xref: /openbsd-src/sys/netinet/ip_output.c (revision 8500990981f885cbe5e6a4958549cacc238b5ae6)
1 /*	$OpenBSD: ip_output.c,v 1.159 2003/11/06 16:57:41 dhartmei Exp $	*/
2 /*	$NetBSD: ip_output.c,v 1.28 1996/02/13 23:43:07 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
33  */
34 
35 #include "pf.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mbuf.h>
40 #include <sys/protosw.h>
41 #include <sys/socket.h>
42 #include <sys/socketvar.h>
43 #include <sys/proc.h>
44 #include <sys/kernel.h>
45 
46 #include <net/if.h>
47 #include <net/if_enc.h>
48 #include <net/route.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/in_systm.h>
52 #include <netinet/ip.h>
53 #include <netinet/in_pcb.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip_var.h>
56 #include <netinet/ip_icmp.h>
57 #include <netinet/tcp.h>
58 #include <netinet/udp.h>
59 #include <netinet/tcp_timer.h>
60 #include <netinet/tcp_var.h>
61 #include <netinet/udp_var.h>
62 
63 #if NPF > 0
64 #include <net/pfvar.h>
65 #endif
66 
67 #ifdef IPSEC
68 #ifdef ENCDEBUG
69 #define DPRINTF(x)    do { if (encdebug) printf x ; } while (0)
70 #else
71 #define DPRINTF(x)
72 #endif
73 
74 extern u_int8_t get_sa_require(struct inpcb *);
75 
76 extern int ipsec_auth_default_level;
77 extern int ipsec_esp_trans_default_level;
78 extern int ipsec_esp_network_default_level;
79 extern int ipsec_ipcomp_default_level;
80 #endif /* IPSEC */
81 
82 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
83 static void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
84 
85 /*
86  * IP output.  The packet in mbuf chain m contains a skeletal IP
87  * header (with len, off, ttl, proto, tos, src, dst).
88  * The mbuf chain containing the packet will be freed.
89  * The mbuf opt, if present, will not be freed.
90  */
91 int
92 ip_output(struct mbuf *m0, ...)
93 {
94 	struct ip *ip;
95 	struct ifnet *ifp;
96 	struct mbuf *m = m0;
97 	int hlen = sizeof (struct ip);
98 	int len, error = 0;
99 	struct route iproute;
100 	struct sockaddr_in *dst;
101 	struct in_ifaddr *ia;
102 	struct mbuf *opt;
103 	struct route *ro;
104 	int flags;
105 	struct ip_moptions *imo;
106 	va_list ap;
107 	u_int8_t sproto = 0, donerouting = 0;
108 	u_long mtu;
109 #ifdef IPSEC
110 	u_int32_t icmp_mtu = 0;
111 	union sockaddr_union sdst;
112 	u_int32_t sspi;
113 	struct m_tag *mtag;
114 	struct tdb_ident *tdbi;
115 
116 	struct inpcb *inp;
117 	struct tdb *tdb;
118 	int s;
119 #endif /* IPSEC */
120 
121 	va_start(ap, m0);
122 	opt = va_arg(ap, struct mbuf *);
123 	ro = va_arg(ap, struct route *);
124 	flags = va_arg(ap, int);
125 	imo = va_arg(ap, struct ip_moptions *);
126 #ifdef IPSEC
127 	inp = va_arg(ap, struct inpcb *);
128 	if (inp && (inp->inp_flags & INP_IPV6) != 0)
129 		panic("ip_output: IPv6 pcb is passed");
130 #endif /* IPSEC */
131 	va_end(ap);
132 
133 #ifdef	DIAGNOSTIC
134 	if ((m->m_flags & M_PKTHDR) == 0)
135 		panic("ip_output no HDR");
136 #endif
137 	if (opt) {
138 		m = ip_insertoptions(m, opt, &len);
139 		hlen = len;
140 	}
141 
142 	ip = mtod(m, struct ip *);
143 
144 	/*
145 	 * Fill in IP header.
146 	 */
147 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
148 		ip->ip_v = IPVERSION;
149 		ip->ip_off &= htons(IP_DF);
150 		ip->ip_id = htons(ip_randomid());
151 		ip->ip_hl = hlen >> 2;
152 		ipstat.ips_localout++;
153 	} else {
154 		hlen = ip->ip_hl << 2;
155 	}
156 
157 	/*
158 	 * If we're missing the IP source address, do a route lookup. We'll
159 	 * remember this result, in case we don't need to do any IPsec
160 	 * processing on the packet. We need the source address so we can
161 	 * do an SPD lookup in IPsec; for most packets, the source address
162 	 * is set at a higher level protocol. ICMPs and other packets
163 	 * though (e.g., traceroute) have a source address of zeroes.
164 	 */
165 	if (ip->ip_src.s_addr == INADDR_ANY) {
166 		donerouting = 1;
167 
168 		if (ro == 0) {
169 			ro = &iproute;
170 			bzero((caddr_t)ro, sizeof (*ro));
171 		}
172 
173 		dst = satosin(&ro->ro_dst);
174 
175 		/*
176 		 * If there is a cached route, check that it is to the same
177 		 * destination and is still up.  If not, free it and try again.
178 		 */
179 		if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
180 				  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
181 			RTFREE(ro->ro_rt);
182 			ro->ro_rt = (struct rtentry *)0;
183 		}
184 
185 		if (ro->ro_rt == 0) {
186 			dst->sin_family = AF_INET;
187 			dst->sin_len = sizeof(*dst);
188 			dst->sin_addr = ip->ip_dst;
189 		}
190 
191 		/*
192 		 * If routing to interface only, short-circuit routing lookup.
193 		 */
194 		if (flags & IP_ROUTETOIF) {
195 			if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
196 			    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
197 			    ipstat.ips_noroute++;
198 			    error = ENETUNREACH;
199 			    goto bad;
200 			}
201 
202 			ifp = ia->ia_ifp;
203 			mtu = ifp->if_mtu;
204 			ip->ip_ttl = 1;
205 		} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
206 		    (ip->ip_dst.s_addr == INADDR_BROADCAST)) &&
207 		    imo != NULL && imo->imo_multicast_ifp != NULL) {
208 			ifp = imo->imo_multicast_ifp;
209 			mtu = ifp->if_mtu;
210 			IFP_TO_IA(ifp, ia);
211 		} else {
212 			if (ro->ro_rt == 0)
213 				rtalloc(ro);
214 
215 			if (ro->ro_rt == 0) {
216 				ipstat.ips_noroute++;
217 				error = EHOSTUNREACH;
218 				goto bad;
219 			}
220 
221 			ia = ifatoia(ro->ro_rt->rt_ifa);
222 			ifp = ro->ro_rt->rt_ifp;
223 			if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
224 				mtu = ifp->if_mtu;
225 			ro->ro_rt->rt_use++;
226 
227 			if (ro->ro_rt->rt_flags & RTF_GATEWAY)
228 				dst = satosin(ro->ro_rt->rt_gateway);
229 		}
230 
231 		/* Set the source IP address */
232 		if (!IN_MULTICAST(ip->ip_dst.s_addr))
233 			ip->ip_src = ia->ia_addr.sin_addr;
234 	}
235 
236 #ifdef IPSEC
237 	/*
238 	 * splnet is chosen over spltdb because we are not allowed to
239 	 * lower the level, and udp_output calls us in splnet().
240 	 */
241 	s = splnet();
242 
243 	/* Do we have any pending SAs to apply ? */
244 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
245 	if (mtag != NULL) {
246 #ifdef DIAGNOSTIC
247 		if (mtag->m_tag_len != sizeof (struct tdb_ident))
248 			panic("ip_output: tag of length %d (should be %d",
249 			    mtag->m_tag_len, sizeof (struct tdb_ident));
250 #endif
251 		tdbi = (struct tdb_ident *)(mtag + 1);
252 		tdb = gettdb(tdbi->spi, &tdbi->dst, tdbi->proto);
253 		if (tdb == NULL)
254 			error = -EINVAL;
255 		m_tag_delete(m, mtag);
256 	}
257 	else
258 		tdb = ipsp_spd_lookup(m, AF_INET, hlen, &error,
259 		    IPSP_DIRECTION_OUT, NULL, inp);
260 
261 	if (tdb == NULL) {
262 		splx(s);
263 
264 		if (error == 0) {
265 			/*
266 			 * No IPsec processing required, we'll just send the
267 			 * packet out.
268 			 */
269 			sproto = 0;
270 
271 			/* Fall through to routing/multicast handling */
272 		} else {
273 			/*
274 			 * -EINVAL is used to indicate that the packet should
275 			 * be silently dropped, typically because we've asked
276 			 * key management for an SA.
277 			 */
278 			if (error == -EINVAL) /* Should silently drop packet */
279 			  error = 0;
280 
281 			m_freem(m);
282 			goto done;
283 		}
284 	} else {
285 		/* Loop detection */
286 		for (mtag = m_tag_first(m); mtag != NULL;
287 		    mtag = m_tag_next(m, mtag)) {
288 			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
289 			    mtag->m_tag_id !=
290 			    PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
291 				continue;
292 			tdbi = (struct tdb_ident *)(mtag + 1);
293 			if (tdbi->spi == tdb->tdb_spi &&
294 			    tdbi->proto == tdb->tdb_sproto &&
295 			    !bcmp(&tdbi->dst, &tdb->tdb_dst,
296 			    sizeof(union sockaddr_union))) {
297 				splx(s);
298 				sproto = 0; /* mark as no-IPsec-needed */
299 				goto done_spd;
300 			}
301 		}
302 
303 		/* We need to do IPsec */
304 		bcopy(&tdb->tdb_dst, &sdst, sizeof(sdst));
305 		sspi = tdb->tdb_spi;
306 		sproto = tdb->tdb_sproto;
307 		splx(s);
308 
309 		/*
310 		 * If it needs TCP/UDP hardware-checksumming, do the
311 		 * computation now.
312 		 */
313 		if (m->m_pkthdr.csum & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT)) {
314 			in_delayed_cksum(m);
315 			m->m_pkthdr.csum &=
316 			    ~(M_UDPV4_CSUM_OUT | M_TCPV4_CSUM_OUT);
317 		}
318 
319 		/* If it's not a multicast packet, try to fast-path */
320 		if (!IN_MULTICAST(ip->ip_dst.s_addr)) {
321 			goto sendit;
322 		}
323 	}
324 
325 	/* Fall through to the routing/multicast handling code */
326  done_spd:
327 #endif /* IPSEC */
328 
329 	if (donerouting == 0) {
330 		if (ro == 0) {
331 			ro = &iproute;
332 			bzero((caddr_t)ro, sizeof (*ro));
333 		}
334 
335 		dst = satosin(&ro->ro_dst);
336 
337 		/*
338 		 * If there is a cached route, check that it is to the same
339 		 * destination and is still up.  If not, free it and try again.
340 		 */
341 		if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
342 				  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
343 			RTFREE(ro->ro_rt);
344 			ro->ro_rt = (struct rtentry *)0;
345 		}
346 
347 		if (ro->ro_rt == 0) {
348 			dst->sin_family = AF_INET;
349 			dst->sin_len = sizeof(*dst);
350 			dst->sin_addr = ip->ip_dst;
351 		}
352 
353 		/*
354 		 * If routing to interface only, short-circuit routing lookup.
355 		 */
356 		if (flags & IP_ROUTETOIF) {
357 			if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
358 			    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
359 			    ipstat.ips_noroute++;
360 			    error = ENETUNREACH;
361 			    goto bad;
362 			}
363 
364 			ifp = ia->ia_ifp;
365 			mtu = ifp->if_mtu;
366 			ip->ip_ttl = 1;
367 		} else if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
368 		    (ip->ip_dst.s_addr == INADDR_BROADCAST)) &&
369 		    imo != NULL && imo->imo_multicast_ifp != NULL) {
370 			ifp = imo->imo_multicast_ifp;
371 			mtu = ifp->if_mtu;
372 			IFP_TO_IA(ifp, ia);
373 		} else {
374 			if (ro->ro_rt == 0)
375 				rtalloc(ro);
376 
377 			if (ro->ro_rt == 0) {
378 				ipstat.ips_noroute++;
379 				error = EHOSTUNREACH;
380 				goto bad;
381 			}
382 
383 			ia = ifatoia(ro->ro_rt->rt_ifa);
384 			ifp = ro->ro_rt->rt_ifp;
385 			if ((mtu = ro->ro_rt->rt_rmx.rmx_mtu) == 0)
386 				mtu = ifp->if_mtu;
387 			ro->ro_rt->rt_use++;
388 
389 			if (ro->ro_rt->rt_flags & RTF_GATEWAY)
390 				dst = satosin(ro->ro_rt->rt_gateway);
391 		}
392 
393 		/* Set the source IP address */
394 		if (ip->ip_src.s_addr == INADDR_ANY)
395 			ip->ip_src = ia->ia_addr.sin_addr;
396 	}
397 
398 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
399 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
400 		struct in_multi *inm;
401 
402 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
403 			M_BCAST : M_MCAST;
404 
405 		/*
406 		 * IP destination address is multicast.  Make sure "dst"
407 		 * still points to the address in "ro".  (It may have been
408 		 * changed to point to a gateway address, above.)
409 		 */
410 		dst = satosin(&ro->ro_dst);
411 
412 		/*
413 		 * See if the caller provided any multicast options
414 		 */
415 		if (imo != NULL)
416 			ip->ip_ttl = imo->imo_multicast_ttl;
417 		else
418 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
419 
420 		/*
421 		 * if we don't know the outgoing ifp yet, we can't generate
422 		 * output
423 		 */
424 		if (!ifp) {
425 			ipstat.ips_noroute++;
426 			error = EHOSTUNREACH;
427 			goto bad;
428 		}
429 
430 		/*
431 		 * Confirm that the outgoing interface supports multicast,
432 		 * but only if the packet actually is going out on that
433 		 * interface (i.e., no IPsec is applied).
434 		 */
435 		if ((((m->m_flags & M_MCAST) &&
436 		      (ifp->if_flags & IFF_MULTICAST) == 0) ||
437 		     ((m->m_flags & M_BCAST) &&
438 		      (ifp->if_flags & IFF_BROADCAST) == 0)) && (sproto == 0)) {
439 			ipstat.ips_noroute++;
440 			error = ENETUNREACH;
441 			goto bad;
442 		}
443 
444 		/*
445 		 * If source address not specified yet, use address
446 		 * of outgoing interface.
447 		 */
448 		if (ip->ip_src.s_addr == INADDR_ANY) {
449 			struct in_ifaddr *ia;
450 
451 			for (ia = in_ifaddr.tqh_first;
452 			     ia;
453 			     ia = ia->ia_list.tqe_next)
454 				if (ia->ia_ifp == ifp) {
455 					ip->ip_src = ia->ia_addr.sin_addr;
456 					break;
457 				}
458 		}
459 
460 		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
461 		if (inm != NULL &&
462 		   (imo == NULL || imo->imo_multicast_loop)) {
463 			/*
464 			 * If we belong to the destination multicast group
465 			 * on the outgoing interface, and the caller did not
466 			 * forbid loopback, loop back a copy.
467 			 * Can't defer TCP/UDP checksumming, do the
468 			 * computation now.
469 			 */
470 			if (m->m_pkthdr.csum &
471 			    (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT)) {
472 				in_delayed_cksum(m);
473 				m->m_pkthdr.csum &=
474 				    ~(M_UDPV4_CSUM_OUT | M_TCPV4_CSUM_OUT);
475 			}
476 			ip_mloopback(ifp, m, dst);
477 		}
478 #ifdef MROUTING
479 		else {
480 			/*
481 			 * If we are acting as a multicast router, perform
482 			 * multicast forwarding as if the packet had just
483 			 * arrived on the interface to which we are about
484 			 * to send.  The multicast forwarding function
485 			 * recursively calls this function, using the
486 			 * IP_FORWARDING flag to prevent infinite recursion.
487 			 *
488 			 * Multicasts that are looped back by ip_mloopback(),
489 			 * above, will be forwarded by the ip_input() routine,
490 			 * if necessary.
491 			 */
492 			extern struct socket *ip_mrouter;
493 
494 			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
495 				if (ip_mforward(m, ifp) != 0) {
496 					m_freem(m);
497 					goto done;
498 				}
499 			}
500 		}
501 #endif
502 		/*
503 		 * Multicasts with a time-to-live of zero may be looped-
504 		 * back, above, but must not be transmitted on a network.
505 		 * Also, multicasts addressed to the loopback interface
506 		 * are not sent -- the above call to ip_mloopback() will
507 		 * loop back a copy if this host actually belongs to the
508 		 * destination group on the loopback interface.
509 		 */
510 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0) {
511 			m_freem(m);
512 			goto done;
513 		}
514 
515 		goto sendit;
516 	}
517 
518 	/*
519 	 * Look for broadcast address and and verify user is allowed to send
520 	 * such a packet; if the packet is going in an IPsec tunnel, skip
521 	 * this check.
522 	 */
523 	if ((sproto == 0) && (in_broadcast(dst->sin_addr, ifp))) {
524 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
525 			error = EADDRNOTAVAIL;
526 			goto bad;
527 		}
528 		if ((flags & IP_ALLOWBROADCAST) == 0) {
529 			error = EACCES;
530 			goto bad;
531 		}
532 
533 		/* Don't allow broadcast messages to be fragmented */
534 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
535 			error = EMSGSIZE;
536 			goto bad;
537 		}
538 		m->m_flags |= M_BCAST;
539 	} else
540 		m->m_flags &= ~M_BCAST;
541 
542 sendit:
543 	/*
544 	 * If we're doing Path MTU discovery, we need to set DF unless
545 	 * the route's MTU is locked.
546 	 */
547 	if ((flags & IP_MTUDISC) && ro && ro->ro_rt &&
548 	    (ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
549 		ip->ip_off |= htons(IP_DF);
550 
551 #ifdef IPSEC
552 	/*
553 	 * Check if the packet needs encapsulation.
554 	 */
555 	if (sproto != 0) {
556 		s = splnet();
557 
558 		/*
559 		 * Packet filter
560 		 */
561 #if NPF > 0
562 
563 		if (pf_test(PF_OUT, &encif[0].sc_if, &m) != PF_PASS) {
564 			error = EHOSTUNREACH;
565 			splx(s);
566 			m_freem(m);
567 			goto done;
568 		}
569 		if (m == NULL) {
570 			splx(s);
571 			goto done;
572 		}
573 		ip = mtod(m, struct ip *);
574 		hlen = ip->ip_hl << 2;
575 #endif
576 
577 		tdb = gettdb(sspi, &sdst, sproto);
578 		if (tdb == NULL) {
579 			DPRINTF(("ip_output: unknown TDB"));
580 			error = EHOSTUNREACH;
581 			splx(s);
582 			m_freem(m);
583 			goto done;
584 		}
585 
586 		/* Check if we are allowed to fragment */
587 		if (ip_mtudisc && (ip->ip_off & htons(IP_DF)) && tdb->tdb_mtu &&
588 		    ntohs(ip->ip_len) > tdb->tdb_mtu &&
589 		    tdb->tdb_mtutimeout > time.tv_sec) {
590 			struct rtentry *rt = NULL;
591 
592 			icmp_mtu = tdb->tdb_mtu;
593 			splx(s);
594 
595 			/* Find a host route to store the mtu in */
596 			if (ro != NULL)
597 				rt = ro->ro_rt;
598 			if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0) {
599 				struct sockaddr_in dst = {
600 					sizeof(struct sockaddr_in), AF_INET};
601 				dst.sin_addr = ip->ip_dst;
602 				rt = icmp_mtudisc_clone((struct sockaddr *)&dst);
603 			}
604 			if (rt != NULL) {
605 				rt->rt_rmx.rmx_mtu = icmp_mtu;
606 				if (ro && ro->ro_rt != NULL) {
607 					RTFREE(ro->ro_rt);
608 					ro->ro_rt = (struct rtentry *) 0;
609 					rtalloc(ro);
610 				}
611 			}
612 			error = EMSGSIZE;
613 			goto bad;
614 		}
615 
616 		/*
617 		 * Clear these -- they'll be set in the recursive invocation
618 		 * as needed.
619 		 */
620 		m->m_flags &= ~(M_MCAST | M_BCAST);
621 
622 		/* Callee frees mbuf */
623 		error = ipsp_process_packet(m, tdb, AF_INET, 0);
624 		splx(s);
625 		return error;  /* Nothing more to be done */
626 	}
627 
628 	/*
629 	 * If deferred crypto processing is needed, check that the
630 	 * interface supports it.
631 	 */
632 	if ((mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL))
633 	    != NULL && (ifp->if_capabilities & IFCAP_IPSEC) == 0) {
634 		/* Notify IPsec to do its own crypto. */
635 		ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
636 		m_freem(m);
637 		error = EHOSTUNREACH;
638 		goto done;
639 	}
640 #endif /* IPSEC */
641 
642 	/* Catch routing changes wrt. hardware checksumming for TCP or UDP. */
643 	if (m->m_pkthdr.csum & M_TCPV4_CSUM_OUT) {
644 		if (!(ifp->if_capabilities & IFCAP_CSUM_TCPv4) ||
645 		    ifp->if_bridge != NULL) {
646 			in_delayed_cksum(m);
647 			m->m_pkthdr.csum &= ~M_TCPV4_CSUM_OUT; /* Clear */
648 		}
649 	} else if (m->m_pkthdr.csum & M_UDPV4_CSUM_OUT) {
650 		if (!(ifp->if_capabilities & IFCAP_CSUM_UDPv4) ||
651 		    ifp->if_bridge != NULL) {
652 			in_delayed_cksum(m);
653 			m->m_pkthdr.csum &= ~M_UDPV4_CSUM_OUT; /* Clear */
654 		}
655 	}
656 
657 	/*
658 	 * Packet filter
659 	 */
660 #if NPF > 0
661 	if (pf_test(PF_OUT, ifp, &m) != PF_PASS) {
662 		error = EHOSTUNREACH;
663 		m_freem(m);
664 		goto done;
665 	}
666 	if (m == NULL)
667 		goto done;
668 
669 	ip = mtod(m, struct ip *);
670 	hlen = ip->ip_hl << 2;
671 #endif
672 
673 	/*
674 	 * If small enough for interface, can just send directly.
675 	 */
676 	if (ntohs(ip->ip_len) <= mtu) {
677 		if ((ifp->if_capabilities & IFCAP_CSUM_IPv4) &&
678 		    ifp->if_bridge == NULL) {
679 			m->m_pkthdr.csum |= M_IPV4_CSUM_OUT;
680 			ipstat.ips_outhwcsum++;
681 		} else {
682 			ip->ip_sum = 0;
683 			ip->ip_sum = in_cksum(m, hlen);
684 		}
685 		/* Update relevant hardware checksum stats for TCP/UDP */
686 		if (m->m_pkthdr.csum & M_TCPV4_CSUM_OUT)
687 			tcpstat.tcps_outhwcsum++;
688 		else if (m->m_pkthdr.csum & M_UDPV4_CSUM_OUT)
689 			udpstat.udps_outhwcsum++;
690 		error = (*ifp->if_output)(ifp, m, sintosa(dst), ro->ro_rt);
691 		goto done;
692 	}
693 
694 	/*
695 	 * Too large for interface; fragment if possible.
696 	 * Must be able to put at least 8 bytes per fragment.
697 	 */
698 	if (ip->ip_off & htons(IP_DF)) {
699 #ifdef IPSEC
700 		icmp_mtu = ifp->if_mtu;
701 #endif
702 		error = EMSGSIZE;
703 		/*
704 		 * This case can happen if the user changed the MTU
705 		 * of an interface after enabling IP on it.  Because
706 		 * most netifs don't keep track of routes pointing to
707 		 * them, there is no way for one to update all its
708 		 * routes when the MTU is changed.
709 		 */
710 		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
711 		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
712 		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
713 			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
714 		}
715 		ipstat.ips_cantfrag++;
716 		goto bad;
717 	}
718 
719 	error = ip_fragment(m, ifp, mtu);
720 	if (error)
721 		goto bad;
722 
723 	for (; m; m = m0) {
724 		m0 = m->m_nextpkt;
725 		m->m_nextpkt = 0;
726 		if (error == 0)
727 			error = (*ifp->if_output)(ifp, m, sintosa(dst),
728 			    ro->ro_rt);
729 		else
730 			m_freem(m);
731 	}
732 
733 	if (error == 0)
734 		ipstat.ips_fragmented++;
735 
736 done:
737 	if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt)
738 		RTFREE(ro->ro_rt);
739 	return (error);
740 bad:
741 #ifdef IPSEC
742 	if (error == EMSGSIZE && ip_mtudisc && icmp_mtu != 0)
743 		ipsec_adjust_mtu(m, icmp_mtu);
744 #endif
745 	m_freem(m0);
746 	goto done;
747 }
748 
749 int
750 ip_fragment(struct mbuf *m, struct ifnet *ifp, u_long mtu)
751 {
752 	struct ip *ip, *mhip;
753 	struct mbuf *m0;
754 	int len, hlen, off;
755 	int mhlen, firstlen;
756 	struct mbuf **mnext;
757 
758 	ip = mtod(m, struct ip *);
759 	hlen = ip->ip_hl << 2;
760 
761 	len = (mtu - hlen) &~ 7;
762 	if (len < 8)
763 		return (EMSGSIZE);
764 
765 	/*
766 	 * If we are doing fragmentation, we can't defer TCP/UDP
767 	 * checksumming; compute the checksum and clear the flag.
768 	 */
769 	if (m->m_pkthdr.csum & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT)) {
770 		in_delayed_cksum(m);
771 		m->m_pkthdr.csum &= ~(M_UDPV4_CSUM_OUT | M_TCPV4_CSUM_OUT);
772 	}
773 
774 	firstlen = len;
775 	mnext = &m->m_nextpkt;
776 
777 	/*
778 	 * Loop through length of segment after first fragment,
779 	 * make new header and copy data of each part and link onto chain.
780 	 */
781 	m0 = m;
782 	mhlen = sizeof (struct ip);
783 	for (off = hlen + len; off < ntohs(ip->ip_len); off += len) {
784 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
785 		if (m == 0) {
786 			ipstat.ips_odropped++;
787 			return (ENOBUFS);
788 		}
789 		*mnext = m;
790 		mnext = &m->m_nextpkt;
791 		m->m_data += max_linkhdr;
792 		mhip = mtod(m, struct ip *);
793 		*mhip = *ip;
794 		/* we must inherit MCAST and BCAST flags */
795 		m->m_flags |= m0->m_flags & (M_MCAST|M_BCAST);
796 		if (hlen > sizeof (struct ip)) {
797 			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
798 			mhip->ip_hl = mhlen >> 2;
799 		}
800 		m->m_len = mhlen;
801 		mhip->ip_off = ((off - hlen) >> 3) +
802 		    (ntohs(ip->ip_off) & ~IP_MF);
803 		if (ip->ip_off & htons(IP_MF))
804 			mhip->ip_off |= IP_MF;
805 		if (off + len >= ntohs(ip->ip_len))
806 			len = ntohs(ip->ip_len) - off;
807 		else
808 			mhip->ip_off |= IP_MF;
809 		mhip->ip_len = htons((u_int16_t)(len + mhlen));
810 		m->m_next = m_copy(m0, off, len);
811 		if (m->m_next == 0) {
812 			ipstat.ips_odropped++;
813 			return (ENOBUFS);	/* ??? */
814 		}
815 		m->m_pkthdr.len = mhlen + len;
816 		m->m_pkthdr.rcvif = (struct ifnet *)0;
817 		mhip->ip_off = htons((u_int16_t)mhip->ip_off);
818 		if ((ifp->if_capabilities & IFCAP_CSUM_IPv4) &&
819 		    ifp->if_bridge == NULL) {
820 			m->m_pkthdr.csum |= M_IPV4_CSUM_OUT;
821 			ipstat.ips_outhwcsum++;
822 		} else {
823 			mhip->ip_sum = 0;
824 			mhip->ip_sum = in_cksum(m, mhlen);
825 		}
826 		ipstat.ips_ofragments++;
827 	}
828 	/*
829 	 * Update first fragment by trimming what's been copied out
830 	 * and updating header, then send each fragment (in order).
831 	 */
832 	m = m0;
833 	m_adj(m, hlen + firstlen - ntohs(ip->ip_len));
834 	m->m_pkthdr.len = hlen + firstlen;
835 	ip->ip_len = htons((u_int16_t)m->m_pkthdr.len);
836 	ip->ip_off |= htons(IP_MF);
837 	if ((ifp->if_capabilities & IFCAP_CSUM_IPv4) &&
838 	    ifp->if_bridge == NULL) {
839 		m->m_pkthdr.csum |= M_IPV4_CSUM_OUT;
840 		ipstat.ips_outhwcsum++;
841 	} else {
842 		ip->ip_sum = 0;
843 		ip->ip_sum = in_cksum(m, hlen);
844 	}
845 
846 	return (0);
847 }
848 
849 /*
850  * Insert IP options into preformed packet.
851  * Adjust IP destination as required for IP source routing,
852  * as indicated by a non-zero in_addr at the start of the options.
853  */
854 static struct mbuf *
855 ip_insertoptions(m, opt, phlen)
856 	struct mbuf *m;
857 	struct mbuf *opt;
858 	int *phlen;
859 {
860 	struct ipoption *p = mtod(opt, struct ipoption *);
861 	struct mbuf *n;
862 	struct ip *ip = mtod(m, struct ip *);
863 	unsigned optlen;
864 
865 	optlen = opt->m_len - sizeof(p->ipopt_dst);
866 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
867 		return (m);		/* XXX should fail */
868 	if (p->ipopt_dst.s_addr)
869 		ip->ip_dst = p->ipopt_dst;
870 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
871 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
872 		if (n == 0)
873 			return (m);
874 		M_MOVE_HDR(n, m);
875 		n->m_pkthdr.len += optlen;
876 		m->m_len -= sizeof(struct ip);
877 		m->m_data += sizeof(struct ip);
878 		n->m_next = m;
879 		m = n;
880 		m->m_len = optlen + sizeof(struct ip);
881 		m->m_data += max_linkhdr;
882 		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
883 	} else {
884 		m->m_data -= optlen;
885 		m->m_len += optlen;
886 		m->m_pkthdr.len += optlen;
887 		ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
888 	}
889 	ip = mtod(m, struct ip *);
890 	bcopy((caddr_t)p->ipopt_list, (caddr_t)(ip + 1), (unsigned)optlen);
891 	*phlen = sizeof(struct ip) + optlen;
892 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
893 	return (m);
894 }
895 
896 /*
897  * Copy options from ip to jp,
898  * omitting those not copied during fragmentation.
899  */
900 int
901 ip_optcopy(ip, jp)
902 	struct ip *ip, *jp;
903 {
904 	u_char *cp, *dp;
905 	int opt, optlen, cnt;
906 
907 	cp = (u_char *)(ip + 1);
908 	dp = (u_char *)(jp + 1);
909 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
910 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
911 		opt = cp[0];
912 		if (opt == IPOPT_EOL)
913 			break;
914 		if (opt == IPOPT_NOP) {
915 			/* Preserve for IP mcast tunnel's LSRR alignment. */
916 			*dp++ = IPOPT_NOP;
917 			optlen = 1;
918 			continue;
919 		}
920 #ifdef DIAGNOSTIC
921 		if (cnt < IPOPT_OLEN + sizeof(*cp))
922 			panic("malformed IPv4 option passed to ip_optcopy");
923 #endif
924 		optlen = cp[IPOPT_OLEN];
925 #ifdef DIAGNOSTIC
926 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
927 			panic("malformed IPv4 option passed to ip_optcopy");
928 #endif
929 		/* bogus lengths should have been caught by ip_dooptions */
930 		if (optlen > cnt)
931 			optlen = cnt;
932 		if (IPOPT_COPIED(opt)) {
933 			bcopy((caddr_t)cp, (caddr_t)dp, (unsigned)optlen);
934 			dp += optlen;
935 		}
936 	}
937 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
938 		*dp++ = IPOPT_EOL;
939 	return (optlen);
940 }
941 
942 /*
943  * IP socket option processing.
944  */
945 int
946 ip_ctloutput(op, so, level, optname, mp)
947 	int op;
948 	struct socket *so;
949 	int level, optname;
950 	struct mbuf **mp;
951 {
952 	struct inpcb *inp = sotoinpcb(so);
953 	struct mbuf *m = *mp;
954 	int optval = 0;
955 #ifdef IPSEC
956 	struct proc *p = curproc; /* XXX */
957 	struct ipsec_ref *ipr;
958 	u_int16_t opt16val;
959 #endif
960 	int error = 0;
961 
962 	if (level != IPPROTO_IP) {
963 		error = EINVAL;
964 		if (op == PRCO_SETOPT && *mp)
965 			(void) m_free(*mp);
966 	} else switch (op) {
967 	case PRCO_SETOPT:
968 		switch (optname) {
969 		case IP_OPTIONS:
970 #ifdef notyet
971 		case IP_RETOPTS:
972 			return (ip_pcbopts(optname, &inp->inp_options, m));
973 #else
974 			return (ip_pcbopts(&inp->inp_options, m));
975 #endif
976 
977 		case IP_TOS:
978 		case IP_TTL:
979 		case IP_RECVOPTS:
980 		case IP_RECVRETOPTS:
981 		case IP_RECVDSTADDR:
982 			if (m == NULL || m->m_len != sizeof(int))
983 				error = EINVAL;
984 			else {
985 				optval = *mtod(m, int *);
986 				switch (optname) {
987 
988 				case IP_TOS:
989 					inp->inp_ip.ip_tos = optval;
990 					break;
991 
992 				case IP_TTL:
993 					inp->inp_ip.ip_ttl = optval;
994 					break;
995 #define	OPTSET(bit) \
996 	if (optval) \
997 		inp->inp_flags |= bit; \
998 	else \
999 		inp->inp_flags &= ~bit;
1000 
1001 				case IP_RECVOPTS:
1002 					OPTSET(INP_RECVOPTS);
1003 					break;
1004 
1005 				case IP_RECVRETOPTS:
1006 					OPTSET(INP_RECVRETOPTS);
1007 					break;
1008 
1009 				case IP_RECVDSTADDR:
1010 					OPTSET(INP_RECVDSTADDR);
1011 					break;
1012 				}
1013 			}
1014 			break;
1015 #undef OPTSET
1016 
1017 		case IP_MULTICAST_IF:
1018 		case IP_MULTICAST_TTL:
1019 		case IP_MULTICAST_LOOP:
1020 		case IP_ADD_MEMBERSHIP:
1021 		case IP_DROP_MEMBERSHIP:
1022 			error = ip_setmoptions(optname, &inp->inp_moptions, m);
1023 			break;
1024 
1025 		case IP_PORTRANGE:
1026 			if (m == 0 || m->m_len != sizeof(int))
1027 				error = EINVAL;
1028 			else {
1029 				optval = *mtod(m, int *);
1030 
1031 				switch (optval) {
1032 
1033 				case IP_PORTRANGE_DEFAULT:
1034 					inp->inp_flags &= ~(INP_LOWPORT);
1035 					inp->inp_flags &= ~(INP_HIGHPORT);
1036 					break;
1037 
1038 				case IP_PORTRANGE_HIGH:
1039 					inp->inp_flags &= ~(INP_LOWPORT);
1040 					inp->inp_flags |= INP_HIGHPORT;
1041 					break;
1042 
1043 				case IP_PORTRANGE_LOW:
1044 					inp->inp_flags &= ~(INP_HIGHPORT);
1045 					inp->inp_flags |= INP_LOWPORT;
1046 					break;
1047 
1048 				default:
1049 
1050 					error = EINVAL;
1051 					break;
1052 				}
1053 			}
1054 			break;
1055 		case IP_AUTH_LEVEL:
1056 		case IP_ESP_TRANS_LEVEL:
1057 		case IP_ESP_NETWORK_LEVEL:
1058 		case IP_IPCOMP_LEVEL:
1059 #ifndef IPSEC
1060 			error = EOPNOTSUPP;
1061 #else
1062 			if (m == 0 || m->m_len != sizeof(int)) {
1063 				error = EINVAL;
1064 				break;
1065 			}
1066 			optval = *mtod(m, int *);
1067 
1068 			if (optval < IPSEC_LEVEL_BYPASS ||
1069 			    optval > IPSEC_LEVEL_UNIQUE) {
1070 				error = EINVAL;
1071 				break;
1072 			}
1073 
1074 			/* Unlink cached output TDB to force a re-search */
1075 			if (inp->inp_tdb_out) {
1076 				int s = spltdb();
1077 				TAILQ_REMOVE(&inp->inp_tdb_out->tdb_inp_out,
1078 				    inp, inp_tdb_out_next);
1079 				splx(s);
1080 			}
1081 
1082 			if (inp->inp_tdb_in) {
1083 				int s = spltdb();
1084 				TAILQ_REMOVE(&inp->inp_tdb_in->tdb_inp_in,
1085 				    inp, inp_tdb_in_next);
1086 				splx(s);
1087 			}
1088 
1089 			switch (optname) {
1090 			case IP_AUTH_LEVEL:
1091 				if (optval < ipsec_auth_default_level &&
1092 				    suser(p, 0)) {
1093 					error = EACCES;
1094 					break;
1095 				}
1096 				inp->inp_seclevel[SL_AUTH] = optval;
1097 				break;
1098 
1099 			case IP_ESP_TRANS_LEVEL:
1100 				if (optval < ipsec_esp_trans_default_level &&
1101 				    suser(p, 0)) {
1102 					error = EACCES;
1103 					break;
1104 				}
1105 				inp->inp_seclevel[SL_ESP_TRANS] = optval;
1106 				break;
1107 
1108 			case IP_ESP_NETWORK_LEVEL:
1109 				if (optval < ipsec_esp_network_default_level &&
1110 				    suser(p, 0)) {
1111 					error = EACCES;
1112 					break;
1113 				}
1114 				inp->inp_seclevel[SL_ESP_NETWORK] = optval;
1115 				break;
1116 			case IP_IPCOMP_LEVEL:
1117 				if (optval < ipsec_ipcomp_default_level &&
1118 				    suser(p, 0)) {
1119 					error = EACCES;
1120 					break;
1121 				}
1122 				inp->inp_seclevel[SL_IPCOMP] = optval;
1123 				break;
1124 			}
1125 			if (!error)
1126 				inp->inp_secrequire = get_sa_require(inp);
1127 #endif
1128 			break;
1129 
1130 		case IP_IPSEC_REMOTE_CRED:
1131 		case IP_IPSEC_REMOTE_AUTH:
1132 			/* Can't set the remote credential or key */
1133 			error = EOPNOTSUPP;
1134 			break;
1135 
1136 		case IP_IPSEC_LOCAL_ID:
1137 		case IP_IPSEC_REMOTE_ID:
1138 		case IP_IPSEC_LOCAL_CRED:
1139 		case IP_IPSEC_LOCAL_AUTH:
1140 #ifndef IPSEC
1141 			error = EOPNOTSUPP;
1142 #else
1143 			if (m->m_len < 2) {
1144 				error = EINVAL;
1145 				break;
1146 			}
1147 
1148 			m_copydata(m, 0, 2, (caddr_t) &opt16val);
1149 
1150 			/* If the type is 0, then we cleanup and return */
1151 			if (opt16val == 0) {
1152 				switch (optname) {
1153 				case IP_IPSEC_LOCAL_ID:
1154 					if (inp->inp_ipo != NULL &&
1155 					    inp->inp_ipo->ipo_srcid != NULL) {
1156 						ipsp_reffree(inp->inp_ipo->ipo_srcid);
1157 						inp->inp_ipo->ipo_srcid = NULL;
1158 					}
1159 					break;
1160 
1161 				case IP_IPSEC_REMOTE_ID:
1162 					if (inp->inp_ipo != NULL &&
1163 					    inp->inp_ipo->ipo_dstid != NULL) {
1164 						ipsp_reffree(inp->inp_ipo->ipo_dstid);
1165 						inp->inp_ipo->ipo_dstid = NULL;
1166 					}
1167 					break;
1168 
1169 				case IP_IPSEC_LOCAL_CRED:
1170 					if (inp->inp_ipo != NULL &&
1171 					    inp->inp_ipo->ipo_local_cred != NULL) {
1172 						ipsp_reffree(inp->inp_ipo->ipo_local_cred);
1173 						inp->inp_ipo->ipo_local_cred = NULL;
1174 					}
1175 					break;
1176 
1177 				case IP_IPSEC_LOCAL_AUTH:
1178 					if (inp->inp_ipo != NULL &&
1179 					    inp->inp_ipo->ipo_local_auth != NULL) {
1180 						ipsp_reffree(inp->inp_ipo->ipo_local_auth);
1181 						inp->inp_ipo->ipo_local_auth = NULL;
1182 					}
1183 					break;
1184 				}
1185 
1186 				error = 0;
1187 				break;
1188 			}
1189 
1190 			/* Can't have an empty payload */
1191 			if (m->m_len == 2) {
1192 				error = EINVAL;
1193 				break;
1194 			}
1195 
1196 			/* Allocate if needed */
1197 			if (inp->inp_ipo == NULL) {
1198 				inp->inp_ipo = ipsec_add_policy(inp,
1199 				    AF_INET, IPSP_DIRECTION_OUT);
1200 				if (inp->inp_ipo == NULL) {
1201 					error = ENOBUFS;
1202 					break;
1203 				}
1204 			}
1205 
1206 			MALLOC(ipr, struct ipsec_ref *,
1207 			       sizeof(struct ipsec_ref) + m->m_len - 2,
1208 			       M_CREDENTIALS, M_NOWAIT);
1209 			if (ipr == NULL) {
1210 				error = ENOBUFS;
1211 				break;
1212 			}
1213 
1214 			ipr->ref_count = 1;
1215 			ipr->ref_malloctype = M_CREDENTIALS;
1216 			ipr->ref_len = m->m_len - 2;
1217 			ipr->ref_type = opt16val;
1218 			m_copydata(m, 2, m->m_len - 2, (caddr_t)(ipr + 1));
1219 
1220 			switch (optname) {
1221 			case IP_IPSEC_LOCAL_ID:
1222 				/* Check valid types and NUL-termination */
1223 				if (ipr->ref_type < IPSP_IDENTITY_PREFIX ||
1224 				    ipr->ref_type > IPSP_IDENTITY_CONNECTION ||
1225 				    ((char *)(ipr + 1))[ipr->ref_len - 1]) {
1226 					FREE(ipr, M_CREDENTIALS);
1227 					error = EINVAL;
1228 				} else {
1229 					if (inp->inp_ipo->ipo_srcid != NULL)
1230 						ipsp_reffree(inp->inp_ipo->ipo_srcid);
1231 					inp->inp_ipo->ipo_srcid = ipr;
1232 				}
1233 				break;
1234 			case IP_IPSEC_REMOTE_ID:
1235 				/* Check valid types and NUL-termination */
1236 				if (ipr->ref_type < IPSP_IDENTITY_PREFIX ||
1237 				    ipr->ref_type > IPSP_IDENTITY_CONNECTION ||
1238 				    ((char *)(ipr + 1))[ipr->ref_len - 1]) {
1239 					FREE(ipr, M_CREDENTIALS);
1240 					error = EINVAL;
1241 				} else {
1242 					if (inp->inp_ipo->ipo_dstid != NULL)
1243 						ipsp_reffree(inp->inp_ipo->ipo_dstid);
1244 					inp->inp_ipo->ipo_dstid = ipr;
1245 				}
1246 				break;
1247 			case IP_IPSEC_LOCAL_CRED:
1248 				if (ipr->ref_type < IPSP_CRED_KEYNOTE ||
1249 				    ipr->ref_type > IPSP_CRED_X509) {
1250 					FREE(ipr, M_CREDENTIALS);
1251 					error = EINVAL;
1252 				} else {
1253 					if (inp->inp_ipo->ipo_local_cred != NULL)
1254 						ipsp_reffree(inp->inp_ipo->ipo_local_cred);
1255 					inp->inp_ipo->ipo_local_cred = ipr;
1256 				}
1257 				break;
1258 			case IP_IPSEC_LOCAL_AUTH:
1259 				if (ipr->ref_type < IPSP_AUTH_PASSPHRASE ||
1260 				    ipr->ref_type > IPSP_AUTH_RSA) {
1261 					FREE(ipr, M_CREDENTIALS);
1262 					error = EINVAL;
1263 				} else {
1264 					if (inp->inp_ipo->ipo_local_auth != NULL)
1265 						ipsp_reffree(inp->inp_ipo->ipo_local_auth);
1266 					inp->inp_ipo->ipo_local_auth = ipr;
1267 				}
1268 				break;
1269 			}
1270 
1271 			/* Unlink cached output TDB to force a re-search */
1272 			if (inp->inp_tdb_out) {
1273 				int s = spltdb();
1274 				TAILQ_REMOVE(&inp->inp_tdb_out->tdb_inp_out,
1275 				    inp, inp_tdb_out_next);
1276 				splx(s);
1277 			}
1278 
1279 			if (inp->inp_tdb_in) {
1280 				int s = spltdb();
1281 				TAILQ_REMOVE(&inp->inp_tdb_in->tdb_inp_in,
1282 				    inp, inp_tdb_in_next);
1283 				splx(s);
1284 			}
1285 #endif
1286 			break;
1287 		default:
1288 			error = ENOPROTOOPT;
1289 			break;
1290 		}
1291 		if (m)
1292 			(void)m_free(m);
1293 		break;
1294 
1295 	case PRCO_GETOPT:
1296 		switch (optname) {
1297 		case IP_OPTIONS:
1298 		case IP_RETOPTS:
1299 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1300 			if (inp->inp_options) {
1301 				m->m_len = inp->inp_options->m_len;
1302 				bcopy(mtod(inp->inp_options, caddr_t),
1303 				    mtod(m, caddr_t), (unsigned)m->m_len);
1304 			} else
1305 				m->m_len = 0;
1306 			break;
1307 
1308 		case IP_TOS:
1309 		case IP_TTL:
1310 		case IP_RECVOPTS:
1311 		case IP_RECVRETOPTS:
1312 		case IP_RECVDSTADDR:
1313 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1314 			m->m_len = sizeof(int);
1315 			switch (optname) {
1316 
1317 			case IP_TOS:
1318 				optval = inp->inp_ip.ip_tos;
1319 				break;
1320 
1321 			case IP_TTL:
1322 				optval = inp->inp_ip.ip_ttl;
1323 				break;
1324 
1325 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1326 
1327 			case IP_RECVOPTS:
1328 				optval = OPTBIT(INP_RECVOPTS);
1329 				break;
1330 
1331 			case IP_RECVRETOPTS:
1332 				optval = OPTBIT(INP_RECVRETOPTS);
1333 				break;
1334 
1335 			case IP_RECVDSTADDR:
1336 				optval = OPTBIT(INP_RECVDSTADDR);
1337 				break;
1338 			}
1339 			*mtod(m, int *) = optval;
1340 			break;
1341 
1342 		case IP_MULTICAST_IF:
1343 		case IP_MULTICAST_TTL:
1344 		case IP_MULTICAST_LOOP:
1345 		case IP_ADD_MEMBERSHIP:
1346 		case IP_DROP_MEMBERSHIP:
1347 			error = ip_getmoptions(optname, inp->inp_moptions, mp);
1348 			break;
1349 
1350 		case IP_PORTRANGE:
1351 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1352 			m->m_len = sizeof(int);
1353 
1354 			if (inp->inp_flags & INP_HIGHPORT)
1355 				optval = IP_PORTRANGE_HIGH;
1356 			else if (inp->inp_flags & INP_LOWPORT)
1357 				optval = IP_PORTRANGE_LOW;
1358 			else
1359 				optval = 0;
1360 
1361 			*mtod(m, int *) = optval;
1362 			break;
1363 
1364 		case IP_AUTH_LEVEL:
1365 		case IP_ESP_TRANS_LEVEL:
1366 		case IP_ESP_NETWORK_LEVEL:
1367 		case IP_IPCOMP_LEVEL:
1368 #ifndef IPSEC
1369 			m->m_len = sizeof(int);
1370 			*mtod(m, int *) = IPSEC_LEVEL_NONE;
1371 #else
1372 			m->m_len = sizeof(int);
1373 			switch (optname) {
1374 			case IP_AUTH_LEVEL:
1375 				optval = inp->inp_seclevel[SL_AUTH];
1376 				break;
1377 
1378 			case IP_ESP_TRANS_LEVEL:
1379 				optval = inp->inp_seclevel[SL_ESP_TRANS];
1380 				break;
1381 
1382 			case IP_ESP_NETWORK_LEVEL:
1383 				optval = inp->inp_seclevel[SL_ESP_NETWORK];
1384 				break;
1385 			case IP_IPCOMP_LEVEL:
1386 				optval = inp->inp_seclevel[SL_IPCOMP];
1387 				break;
1388 			}
1389 			*mtod(m, int *) = optval;
1390 #endif
1391 			break;
1392 		case IP_IPSEC_LOCAL_ID:
1393 		case IP_IPSEC_REMOTE_ID:
1394 		case IP_IPSEC_LOCAL_CRED:
1395 		case IP_IPSEC_REMOTE_CRED:
1396 		case IP_IPSEC_LOCAL_AUTH:
1397 		case IP_IPSEC_REMOTE_AUTH:
1398 #ifndef IPSEC
1399 			error = EOPNOTSUPP;
1400 #else
1401 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
1402 			m->m_len = sizeof(u_int16_t);
1403 			ipr = NULL;
1404 			switch (optname) {
1405 			case IP_IPSEC_LOCAL_ID:
1406 				if (inp->inp_ipo != NULL)
1407 					ipr = inp->inp_ipo->ipo_srcid;
1408 				opt16val = IPSP_IDENTITY_NONE;
1409 				break;
1410 			case IP_IPSEC_REMOTE_ID:
1411 				if (inp->inp_ipo != NULL)
1412 					ipr = inp->inp_ipo->ipo_dstid;
1413 				opt16val = IPSP_IDENTITY_NONE;
1414 				break;
1415 			case IP_IPSEC_LOCAL_CRED:
1416 				if (inp->inp_ipo != NULL)
1417 					ipr = inp->inp_ipo->ipo_local_cred;
1418 				opt16val = IPSP_CRED_NONE;
1419 				break;
1420 			case IP_IPSEC_REMOTE_CRED:
1421 				ipr = inp->inp_ipsec_remotecred;
1422 				opt16val = IPSP_CRED_NONE;
1423 				break;
1424 			case IP_IPSEC_LOCAL_AUTH:
1425 				if (inp->inp_ipo != NULL)
1426 					ipr = inp->inp_ipo->ipo_local_auth;
1427 				break;
1428 			case IP_IPSEC_REMOTE_AUTH:
1429 				ipr = inp->inp_ipsec_remoteauth;
1430 				break;
1431 			}
1432 			if (ipr == NULL)
1433 				*mtod(m, u_int16_t *) = opt16val;
1434 			else {
1435 				m->m_len += ipr->ref_len;
1436 				*mtod(m, u_int16_t *) = ipr->ref_type;
1437 				m_copyback(m, sizeof(u_int16_t), ipr->ref_len,
1438 				    ipr + 1);
1439 			}
1440 #endif
1441 			break;
1442 		default:
1443 			error = ENOPROTOOPT;
1444 			break;
1445 		}
1446 		break;
1447 	}
1448 	return (error);
1449 }
1450 
1451 /*
1452  * Set up IP options in pcb for insertion in output packets.
1453  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1454  * with destination address if source routed.
1455  */
1456 int
1457 #ifdef notyet
1458 ip_pcbopts(optname, pcbopt, m)
1459 	int optname;
1460 #else
1461 ip_pcbopts(pcbopt, m)
1462 #endif
1463 	struct mbuf **pcbopt;
1464 	struct mbuf *m;
1465 {
1466 	int cnt, optlen;
1467 	u_char *cp;
1468 	u_char opt;
1469 
1470 	/* turn off any old options */
1471 	if (*pcbopt)
1472 		(void)m_free(*pcbopt);
1473 	*pcbopt = 0;
1474 	if (m == (struct mbuf *)0 || m->m_len == 0) {
1475 		/*
1476 		 * Only turning off any previous options.
1477 		 */
1478 		if (m)
1479 			(void)m_free(m);
1480 		return (0);
1481 	}
1482 
1483 	if (m->m_len % sizeof(int32_t))
1484 		goto bad;
1485 
1486 	/*
1487 	 * IP first-hop destination address will be stored before
1488 	 * actual options; move other options back
1489 	 * and clear it when none present.
1490 	 */
1491 	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1492 		goto bad;
1493 	cnt = m->m_len;
1494 	m->m_len += sizeof(struct in_addr);
1495 	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1496 	ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
1497 	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
1498 
1499 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1500 		opt = cp[IPOPT_OPTVAL];
1501 		if (opt == IPOPT_EOL)
1502 			break;
1503 		if (opt == IPOPT_NOP)
1504 			optlen = 1;
1505 		else {
1506 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1507 				goto bad;
1508 			optlen = cp[IPOPT_OLEN];
1509 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
1510 				goto bad;
1511 		}
1512 		switch (opt) {
1513 
1514 		default:
1515 			break;
1516 
1517 		case IPOPT_LSRR:
1518 		case IPOPT_SSRR:
1519 			/*
1520 			 * user process specifies route as:
1521 			 *	->A->B->C->D
1522 			 * D must be our final destination (but we can't
1523 			 * check that since we may not have connected yet).
1524 			 * A is first hop destination, which doesn't appear in
1525 			 * actual IP option, but is stored before the options.
1526 			 */
1527 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1528 				goto bad;
1529 			m->m_len -= sizeof(struct in_addr);
1530 			cnt -= sizeof(struct in_addr);
1531 			optlen -= sizeof(struct in_addr);
1532 			cp[IPOPT_OLEN] = optlen;
1533 			/*
1534 			 * Move first hop before start of options.
1535 			 */
1536 			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1537 			    sizeof(struct in_addr));
1538 			/*
1539 			 * Then copy rest of options back
1540 			 * to close up the deleted entry.
1541 			 */
1542 			ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] +
1543 			    sizeof(struct in_addr)),
1544 			    (caddr_t)&cp[IPOPT_OFFSET+1],
1545 			    (unsigned)cnt + sizeof(struct in_addr));
1546 			break;
1547 		}
1548 	}
1549 	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1550 		goto bad;
1551 	*pcbopt = m;
1552 	return (0);
1553 
1554 bad:
1555 	(void)m_free(m);
1556 	return (EINVAL);
1557 }
1558 
1559 /*
1560  * Set the IP multicast options in response to user setsockopt().
1561  */
1562 int
1563 ip_setmoptions(optname, imop, m)
1564 	int optname;
1565 	struct ip_moptions **imop;
1566 	struct mbuf *m;
1567 {
1568 	int error = 0;
1569 	u_char loop;
1570 	int i;
1571 	struct in_addr addr;
1572 	struct ip_mreq *mreq;
1573 	struct ifnet *ifp;
1574 	struct ip_moptions *imo = *imop;
1575 	struct route ro;
1576 	struct sockaddr_in *dst;
1577 
1578 	if (imo == NULL) {
1579 		/*
1580 		 * No multicast option buffer attached to the pcb;
1581 		 * allocate one and initialize to default values.
1582 		 */
1583 		imo = (struct ip_moptions *)malloc(sizeof(*imo), M_IPMOPTS,
1584 		    M_WAITOK);
1585 
1586 		*imop = imo;
1587 		imo->imo_multicast_ifp = NULL;
1588 		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1589 		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1590 		imo->imo_num_memberships = 0;
1591 	}
1592 
1593 	switch (optname) {
1594 
1595 	case IP_MULTICAST_IF:
1596 		/*
1597 		 * Select the interface for outgoing multicast packets.
1598 		 */
1599 		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
1600 			error = EINVAL;
1601 			break;
1602 		}
1603 		addr = *(mtod(m, struct in_addr *));
1604 		/*
1605 		 * INADDR_ANY is used to remove a previous selection.
1606 		 * When no interface is selected, a default one is
1607 		 * chosen every time a multicast packet is sent.
1608 		 */
1609 		if (addr.s_addr == INADDR_ANY) {
1610 			imo->imo_multicast_ifp = NULL;
1611 			break;
1612 		}
1613 		/*
1614 		 * The selected interface is identified by its local
1615 		 * IP address.  Find the interface and confirm that
1616 		 * it supports multicasting.
1617 		 */
1618 		INADDR_TO_IFP(addr, ifp);
1619 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1620 			error = EADDRNOTAVAIL;
1621 			break;
1622 		}
1623 		imo->imo_multicast_ifp = ifp;
1624 		break;
1625 
1626 	case IP_MULTICAST_TTL:
1627 		/*
1628 		 * Set the IP time-to-live for outgoing multicast packets.
1629 		 */
1630 		if (m == NULL || m->m_len != 1) {
1631 			error = EINVAL;
1632 			break;
1633 		}
1634 		imo->imo_multicast_ttl = *(mtod(m, u_char *));
1635 		break;
1636 
1637 	case IP_MULTICAST_LOOP:
1638 		/*
1639 		 * Set the loopback flag for outgoing multicast packets.
1640 		 * Must be zero or one.
1641 		 */
1642 		if (m == NULL || m->m_len != 1 ||
1643 		   (loop = *(mtod(m, u_char *))) > 1) {
1644 			error = EINVAL;
1645 			break;
1646 		}
1647 		imo->imo_multicast_loop = loop;
1648 		break;
1649 
1650 	case IP_ADD_MEMBERSHIP:
1651 		/*
1652 		 * Add a multicast group membership.
1653 		 * Group must be a valid IP multicast address.
1654 		 */
1655 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1656 			error = EINVAL;
1657 			break;
1658 		}
1659 		mreq = mtod(m, struct ip_mreq *);
1660 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1661 			error = EINVAL;
1662 			break;
1663 		}
1664 		/*
1665 		 * If no interface address was provided, use the interface of
1666 		 * the route to the given multicast address.
1667 		 */
1668 		if (mreq->imr_interface.s_addr == INADDR_ANY) {
1669 			ro.ro_rt = NULL;
1670 			dst = satosin(&ro.ro_dst);
1671 			dst->sin_len = sizeof(*dst);
1672 			dst->sin_family = AF_INET;
1673 			dst->sin_addr = mreq->imr_multiaddr;
1674 			rtalloc(&ro);
1675 			if (ro.ro_rt == NULL) {
1676 				error = EADDRNOTAVAIL;
1677 				break;
1678 			}
1679 			ifp = ro.ro_rt->rt_ifp;
1680 			rtfree(ro.ro_rt);
1681 		} else {
1682 			INADDR_TO_IFP(mreq->imr_interface, ifp);
1683 		}
1684 		/*
1685 		 * See if we found an interface, and confirm that it
1686 		 * supports multicast.
1687 		 */
1688 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1689 			error = EADDRNOTAVAIL;
1690 			break;
1691 		}
1692 		/*
1693 		 * See if the membership already exists or if all the
1694 		 * membership slots are full.
1695 		 */
1696 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1697 			if (imo->imo_membership[i]->inm_ifp == ifp &&
1698 			    imo->imo_membership[i]->inm_addr.s_addr
1699 						== mreq->imr_multiaddr.s_addr)
1700 				break;
1701 		}
1702 		if (i < imo->imo_num_memberships) {
1703 			error = EADDRINUSE;
1704 			break;
1705 		}
1706 		if (i == IP_MAX_MEMBERSHIPS) {
1707 			error = ETOOMANYREFS;
1708 			break;
1709 		}
1710 		/*
1711 		 * Everything looks good; add a new record to the multicast
1712 		 * address list for the given interface.
1713 		 */
1714 		if ((imo->imo_membership[i] =
1715 		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
1716 			error = ENOBUFS;
1717 			break;
1718 		}
1719 		++imo->imo_num_memberships;
1720 		break;
1721 
1722 	case IP_DROP_MEMBERSHIP:
1723 		/*
1724 		 * Drop a multicast group membership.
1725 		 * Group must be a valid IP multicast address.
1726 		 */
1727 		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
1728 			error = EINVAL;
1729 			break;
1730 		}
1731 		mreq = mtod(m, struct ip_mreq *);
1732 		if (!IN_MULTICAST(mreq->imr_multiaddr.s_addr)) {
1733 			error = EINVAL;
1734 			break;
1735 		}
1736 		/*
1737 		 * If an interface address was specified, get a pointer
1738 		 * to its ifnet structure.
1739 		 */
1740 		if (mreq->imr_interface.s_addr == INADDR_ANY)
1741 			ifp = NULL;
1742 		else {
1743 			INADDR_TO_IFP(mreq->imr_interface, ifp);
1744 			if (ifp == NULL) {
1745 				error = EADDRNOTAVAIL;
1746 				break;
1747 			}
1748 		}
1749 		/*
1750 		 * Find the membership in the membership array.
1751 		 */
1752 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1753 			if ((ifp == NULL ||
1754 			     imo->imo_membership[i]->inm_ifp == ifp) &&
1755 			     imo->imo_membership[i]->inm_addr.s_addr ==
1756 			     mreq->imr_multiaddr.s_addr)
1757 				break;
1758 		}
1759 		if (i == imo->imo_num_memberships) {
1760 			error = EADDRNOTAVAIL;
1761 			break;
1762 		}
1763 		/*
1764 		 * Give up the multicast address record to which the
1765 		 * membership points.
1766 		 */
1767 		in_delmulti(imo->imo_membership[i]);
1768 		/*
1769 		 * Remove the gap in the membership array.
1770 		 */
1771 		for (++i; i < imo->imo_num_memberships; ++i)
1772 			imo->imo_membership[i-1] = imo->imo_membership[i];
1773 		--imo->imo_num_memberships;
1774 		break;
1775 
1776 	default:
1777 		error = EOPNOTSUPP;
1778 		break;
1779 	}
1780 
1781 	/*
1782 	 * If all options have default values, no need to keep the mbuf.
1783 	 */
1784 	if (imo->imo_multicast_ifp == NULL &&
1785 	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1786 	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1787 	    imo->imo_num_memberships == 0) {
1788 		free(*imop, M_IPMOPTS);
1789 		*imop = NULL;
1790 	}
1791 
1792 	return (error);
1793 }
1794 
1795 /*
1796  * Return the IP multicast options in response to user getsockopt().
1797  */
1798 int
1799 ip_getmoptions(optname, imo, mp)
1800 	int optname;
1801 	struct ip_moptions *imo;
1802 	struct mbuf **mp;
1803 {
1804 	u_char *ttl;
1805 	u_char *loop;
1806 	struct in_addr *addr;
1807 	struct in_ifaddr *ia;
1808 
1809 	*mp = m_get(M_WAIT, MT_SOOPTS);
1810 
1811 	switch (optname) {
1812 
1813 	case IP_MULTICAST_IF:
1814 		addr = mtod(*mp, struct in_addr *);
1815 		(*mp)->m_len = sizeof(struct in_addr);
1816 		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1817 			addr->s_addr = INADDR_ANY;
1818 		else {
1819 			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1820 			addr->s_addr = (ia == NULL) ? INADDR_ANY
1821 					: ia->ia_addr.sin_addr.s_addr;
1822 		}
1823 		return (0);
1824 
1825 	case IP_MULTICAST_TTL:
1826 		ttl = mtod(*mp, u_char *);
1827 		(*mp)->m_len = 1;
1828 		*ttl = (imo == NULL) ? IP_DEFAULT_MULTICAST_TTL
1829 				     : imo->imo_multicast_ttl;
1830 		return (0);
1831 
1832 	case IP_MULTICAST_LOOP:
1833 		loop = mtod(*mp, u_char *);
1834 		(*mp)->m_len = 1;
1835 		*loop = (imo == NULL) ? IP_DEFAULT_MULTICAST_LOOP
1836 				      : imo->imo_multicast_loop;
1837 		return (0);
1838 
1839 	default:
1840 		return (EOPNOTSUPP);
1841 	}
1842 }
1843 
1844 /*
1845  * Discard the IP multicast options.
1846  */
1847 void
1848 ip_freemoptions(imo)
1849 	struct ip_moptions *imo;
1850 {
1851 	int i;
1852 
1853 	if (imo != NULL) {
1854 		for (i = 0; i < imo->imo_num_memberships; ++i)
1855 			in_delmulti(imo->imo_membership[i]);
1856 		free(imo, M_IPMOPTS);
1857 	}
1858 }
1859 
1860 /*
1861  * Routine called from ip_output() to loop back a copy of an IP multicast
1862  * packet to the input queue of a specified interface.  Note that this
1863  * calls the output routine of the loopback "driver", but with an interface
1864  * pointer that might NOT be &loif -- easier than replicating that code here.
1865  */
1866 static void
1867 ip_mloopback(ifp, m, dst)
1868 	struct ifnet *ifp;
1869 	struct mbuf *m;
1870 	struct sockaddr_in *dst;
1871 {
1872 	struct ip *ip;
1873 	struct mbuf *copym;
1874 
1875 	copym = m_copym2(m, 0, M_COPYALL, M_DONTWAIT);
1876 	if (copym != NULL) {
1877 		/*
1878 		 * We don't bother to fragment if the IP length is greater
1879 		 * than the interface's MTU.  Can this possibly matter?
1880 		 */
1881 		ip = mtod(copym, struct ip *);
1882 		ip->ip_sum = 0;
1883 		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1884 		(void) looutput(ifp, copym, sintosa(dst), NULL);
1885 	}
1886 }
1887 
1888 /*
1889  * Process a delayed payload checksum calculation.
1890  */
1891 void
1892 in_delayed_cksum(struct mbuf *m)
1893 {
1894 	struct ip *ip;
1895 	u_int16_t csum, offset;
1896 
1897 	ip = mtod(m, struct ip *);
1898 	offset = ip->ip_hl << 2;
1899 	csum = in4_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1900 	if (csum == 0 && ip->ip_p == IPPROTO_UDP)
1901 		csum = 0xffff;
1902 
1903 	switch (ip->ip_p) {
1904 	case IPPROTO_TCP:
1905 		offset += offsetof(struct tcphdr, th_sum);
1906 		break;
1907 
1908 	case IPPROTO_UDP:
1909 		offset += offsetof(struct udphdr, uh_sum);
1910 		break;
1911 
1912 	default:
1913 		return;
1914 	}
1915 
1916 	if ((offset + sizeof(u_int16_t)) > m->m_len)
1917 		m_copyback(m, offset, sizeof(csum), &csum);
1918 	else
1919 		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1920 }
1921