	int error = 0;
859 	u_int rtid = 0;
860 
861 	if (level != IPPROTO_IP)
862 		return (EINVAL);
863 
864 	switch (op) {
865 	case PRCO_SETOPT:
866 		switch (optname) {
867 		case IP_OPTIONS:
868 			return (ip_pcbopts(&inp->inp_options, m));
869 
870 		case IP_TOS:
871 		case IP_TTL:
872 		case IP_MINTTL:
873 		case IP_RECVOPTS:
874 		case IP_RECVRETOPTS:
875 		case IP_RECVDSTADDR:
876 		case IP_RECVIF:
877 		case IP_RECVTTL:
878 		case IP_RECVDSTPORT:
879 		case IP_RECVRTABLE:
880 		case IP_IPSECFLOWINFO:
881 			if (m == NULL || m->m_len != sizeof(int))
882 				error = EINVAL;
883 			else {
884 				optval = *mtod(m, int *);
885 				switch (optname) {
886 
887 				case IP_TOS:
888 					inp->inp_ip.ip_tos = optval;
889 					break;
890 
891 				case IP_TTL:
892 					if (optval > 0 && optval <= MAXTTL)
893 						inp->inp_ip.ip_ttl = optval;
894 					else if (optval == -1)
895 						inp->inp_ip.ip_ttl = ip_defttl;
896 					else
897 						error = EINVAL;
898 					break;
899 
900 				case IP_MINTTL:
901 					if (optval >= 0 && optval <= MAXTTL)
902 						inp->inp_ip_minttl = optval;
903 					else
904 						error = EINVAL;
905 					break;
906 #define	OPTSET(bit) \
907 	if (optval) \
908 		inp->inp_flags |= bit; \
909 	else \
910 		inp->inp_flags &= ~bit;
911 
912 				case IP_RECVOPTS:
913 					OPTSET(INP_RECVOPTS);
914 					break;
915 
916 				case IP_RECVRETOPTS:
917 					OPTSET(INP_RECVRETOPTS);
918 					break;
919 
920 				case IP_RECVDSTADDR:
921 					OPTSET(INP_RECVDSTADDR);
922 					break;
923 				case IP_RECVIF:
924 					OPTSET(INP_RECVIF);
925 					break;
926 				case IP_RECVTTL:
927 					OPTSET(INP_RECVTTL);
928 					break;
929 				case IP_RECVDSTPORT:
930 					OPTSET(INP_RECVDSTPORT);
931 					break;
932 				case IP_RECVRTABLE:
933 					OPTSET(INP_RECVRTABLE);
934 					break;
935 				case IP_IPSECFLOWINFO:
936 					OPTSET(INP_IPSECFLOWINFO);
937 					break;
938 				}
939 			}
940 			break;
941 #undef OPTSET
942 
943 		case IP_MULTICAST_IF:
944 		case IP_MULTICAST_TTL:
945 		case IP_MULTICAST_LOOP:
946 		case IP_ADD_MEMBERSHIP:
947 		case IP_DROP_MEMBERSHIP:
948 			error = ip_setmoptions(optname, &inp->inp_moptions, m,
949 			    inp->inp_rtableid);
950 			break;
951 
952 		case IP_PORTRANGE:
953 			if (m == NULL || m->m_len != sizeof(int))
954 				error = EINVAL;
955 			else {
956 				optval = *mtod(m, int *);
957 
958 				switch (optval) {
959 
960 				case IP_PORTRANGE_DEFAULT:
961 					inp->inp_flags &= ~(INP_LOWPORT);
962 					inp->inp_flags &= ~(INP_HIGHPORT);
963 					break;
964 
965 				case IP_PORTRANGE_HIGH:
966 					inp->inp_flags &= ~(INP_LOWPORT);
967 					inp->inp_flags |= INP_HIGHPORT;
968 					break;
969 
970 				case IP_PORTRANGE_LOW:
971 					inp->inp_flags &= ~(INP_HIGHPORT);
972 					inp->inp_flags |= INP_LOWPORT;
973 					break;
974 
975 				default:
976 
977 					error = EINVAL;
978 					break;
979 				}
980 			}
981 			break;
982 		case IP_AUTH_LEVEL:
983 		case IP_ESP_TRANS_LEVEL:
984 		case IP_ESP_NETWORK_LEVEL:
985 		case IP_IPCOMP_LEVEL:
986 #ifndef IPSEC
987 			error = EOPNOTSUPP;
988 #else
989 			if (m == NULL || m->m_len != sizeof(int)) {
990 				error = EINVAL;
991 				break;
992 			}
993 			optval = *mtod(m, int *);
994 
995 			if (optval < IPSEC_LEVEL_BYPASS ||
996 			    optval > IPSEC_LEVEL_UNIQUE) {
997 				error = EINVAL;
998 				break;
999 			}
1000 
1001 			switch (optname) {
1002 			case IP_AUTH_LEVEL:
1003 				if (optval < IPSEC_AUTH_LEVEL_DEFAULT &&
1004 				    suser(p)) {
1005 					error = EACCES;
1006 					break;
1007 				}
1008 				inp->inp_seclevel[SL_AUTH] = optval;
1009 				break;
1010 
1011 			case IP_ESP_TRANS_LEVEL:
1012 				if (optval < IPSEC_ESP_TRANS_LEVEL_DEFAULT &&
1013 				    suser(p)) {
1014 					error = EACCES;
1015 					break;
1016 				}
1017 				inp->inp_seclevel[SL_ESP_TRANS] = optval;
1018 				break;
1019 
1020 			case IP_ESP_NETWORK_LEVEL:
1021 				if (optval < IPSEC_ESP_NETWORK_LEVEL_DEFAULT &&
1022 				    suser(p)) {
1023 					error = EACCES;
1024 					break;
1025 				}
1026 				inp->inp_seclevel[SL_ESP_NETWORK] = optval;
1027 				break;
1028 			case IP_IPCOMP_LEVEL:
1029 				if (optval < IPSEC_IPCOMP_LEVEL_DEFAULT &&
1030 				    suser(p)) {
1031 					error = EACCES;
1032 					break;
1033 				}
1034 				inp->inp_seclevel[SL_IPCOMP] = optval;
1035 				break;
1036 			}
1037 #endif
1038 			break;
1039 
1040 		case IP_IPSEC_LOCAL_ID:
1041 		case IP_IPSEC_REMOTE_ID:
1042 			error = EOPNOTSUPP;
1043 			break;
1044 		case SO_RTABLE:
1045 			if (m == NULL || m->m_len < sizeof(u_int)) {
1046 				error = EINVAL;
1047 				break;
1048 			}
1049 			rtid = *mtod(m, u_int *);
1050 			if (inp->inp_rtableid == rtid)
1051 				break;
1052 			/* needs privileges to switch when already set */
1053 			if (p->p_p->ps_rtableid != rtid &&
1054 			    p->p_p->ps_rtableid != 0 &&
1055 			    (error = suser(p)) != 0)
1056 				break;
1057 			/* table must exist */
1058 			if (!rtable_exists(rtid)) {
1059 				error = EINVAL;
1060 				break;
1061 			}
1062 			if (inp->inp_lport) {
1063 				error = EBUSY;
1064 				break;
1065 			}
1066 			inp->inp_rtableid = rtid;
1067 			in_pcbrehash(inp);
1068 			break;
1069 		case IP_PIPEX:
1070 			if (m != NULL && m->m_len == sizeof(int))
1071 				inp->inp_pipex = *mtod(m, int *);
1072 			else
1073 				error = EINVAL;
1074 			break;
1075 
1076 		default:
1077 			error = ENOPROTOOPT;
1078 			break;
1079 		}
1080 		break;
1081 
1082 	case PRCO_GETOPT:
1083 		switch (optname) {
1084 		case IP_OPTIONS:
1085 		case IP_RETOPTS:
1086 			if (inp->inp_options) {
1087 				m->m_len = inp->inp_options->m_len;
1088 				memcpy(mtod(m, caddr_t),
1089 				    mtod(inp->inp_options, caddr_t), m->m_len);
1090 			} else
1091 				m->m_len = 0;
1092 			break;
1093 
1094 		case IP_TOS:
1095 		case IP_TTL:
1096 		case IP_MINTTL:
1097 		case IP_RECVOPTS:
1098 		case IP_RECVRETOPTS:
1099 		case IP_RECVDSTADDR:
1100 		case IP_RECVIF:
1101 		case IP_RECVTTL:
1102 		case IP_RECVDSTPORT:
1103 		case IP_RECVRTABLE:
1104 		case IP_IPSECFLOWINFO:
1105 		case IP_IPDEFTTL:
1106 			m->m_len = sizeof(int);
1107 			switch (optname) {
1108 
1109 			case IP_TOS:
1110 				optval = inp->inp_ip.ip_tos;
1111 				break;
1112 
1113 			case IP_TTL:
1114 				optval = inp->inp_ip.ip_ttl;
1115 				break;
1116 
1117 			case IP_MINTTL:
1118 				optval = inp->inp_ip_minttl;
1119 				break;
1120 
1121 			case IP_IPDEFTTL:
1122 				optval = ip_defttl;
1123 				break;
1124 
1125 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1126 
1127 			case IP_RECVOPTS:
1128 				optval = OPTBIT(INP_RECVOPTS);
1129 				break;
1130 
1131 			case IP_RECVRETOPTS:
1132 				optval = OPTBIT(INP_RECVRETOPTS);
1133 				break;
1134 
1135 			case IP_RECVDSTADDR:
1136 				optval = OPTBIT(INP_RECVDSTADDR);
1137 				break;
1138 			case IP_RECVIF:
1139 				optval = OPTBIT(INP_RECVIF);
1140 				break;
1141 			case IP_RECVTTL:
1142 				optval = OPTBIT(INP_RECVTTL);
1143 				break;
1144 			case IP_RECVDSTPORT:
1145 				optval = OPTBIT(INP_RECVDSTPORT);
1146 				break;
1147 			case IP_RECVRTABLE:
1148 				optval = OPTBIT(INP_RECVRTABLE);
1149 				break;
1150 			case IP_IPSECFLOWINFO:
1151 				optval = OPTBIT(INP_IPSECFLOWINFO);
1152 				break;
1153 			}
1154 			*mtod(m, int *) = optval;
1155 			break;
1156 
1157 		case IP_MULTICAST_IF:
1158 		case IP_MULTICAST_TTL:
1159 		case IP_MULTICAST_LOOP:
1160 		case IP_ADD_MEMBERSHIP:
1161 		case IP_DROP_MEMBERSHIP:
1162 			error = ip_getmoptions(optname, inp->inp_moptions, m);
1163 			break;
1164 
1165 		case IP_PORTRANGE:
1166 			m->m_len = sizeof(int);
1167 
1168 			if (inp->inp_flags & INP_HIGHPORT)
1169 				optval = IP_PORTRANGE_HIGH;
1170 			else if (inp->inp_flags & INP_LOWPORT)
1171 				optval = IP_PORTRANGE_LOW;
1172 			else
1173 				optval = 0;
1174 
1175 			*mtod(m, int *) = optval;
1176 			break;
1177 
1178 		case IP_AUTH_LEVEL:
1179 		case IP_ESP_TRANS_LEVEL:
1180 		case IP_ESP_NETWORK_LEVEL:
1181 		case IP_IPCOMP_LEVEL:
1182 #ifndef IPSEC
1183 			m->m_len = sizeof(int);
1184 			*mtod(m, int *) = IPSEC_LEVEL_NONE;
1185 #else
1186 			m->m_len = sizeof(int);
1187 			switch (optname) {
1188 			case IP_AUTH_LEVEL:
1189 				optval = inp->inp_seclevel[SL_AUTH];
1190 				break;
1191 
1192 			case IP_ESP_TRANS_LEVEL:
1193 				optval = inp->inp_seclevel[SL_ESP_TRANS];
1194 				break;
1195 
1196 			case IP_ESP_NETWORK_LEVEL:
1197 				optval = inp->inp_seclevel[SL_ESP_NETWORK];
1198 				break;
1199 			case IP_IPCOMP_LEVEL:
1200 				optval = inp->inp_seclevel[SL_IPCOMP];
1201 				break;
1202 			}
1203 			*mtod(m, int *) = optval;
1204 #endif
1205 			break;
1206 		case IP_IPSEC_LOCAL_ID:
1207 		case IP_IPSEC_REMOTE_ID:
1208 			error = EOPNOTSUPP;
1209 			break;
1210 		case SO_RTABLE:
1211 			m->m_len = sizeof(u_int);
1212 			*mtod(m, u_int *) = inp->inp_rtableid;
1213 			break;
1214 		case IP_PIPEX:
1215 			m->m_len = sizeof(int);
1216 			*mtod(m, int *) = inp->inp_pipex;
1217 			break;
1218 		default:
1219 			error = ENOPROTOOPT;
1220 			break;
1221 		}
1222 		break;
1223 	}
1224 	return (error);
1225 }
1226 
1227 /*
1228  * Set up IP options in pcb for insertion in output packets.
1229  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1230  * with destination address if source routed.
1231  */
1232 int
1233 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1234 {
1235 	struct mbuf *n;
1236 	struct ipoption *p;
1237 	int cnt, off, optlen;
1238 	u_char *cp;
1239 	u_char opt;
1240 
1241 	/* turn off any old options */
1242 	m_freem(*pcbopt);
1243 	*pcbopt = NULL;
1244 	if (m == NULL || m->m_len == 0) {
1245 		/*
1246 		 * Only turning off any previous options.
1247 		 */
1248 		return (0);
1249 	}
1250 
1251 	if (m->m_len % sizeof(int32_t) ||
1252 	    m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1253 		return (EINVAL);
1254 
1255 	/* Don't sleep because NET_LOCK() is hold. */
1256 	if ((n = m_get(M_NOWAIT, MT_SOOPTS)) == NULL)
1257 		return (ENOBUFS);
1258 	p = mtod(n, struct ipoption *);
1259 	memset(p, 0, sizeof (*p));	/* 0 = IPOPT_EOL, needed for padding */
1260 	n->m_len = sizeof(struct in_addr);
1261 
1262 	off = 0;
1263 	cnt = m->m_len;
1264 	cp = mtod(m, u_char *);
1265 
1266 	while (cnt > 0) {
1267 		opt = cp[IPOPT_OPTVAL];
1268 
1269 		if (opt == IPOPT_NOP || opt == IPOPT_EOL) {
1270 			optlen = 1;
1271 		} else {
1272 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1273 				goto bad;
1274 			optlen = cp[IPOPT_OLEN];
1275 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
1276 				goto bad;
1277 		}
1278 		switch (opt) {
1279 		default:
1280 			memcpy(p->ipopt_list + off, cp, optlen);
1281 			break;
1282 
1283 		case IPOPT_LSRR:
1284 		case IPOPT_SSRR:
1285 			/*
1286 			 * user process specifies route as:
1287 			 *	->A->B->C->D
1288 			 * D must be our final destination (but we can't
1289 			 * check that since we may not have connected yet).
1290 			 * A is first hop destination, which doesn't appear in
1291 			 * actual IP option, but is stored before the options.
1292 			 */
1293 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1294 				goto bad;
1295 
1296 			/*
1297 			 * Optlen is smaller because first address is popped.
1298 			 * Cnt and cp will be adjusted a bit later to reflect
1299 			 * this.
1300 			 */
1301 			optlen -= sizeof(struct in_addr);
1302 			p->ipopt_list[off + IPOPT_OPTVAL] = opt;
1303 			p->ipopt_list[off + IPOPT_OLEN] = optlen;
1304 
1305 			/*
1306 			 * Move first hop before start of options.
1307 			 */
1308 			memcpy(&p->ipopt_dst, cp + IPOPT_OFFSET,
1309 			    sizeof(struct in_addr));
1310 			cp += sizeof(struct in_addr);
1311 			cnt -= sizeof(struct in_addr);
1312 			/*
1313 			 * Then copy rest of options
1314 			 */
1315 			memcpy(p->ipopt_list + off + IPOPT_OFFSET,
1316 			    cp + IPOPT_OFFSET, optlen - IPOPT_OFFSET);
1317 			break;
1318 		}
1319 		off += optlen;
1320 		cp += optlen;
1321 		cnt -= optlen;
1322 
1323 		if (opt == IPOPT_EOL)
1324 			break;
1325 	}
1326 	/* pad options to next word, since p was zeroed just adjust off */
1327 	off = (off + sizeof(int32_t) - 1) & ~(sizeof(int32_t) - 1);
1328 	n->m_len += off;
1329 	if (n->m_len > sizeof(*p)) {
1330  bad:
1331 		m_freem(n);
1332 		return (EINVAL);
1333 	}
1334 
1335 	*pcbopt = n;
1336 	return (0);
1337 }
1338 
1339 /*
1340  * Lookup the interface based on the information in the ip_mreqn struct.
1341  */
1342 int
1343 ip_multicast_if(struct ip_mreqn *mreq, u_int rtableid, unsigned int *ifidx)
1344 {
1345 	struct sockaddr_in sin;
1346 	struct rtentry *rt;
1347 
1348 	/*
1349 	 * In case userland provides the imr_ifindex use this as interface.
1350 	 * If no interface address was provided, use the interface of
1351 	 * the route to the given multicast address.
1352 	 */
1353 	if (mreq->imr_ifindex != 0) {
1354 		*ifidx = mreq->imr_ifindex;
1355 	} else if (mreq->imr_address.s_addr == INADDR_ANY) {
1356 		memset(&sin, 0, sizeof(sin));
1357 		sin.sin_len = sizeof(sin);
1358 		sin.sin_family = AF_INET;
1359 		sin.sin_addr = mreq->imr_multiaddr;
1360 		rt = rtalloc(sintosa(&sin), RT_RESOLVE, rtableid);
1361 		if (!rtisvalid(rt)) {
1362 			rtfree(rt);
1363 			return EADDRNOTAVAIL;
1364 		}
1365 		*ifidx = rt->rt_ifidx;
1366 		rtfree(rt);
1367 	} else {
1368 		memset(&sin, 0, sizeof(sin));
1369 		sin.sin_len = sizeof(sin);
1370 		sin.sin_family = AF_INET;
1371 		sin.sin_addr = mreq->imr_address;
1372 		rt = rtalloc(sintosa(&sin), 0, rtableid);
1373 		if (!rtisvalid(rt) || !ISSET(rt->rt_flags, RTF_LOCAL)) {
1374 			rtfree(rt);
1375 			return EADDRNOTAVAIL;
1376 		}
1377 		*ifidx = rt->rt_ifidx;
1378 		rtfree(rt);
1379 	}
1380 
1381 	return 0;
1382 }
1383 
1384 /*
1385  * Set the IP multicast options in response to user setsockopt().
1386  */
1387 int
1388 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m,
1389     u_int rtableid)
1390 {
1391 	struct in_addr addr;
1392 	struct in_ifaddr *ia;
1393 	struct ip_mreqn mreqn;
1394 	struct ifnet *ifp = NULL;
1395 	struct ip_moptions *imo = *imop;
1396 	struct in_multi **immp;
1397 	struct sockaddr_in sin;
1398 	unsigned int ifidx;
1399 	int i, error = 0;
1400 	u_char loop;
1401 
1402 	if (imo == NULL) {
1403 		/*
1404 		 * No multicast option buffer attached to the pcb;
1405 		 * allocate one and initialize to default values.
1406 		 */
1407 		imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK|M_ZERO);
1408 		immp = mallocarray(IP_MIN_MEMBERSHIPS, sizeof(*immp), M_IPMOPTS,
1409 		    M_WAITOK|M_ZERO);
1410 		*imop = imo;
1411 		imo->imo_ifidx = 0;
1412 		imo->imo_ttl = IP_DEFAULT_MULTICAST_TTL;
1413 		imo->imo_loop = IP_DEFAULT_MULTICAST_LOOP;
1414 		imo->imo_num_memberships = 0;
1415 		imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1416 		imo->imo_membership = immp;
1417 	}
1418 
1419 	switch (optname) {
1420 
1421 	case IP_MULTICAST_IF:
1422 		/*
1423 		 * Select the interface for outgoing multicast packets.
1424 		 */
1425 		if (m == NULL) {
1426 			error = EINVAL;
1427 			break;
1428 		}
1429 		if (m->m_len == sizeof(struct in_addr)) {
1430 			addr = *(mtod(m, struct in_addr *));
1431 		} else if (m->m_len == sizeof(struct ip_mreq) ||
1432 		    m->m_len == sizeof(struct ip_mreqn)) {
1433 			memset(&mreqn, 0, sizeof(mreqn));
1434 			memcpy(&mreqn, mtod(m, void *), m->m_len);
1435 
1436 			/*
1437 			 * If an interface index is given use this
1438 			 * index to set the imo_ifidx but check first
1439 			 * that the interface actually exists.
1440 			 * In the other case just set the addr to
1441 			 * the imr_address and fall through to the
1442 			 * regular code.
1443 			 */
1444 			if (mreqn.imr_ifindex != 0) {
1445 				ifp = if_get(mreqn.imr_ifindex);
1446 				if (ifp == NULL ||
1447 				    ifp->if_rdomain != rtable_l2(rtableid)) {
1448 					error = EADDRNOTAVAIL;
1449 					if_put(ifp);
1450 					break;
1451 				}
1452 				imo->imo_ifidx = ifp->if_index;
1453 				if_put(ifp);
1454 				break;
1455 			} else
1456 				addr = mreqn.imr_address;
1457 		} else {
1458 			error = EINVAL;
1459 			break;
1460 		}
1461 		/*
1462 		 * INADDR_ANY is used to remove a previous selection.
1463 		 * When no interface is selected, a default one is
1464 		 * chosen every time a multicast packet is sent.
1465 		 */
1466 		if (addr.s_addr == INADDR_ANY) {
1467 			imo->imo_ifidx = 0;
1468 			break;
1469 		}
1470 		/*
1471 		 * The selected interface is identified by its local
1472 		 * IP address.  Find the interface and confirm that
1473 		 * it supports multicasting.
1474 		 */
1475 		memset(&sin, 0, sizeof(sin));
1476 		sin.sin_len = sizeof(sin);
1477 		sin.sin_family = AF_INET;
1478 		sin.sin_addr = addr;
1479 		ia = ifatoia(ifa_ifwithaddr(sintosa(&sin), rtableid));
1480 		if (ia == NULL ||
1481 		    (ia->ia_ifp->if_flags & IFF_MULTICAST) == 0) {
1482 			error = EADDRNOTAVAIL;
1483 			break;
1484 		}
1485 		imo->imo_ifidx = ia->ia_ifp->if_index;
1486 		break;
1487 
1488 	case IP_MULTICAST_TTL:
1489 		/*
1490 		 * Set the IP time-to-live for outgoing multicast packets.
1491 		 */
1492 		if (m == NULL || m->m_len != 1) {
1493 			error = EINVAL;
1494 			break;
1495 		}
1496 		imo->imo_ttl = *(mtod(m, u_char *));
1497 		break;
1498 
1499 	case IP_MULTICAST_LOOP:
1500 		/*
1501 		 * Set the loopback flag for outgoing multicast packets.
1502 		 * Must be zero or one.
1503 		 */
1504 		if (m == NULL || m->m_len != 1 ||
1505 		   (loop = *(mtod(m, u_char *))) > 1) {
1506 			error = EINVAL;
1507 			break;
1508 		}
1509 		imo->imo_loop = loop;
1510 		break;
1511 
1512 	case IP_ADD_MEMBERSHIP:
1513 		/*
1514 		 * Add a multicast group membership.
1515 		 * Group must be a valid IP multicast address.
1516 		 */
1517 		if (m == NULL || !(m->m_len == sizeof(struct ip_mreq) ||
1518 		    m->m_len == sizeof(struct ip_mreqn))) {
1519 			error = EINVAL;
1520 			break;
1521 		}
1522 		memset(&mreqn, 0, sizeof(mreqn));
1523 		memcpy(&mreqn, mtod(m, void *), m->m_len);
1524 		if (!IN_MULTICAST(mreqn.imr_multiaddr.s_addr)) {
1525 			error = EINVAL;
1526 			break;
1527 		}
1528 
1529 		error = ip_multicast_if(&mreqn, rtableid, &ifidx);
1530 		if (error)
1531 			break;
1532 
1533 		/*
1534 		 * See if we found an interface, and confirm that it
1535 		 * supports multicast.
1536 		 */
1537 		ifp = if_get(ifidx);
1538 		if (ifp == NULL || ifp->if_rdomain != rtable_l2(rtableid) ||
1539 		    (ifp->if_flags & IFF_MULTICAST) == 0) {
1540 			error = EADDRNOTAVAIL;
1541 			if_put(ifp);
1542 			break;
1543 		}
1544 
1545 		/*
1546 		 * See if the membership already exists or if all the
1547 		 * membership slots are full.
1548 		 */
1549 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1550 			if (imo->imo_membership[i]->inm_ifidx == ifidx &&
1551 			    imo->imo_membership[i]->inm_addr.s_addr
1552 						== mreqn.imr_multiaddr.s_addr)
1553 				break;
1554 		}
1555 		if (i < imo->imo_num_memberships) {
1556 			error = EADDRINUSE;
1557 			if_put(ifp);
1558 			break;
1559 		}
1560 		if (imo->imo_num_memberships == imo->imo_max_memberships) {
1561 			struct in_multi **nmships, **omships;
1562 			size_t newmax;
1563 			/*
1564 			 * Resize the vector to next power-of-two minus 1. If
1565 			 * the size would exceed the maximum then we know we've
1566 			 * really run out of entries. Otherwise, we reallocate
1567 			 * the vector.
1568 			 */
1569 			nmships = NULL;
1570 			omships = imo->imo_membership;
1571 			newmax = ((imo->imo_max_memberships + 1) * 2) - 1;
1572 			if (newmax <= IP_MAX_MEMBERSHIPS) {
1573 				nmships = mallocarray(newmax, sizeof(*nmships),
1574 				    M_IPMOPTS, M_NOWAIT|M_ZERO);
1575 				if (nmships != NULL) {
1576 					memcpy(nmships, omships,
1577 					    sizeof(*omships) *
1578 					    imo->imo_max_memberships);
1579 					free(omships, M_IPMOPTS,
1580 					    sizeof(*omships) *
1581 					    imo->imo_max_memberships);
1582 					imo->imo_membership = nmships;
1583 					imo->imo_max_memberships = newmax;
1584 				}
1585 			}
1586 			if (nmships == NULL) {
1587 				error = ENOBUFS;
1588 				if_put(ifp);
1589 				break;
1590 			}
1591 		}
1592 		/*
1593 		 * Everything looks good; add a new record to the multicast
1594 		 * address list for the given interface.
1595 		 */
1596 		if ((imo->imo_membership[i] =
1597 		    in_addmulti(&mreqn.imr_multiaddr, ifp)) == NULL) {
1598 			error = ENOBUFS;
1599 			if_put(ifp);
1600 			break;
1601 		}
1602 		++imo->imo_num_memberships;
1603 		if_put(ifp);
1604 		break;
1605 
1606 	case IP_DROP_MEMBERSHIP:
1607 		/*
1608 		 * Drop a multicast group membership.
1609 		 * Group must be a valid IP multicast address.
1610 		 */
1611 		if (m == NULL || !(m->m_len == sizeof(struct ip_mreq) ||
1612 		    m->m_len == sizeof(struct ip_mreqn))) {
1613 			error = EINVAL;
1614 			break;
1615 		}
1616 		memset(&mreqn, 0, sizeof(mreqn));
1617 		memcpy(&mreqn, mtod(m, void *), m->m_len);
1618 		if (!IN_MULTICAST(mreqn.imr_multiaddr.s_addr)) {
1619 			error = EINVAL;
1620 			break;
1621 		}
1622 
1623 		/*
1624 		 * If an interface address was specified, get a pointer
1625 		 * to its ifnet structure.
1626 		 */
1627 		error = ip_multicast_if(&mreqn, rtableid, &ifidx);
1628 		if (error)
1629 			break;
1630 
1631 		/*
1632 		 * Find the membership in the membership array.
1633 		 */
1634 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1635 			if ((ifidx == 0 ||
1636 			    imo->imo_membership[i]->inm_ifidx == ifidx) &&
1637 			     imo->imo_membership[i]->inm_addr.s_addr ==
1638 			     mreqn.imr_multiaddr.s_addr)
1639 				break;
1640 		}
1641 		if (i == imo->imo_num_memberships) {
1642 			error = EADDRNOTAVAIL;
1643 			break;
1644 		}
1645 		/*
1646 		 * Give up the multicast address record to which the
1647 		 * membership points.
1648 		 */
1649 		in_delmulti(imo->imo_membership[i]);
1650 		/*
1651 		 * Remove the gap in the membership array.
1652 		 */
1653 		for (++i; i < imo->imo_num_memberships; ++i)
1654 			imo->imo_membership[i-1] = imo->imo_membership[i];
1655 		--imo->imo_num_memberships;
1656 		break;
1657 
1658 	default:
1659 		error = EOPNOTSUPP;
1660 		break;
1661 	}
1662 
1663 	/*
1664 	 * If all options have default values, no need to keep the data.
1665 	 */
1666 	if (imo->imo_ifidx == 0 &&
1667 	    imo->imo_ttl == IP_DEFAULT_MULTICAST_TTL &&
1668 	    imo->imo_loop == IP_DEFAULT_MULTICAST_LOOP &&
1669 	    imo->imo_num_memberships == 0) {
1670 		free(imo->imo_membership , M_IPMOPTS,
1671 		    imo->imo_max_memberships * sizeof(struct in_multi *));
1672 		free(*imop, M_IPMOPTS, sizeof(**imop));
1673 		*imop = NULL;
1674 	}
1675 
1676 	return (error);
1677 }
1678 
1679 /*
1680  * Return the IP multicast options in response to user getsockopt().
1681  */
1682 int
1683 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf *m)
1684 {
1685 	u_char *ttl;
1686 	u_char *loop;
1687 	struct in_addr *addr;
1688 	struct in_ifaddr *ia;
1689 	struct ifnet *ifp;
1690 
1691 	switch (optname) {
1692 
1693 	case IP_MULTICAST_IF:
1694 		addr = mtod(m, struct in_addr *);
1695 		m->m_len = sizeof(struct in_addr);
1696 		if (imo == NULL || (ifp = if_get(imo->imo_ifidx)) == NULL)
1697 			addr->s_addr = INADDR_ANY;
1698 		else {
1699 			IFP_TO_IA(ifp, ia);
1700 			if_put(ifp);
1701 			addr->s_addr = (ia == NULL) ? INADDR_ANY
1702 					: ia->ia_addr.sin_addr.s_addr;
1703 		}
1704 		return (0);
1705 
1706 	case IP_MULTICAST_TTL:
1707 		ttl = mtod(m, u_char *);
1708 		m->m_len = 1;
1709 		*ttl = (imo == NULL) ? IP_DEFAULT_MULTICAST_TTL
1710 				     : imo->imo_ttl;
1711 		return (0);
1712 
1713 	case IP_MULTICAST_LOOP:
1714 		loop = mtod(m, u_char *);
1715 		m->m_len = 1;
1716 		*loop = (imo == NULL) ? IP_DEFAULT_MULTICAST_LOOP
1717 				      : imo->imo_loop;
1718 		return (0);
1719 
1720 	default:
1721 		return (EOPNOTSUPP);
1722 	}
1723 }
1724 
1725 /*
1726  * Discard the IP multicast options.
1727  */
1728 void
1729 ip_freemoptions(struct ip_moptions *imo)
1730 {
1731 	int i;
1732 
1733 	if (imo != NULL) {
1734 		for (i = 0; i < imo->imo_num_memberships; ++i)
1735 			in_delmulti(imo->imo_membership[i]);
1736 		free(imo->imo_membership, M_IPMOPTS,
1737 		    imo->imo_max_memberships * sizeof(struct in_multi *));
1738 		free(imo, M_IPMOPTS, sizeof(*imo));
1739 	}
1740 }
1741 
1742 /*
1743  * Routine called from ip_output() to loop back a copy of an IP multicast
1744  * packet to the input queue of a specified interface.
1745  */
1746 void
1747 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1748 {
1749 	struct ip *ip;
1750 	struct mbuf *copym;
1751 
1752 	copym = m_dup_pkt(m, max_linkhdr, M_DONTWAIT);
1753 	if (copym != NULL) {
1754 		/*
1755 		 * We don't bother to fragment if the IP length is greater
1756 		 * than the interface's MTU.  Can this possibly matter?
1757 		 */
1758 		ip = mtod(copym, struct ip *);
1759 		ip->ip_sum = 0;
1760 		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1761 		if_input_local(ifp, copym, dst->sin_family);
1762 	}
1763 }
1764 
1765 /*
1766  *	Compute significant parts of the IPv4 checksum pseudo-header
1767  *	for use in a delayed TCP/UDP checksum calculation.
1768  */
1769 static __inline u_int16_t __attribute__((__unused__))
1770 in_cksum_phdr(u_int32_t src, u_int32_t dst, u_int32_t lenproto)
1771 {
1772 	u_int32_t sum;
1773 
1774 	sum = lenproto +
1775 	      (u_int16_t)(src >> 16) +
1776 	      (u_int16_t)(src /*& 0xffff*/) +
1777 	      (u_int16_t)(dst >> 16) +
1778 	      (u_int16_t)(dst /*& 0xffff*/);
1779 
1780 	sum = (u_int16_t)(sum >> 16) + (u_int16_t)(sum /*& 0xffff*/);
1781 
1782 	if (sum > 0xffff)
1783 		sum -= 0xffff;
1784 
1785 	return (sum);
1786 }
1787 
1788 /*
1789  * Process a delayed payload checksum calculation.
1790  */
1791 void
1792 in_delayed_cksum(struct mbuf *m)
1793 {
1794 	struct ip *ip;
1795 	u_int16_t csum, offset;
1796 
1797 	ip = mtod(m, struct ip *);
1798 	offset = ip->ip_hl << 2;
1799 	csum = in4_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1800 	if (csum == 0 && ip->ip_p == IPPROTO_UDP)
1801 		csum = 0xffff;
1802 
1803 	switch (ip->ip_p) {
1804 	case IPPROTO_TCP:
1805 		offset += offsetof(struct tcphdr, th_sum);
1806 		break;
1807 
1808 	case IPPROTO_UDP:
1809 		offset += offsetof(struct udphdr, uh_sum);
1810 		break;
1811 
1812 	case IPPROTO_ICMP:
1813 		offset += offsetof(struct icmp, icmp_cksum);
1814 		break;
1815 
1816 	default:
1817 		return;
1818 	}
1819 
1820 	if ((offset + sizeof(u_int16_t)) > m->m_len)
1821 		m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT);
1822 	else
1823 		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1824 }
1825 
1826 void
1827 in_proto_cksum_out(struct mbuf *m, struct ifnet *ifp)
1828 {
1829 	struct ip *ip = mtod(m, struct ip *);
1830 
1831 	/* some hw and in_delayed_cksum need the pseudo header cksum */
1832 	if (m->m_pkthdr.csum_flags &
1833 	    (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT|M_ICMP_CSUM_OUT)) {
1834 		u_int16_t csum = 0, offset;
1835 
1836 		offset = ip->ip_hl << 2;
1837 		if (m->m_pkthdr.csum_flags & (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT))
1838 			csum = in_cksum_phdr(ip->ip_src.s_addr,
1839 			    ip->ip_dst.s_addr, htonl(ntohs(ip->ip_len) -
1840 			    offset + ip->ip_p));
1841 		if (ip->ip_p == IPPROTO_TCP)
1842 			offset += offsetof(struct tcphdr, th_sum);
1843 		else if (ip->ip_p == IPPROTO_UDP)
1844 			offset += offsetof(struct udphdr, uh_sum);
1845 		else if (ip->ip_p == IPPROTO_ICMP)
1846 			offset += offsetof(struct icmp, icmp_cksum);
1847 		if ((offset + sizeof(u_int16_t)) > m->m_len)
1848 			m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT);
1849 		else
1850 			*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1851 	}
1852 
1853 	if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) {
1854 		if (!in_ifcap_cksum(m, ifp, IFCAP_CSUM_TCPv4) ||
1855 		    ip->ip_hl != 5) {
1856 			tcpstat_inc(tcps_outswcsum);
1857 			in_delayed_cksum(m);
1858 			m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_OUT; /* Clear */
1859 		}
1860 	} else if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) {
1861 		if (!in_ifcap_cksum(m, ifp, IFCAP_CSUM_UDPv4) ||
1862 		    ip->ip_hl != 5) {
1863 			udpstat_inc(udps_outswcsum);
1864 			in_delayed_cksum(m);
1865 			m->m_pkthdr.csum_flags &= ~M_UDP_CSUM_OUT; /* Clear */
1866 		}
1867 	} else if (m->m_pkthdr.csum_flags & M_ICMP_CSUM_OUT) {
1868 		in_delayed_cksum(m);
1869 		m->m_pkthdr.csum_flags &= ~M_ICMP_CSUM_OUT; /* Clear */
1870 	}
1871 }
1872 
1873 int
1874 in_ifcap_cksum(struct mbuf *m, struct ifnet *ifp, int ifcap)
1875 {
1876 	if ((ifp == NULL) ||
1877 	    !ISSET(ifp->if_capabilities, ifcap) ||
1878 	    (ifp->if_bridgeidx != 0))
1879 		return (0);
1880 	/*
1881 	 * Simplex interface sends packet back without hardware cksum.
1882 	 * Keep this check in sync with the condition where ether_resolve()
1883 	 * calls if_input_local().
1884 	 */
1885 	if (ISSET(m->m_flags, M_BCAST) &&
1886 	    ISSET(ifp->if_flags, IFF_SIMPLEX) &&
1887 	    !m->m_pkthdr.pf.routed)
1888 		return (0);
1889 	return (1);
1890 }
1891