xref: /openbsd-src/sys/netinet/ip_output.c (revision 6ca44032e7be0d795b9f13c99fbce059e942c15d)
1 /*	$OpenBSD: ip_output.c,v 1.384 2023/05/08 13:22:13 bluhm Exp $	*/
2 /*	$NetBSD: ip_output.c,v 1.28 1996/02/13 23:43:07 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
33  */
34 
35 #include "pf.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mbuf.h>
40 #include <sys/protosw.h>
41 #include <sys/socket.h>
42 #include <sys/socketvar.h>
43 #include <sys/proc.h>
44 #include <sys/kernel.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_enc.h>
49 #include <net/route.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/ip.h>
53 #include <netinet/in_pcb.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip_var.h>
56 #include <netinet/ip_icmp.h>
57 #include <netinet/tcp.h>
58 #include <netinet/udp.h>
59 #include <netinet/tcp_timer.h>
60 #include <netinet/tcp_var.h>
61 #include <netinet/udp_var.h>
62 
63 #if NPF > 0
64 #include <net/pfvar.h>
65 #endif
66 
67 #ifdef IPSEC
68 #ifdef ENCDEBUG
69 #define DPRINTF(fmt, args...)						\
70 	do {								\
71 		if (encdebug)						\
72 			printf("%s: " fmt "\n", __func__, ## args);	\
73 	} while (0)
74 #else
75 #define DPRINTF(fmt, args...)						\
76 	do { } while (0)
77 #endif
78 #endif /* IPSEC */
79 
80 int ip_pcbopts(struct mbuf **, struct mbuf *);
81 int ip_multicast_if(struct ip_mreqn *, u_int, unsigned int *);
82 int ip_setmoptions(int, struct ip_moptions **, struct mbuf *, u_int);
83 void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
84 static __inline u_int16_t __attribute__((__unused__))
85     in_cksum_phdr(u_int32_t, u_int32_t, u_int32_t);
86 void in_delayed_cksum(struct mbuf *);
87 int in_ifcap_cksum(struct mbuf *, struct ifnet *, int);
88 
89 int ip_output_ipsec_lookup(struct mbuf *m, int hlen, struct inpcb *inp,
90     struct tdb **, int ipsecflowinfo);
91 void ip_output_ipsec_pmtu_update(struct tdb *, struct route *, struct in_addr,
92     int, int);
93 int ip_output_ipsec_send(struct tdb *, struct mbuf *, struct route *, int);
94 
95 /*
96  * IP output.  The packet in mbuf chain m contains a skeletal IP
97  * header (with len, off, ttl, proto, tos, src, dst).
98  * The mbuf chain containing the packet will be freed.
99  * The mbuf opt, if present, will not be freed.
100  */
101 int
102 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
103     struct ip_moptions *imo, struct inpcb *inp, u_int32_t ipsecflowinfo)
104 {
105 	struct ip *ip;
106 	struct ifnet *ifp = NULL;
107 	struct mbuf_list ml;
108 	int hlen = sizeof (struct ip);
109 	int error = 0;
110 	struct route iproute;
111 	struct sockaddr_in *dst;
112 	struct tdb *tdb = NULL;
113 	u_long mtu;
114 #if NPF > 0
115 	u_int orig_rtableid;
116 #endif
117 
118 	NET_ASSERT_LOCKED();
119 
120 #ifdef IPSEC
121 	if (inp && (inp->inp_flags & INP_IPV6) != 0)
122 		panic("ip_output: IPv6 pcb is passed");
123 #endif /* IPSEC */
124 
125 #ifdef	DIAGNOSTIC
126 	if ((m->m_flags & M_PKTHDR) == 0)
127 		panic("ip_output no HDR");
128 #endif
129 	if (opt)
130 		m = ip_insertoptions(m, opt, &hlen);
131 
132 	ip = mtod(m, struct ip *);
133 
134 	/*
135 	 * Fill in IP header.
136 	 */
137 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
138 		ip->ip_v = IPVERSION;
139 		ip->ip_off &= htons(IP_DF);
140 		ip->ip_id = htons(ip_randomid());
141 		ip->ip_hl = hlen >> 2;
142 		ipstat_inc(ips_localout);
143 	} else {
144 		hlen = ip->ip_hl << 2;
145 	}
146 
147 	/*
148 	 * We should not send traffic to 0/8 say both Stevens and RFCs
149 	 * 5735 section 3 and 1122 sections 3.2.1.3 and 3.3.6.
150 	 */
151 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == 0) {
152 		error = ENETUNREACH;
153 		goto bad;
154 	}
155 
156 #if NPF > 0
157 	orig_rtableid = m->m_pkthdr.ph_rtableid;
158 reroute:
159 #endif
160 
161 	/*
162 	 * Do a route lookup now in case we need the source address to
163 	 * do an SPD lookup in IPsec; for most packets, the source address
164 	 * is set at a higher level protocol. ICMPs and other packets
165 	 * though (e.g., traceroute) have a source address of zeroes.
166 	 */
167 	if (ro == NULL) {
168 		ro = &iproute;
169 		memset(ro, 0, sizeof(*ro));
170 	}
171 
172 	dst = satosin(&ro->ro_dst);
173 
174 	/*
175 	 * If there is a cached route, check that it is to the same
176 	 * destination and is still up.  If not, free it and try again.
177 	 */
178 	if (!rtisvalid(ro->ro_rt) ||
179 	    dst->sin_addr.s_addr != ip->ip_dst.s_addr ||
180 	    ro->ro_tableid != m->m_pkthdr.ph_rtableid) {
181 		rtfree(ro->ro_rt);
182 		ro->ro_rt = NULL;
183 	}
184 
185 	if (ro->ro_rt == NULL) {
186 		dst->sin_family = AF_INET;
187 		dst->sin_len = sizeof(*dst);
188 		dst->sin_addr = ip->ip_dst;
189 		ro->ro_tableid = m->m_pkthdr.ph_rtableid;
190 	}
191 
192 	if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
193 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) &&
194 	    imo != NULL && (ifp = if_get(imo->imo_ifidx)) != NULL) {
195 
196 		mtu = ifp->if_mtu;
197 		if (ip->ip_src.s_addr == INADDR_ANY) {
198 			struct in_ifaddr *ia;
199 
200 			IFP_TO_IA(ifp, ia);
201 			if (ia != NULL)
202 				ip->ip_src = ia->ia_addr.sin_addr;
203 		}
204 	} else {
205 		struct in_ifaddr *ia;
206 
207 		if (ro->ro_rt == NULL)
208 			ro->ro_rt = rtalloc_mpath(&ro->ro_dst,
209 			    &ip->ip_src.s_addr, ro->ro_tableid);
210 
211 		if (ro->ro_rt == NULL) {
212 			ipstat_inc(ips_noroute);
213 			error = EHOSTUNREACH;
214 			goto bad;
215 		}
216 
217 		ia = ifatoia(ro->ro_rt->rt_ifa);
218 		if (ISSET(ro->ro_rt->rt_flags, RTF_LOCAL))
219 			ifp = if_get(rtable_loindex(m->m_pkthdr.ph_rtableid));
220 		else
221 			ifp = if_get(ro->ro_rt->rt_ifidx);
222 		/*
223 		 * We aren't using rtisvalid() here because the UP/DOWN state
224 		 * machine is broken with some Ethernet drivers like em(4).
225 		 * As a result we might try to use an invalid cached route
226 		 * entry while an interface is being detached.
227 		 */
228 		if (ifp == NULL) {
229 			ipstat_inc(ips_noroute);
230 			error = EHOSTUNREACH;
231 			goto bad;
232 		}
233 		if ((mtu = ro->ro_rt->rt_mtu) == 0)
234 			mtu = ifp->if_mtu;
235 
236 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
237 			dst = satosin(ro->ro_rt->rt_gateway);
238 
239 		/* Set the source IP address */
240 		if (ip->ip_src.s_addr == INADDR_ANY && ia)
241 			ip->ip_src = ia->ia_addr.sin_addr;
242 	}
243 
244 #ifdef IPSEC
245 	if (ipsec_in_use || inp != NULL) {
246 		/* Do we have any pending SAs to apply ? */
247 		error = ip_output_ipsec_lookup(m, hlen, inp, &tdb,
248 		    ipsecflowinfo);
249 		if (error) {
250 			/* Should silently drop packet */
251 			if (error == -EINVAL)
252 				error = 0;
253 			goto bad;
254 		}
255 		if (tdb != NULL) {
256 			/*
257 			 * If it needs TCP/UDP hardware-checksumming, do the
258 			 * computation now.
259 			 */
260 			in_proto_cksum_out(m, NULL);
261 		}
262 	}
263 #endif /* IPSEC */
264 
265 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
266 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
267 
268 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
269 			M_BCAST : M_MCAST;
270 
271 		/*
272 		 * IP destination address is multicast.  Make sure "dst"
273 		 * still points to the address in "ro".  (It may have been
274 		 * changed to point to a gateway address, above.)
275 		 */
276 		dst = satosin(&ro->ro_dst);
277 
278 		/*
279 		 * See if the caller provided any multicast options
280 		 */
281 		if (imo != NULL)
282 			ip->ip_ttl = imo->imo_ttl;
283 		else
284 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
285 
286 		/*
287 		 * if we don't know the outgoing ifp yet, we can't generate
288 		 * output
289 		 */
290 		if (!ifp) {
291 			ipstat_inc(ips_noroute);
292 			error = EHOSTUNREACH;
293 			goto bad;
294 		}
295 
296 		/*
297 		 * Confirm that the outgoing interface supports multicast,
298 		 * but only if the packet actually is going out on that
299 		 * interface (i.e., no IPsec is applied).
300 		 */
301 		if ((((m->m_flags & M_MCAST) &&
302 		      (ifp->if_flags & IFF_MULTICAST) == 0) ||
303 		     ((m->m_flags & M_BCAST) &&
304 		      (ifp->if_flags & IFF_BROADCAST) == 0)) && (tdb == NULL)) {
305 			ipstat_inc(ips_noroute);
306 			error = ENETUNREACH;
307 			goto bad;
308 		}
309 
310 		/*
311 		 * If source address not specified yet, use address
312 		 * of outgoing interface.
313 		 */
314 		if (ip->ip_src.s_addr == INADDR_ANY) {
315 			struct in_ifaddr *ia;
316 
317 			IFP_TO_IA(ifp, ia);
318 			if (ia != NULL)
319 				ip->ip_src = ia->ia_addr.sin_addr;
320 		}
321 
322 		if ((imo == NULL || imo->imo_loop) &&
323 		    in_hasmulti(&ip->ip_dst, ifp)) {
324 			/*
325 			 * If we belong to the destination multicast group
326 			 * on the outgoing interface, and the caller did not
327 			 * forbid loopback, loop back a copy.
328 			 * Can't defer TCP/UDP checksumming, do the
329 			 * computation now.
330 			 */
331 			in_proto_cksum_out(m, NULL);
332 			ip_mloopback(ifp, m, dst);
333 		}
334 #ifdef MROUTING
335 		else {
336 			/*
337 			 * If we are acting as a multicast router, perform
338 			 * multicast forwarding as if the packet had just
339 			 * arrived on the interface to which we are about
340 			 * to send.  The multicast forwarding function
341 			 * recursively calls this function, using the
342 			 * IP_FORWARDING flag to prevent infinite recursion.
343 			 *
344 			 * Multicasts that are looped back by ip_mloopback(),
345 			 * above, will be forwarded by the ip_input() routine,
346 			 * if necessary.
347 			 */
348 			if (ipmforwarding && ip_mrouter[ifp->if_rdomain] &&
349 			    (flags & IP_FORWARDING) == 0) {
350 				int rv;
351 
352 				KERNEL_LOCK();
353 				rv = ip_mforward(m, ifp);
354 				KERNEL_UNLOCK();
355 				if (rv != 0)
356 					goto bad;
357 			}
358 		}
359 #endif
360 		/*
361 		 * Multicasts with a time-to-live of zero may be looped-
362 		 * back, above, but must not be transmitted on a network.
363 		 * Also, multicasts addressed to the loopback interface
364 		 * are not sent -- the above call to ip_mloopback() will
365 		 * loop back a copy if this host actually belongs to the
366 		 * destination group on the loopback interface.
367 		 */
368 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0)
369 			goto bad;
370 
371 		goto sendit;
372 	}
373 
374 	/*
375 	 * Look for broadcast address and verify user is allowed to send
376 	 * such a packet; if the packet is going in an IPsec tunnel, skip
377 	 * this check.
378 	 */
379 	if ((tdb == NULL) && ((dst->sin_addr.s_addr == INADDR_BROADCAST) ||
380 	    (ro && ro->ro_rt && ISSET(ro->ro_rt->rt_flags, RTF_BROADCAST)))) {
381 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
382 			error = EADDRNOTAVAIL;
383 			goto bad;
384 		}
385 		if ((flags & IP_ALLOWBROADCAST) == 0) {
386 			error = EACCES;
387 			goto bad;
388 		}
389 
390 		/* Don't allow broadcast messages to be fragmented */
391 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
392 			error = EMSGSIZE;
393 			goto bad;
394 		}
395 		m->m_flags |= M_BCAST;
396 	} else
397 		m->m_flags &= ~M_BCAST;
398 
399 sendit:
400 	/*
401 	 * If we're doing Path MTU discovery, we need to set DF unless
402 	 * the route's MTU is locked.
403 	 */
404 	if ((flags & IP_MTUDISC) && ro && ro->ro_rt &&
405 	    (ro->ro_rt->rt_locks & RTV_MTU) == 0)
406 		ip->ip_off |= htons(IP_DF);
407 
408 #ifdef IPSEC
409 	/*
410 	 * Check if the packet needs encapsulation.
411 	 */
412 	if (tdb != NULL) {
413 		/* Callee frees mbuf */
414 		error = ip_output_ipsec_send(tdb, m, ro,
415 		    (flags & IP_FORWARDING) ? 1 : 0);
416 		goto done;
417 	}
418 #endif /* IPSEC */
419 
420 	/*
421 	 * Packet filter
422 	 */
423 #if NPF > 0
424 	if (pf_test(AF_INET, (flags & IP_FORWARDING) ? PF_FWD : PF_OUT,
425 	    ifp, &m) != PF_PASS) {
426 		error = EACCES;
427 		goto bad;
428 	}
429 	if (m == NULL)
430 		goto done;
431 	ip = mtod(m, struct ip *);
432 	hlen = ip->ip_hl << 2;
433 	if ((m->m_pkthdr.pf.flags & (PF_TAG_REROUTE | PF_TAG_GENERATED)) ==
434 	    (PF_TAG_REROUTE | PF_TAG_GENERATED))
435 		/* already rerun the route lookup, go on */
436 		m->m_pkthdr.pf.flags &= ~(PF_TAG_GENERATED | PF_TAG_REROUTE);
437 	else if (m->m_pkthdr.pf.flags & PF_TAG_REROUTE) {
438 		/* tag as generated to skip over pf_test on rerun */
439 		m->m_pkthdr.pf.flags |= PF_TAG_GENERATED;
440 		ro = NULL;
441 		if_put(ifp); /* drop reference since target changed */
442 		ifp = NULL;
443 		goto reroute;
444 	}
445 #endif
446 
447 #ifdef IPSEC
448 	if (ipsec_in_use && (flags & IP_FORWARDING) && (ipforwarding == 2) &&
449 	    (m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL) == NULL)) {
450 		error = EHOSTUNREACH;
451 		goto bad;
452 	}
453 #endif
454 
455 	/*
456 	 * If small enough for interface, can just send directly.
457 	 */
458 	if (ntohs(ip->ip_len) <= mtu) {
459 		ip->ip_sum = 0;
460 		if (in_ifcap_cksum(m, ifp, IFCAP_CSUM_IPv4))
461 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_OUT;
462 		else {
463 			ipstat_inc(ips_outswcsum);
464 			ip->ip_sum = in_cksum(m, hlen);
465 		}
466 		in_proto_cksum_out(m, ifp);
467 		error = ifp->if_output(ifp, m, sintosa(dst), ro->ro_rt);
468 		goto done;
469 	}
470 
471 	/*
472 	 * Too large for interface; fragment if possible.
473 	 * Must be able to put at least 8 bytes per fragment.
474 	 */
475 	if (ip->ip_off & htons(IP_DF)) {
476 #ifdef IPSEC
477 		if (ip_mtudisc)
478 			ipsec_adjust_mtu(m, ifp->if_mtu);
479 #endif
480 		error = EMSGSIZE;
481 #if NPF > 0
482 		/* pf changed routing table, use orig rtable for path MTU */
483 		if (ro->ro_tableid != orig_rtableid) {
484 			rtfree(ro->ro_rt);
485 			ro->ro_tableid = orig_rtableid;
486 			ro->ro_rt = icmp_mtudisc_clone(
487 			    satosin(&ro->ro_dst)->sin_addr, ro->ro_tableid, 0);
488 		}
489 #endif
490 		/*
491 		 * This case can happen if the user changed the MTU
492 		 * of an interface after enabling IP on it.  Because
493 		 * most netifs don't keep track of routes pointing to
494 		 * them, there is no way for one to update all its
495 		 * routes when the MTU is changed.
496 		 */
497 		if (rtisvalid(ro->ro_rt) &&
498 		    ISSET(ro->ro_rt->rt_flags, RTF_HOST) &&
499 		    !(ro->ro_rt->rt_locks & RTV_MTU) &&
500 		    (ro->ro_rt->rt_mtu > ifp->if_mtu)) {
501 			ro->ro_rt->rt_mtu = ifp->if_mtu;
502 		}
503 		ipstat_inc(ips_cantfrag);
504 		goto bad;
505 	}
506 
507 	if ((error = ip_fragment(m, &ml, ifp, mtu)) ||
508 	    (error = if_output_ml(ifp, &ml, sintosa(dst), ro->ro_rt)))
509 		goto done;
510 	ipstat_inc(ips_fragmented);
511 
512 done:
513 	if (ro == &iproute && ro->ro_rt)
514 		rtfree(ro->ro_rt);
515 	if_put(ifp);
516 #ifdef IPSEC
517 	tdb_unref(tdb);
518 #endif /* IPSEC */
519 	return (error);
520 
521 bad:
522 	m_freem(m);
523 	goto done;
524 }
525 
526 #ifdef IPSEC
527 int
528 ip_output_ipsec_lookup(struct mbuf *m, int hlen, struct inpcb *inp,
529     struct tdb **tdbout, int ipsecflowinfo)
530 {
531 	struct m_tag *mtag;
532 	struct tdb_ident *tdbi;
533 	struct tdb *tdb;
534 	struct ipsec_ids *ids = NULL;
535 	int error;
536 
537 	/* Do we have any pending SAs to apply ? */
538 	if (ipsecflowinfo)
539 		ids = ipsp_ids_lookup(ipsecflowinfo);
540 	error = ipsp_spd_lookup(m, AF_INET, hlen, IPSP_DIRECTION_OUT,
541 	    NULL, inp, &tdb, ids);
542 	ipsp_ids_free(ids);
543 	if (error || tdb == NULL) {
544 		*tdbout = NULL;
545 		return error;
546 	}
547 	/* Loop detection */
548 	for (mtag = m_tag_first(m); mtag != NULL; mtag = m_tag_next(m, mtag)) {
549 		if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE)
550 			continue;
551 		tdbi = (struct tdb_ident *)(mtag + 1);
552 		if (tdbi->spi == tdb->tdb_spi &&
553 		    tdbi->proto == tdb->tdb_sproto &&
554 		    tdbi->rdomain == tdb->tdb_rdomain &&
555 		    !memcmp(&tdbi->dst, &tdb->tdb_dst,
556 		    sizeof(union sockaddr_union))) {
557 			/* no IPsec needed */
558 			tdb_unref(tdb);
559 			*tdbout = NULL;
560 			return 0;
561 		}
562 	}
563 	*tdbout = tdb;
564 	return 0;
565 }
566 
567 void
568 ip_output_ipsec_pmtu_update(struct tdb *tdb, struct route *ro,
569     struct in_addr dst, int rtableid, int transportmode)
570 {
571 	struct rtentry *rt = NULL;
572 	int rt_mtucloned = 0;
573 
574 	/* Find a host route to store the mtu in */
575 	if (ro != NULL)
576 		rt = ro->ro_rt;
577 	/* but don't add a PMTU route for transport mode SAs */
578 	if (transportmode)
579 		rt = NULL;
580 	else if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0) {
581 		rt = icmp_mtudisc_clone(dst, rtableid, 1);
582 		rt_mtucloned = 1;
583 	}
584 	DPRINTF("spi %08x mtu %d rt %p cloned %d",
585 	    ntohl(tdb->tdb_spi), tdb->tdb_mtu, rt, rt_mtucloned);
586 	if (rt != NULL) {
587 		rt->rt_mtu = tdb->tdb_mtu;
588 		if (ro != NULL && ro->ro_rt != NULL) {
589 			rtfree(ro->ro_rt);
590 			ro->ro_rt = rtalloc(&ro->ro_dst, RT_RESOLVE, rtableid);
591 		}
592 		if (rt_mtucloned)
593 			rtfree(rt);
594 	}
595 }
596 
597 int
598 ip_output_ipsec_send(struct tdb *tdb, struct mbuf *m, struct route *ro, int fwd)
599 {
600 #if NPF > 0
601 	struct ifnet *encif;
602 #endif
603 	struct ip *ip;
604 	struct in_addr dst;
605 	int error, rtableid;
606 
607 #if NPF > 0
608 	/*
609 	 * Packet filter
610 	 */
611 	if ((encif = enc_getif(tdb->tdb_rdomain, tdb->tdb_tap)) == NULL ||
612 	    pf_test(AF_INET, fwd ? PF_FWD : PF_OUT, encif, &m) != PF_PASS) {
613 		m_freem(m);
614 		return EACCES;
615 	}
616 	if (m == NULL)
617 		return 0;
618 	/*
619 	 * PF_TAG_REROUTE handling or not...
620 	 * Packet is entering IPsec so the routing is
621 	 * already overruled by the IPsec policy.
622 	 * Until now the change was not reconsidered.
623 	 * What's the behaviour?
624 	 */
625 	in_proto_cksum_out(m, encif);
626 #endif
627 
628 	/* Check if we are allowed to fragment */
629 	ip = mtod(m, struct ip *);
630 	dst = ip->ip_dst;
631 	rtableid = m->m_pkthdr.ph_rtableid;
632 	if (ip_mtudisc && (ip->ip_off & htons(IP_DF)) && tdb->tdb_mtu &&
633 	    ntohs(ip->ip_len) > tdb->tdb_mtu &&
634 	    tdb->tdb_mtutimeout > gettime()) {
635 		int transportmode;
636 
637 		transportmode = (tdb->tdb_dst.sa.sa_family == AF_INET) &&
638 		    (tdb->tdb_dst.sin.sin_addr.s_addr == dst.s_addr);
639 		ip_output_ipsec_pmtu_update(tdb, ro, dst, rtableid,
640 		    transportmode);
641 		ipsec_adjust_mtu(m, tdb->tdb_mtu);
642 		m_freem(m);
643 		return EMSGSIZE;
644 	}
645 	/* propagate IP_DF for v4-over-v6 */
646 	if (ip_mtudisc && ip->ip_off & htons(IP_DF))
647 		SET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT);
648 
649 	/*
650 	 * Clear these -- they'll be set in the recursive invocation
651 	 * as needed.
652 	 */
653 	m->m_flags &= ~(M_MCAST | M_BCAST);
654 
655 	/* Callee frees mbuf */
656 	KERNEL_LOCK();
657 	error = ipsp_process_packet(m, tdb, AF_INET, 0);
658 	KERNEL_UNLOCK();
659 	if (error) {
660 		ipsecstat_inc(ipsec_odrops);
661 		tdbstat_inc(tdb, tdb_odrops);
662 	}
663 	if (ip_mtudisc && error == EMSGSIZE)
664 		ip_output_ipsec_pmtu_update(tdb, ro, dst, rtableid, 0);
665 	return error;
666 }
667 #endif /* IPSEC */
668 
669 int
670 ip_fragment(struct mbuf *m0, struct mbuf_list *ml, struct ifnet *ifp,
671     u_long mtu)
672 {
673 	struct ip *ip;
674 	int firstlen, hlen, tlen, len, off;
675 	int error;
676 
677 	ml_init(ml);
678 	ml_enqueue(ml, m0);
679 
680 	ip = mtod(m0, struct ip *);
681 	hlen = ip->ip_hl << 2;
682 	tlen = m0->m_pkthdr.len;
683 	len = (mtu - hlen) &~ 7;
684 	if (len < 8) {
685 		error = EMSGSIZE;
686 		goto bad;
687 	}
688 	firstlen = len;
689 
690 	/*
691 	 * If we are doing fragmentation, we can't defer TCP/UDP
692 	 * checksumming; compute the checksum and clear the flag.
693 	 */
694 	in_proto_cksum_out(m0, NULL);
695 
696 	/*
697 	 * Loop through length of payload after first fragment,
698 	 * make new header and copy data of each part and link onto chain.
699 	 */
700 	for (off = hlen + firstlen; off < tlen; off += len) {
701 		struct mbuf *m;
702 		struct ip *mhip;
703 		int mhlen;
704 
705 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
706 		if (m == NULL) {
707 			error = ENOBUFS;
708 			goto bad;
709 		}
710 		ml_enqueue(ml, m);
711 		if ((error = m_dup_pkthdr(m, m0, M_DONTWAIT)) != 0)
712 			goto bad;
713 		m->m_data += max_linkhdr;
714 		mhip = mtod(m, struct ip *);
715 		*mhip = *ip;
716 		if (hlen > sizeof(struct ip)) {
717 			mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
718 			mhip->ip_hl = mhlen >> 2;
719 		} else
720 			mhlen = sizeof(struct ip);
721 		m->m_len = mhlen;
722 
723 		mhip->ip_off = ((off - hlen) >> 3) +
724 		    (ntohs(ip->ip_off) & ~IP_MF);
725 		if (ip->ip_off & htons(IP_MF))
726 			mhip->ip_off |= IP_MF;
727 		if (off + len >= tlen)
728 			len = tlen - off;
729 		else
730 			mhip->ip_off |= IP_MF;
731 		mhip->ip_off = htons(mhip->ip_off);
732 
733 		m->m_pkthdr.len = mhlen + len;
734 		mhip->ip_len = htons(m->m_pkthdr.len);
735 		m->m_next = m_copym(m0, off, len, M_NOWAIT);
736 		if (m->m_next == NULL) {
737 			error = ENOBUFS;
738 			goto bad;
739 		}
740 
741 		mhip->ip_sum = 0;
742 		if (in_ifcap_cksum(m, ifp, IFCAP_CSUM_IPv4))
743 			m->m_pkthdr.csum_flags |= M_IPV4_CSUM_OUT;
744 		else {
745 			ipstat_inc(ips_outswcsum);
746 			mhip->ip_sum = in_cksum(m, mhlen);
747 		}
748 	}
749 
750 	/*
751 	 * Update first fragment by trimming what's been copied out
752 	 * and updating header, then send each fragment (in order).
753 	 */
754 	if (hlen + firstlen < tlen) {
755 		m_adj(m0, hlen + firstlen - tlen);
756 		ip->ip_off |= htons(IP_MF);
757 	}
758 	ip->ip_len = htons(m0->m_pkthdr.len);
759 
760 	ip->ip_sum = 0;
761 	if (in_ifcap_cksum(m0, ifp, IFCAP_CSUM_IPv4))
762 		m0->m_pkthdr.csum_flags |= M_IPV4_CSUM_OUT;
763 	else {
764 		ipstat_inc(ips_outswcsum);
765 		ip->ip_sum = in_cksum(m0, hlen);
766 	}
767 
768 	ipstat_add(ips_ofragments, ml_len(ml));
769 	return (0);
770 
771 bad:
772 	ipstat_inc(ips_odropped);
773 	ml_purge(ml);
774 	return (error);
775 }
776 
777 /*
778  * Insert IP options into preformed packet.
779  * Adjust IP destination as required for IP source routing,
780  * as indicated by a non-zero in_addr at the start of the options.
781  */
782 struct mbuf *
783 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
784 {
785 	struct ipoption *p = mtod(opt, struct ipoption *);
786 	struct mbuf *n;
787 	struct ip *ip = mtod(m, struct ip *);
788 	unsigned int optlen;
789 
790 	optlen = opt->m_len - sizeof(p->ipopt_dst);
791 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
792 		return (m);		/* XXX should fail */
793 
794 	/* check if options will fit to IP header */
795 	if ((optlen + sizeof(struct ip)) > (0x0f << 2)) {
796 		*phlen = sizeof(struct ip);
797 		return (m);
798 	}
799 
800 	if (p->ipopt_dst.s_addr)
801 		ip->ip_dst = p->ipopt_dst;
802 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
803 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
804 		if (n == NULL)
805 			return (m);
806 		M_MOVE_HDR(n, m);
807 		n->m_pkthdr.len += optlen;
808 		m->m_len -= sizeof(struct ip);
809 		m->m_data += sizeof(struct ip);
810 		n->m_next = m;
811 		m = n;
812 		m->m_len = optlen + sizeof(struct ip);
813 		m->m_data += max_linkhdr;
814 		memcpy(mtod(m, caddr_t), ip, sizeof(struct ip));
815 	} else {
816 		m->m_data -= optlen;
817 		m->m_len += optlen;
818 		m->m_pkthdr.len += optlen;
819 		memmove(mtod(m, caddr_t), (caddr_t)ip, sizeof(struct ip));
820 	}
821 	ip = mtod(m, struct ip *);
822 	memcpy(ip + 1, p->ipopt_list, optlen);
823 	*phlen = sizeof(struct ip) + optlen;
824 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
825 	return (m);
826 }
827 
828 /*
829  * Copy options from ip to jp,
830  * omitting those not copied during fragmentation.
831  */
832 int
833 ip_optcopy(struct ip *ip, struct ip *jp)
834 {
835 	u_char *cp, *dp;
836 	int opt, optlen, cnt;
837 
838 	cp = (u_char *)(ip + 1);
839 	dp = (u_char *)(jp + 1);
840 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
841 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
842 		opt = cp[0];
843 		if (opt == IPOPT_EOL)
844 			break;
845 		if (opt == IPOPT_NOP) {
846 			/* Preserve for IP mcast tunnel's LSRR alignment. */
847 			*dp++ = IPOPT_NOP;
848 			optlen = 1;
849 			continue;
850 		}
851 #ifdef DIAGNOSTIC
852 		if (cnt < IPOPT_OLEN + sizeof(*cp))
853 			panic("malformed IPv4 option passed to ip_optcopy");
854 #endif
855 		optlen = cp[IPOPT_OLEN];
856 #ifdef DIAGNOSTIC
857 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
858 			panic("malformed IPv4 option passed to ip_optcopy");
859 #endif
860 		/* bogus lengths should have been caught by ip_dooptions */
861 		if (optlen > cnt)
862 			optlen = cnt;
863 		if (IPOPT_COPIED(opt)) {
864 			memcpy(dp, cp, optlen);
865 			dp += optlen;
866 		}
867 	}
868 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
869 		*dp++ = IPOPT_EOL;
870 	return (optlen);
871 }
872 
873 /*
874  * IP socket option processing.
875  */
876 int
877 ip_ctloutput(int op, struct socket *so, int level, int optname,
878     struct mbuf *m)
879 {
880 	struct inpcb *inp = sotoinpcb(so);
881 	int optval = 0;
882 	struct proc *p = curproc; /* XXX */
883 	int error = 0;
884 	u_int rtableid, rtid = 0;
885 
886 	if (level != IPPROTO_IP)
887 		return (EINVAL);
888 
889 	rtableid = p->p_p->ps_rtableid;
890 
891 	switch (op) {
892 	case PRCO_SETOPT:
893 		switch (optname) {
894 		case IP_OPTIONS:
895 			return (ip_pcbopts(&inp->inp_options, m));
896 
897 		case IP_TOS:
898 		case IP_TTL:
899 		case IP_MINTTL:
900 		case IP_RECVOPTS:
901 		case IP_RECVRETOPTS:
902 		case IP_RECVDSTADDR:
903 		case IP_RECVIF:
904 		case IP_RECVTTL:
905 		case IP_RECVDSTPORT:
906 		case IP_RECVRTABLE:
907 		case IP_IPSECFLOWINFO:
908 			if (m == NULL || m->m_len != sizeof(int))
909 				error = EINVAL;
910 			else {
911 				optval = *mtod(m, int *);
912 				switch (optname) {
913 
914 				case IP_TOS:
915 					inp->inp_ip.ip_tos = optval;
916 					break;
917 
918 				case IP_TTL:
919 					if (optval > 0 && optval <= MAXTTL)
920 						inp->inp_ip.ip_ttl = optval;
921 					else if (optval == -1)
922 						inp->inp_ip.ip_ttl = ip_defttl;
923 					else
924 						error = EINVAL;
925 					break;
926 
927 				case IP_MINTTL:
928 					if (optval >= 0 && optval <= MAXTTL)
929 						inp->inp_ip_minttl = optval;
930 					else
931 						error = EINVAL;
932 					break;
933 #define	OPTSET(bit) \
934 	if (optval) \
935 		inp->inp_flags |= bit; \
936 	else \
937 		inp->inp_flags &= ~bit;
938 
939 				case IP_RECVOPTS:
940 					OPTSET(INP_RECVOPTS);
941 					break;
942 
943 				case IP_RECVRETOPTS:
944 					OPTSET(INP_RECVRETOPTS);
945 					break;
946 
947 				case IP_RECVDSTADDR:
948 					OPTSET(INP_RECVDSTADDR);
949 					break;
950 				case IP_RECVIF:
951 					OPTSET(INP_RECVIF);
952 					break;
953 				case IP_RECVTTL:
954 					OPTSET(INP_RECVTTL);
955 					break;
956 				case IP_RECVDSTPORT:
957 					OPTSET(INP_RECVDSTPORT);
958 					break;
959 				case IP_RECVRTABLE:
960 					OPTSET(INP_RECVRTABLE);
961 					break;
962 				case IP_IPSECFLOWINFO:
963 					OPTSET(INP_IPSECFLOWINFO);
964 					break;
965 				}
966 			}
967 			break;
968 #undef OPTSET
969 
970 		case IP_MULTICAST_IF:
971 		case IP_MULTICAST_TTL:
972 		case IP_MULTICAST_LOOP:
973 		case IP_ADD_MEMBERSHIP:
974 		case IP_DROP_MEMBERSHIP:
975 			error = ip_setmoptions(optname, &inp->inp_moptions, m,
976 			    inp->inp_rtableid);
977 			break;
978 
979 		case IP_PORTRANGE:
980 			if (m == NULL || m->m_len != sizeof(int))
981 				error = EINVAL;
982 			else {
983 				optval = *mtod(m, int *);
984 
985 				switch (optval) {
986 
987 				case IP_PORTRANGE_DEFAULT:
988 					inp->inp_flags &= ~(INP_LOWPORT);
989 					inp->inp_flags &= ~(INP_HIGHPORT);
990 					break;
991 
992 				case IP_PORTRANGE_HIGH:
993 					inp->inp_flags &= ~(INP_LOWPORT);
994 					inp->inp_flags |= INP_HIGHPORT;
995 					break;
996 
997 				case IP_PORTRANGE_LOW:
998 					inp->inp_flags &= ~(INP_HIGHPORT);
999 					inp->inp_flags |= INP_LOWPORT;
1000 					break;
1001 
1002 				default:
1003 
1004 					error = EINVAL;
1005 					break;
1006 				}
1007 			}
1008 			break;
1009 		case IP_AUTH_LEVEL:
1010 		case IP_ESP_TRANS_LEVEL:
1011 		case IP_ESP_NETWORK_LEVEL:
1012 		case IP_IPCOMP_LEVEL:
1013 #ifndef IPSEC
1014 			error = EOPNOTSUPP;
1015 #else
1016 			if (m == NULL || m->m_len != sizeof(int)) {
1017 				error = EINVAL;
1018 				break;
1019 			}
1020 			optval = *mtod(m, int *);
1021 
1022 			if (optval < IPSEC_LEVEL_BYPASS ||
1023 			    optval > IPSEC_LEVEL_UNIQUE) {
1024 				error = EINVAL;
1025 				break;
1026 			}
1027 
1028 			switch (optname) {
1029 			case IP_AUTH_LEVEL:
1030 				if (optval < IPSEC_AUTH_LEVEL_DEFAULT &&
1031 				    suser(p)) {
1032 					error = EACCES;
1033 					break;
1034 				}
1035 				inp->inp_seclevel[SL_AUTH] = optval;
1036 				break;
1037 
1038 			case IP_ESP_TRANS_LEVEL:
1039 				if (optval < IPSEC_ESP_TRANS_LEVEL_DEFAULT &&
1040 				    suser(p)) {
1041 					error = EACCES;
1042 					break;
1043 				}
1044 				inp->inp_seclevel[SL_ESP_TRANS] = optval;
1045 				break;
1046 
1047 			case IP_ESP_NETWORK_LEVEL:
1048 				if (optval < IPSEC_ESP_NETWORK_LEVEL_DEFAULT &&
1049 				    suser(p)) {
1050 					error = EACCES;
1051 					break;
1052 				}
1053 				inp->inp_seclevel[SL_ESP_NETWORK] = optval;
1054 				break;
1055 			case IP_IPCOMP_LEVEL:
1056 				if (optval < IPSEC_IPCOMP_LEVEL_DEFAULT &&
1057 				    suser(p)) {
1058 					error = EACCES;
1059 					break;
1060 				}
1061 				inp->inp_seclevel[SL_IPCOMP] = optval;
1062 				break;
1063 			}
1064 #endif
1065 			break;
1066 
1067 		case IP_IPSEC_LOCAL_ID:
1068 		case IP_IPSEC_REMOTE_ID:
1069 			error = EOPNOTSUPP;
1070 			break;
1071 		case SO_RTABLE:
1072 			if (m == NULL || m->m_len < sizeof(u_int)) {
1073 				error = EINVAL;
1074 				break;
1075 			}
1076 			rtid = *mtod(m, u_int *);
1077 			if (inp->inp_rtableid == rtid)
1078 				break;
1079 			/* needs privileges to switch when already set */
1080 			if (rtableid != rtid && rtableid != 0 &&
1081 			    (error = suser(p)) != 0)
1082 				break;
1083 			/* table must exist */
1084 			if (!rtable_exists(rtid)) {
1085 				error = EINVAL;
1086 				break;
1087 			}
1088 			if (inp->inp_lport) {
1089 				error = EBUSY;
1090 				break;
1091 			}
1092 			inp->inp_rtableid = rtid;
1093 			in_pcbrehash(inp);
1094 			break;
1095 		case IP_PIPEX:
1096 			if (m != NULL && m->m_len == sizeof(int))
1097 				inp->inp_pipex = *mtod(m, int *);
1098 			else
1099 				error = EINVAL;
1100 			break;
1101 
1102 		default:
1103 			error = ENOPROTOOPT;
1104 			break;
1105 		}
1106 		break;
1107 
1108 	case PRCO_GETOPT:
1109 		switch (optname) {
1110 		case IP_OPTIONS:
1111 		case IP_RETOPTS:
1112 			if (inp->inp_options) {
1113 				m->m_len = inp->inp_options->m_len;
1114 				memcpy(mtod(m, caddr_t),
1115 				    mtod(inp->inp_options, caddr_t), m->m_len);
1116 			} else
1117 				m->m_len = 0;
1118 			break;
1119 
1120 		case IP_TOS:
1121 		case IP_TTL:
1122 		case IP_MINTTL:
1123 		case IP_RECVOPTS:
1124 		case IP_RECVRETOPTS:
1125 		case IP_RECVDSTADDR:
1126 		case IP_RECVIF:
1127 		case IP_RECVTTL:
1128 		case IP_RECVDSTPORT:
1129 		case IP_RECVRTABLE:
1130 		case IP_IPSECFLOWINFO:
1131 		case IP_IPDEFTTL:
1132 			m->m_len = sizeof(int);
1133 			switch (optname) {
1134 
1135 			case IP_TOS:
1136 				optval = inp->inp_ip.ip_tos;
1137 				break;
1138 
1139 			case IP_TTL:
1140 				optval = inp->inp_ip.ip_ttl;
1141 				break;
1142 
1143 			case IP_MINTTL:
1144 				optval = inp->inp_ip_minttl;
1145 				break;
1146 
1147 			case IP_IPDEFTTL:
1148 				optval = ip_defttl;
1149 				break;
1150 
1151 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1152 
1153 			case IP_RECVOPTS:
1154 				optval = OPTBIT(INP_RECVOPTS);
1155 				break;
1156 
1157 			case IP_RECVRETOPTS:
1158 				optval = OPTBIT(INP_RECVRETOPTS);
1159 				break;
1160 
1161 			case IP_RECVDSTADDR:
1162 				optval = OPTBIT(INP_RECVDSTADDR);
1163 				break;
1164 			case IP_RECVIF:
1165 				optval = OPTBIT(INP_RECVIF);
1166 				break;
1167 			case IP_RECVTTL:
1168 				optval = OPTBIT(INP_RECVTTL);
1169 				break;
1170 			case IP_RECVDSTPORT:
1171 				optval = OPTBIT(INP_RECVDSTPORT);
1172 				break;
1173 			case IP_RECVRTABLE:
1174 				optval = OPTBIT(INP_RECVRTABLE);
1175 				break;
1176 			case IP_IPSECFLOWINFO:
1177 				optval = OPTBIT(INP_IPSECFLOWINFO);
1178 				break;
1179 			}
1180 			*mtod(m, int *) = optval;
1181 			break;
1182 
1183 		case IP_MULTICAST_IF:
1184 		case IP_MULTICAST_TTL:
1185 		case IP_MULTICAST_LOOP:
1186 		case IP_ADD_MEMBERSHIP:
1187 		case IP_DROP_MEMBERSHIP:
1188 			error = ip_getmoptions(optname, inp->inp_moptions, m);
1189 			break;
1190 
1191 		case IP_PORTRANGE:
1192 			m->m_len = sizeof(int);
1193 
1194 			if (inp->inp_flags & INP_HIGHPORT)
1195 				optval = IP_PORTRANGE_HIGH;
1196 			else if (inp->inp_flags & INP_LOWPORT)
1197 				optval = IP_PORTRANGE_LOW;
1198 			else
1199 				optval = 0;
1200 
1201 			*mtod(m, int *) = optval;
1202 			break;
1203 
1204 		case IP_AUTH_LEVEL:
1205 		case IP_ESP_TRANS_LEVEL:
1206 		case IP_ESP_NETWORK_LEVEL:
1207 		case IP_IPCOMP_LEVEL:
1208 #ifndef IPSEC
1209 			m->m_len = sizeof(int);
1210 			*mtod(m, int *) = IPSEC_LEVEL_NONE;
1211 #else
1212 			m->m_len = sizeof(int);
1213 			switch (optname) {
1214 			case IP_AUTH_LEVEL:
1215 				optval = inp->inp_seclevel[SL_AUTH];
1216 				break;
1217 
1218 			case IP_ESP_TRANS_LEVEL:
1219 				optval = inp->inp_seclevel[SL_ESP_TRANS];
1220 				break;
1221 
1222 			case IP_ESP_NETWORK_LEVEL:
1223 				optval = inp->inp_seclevel[SL_ESP_NETWORK];
1224 				break;
1225 			case IP_IPCOMP_LEVEL:
1226 				optval = inp->inp_seclevel[SL_IPCOMP];
1227 				break;
1228 			}
1229 			*mtod(m, int *) = optval;
1230 #endif
1231 			break;
1232 		case IP_IPSEC_LOCAL_ID:
1233 		case IP_IPSEC_REMOTE_ID:
1234 			error = EOPNOTSUPP;
1235 			break;
1236 		case SO_RTABLE:
1237 			m->m_len = sizeof(u_int);
1238 			*mtod(m, u_int *) = inp->inp_rtableid;
1239 			break;
1240 		case IP_PIPEX:
1241 			m->m_len = sizeof(int);
1242 			*mtod(m, int *) = inp->inp_pipex;
1243 			break;
1244 		default:
1245 			error = ENOPROTOOPT;
1246 			break;
1247 		}
1248 		break;
1249 	}
1250 	return (error);
1251 }
1252 
1253 /*
1254  * Set up IP options in pcb for insertion in output packets.
1255  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1256  * with destination address if source routed.
1257  */
1258 int
1259 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1260 {
1261 	struct mbuf *n;
1262 	struct ipoption *p;
1263 	int cnt, off, optlen;
1264 	u_char *cp;
1265 	u_char opt;
1266 
1267 	/* turn off any old options */
1268 	m_freem(*pcbopt);
1269 	*pcbopt = NULL;
1270 	if (m == NULL || m->m_len == 0) {
1271 		/*
1272 		 * Only turning off any previous options.
1273 		 */
1274 		return (0);
1275 	}
1276 
1277 	if (m->m_len % sizeof(int32_t) ||
1278 	    m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1279 		return (EINVAL);
1280 
1281 	/* Don't sleep because NET_LOCK() is hold. */
1282 	if ((n = m_get(M_NOWAIT, MT_SOOPTS)) == NULL)
1283 		return (ENOBUFS);
1284 	p = mtod(n, struct ipoption *);
1285 	memset(p, 0, sizeof (*p));	/* 0 = IPOPT_EOL, needed for padding */
1286 	n->m_len = sizeof(struct in_addr);
1287 
1288 	off = 0;
1289 	cnt = m->m_len;
1290 	cp = mtod(m, u_char *);
1291 
1292 	while (cnt > 0) {
1293 		opt = cp[IPOPT_OPTVAL];
1294 
1295 		if (opt == IPOPT_NOP || opt == IPOPT_EOL) {
1296 			optlen = 1;
1297 		} else {
1298 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1299 				goto bad;
1300 			optlen = cp[IPOPT_OLEN];
1301 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
1302 				goto bad;
1303 		}
1304 		switch (opt) {
1305 		default:
1306 			memcpy(p->ipopt_list + off, cp, optlen);
1307 			break;
1308 
1309 		case IPOPT_LSRR:
1310 		case IPOPT_SSRR:
1311 			/*
1312 			 * user process specifies route as:
1313 			 *	->A->B->C->D
1314 			 * D must be our final destination (but we can't
1315 			 * check that since we may not have connected yet).
1316 			 * A is first hop destination, which doesn't appear in
1317 			 * actual IP option, but is stored before the options.
1318 			 */
1319 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1320 				goto bad;
1321 
1322 			/*
1323 			 * Optlen is smaller because first address is popped.
1324 			 * Cnt and cp will be adjusted a bit later to reflect
1325 			 * this.
1326 			 */
1327 			optlen -= sizeof(struct in_addr);
1328 			p->ipopt_list[off + IPOPT_OPTVAL] = opt;
1329 			p->ipopt_list[off + IPOPT_OLEN] = optlen;
1330 
1331 			/*
1332 			 * Move first hop before start of options.
1333 			 */
1334 			memcpy(&p->ipopt_dst, cp + IPOPT_OFFSET,
1335 			    sizeof(struct in_addr));
1336 			cp += sizeof(struct in_addr);
1337 			cnt -= sizeof(struct in_addr);
1338 			/*
1339 			 * Then copy rest of options
1340 			 */
1341 			memcpy(p->ipopt_list + off + IPOPT_OFFSET,
1342 			    cp + IPOPT_OFFSET, optlen - IPOPT_OFFSET);
1343 			break;
1344 		}
1345 		off += optlen;
1346 		cp += optlen;
1347 		cnt -= optlen;
1348 
1349 		if (opt == IPOPT_EOL)
1350 			break;
1351 	}
1352 	/* pad options to next word, since p was zeroed just adjust off */
1353 	off = (off + sizeof(int32_t) - 1) & ~(sizeof(int32_t) - 1);
1354 	n->m_len += off;
1355 	if (n->m_len > sizeof(*p)) {
1356  bad:
1357 		m_freem(n);
1358 		return (EINVAL);
1359 	}
1360 
1361 	*pcbopt = n;
1362 	return (0);
1363 }
1364 
1365 /*
1366  * Lookup the interface based on the information in the ip_mreqn struct.
1367  */
1368 int
1369 ip_multicast_if(struct ip_mreqn *mreq, u_int rtableid, unsigned int *ifidx)
1370 {
1371 	struct sockaddr_in sin;
1372 	struct rtentry *rt;
1373 
1374 	/*
1375 	 * In case userland provides the imr_ifindex use this as interface.
1376 	 * If no interface address was provided, use the interface of
1377 	 * the route to the given multicast address.
1378 	 */
1379 	if (mreq->imr_ifindex != 0) {
1380 		*ifidx = mreq->imr_ifindex;
1381 	} else if (mreq->imr_address.s_addr == INADDR_ANY) {
1382 		memset(&sin, 0, sizeof(sin));
1383 		sin.sin_len = sizeof(sin);
1384 		sin.sin_family = AF_INET;
1385 		sin.sin_addr = mreq->imr_multiaddr;
1386 		rt = rtalloc(sintosa(&sin), RT_RESOLVE, rtableid);
1387 		if (!rtisvalid(rt)) {
1388 			rtfree(rt);
1389 			return EADDRNOTAVAIL;
1390 		}
1391 		*ifidx = rt->rt_ifidx;
1392 		rtfree(rt);
1393 	} else {
1394 		memset(&sin, 0, sizeof(sin));
1395 		sin.sin_len = sizeof(sin);
1396 		sin.sin_family = AF_INET;
1397 		sin.sin_addr = mreq->imr_address;
1398 		rt = rtalloc(sintosa(&sin), 0, rtableid);
1399 		if (!rtisvalid(rt) || !ISSET(rt->rt_flags, RTF_LOCAL)) {
1400 			rtfree(rt);
1401 			return EADDRNOTAVAIL;
1402 		}
1403 		*ifidx = rt->rt_ifidx;
1404 		rtfree(rt);
1405 	}
1406 
1407 	return 0;
1408 }
1409 
1410 /*
1411  * Set the IP multicast options in response to user setsockopt().
1412  */
1413 int
1414 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m,
1415     u_int rtableid)
1416 {
1417 	struct in_addr addr;
1418 	struct in_ifaddr *ia;
1419 	struct ip_mreqn mreqn;
1420 	struct ifnet *ifp = NULL;
1421 	struct ip_moptions *imo = *imop;
1422 	struct in_multi **immp;
1423 	struct sockaddr_in sin;
1424 	unsigned int ifidx;
1425 	int i, error = 0;
1426 	u_char loop;
1427 
1428 	if (imo == NULL) {
1429 		/*
1430 		 * No multicast option buffer attached to the pcb;
1431 		 * allocate one and initialize to default values.
1432 		 */
1433 		imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK|M_ZERO);
1434 		immp = mallocarray(IP_MIN_MEMBERSHIPS, sizeof(*immp), M_IPMOPTS,
1435 		    M_WAITOK|M_ZERO);
1436 		*imop = imo;
1437 		imo->imo_ifidx = 0;
1438 		imo->imo_ttl = IP_DEFAULT_MULTICAST_TTL;
1439 		imo->imo_loop = IP_DEFAULT_MULTICAST_LOOP;
1440 		imo->imo_num_memberships = 0;
1441 		imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1442 		imo->imo_membership = immp;
1443 	}
1444 
1445 	switch (optname) {
1446 
1447 	case IP_MULTICAST_IF:
1448 		/*
1449 		 * Select the interface for outgoing multicast packets.
1450 		 */
1451 		if (m == NULL) {
1452 			error = EINVAL;
1453 			break;
1454 		}
1455 		if (m->m_len == sizeof(struct in_addr)) {
1456 			addr = *(mtod(m, struct in_addr *));
1457 		} else if (m->m_len == sizeof(struct ip_mreq) ||
1458 		    m->m_len == sizeof(struct ip_mreqn)) {
1459 			memset(&mreqn, 0, sizeof(mreqn));
1460 			memcpy(&mreqn, mtod(m, void *), m->m_len);
1461 
1462 			/*
1463 			 * If an interface index is given use this
1464 			 * index to set the imo_ifidx but check first
1465 			 * that the interface actually exists.
1466 			 * In the other case just set the addr to
1467 			 * the imr_address and fall through to the
1468 			 * regular code.
1469 			 */
1470 			if (mreqn.imr_ifindex != 0) {
1471 				ifp = if_get(mreqn.imr_ifindex);
1472 				if (ifp == NULL ||
1473 				    ifp->if_rdomain != rtable_l2(rtableid)) {
1474 					error = EADDRNOTAVAIL;
1475 					if_put(ifp);
1476 					break;
1477 				}
1478 				imo->imo_ifidx = ifp->if_index;
1479 				if_put(ifp);
1480 				break;
1481 			} else
1482 				addr = mreqn.imr_address;
1483 		} else {
1484 			error = EINVAL;
1485 			break;
1486 		}
1487 		/*
1488 		 * INADDR_ANY is used to remove a previous selection.
1489 		 * When no interface is selected, a default one is
1490 		 * chosen every time a multicast packet is sent.
1491 		 */
1492 		if (addr.s_addr == INADDR_ANY) {
1493 			imo->imo_ifidx = 0;
1494 			break;
1495 		}
1496 		/*
1497 		 * The selected interface is identified by its local
1498 		 * IP address.  Find the interface and confirm that
1499 		 * it supports multicasting.
1500 		 */
1501 		memset(&sin, 0, sizeof(sin));
1502 		sin.sin_len = sizeof(sin);
1503 		sin.sin_family = AF_INET;
1504 		sin.sin_addr = addr;
1505 		ia = ifatoia(ifa_ifwithaddr(sintosa(&sin), rtableid));
1506 		if (ia == NULL ||
1507 		    (ia->ia_ifp->if_flags & IFF_MULTICAST) == 0) {
1508 			error = EADDRNOTAVAIL;
1509 			break;
1510 		}
1511 		imo->imo_ifidx = ia->ia_ifp->if_index;
1512 		break;
1513 
1514 	case IP_MULTICAST_TTL:
1515 		/*
1516 		 * Set the IP time-to-live for outgoing multicast packets.
1517 		 */
1518 		if (m == NULL || m->m_len != 1) {
1519 			error = EINVAL;
1520 			break;
1521 		}
1522 		imo->imo_ttl = *(mtod(m, u_char *));
1523 		break;
1524 
1525 	case IP_MULTICAST_LOOP:
1526 		/*
1527 		 * Set the loopback flag for outgoing multicast packets.
1528 		 * Must be zero or one.
1529 		 */
1530 		if (m == NULL || m->m_len != 1 ||
1531 		   (loop = *(mtod(m, u_char *))) > 1) {
1532 			error = EINVAL;
1533 			break;
1534 		}
1535 		imo->imo_loop = loop;
1536 		break;
1537 
1538 	case IP_ADD_MEMBERSHIP:
1539 		/*
1540 		 * Add a multicast group membership.
1541 		 * Group must be a valid IP multicast address.
1542 		 */
1543 		if (m == NULL || !(m->m_len == sizeof(struct ip_mreq) ||
1544 		    m->m_len == sizeof(struct ip_mreqn))) {
1545 			error = EINVAL;
1546 			break;
1547 		}
1548 		memset(&mreqn, 0, sizeof(mreqn));
1549 		memcpy(&mreqn, mtod(m, void *), m->m_len);
1550 		if (!IN_MULTICAST(mreqn.imr_multiaddr.s_addr)) {
1551 			error = EINVAL;
1552 			break;
1553 		}
1554 
1555 		error = ip_multicast_if(&mreqn, rtableid, &ifidx);
1556 		if (error)
1557 			break;
1558 
1559 		/*
1560 		 * See if we found an interface, and confirm that it
1561 		 * supports multicast.
1562 		 */
1563 		ifp = if_get(ifidx);
1564 		if (ifp == NULL || ifp->if_rdomain != rtable_l2(rtableid) ||
1565 		    (ifp->if_flags & IFF_MULTICAST) == 0) {
1566 			error = EADDRNOTAVAIL;
1567 			if_put(ifp);
1568 			break;
1569 		}
1570 
1571 		/*
1572 		 * See if the membership already exists or if all the
1573 		 * membership slots are full.
1574 		 */
1575 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1576 			if (imo->imo_membership[i]->inm_ifidx == ifidx &&
1577 			    imo->imo_membership[i]->inm_addr.s_addr
1578 						== mreqn.imr_multiaddr.s_addr)
1579 				break;
1580 		}
1581 		if (i < imo->imo_num_memberships) {
1582 			error = EADDRINUSE;
1583 			if_put(ifp);
1584 			break;
1585 		}
1586 		if (imo->imo_num_memberships == imo->imo_max_memberships) {
1587 			struct in_multi **nmships, **omships;
1588 			size_t newmax;
1589 			/*
1590 			 * Resize the vector to next power-of-two minus 1. If
1591 			 * the size would exceed the maximum then we know we've
1592 			 * really run out of entries. Otherwise, we reallocate
1593 			 * the vector.
1594 			 */
1595 			nmships = NULL;
1596 			omships = imo->imo_membership;
1597 			newmax = ((imo->imo_max_memberships + 1) * 2) - 1;
1598 			if (newmax <= IP_MAX_MEMBERSHIPS) {
1599 				nmships = mallocarray(newmax, sizeof(*nmships),
1600 				    M_IPMOPTS, M_NOWAIT|M_ZERO);
1601 				if (nmships != NULL) {
1602 					memcpy(nmships, omships,
1603 					    sizeof(*omships) *
1604 					    imo->imo_max_memberships);
1605 					free(omships, M_IPMOPTS,
1606 					    sizeof(*omships) *
1607 					    imo->imo_max_memberships);
1608 					imo->imo_membership = nmships;
1609 					imo->imo_max_memberships = newmax;
1610 				}
1611 			}
1612 			if (nmships == NULL) {
1613 				error = ENOBUFS;
1614 				if_put(ifp);
1615 				break;
1616 			}
1617 		}
1618 		/*
1619 		 * Everything looks good; add a new record to the multicast
1620 		 * address list for the given interface.
1621 		 */
1622 		if ((imo->imo_membership[i] =
1623 		    in_addmulti(&mreqn.imr_multiaddr, ifp)) == NULL) {
1624 			error = ENOBUFS;
1625 			if_put(ifp);
1626 			break;
1627 		}
1628 		++imo->imo_num_memberships;
1629 		if_put(ifp);
1630 		break;
1631 
1632 	case IP_DROP_MEMBERSHIP:
1633 		/*
1634 		 * Drop a multicast group membership.
1635 		 * Group must be a valid IP multicast address.
1636 		 */
1637 		if (m == NULL || !(m->m_len == sizeof(struct ip_mreq) ||
1638 		    m->m_len == sizeof(struct ip_mreqn))) {
1639 			error = EINVAL;
1640 			break;
1641 		}
1642 		memset(&mreqn, 0, sizeof(mreqn));
1643 		memcpy(&mreqn, mtod(m, void *), m->m_len);
1644 		if (!IN_MULTICAST(mreqn.imr_multiaddr.s_addr)) {
1645 			error = EINVAL;
1646 			break;
1647 		}
1648 
1649 		/*
1650 		 * If an interface address was specified, get a pointer
1651 		 * to its ifnet structure.
1652 		 */
1653 		error = ip_multicast_if(&mreqn, rtableid, &ifidx);
1654 		if (error)
1655 			break;
1656 
1657 		/*
1658 		 * Find the membership in the membership array.
1659 		 */
1660 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1661 			if ((ifidx == 0 ||
1662 			    imo->imo_membership[i]->inm_ifidx == ifidx) &&
1663 			     imo->imo_membership[i]->inm_addr.s_addr ==
1664 			     mreqn.imr_multiaddr.s_addr)
1665 				break;
1666 		}
1667 		if (i == imo->imo_num_memberships) {
1668 			error = EADDRNOTAVAIL;
1669 			break;
1670 		}
1671 		/*
1672 		 * Give up the multicast address record to which the
1673 		 * membership points.
1674 		 */
1675 		in_delmulti(imo->imo_membership[i]);
1676 		/*
1677 		 * Remove the gap in the membership array.
1678 		 */
1679 		for (++i; i < imo->imo_num_memberships; ++i)
1680 			imo->imo_membership[i-1] = imo->imo_membership[i];
1681 		--imo->imo_num_memberships;
1682 		break;
1683 
1684 	default:
1685 		error = EOPNOTSUPP;
1686 		break;
1687 	}
1688 
1689 	/*
1690 	 * If all options have default values, no need to keep the data.
1691 	 */
1692 	if (imo->imo_ifidx == 0 &&
1693 	    imo->imo_ttl == IP_DEFAULT_MULTICAST_TTL &&
1694 	    imo->imo_loop == IP_DEFAULT_MULTICAST_LOOP &&
1695 	    imo->imo_num_memberships == 0) {
1696 		free(imo->imo_membership , M_IPMOPTS,
1697 		    imo->imo_max_memberships * sizeof(struct in_multi *));
1698 		free(*imop, M_IPMOPTS, sizeof(**imop));
1699 		*imop = NULL;
1700 	}
1701 
1702 	return (error);
1703 }
1704 
1705 /*
1706  * Return the IP multicast options in response to user getsockopt().
1707  */
1708 int
1709 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf *m)
1710 {
1711 	u_char *ttl;
1712 	u_char *loop;
1713 	struct in_addr *addr;
1714 	struct in_ifaddr *ia;
1715 	struct ifnet *ifp;
1716 
1717 	switch (optname) {
1718 
1719 	case IP_MULTICAST_IF:
1720 		addr = mtod(m, struct in_addr *);
1721 		m->m_len = sizeof(struct in_addr);
1722 		if (imo == NULL || (ifp = if_get(imo->imo_ifidx)) == NULL)
1723 			addr->s_addr = INADDR_ANY;
1724 		else {
1725 			IFP_TO_IA(ifp, ia);
1726 			addr->s_addr = (ia == NULL) ? INADDR_ANY
1727 					: ia->ia_addr.sin_addr.s_addr;
1728 			if_put(ifp);
1729 		}
1730 		return (0);
1731 
1732 	case IP_MULTICAST_TTL:
1733 		ttl = mtod(m, u_char *);
1734 		m->m_len = 1;
1735 		*ttl = (imo == NULL) ? IP_DEFAULT_MULTICAST_TTL
1736 				     : imo->imo_ttl;
1737 		return (0);
1738 
1739 	case IP_MULTICAST_LOOP:
1740 		loop = mtod(m, u_char *);
1741 		m->m_len = 1;
1742 		*loop = (imo == NULL) ? IP_DEFAULT_MULTICAST_LOOP
1743 				      : imo->imo_loop;
1744 		return (0);
1745 
1746 	default:
1747 		return (EOPNOTSUPP);
1748 	}
1749 }
1750 
1751 /*
1752  * Discard the IP multicast options.
1753  */
1754 void
1755 ip_freemoptions(struct ip_moptions *imo)
1756 {
1757 	int i;
1758 
1759 	if (imo != NULL) {
1760 		for (i = 0; i < imo->imo_num_memberships; ++i)
1761 			in_delmulti(imo->imo_membership[i]);
1762 		free(imo->imo_membership, M_IPMOPTS,
1763 		    imo->imo_max_memberships * sizeof(struct in_multi *));
1764 		free(imo, M_IPMOPTS, sizeof(*imo));
1765 	}
1766 }
1767 
1768 /*
1769  * Routine called from ip_output() to loop back a copy of an IP multicast
1770  * packet to the input queue of a specified interface.
1771  */
1772 void
1773 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1774 {
1775 	struct ip *ip;
1776 	struct mbuf *copym;
1777 
1778 	copym = m_dup_pkt(m, max_linkhdr, M_DONTWAIT);
1779 	if (copym != NULL) {
1780 		/*
1781 		 * We don't bother to fragment if the IP length is greater
1782 		 * than the interface's MTU.  Can this possibly matter?
1783 		 */
1784 		ip = mtod(copym, struct ip *);
1785 		ip->ip_sum = 0;
1786 		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1787 		if_input_local(ifp, copym, dst->sin_family);
1788 	}
1789 }
1790 
1791 /*
1792  *	Compute significant parts of the IPv4 checksum pseudo-header
1793  *	for use in a delayed TCP/UDP checksum calculation.
1794  */
1795 static __inline u_int16_t __attribute__((__unused__))
1796 in_cksum_phdr(u_int32_t src, u_int32_t dst, u_int32_t lenproto)
1797 {
1798 	u_int32_t sum;
1799 
1800 	sum = lenproto +
1801 	      (u_int16_t)(src >> 16) +
1802 	      (u_int16_t)(src /*& 0xffff*/) +
1803 	      (u_int16_t)(dst >> 16) +
1804 	      (u_int16_t)(dst /*& 0xffff*/);
1805 
1806 	sum = (u_int16_t)(sum >> 16) + (u_int16_t)(sum /*& 0xffff*/);
1807 
1808 	if (sum > 0xffff)
1809 		sum -= 0xffff;
1810 
1811 	return (sum);
1812 }
1813 
1814 /*
1815  * Process a delayed payload checksum calculation.
1816  */
1817 void
1818 in_delayed_cksum(struct mbuf *m)
1819 {
1820 	struct ip *ip;
1821 	u_int16_t csum, offset;
1822 
1823 	ip = mtod(m, struct ip *);
1824 	offset = ip->ip_hl << 2;
1825 	csum = in4_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1826 	if (csum == 0 && ip->ip_p == IPPROTO_UDP)
1827 		csum = 0xffff;
1828 
1829 	switch (ip->ip_p) {
1830 	case IPPROTO_TCP:
1831 		offset += offsetof(struct tcphdr, th_sum);
1832 		break;
1833 
1834 	case IPPROTO_UDP:
1835 		offset += offsetof(struct udphdr, uh_sum);
1836 		break;
1837 
1838 	case IPPROTO_ICMP:
1839 		offset += offsetof(struct icmp, icmp_cksum);
1840 		break;
1841 
1842 	default:
1843 		return;
1844 	}
1845 
1846 	if ((offset + sizeof(u_int16_t)) > m->m_len)
1847 		m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT);
1848 	else
1849 		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1850 }
1851 
1852 void
1853 in_proto_cksum_out(struct mbuf *m, struct ifnet *ifp)
1854 {
1855 	struct ip *ip = mtod(m, struct ip *);
1856 
1857 	/* some hw and in_delayed_cksum need the pseudo header cksum */
1858 	if (m->m_pkthdr.csum_flags &
1859 	    (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT|M_ICMP_CSUM_OUT)) {
1860 		u_int16_t csum = 0, offset;
1861 
1862 		offset = ip->ip_hl << 2;
1863 		if (m->m_pkthdr.csum_flags & (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT))
1864 			csum = in_cksum_phdr(ip->ip_src.s_addr,
1865 			    ip->ip_dst.s_addr, htonl(ntohs(ip->ip_len) -
1866 			    offset + ip->ip_p));
1867 		if (ip->ip_p == IPPROTO_TCP)
1868 			offset += offsetof(struct tcphdr, th_sum);
1869 		else if (ip->ip_p == IPPROTO_UDP)
1870 			offset += offsetof(struct udphdr, uh_sum);
1871 		else if (ip->ip_p == IPPROTO_ICMP)
1872 			offset += offsetof(struct icmp, icmp_cksum);
1873 		if ((offset + sizeof(u_int16_t)) > m->m_len)
1874 			m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT);
1875 		else
1876 			*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1877 	}
1878 
1879 	if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) {
1880 		if (!in_ifcap_cksum(m, ifp, IFCAP_CSUM_TCPv4) ||
1881 		    ip->ip_hl != 5) {
1882 			tcpstat_inc(tcps_outswcsum);
1883 			in_delayed_cksum(m);
1884 			m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_OUT; /* Clear */
1885 		}
1886 	} else if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) {
1887 		if (!in_ifcap_cksum(m, ifp, IFCAP_CSUM_UDPv4) ||
1888 		    ip->ip_hl != 5) {
1889 			udpstat_inc(udps_outswcsum);
1890 			in_delayed_cksum(m);
1891 			m->m_pkthdr.csum_flags &= ~M_UDP_CSUM_OUT; /* Clear */
1892 		}
1893 	} else if (m->m_pkthdr.csum_flags & M_ICMP_CSUM_OUT) {
1894 		in_delayed_cksum(m);
1895 		m->m_pkthdr.csum_flags &= ~M_ICMP_CSUM_OUT; /* Clear */
1896 	}
1897 }
1898 
1899 int
1900 in_ifcap_cksum(struct mbuf *m, struct ifnet *ifp, int ifcap)
1901 {
1902 	if ((ifp == NULL) ||
1903 	    !ISSET(ifp->if_capabilities, ifcap) ||
1904 	    (ifp->if_bridgeidx != 0))
1905 		return (0);
1906 	/*
1907 	 * Simplex interface sends packet back without hardware cksum.
1908 	 * Keep this check in sync with the condition where ether_resolve()
1909 	 * calls if_input_local().
1910 	 */
1911 	if (ISSET(m->m_flags, M_BCAST) &&
1912 	    ISSET(ifp->if_flags, IFF_SIMPLEX) &&
1913 	    !m->m_pkthdr.pf.routed)
1914 		return (0);
1915 	return (1);
1916 }
1917