xref: /openbsd-src/sys/netinet/ip_mroute.c (revision d13be5d47e4149db2549a9828e244d59dbc43f15)
1 /*	$OpenBSD: ip_mroute.c,v 1.59 2011/04/04 17:44:43 henning Exp $	*/
2 /*	$NetBSD: ip_mroute.c,v 1.85 2004/04/26 01:31:57 matt Exp $	*/
3 
4 /*
5  * Copyright (c) 1989 Stephen Deering
6  * Copyright (c) 1992, 1993
7  *      The Regents of the University of California.  All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * Stephen Deering of Stanford University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93
37  */
38 
39 /*
40  * IP multicast forwarding procedures
41  *
42  * Written by David Waitzman, BBN Labs, August 1988.
43  * Modified by Steve Deering, Stanford, February 1989.
44  * Modified by Mark J. Steiglitz, Stanford, May, 1991
45  * Modified by Van Jacobson, LBL, January 1993
46  * Modified by Ajit Thyagarajan, PARC, August 1993
47  * Modified by Bill Fenner, PARC, April 1994
48  * Modified by Charles M. Hannum, NetBSD, May 1995.
49  * Modified by Ahmed Helmy, SGI, June 1996
50  * Modified by George Edmond Eddy (Rusty), ISI, February 1998
51  * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000
52  * Modified by Hitoshi Asaeda, WIDE, August 2000
53  * Modified by Pavlin Radoslavov, ICSI, October 2002
54  *
55  * MROUTING Revision: 1.2
56  * and PIM-SMv2 and PIM-DM support, advanced API support,
57  * bandwidth metering and signaling
58  */
59 
60 #ifdef PIM
61 #define _PIM_VT 1
62 #endif
63 
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/mbuf.h>
67 #include <sys/socket.h>
68 #include <sys/socketvar.h>
69 #include <sys/protosw.h>
70 #include <sys/errno.h>
71 #include <sys/time.h>
72 #include <sys/kernel.h>
73 #include <sys/ioctl.h>
74 #include <sys/syslog.h>
75 #include <sys/proc.h>
76 #include <sys/sysctl.h>
77 #include <sys/timeout.h>
78 
79 #include <net/if.h>
80 #include <net/route.h>
81 #include <net/raw_cb.h>
82 
83 #include <netinet/in.h>
84 #include <netinet/in_var.h>
85 #include <netinet/in_systm.h>
86 #include <netinet/ip.h>
87 #include <netinet/ip_var.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/udp.h>
90 #include <netinet/igmp.h>
91 #include <netinet/igmp_var.h>
92 #include <netinet/ip_mroute.h>
93 #ifdef PIM
94 #include <netinet/pim.h>
95 #include <netinet/pim_var.h>
96 #endif
97 
98 #include <sys/stdarg.h>
99 
100 #define IP_MULTICASTOPTS 0
101 #define	M_PULLUP(m, len)						 \
102 	do {								 \
103 		if ((m) && ((m)->m_flags & M_EXT || (m)->m_len < (len))) \
104 			(m) = m_pullup((m), (len));			 \
105 	} while (/*CONSTCOND*/ 0)
106 
107 /*
108  * Globals.  All but ip_mrouter and ip_mrtproto could be static,
109  * except for netstat or debugging purposes.
110  */
111 struct socket  *ip_mrouter  = NULL;
112 int		ip_mrtproto = IGMP_DVMRP;    /* for netstat only */
113 
114 #define NO_RTE_FOUND	0x1
115 #define RTE_FOUND	0x2
116 
117 #define	MFCHASH(a, g)							\
118 	((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^	\
119 	    ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & mfchash)
120 LIST_HEAD(mfchashhdr, mfc) *mfchashtbl;
121 u_long	mfchash;
122 
123 u_char		nexpire[MFCTBLSIZ];
124 struct vif	viftable[MAXVIFS];
125 struct mrtstat	mrtstat;
126 u_int		mrtdebug = 0;	  /* debug level 	*/
127 #define		DEBUG_MFC	0x02
128 #define		DEBUG_FORWARD	0x04
129 #define		DEBUG_EXPIRE	0x08
130 #define		DEBUG_XMIT	0x10
131 #define		DEBUG_PIM	0x20
132 
133 #define		VIFI_INVALID	((vifi_t) -1)
134 
135 #ifdef RSVP_ISI
136 u_int		rsvpdebug = 0;	  /* rsvp debug level   */
137 extern struct socket *ip_rsvpd;
138 extern int rsvp_on;
139 #endif /* RSVP_ISI */
140 
141 #define		EXPIRE_TIMEOUT	250		/* 4x / second */
142 #define		UPCALL_EXPIRE	6		/* number of timeouts */
143 struct timeout	expire_upcalls_ch;
144 
145 static int get_sg_cnt(struct sioc_sg_req *);
146 static int get_vif_cnt(struct sioc_vif_req *);
147 static int ip_mrouter_init(struct socket *, struct mbuf *);
148 static int get_version(struct mbuf *);
149 static int set_assert(struct mbuf *);
150 static int get_assert(struct mbuf *);
151 static int add_vif(struct mbuf *);
152 static int del_vif(struct mbuf *);
153 static void update_mfc_params(struct mfc *, struct mfcctl2 *);
154 static void init_mfc_params(struct mfc *, struct mfcctl2 *);
155 static void expire_mfc(struct mfc *);
156 static int add_mfc(struct mbuf *);
157 #ifdef UPCALL_TIMING
158 static void collate(struct timeval *);
159 #endif
160 static int del_mfc(struct mbuf *);
161 static int set_api_config(struct mbuf *); /* chose API capabilities */
162 static int get_api_support(struct mbuf *);
163 static int get_api_config(struct mbuf *);
164 static int socket_send(struct socket *, struct mbuf *,
165 			    struct sockaddr_in *);
166 static void expire_upcalls(void *);
167 #ifdef RSVP_ISI
168 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t);
169 #else
170 static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *);
171 #endif
172 static void phyint_send(struct ip *, struct vif *, struct mbuf *);
173 static void encap_send(struct ip *, struct vif *, struct mbuf *);
174 static void send_packet(struct vif *, struct mbuf *);
175 
176 /*
177  * Bandwidth monitoring
178  */
179 static void free_bw_list(struct bw_meter *);
180 static int add_bw_upcall(struct mbuf *);
181 static int del_bw_upcall(struct mbuf *);
182 static void bw_meter_receive_packet(struct bw_meter *, int , struct timeval *);
183 static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *);
184 static void bw_upcalls_send(void);
185 static void schedule_bw_meter(struct bw_meter *, struct timeval *);
186 static void unschedule_bw_meter(struct bw_meter *);
187 static void bw_meter_process(void);
188 static void expire_bw_upcalls_send(void *);
189 static void expire_bw_meter_process(void *);
190 
191 #ifdef PIM
192 static int pim_register_send(struct ip *, struct vif *,
193 		struct mbuf *, struct mfc *);
194 static int pim_register_send_rp(struct ip *, struct vif *,
195 		struct mbuf *, struct mfc *);
196 static int pim_register_send_upcall(struct ip *, struct vif *,
197 		struct mbuf *, struct mfc *);
198 static struct mbuf *pim_register_prepare(struct ip *, struct mbuf *);
199 #endif
200 
201 /*
202  * 'Interfaces' associated with decapsulator (so we can tell
203  * packets that went through it from ones that get reflected
204  * by a broken gateway).  These interfaces are never linked into
205  * the system ifnet list & no routes point to them.  I.e., packets
206  * can't be sent this way.  They only exist as a placeholder for
207  * multicast source verification.
208  */
209 #if 0
210 struct ifnet multicast_decap_if[MAXVIFS];
211 #endif
212 
213 #define	ENCAP_TTL	64
214 #define	ENCAP_PROTO	IPPROTO_IPIP	/* 4 */
215 
216 /* prototype IP hdr for encapsulated packets */
217 struct ip multicast_encap_iphdr = {
218 #if BYTE_ORDER == LITTLE_ENDIAN
219 	sizeof(struct ip) >> 2, IPVERSION,
220 #else
221 	IPVERSION, sizeof(struct ip) >> 2,
222 #endif
223 	0,				/* tos */
224 	sizeof(struct ip),		/* total length */
225 	0,				/* id */
226 	0,				/* frag offset */
227 	ENCAP_TTL, ENCAP_PROTO,
228 	0,				/* checksum */
229 };
230 
231 /*
232  * Bandwidth meter variables and constants
233  */
234 
235 /*
236  * Pending timeouts are stored in a hash table, the key being the
237  * expiration time. Periodically, the entries are analysed and processed.
238  */
239 #define BW_METER_BUCKETS	1024
240 static struct bw_meter *bw_meter_timers[BW_METER_BUCKETS];
241 struct timeout bw_meter_ch;
242 #define BW_METER_PERIOD 1000	/* periodical handling of bw meters (in ms) */
243 
244 /*
245  * Pending upcalls are stored in a vector which is flushed when
246  * full, or periodically
247  */
248 static struct bw_upcall	bw_upcalls[BW_UPCALLS_MAX];
249 static u_int	bw_upcalls_n; /* # of pending upcalls */
250 struct timeout	bw_upcalls_ch;
251 #define BW_UPCALLS_PERIOD 1000	/* periodical flush of bw upcalls (in ms) */
252 
253 #ifdef PIM
254 struct pimstat pimstat;
255 
256 /*
257  * Note: the PIM Register encapsulation adds the following in front of a
258  * data packet:
259  *
260  * struct pim_encap_hdr {
261  *    struct ip ip;
262  *    struct pim_encap_pimhdr  pim;
263  * }
264  *
265  */
266 
267 struct pim_encap_pimhdr {
268 	struct pim pim;
269 	uint32_t   flags;
270 };
271 
272 static struct ip pim_encap_iphdr = {
273 #if BYTE_ORDER == LITTLE_ENDIAN
274 	sizeof(struct ip) >> 2,
275 	IPVERSION,
276 #else
277 	IPVERSION,
278 	sizeof(struct ip) >> 2,
279 #endif
280 	0,			/* tos */
281 	sizeof(struct ip),	/* total length */
282 	0,			/* id */
283 	0,			/* frag offset */
284 	ENCAP_TTL,
285 	IPPROTO_PIM,
286 	0,			/* checksum */
287 };
288 
289 static struct pim_encap_pimhdr pim_encap_pimhdr = {
290     {
291 	PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */
292 	0,			/* reserved */
293 	0,			/* checksum */
294     },
295     0				/* flags */
296 };
297 
298 static struct ifnet multicast_register_if;
299 static vifi_t reg_vif_num = VIFI_INVALID;
300 #endif /* PIM */
301 
302 
303 /*
304  * Private variables.
305  */
306 static vifi_t	   numvifs = 0;
307 static int have_encap_tunnel = 0;
308 
309 /*
310  * whether or not special PIM assert processing is enabled.
311  */
312 static int pim_assert;
313 /*
314  * Rate limit for assert notification messages, in usec
315  */
316 #define ASSERT_MSG_TIME		3000000
317 
318 /*
319  * Kernel multicast routing API capabilities and setup.
320  * If more API capabilities are added to the kernel, they should be
321  * recorded in `mrt_api_support'.
322  */
323 static const u_int32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF |
324 					  MRT_MFC_FLAGS_BORDER_VIF |
325 					  MRT_MFC_RP |
326 					  MRT_MFC_BW_UPCALL);
327 static u_int32_t mrt_api_config = 0;
328 
329 /*
330  * Find a route for a given origin IP address and Multicast group address
331  * Type of service parameter to be added in the future!!!
332  * Statistics are updated by the caller if needed
333  * (mrtstat.mrts_mfc_lookups and mrtstat.mrts_mfc_misses)
334  */
335 static struct mfc *
336 mfc_find(struct in_addr *o, struct in_addr *g)
337 {
338 	struct mfc *rt;
339 
340 	LIST_FOREACH(rt, &mfchashtbl[MFCHASH(*o, *g)], mfc_hash) {
341 		if (in_hosteq(rt->mfc_origin, *o) &&
342 		    in_hosteq(rt->mfc_mcastgrp, *g) &&
343 		    (rt->mfc_stall == NULL))
344 			break;
345 	}
346 
347 	return (rt);
348 }
349 
350 /*
351  * Macros to compute elapsed time efficiently
352  * Borrowed from Van Jacobson's scheduling code
353  */
354 #define TV_DELTA(a, b, delta) do {					\
355 	int xxs;							\
356 	delta = (a).tv_usec - (b).tv_usec;				\
357 	xxs = (a).tv_sec - (b).tv_sec;					\
358 	switch (xxs) {							\
359 	case 2:								\
360 		delta += 1000000;					\
361 		/* FALLTHROUGH */					\
362 	case 1:								\
363 		delta += 1000000;					\
364 		/* FALLTHROUGH */					\
365 	case 0:								\
366 		break;							\
367 	default:							\
368 		delta += (1000000 * xxs);				\
369 		break;							\
370 	}								\
371 } while (/*CONSTCOND*/ 0)
372 
373 #ifdef UPCALL_TIMING
374 u_int32_t upcall_data[51];
375 #endif /* UPCALL_TIMING */
376 
377 /*
378  * Handle MRT setsockopt commands to modify the multicast routing tables.
379  */
380 int
381 ip_mrouter_set(struct socket *so, int optname, struct mbuf **m)
382 {
383 	int error;
384 
385 	if (optname != MRT_INIT && so != ip_mrouter)
386 		error = ENOPROTOOPT;
387 	else
388 		switch (optname) {
389 		case MRT_INIT:
390 			error = ip_mrouter_init(so, *m);
391 			break;
392 		case MRT_DONE:
393 			error = ip_mrouter_done();
394 			break;
395 		case MRT_ADD_VIF:
396 			error = add_vif(*m);
397 			break;
398 		case MRT_DEL_VIF:
399 			error = del_vif(*m);
400 			break;
401 		case MRT_ADD_MFC:
402 			error = add_mfc(*m);
403 			break;
404 		case MRT_DEL_MFC:
405 			error = del_mfc(*m);
406 			break;
407 		case MRT_ASSERT:
408 			error = set_assert(*m);
409 			break;
410 		case MRT_API_CONFIG:
411 			error = set_api_config(*m);
412 			break;
413 		case MRT_ADD_BW_UPCALL:
414 			error = add_bw_upcall(*m);
415 			break;
416 		case MRT_DEL_BW_UPCALL:
417 			error = del_bw_upcall(*m);
418 			break;
419 		default:
420 			error = ENOPROTOOPT;
421 			break;
422 		}
423 
424 	if (*m)
425 		m_free(*m);
426 	return (error);
427 }
428 
429 /*
430  * Handle MRT getsockopt commands
431  */
432 int
433 ip_mrouter_get(struct socket *so, int optname, struct mbuf **m)
434 {
435 	int error;
436 
437 	if (so != ip_mrouter)
438 		error = ENOPROTOOPT;
439 	else {
440 		*m = m_get(M_WAIT, MT_SOOPTS);
441 
442 		switch (optname) {
443 		case MRT_VERSION:
444 			error = get_version(*m);
445 			break;
446 		case MRT_ASSERT:
447 			error = get_assert(*m);
448 			break;
449 		case MRT_API_SUPPORT:
450 			error = get_api_support(*m);
451 			break;
452 		case MRT_API_CONFIG:
453 			error = get_api_config(*m);
454 			break;
455 		default:
456 			error = ENOPROTOOPT;
457 			break;
458 		}
459 
460 		if (error)
461 			m_free(*m);
462 	}
463 
464 	return (error);
465 }
466 
467 /*
468  * Handle ioctl commands to obtain information from the cache
469  */
470 int
471 mrt_ioctl(struct socket *so, u_long cmd, caddr_t data)
472 {
473 	int error;
474 
475 	if (so != ip_mrouter)
476 		error = EINVAL;
477 	else
478 		switch (cmd) {
479 		case SIOCGETVIFCNT:
480 			error = get_vif_cnt((struct sioc_vif_req *)data);
481 			break;
482 		case SIOCGETSGCNT:
483 			error = get_sg_cnt((struct sioc_sg_req *)data);
484 			break;
485 		default:
486 			error = ENOTTY;
487 			break;
488 		}
489 
490 	return (error);
491 }
492 
493 /*
494  * returns the packet, byte, rpf-failure count for the source group provided
495  */
496 static int
497 get_sg_cnt(struct sioc_sg_req *req)
498 {
499 	int s;
500 	struct mfc *rt;
501 
502 	s = splsoftnet();
503 	rt = mfc_find(&req->src, &req->grp);
504 	if (rt == NULL) {
505 		splx(s);
506 		req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff;
507 		return (EADDRNOTAVAIL);
508 	}
509 	req->pktcnt = rt->mfc_pkt_cnt;
510 	req->bytecnt = rt->mfc_byte_cnt;
511 	req->wrong_if = rt->mfc_wrong_if;
512 	splx(s);
513 
514 	return (0);
515 }
516 
517 /*
518  * returns the input and output packet and byte counts on the vif provided
519  */
520 static int
521 get_vif_cnt(struct sioc_vif_req *req)
522 {
523 	vifi_t vifi = req->vifi;
524 
525 	if (vifi >= numvifs)
526 		return (EINVAL);
527 
528 	req->icount = viftable[vifi].v_pkt_in;
529 	req->ocount = viftable[vifi].v_pkt_out;
530 	req->ibytes = viftable[vifi].v_bytes_in;
531 	req->obytes = viftable[vifi].v_bytes_out;
532 
533 	return (0);
534 }
535 
536 /*
537  * Enable multicast routing
538  */
539 static int
540 ip_mrouter_init(struct socket *so, struct mbuf *m)
541 {
542 	int *v;
543 
544 	if (mrtdebug)
545 		log(LOG_DEBUG,
546 		    "ip_mrouter_init: so_type = %d, pr_protocol = %d\n",
547 		    so->so_type, so->so_proto->pr_protocol);
548 
549 	if (so->so_type != SOCK_RAW ||
550 	    so->so_proto->pr_protocol != IPPROTO_IGMP)
551 		return (EOPNOTSUPP);
552 
553 	if (m == NULL || m->m_len < sizeof(int))
554 		return (EINVAL);
555 
556 	v = mtod(m, int *);
557 	if (*v != 1)
558 		return (EINVAL);
559 
560 	if (ip_mrouter != NULL)
561 		return (EADDRINUSE);
562 
563 	ip_mrouter = so;
564 
565 	mfchashtbl = hashinit(MFCTBLSIZ, M_MRTABLE, M_WAITOK, &mfchash);
566 	bzero((caddr_t)nexpire, sizeof(nexpire));
567 
568 	pim_assert = 0;
569 
570 	timeout_set(&expire_upcalls_ch, expire_upcalls, NULL);
571 	timeout_add_msec(&expire_upcalls_ch, EXPIRE_TIMEOUT);
572 
573 	timeout_set(&bw_upcalls_ch, expire_bw_upcalls_send, NULL);
574 	timeout_add_msec(&bw_upcalls_ch, BW_UPCALLS_PERIOD);
575 
576 	timeout_set(&bw_meter_ch, expire_bw_meter_process, NULL);
577 	timeout_add_msec(&bw_meter_ch, BW_METER_PERIOD);
578 
579 	if (mrtdebug)
580 		log(LOG_DEBUG, "ip_mrouter_init\n");
581 
582 	return (0);
583 }
584 
585 /*
586  * Disable multicast routing
587  */
588 int
589 ip_mrouter_done()
590 {
591 	vifi_t vifi;
592 	struct vif *vifp;
593 	int i;
594 	int s;
595 
596 	s = splsoftnet();
597 
598 	/* Clear out all the vifs currently in use. */
599 	for (vifi = 0; vifi < numvifs; vifi++) {
600 		vifp = &viftable[vifi];
601 		if (!in_nullhost(vifp->v_lcl_addr))
602 			reset_vif(vifp);
603 	}
604 
605 	numvifs = 0;
606 	pim_assert = 0;
607 	mrt_api_config = 0;
608 
609 	timeout_del(&expire_upcalls_ch);
610 	timeout_del(&bw_upcalls_ch);
611 	timeout_del(&bw_meter_ch);
612 
613 	/*
614 	 * Free all multicast forwarding cache entries.
615 	 */
616 	for (i = 0; i < MFCTBLSIZ; i++) {
617 		struct mfc *rt, *nrt;
618 
619 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
620 			nrt = LIST_NEXT(rt, mfc_hash);
621 
622 			expire_mfc(rt);
623 		}
624 	}
625 
626 	bzero((caddr_t)nexpire, sizeof(nexpire));
627 	free(mfchashtbl, M_MRTABLE);
628 	mfchashtbl = NULL;
629 
630 	bw_upcalls_n = 0;
631 	bzero(bw_meter_timers, sizeof(bw_meter_timers));
632 
633 	/* Reset de-encapsulation cache. */
634 	have_encap_tunnel = 0;
635 
636 	ip_mrouter = NULL;
637 
638 	splx(s);
639 
640 	if (mrtdebug)
641 		log(LOG_DEBUG, "ip_mrouter_done\n");
642 
643 	return (0);
644 }
645 
646 void
647 ip_mrouter_detach(struct ifnet *ifp)
648 {
649 	int vifi, i;
650 	struct vif *vifp;
651 	struct mfc *rt;
652 	struct rtdetq *rte;
653 
654 	/* XXX not sure about side effect to userland routing daemon */
655 	for (vifi = 0; vifi < numvifs; vifi++) {
656 		vifp = &viftable[vifi];
657 		if (vifp->v_ifp == ifp)
658 			reset_vif(vifp);
659 	}
660 	for (i = 0; i < MFCTBLSIZ; i++) {
661 		if (nexpire[i] == 0)
662 			continue;
663 		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
664 			for (rte = rt->mfc_stall; rte; rte = rte->next) {
665 				if (rte->ifp == ifp)
666 					rte->ifp = NULL;
667 			}
668 		}
669 	}
670 }
671 
672 static int
673 get_version(struct mbuf *m)
674 {
675 	int *v = mtod(m, int *);
676 
677 	*v = 0x0305;	/* XXX !!!! */
678 	m->m_len = sizeof(int);
679 	return (0);
680 }
681 
682 /*
683  * Set PIM assert processing global
684  */
685 static int
686 set_assert(struct mbuf *m)
687 {
688 	int *i;
689 
690 	if (m == NULL || m->m_len < sizeof(int))
691 		return (EINVAL);
692 
693 	i = mtod(m, int *);
694 	pim_assert = !!*i;
695 	return (0);
696 }
697 
698 /*
699  * Get PIM assert processing global
700  */
701 static int
702 get_assert(struct mbuf *m)
703 {
704 	int *i = mtod(m, int *);
705 
706 	*i = pim_assert;
707 	m->m_len = sizeof(int);
708 	return (0);
709 }
710 
711 /*
712  * Configure API capabilities
713  */
714 static int
715 set_api_config(struct mbuf *m)
716 {
717 	int i;
718 	u_int32_t *apival;
719 
720 	if (m == NULL || m->m_len < sizeof(u_int32_t))
721 		return (EINVAL);
722 
723 	apival = mtod(m, u_int32_t *);
724 
725 	/*
726 	 * We can set the API capabilities only if it is the first operation
727 	 * after MRT_INIT. I.e.:
728 	 *  - there are no vifs installed
729 	 *  - pim_assert is not enabled
730 	 *  - the MFC table is empty
731 	 */
732 	if (numvifs > 0) {
733 		*apival = 0;
734 		return (EPERM);
735 	}
736 	if (pim_assert) {
737 		*apival = 0;
738 		return (EPERM);
739 	}
740 	for (i = 0; i < MFCTBLSIZ; i++) {
741 		if (LIST_FIRST(&mfchashtbl[i]) != NULL) {
742 			*apival = 0;
743 			return (EPERM);
744 		}
745 	}
746 
747 	mrt_api_config = *apival & mrt_api_support;
748 	*apival = mrt_api_config;
749 
750 	return (0);
751 }
752 
753 /*
754  * Get API capabilities
755  */
756 static int
757 get_api_support(struct mbuf *m)
758 {
759 	u_int32_t *apival;
760 
761 	if (m == NULL || m->m_len < sizeof(u_int32_t))
762 		return (EINVAL);
763 
764 	apival = mtod(m, u_int32_t *);
765 
766 	*apival = mrt_api_support;
767 
768 	return (0);
769 }
770 
771 /*
772  * Get API configured capabilities
773  */
774 static int
775 get_api_config(struct mbuf *m)
776 {
777 	u_int32_t *apival;
778 
779 	if (m == NULL || m->m_len < sizeof(u_int32_t))
780 		return (EINVAL);
781 
782 	apival = mtod(m, u_int32_t *);
783 
784 	*apival = mrt_api_config;
785 
786 	return (0);
787 }
788 
789 static struct sockaddr_in sin = { sizeof(sin), AF_INET };
790 
791 /*
792  * Add a vif to the vif table
793  */
794 static int
795 add_vif(struct mbuf *m)
796 {
797 	struct vifctl *vifcp;
798 	struct vif *vifp;
799 	struct ifaddr *ifa;
800 	struct ifnet *ifp;
801 	struct ifreq ifr;
802 	int error, s;
803 
804 	if (m == NULL || m->m_len < sizeof(struct vifctl))
805 		return (EINVAL);
806 
807 	vifcp = mtod(m, struct vifctl *);
808 	if (vifcp->vifc_vifi >= MAXVIFS)
809 		return (EINVAL);
810 	if (in_nullhost(vifcp->vifc_lcl_addr))
811 		return (EADDRNOTAVAIL);
812 
813 	vifp = &viftable[vifcp->vifc_vifi];
814 	if (!in_nullhost(vifp->v_lcl_addr))
815 		return (EADDRINUSE);
816 
817 	/* Find the interface with an address in AF_INET family. */
818 #ifdef PIM
819 	if (vifcp->vifc_flags & VIFF_REGISTER) {
820 		/*
821 		 * XXX: Because VIFF_REGISTER does not really need a valid
822 		 * local interface (e.g. it could be 127.0.0.2), we don't
823 		 * check its address.
824 		 */
825 	} else
826 #endif
827 	{
828 		sin.sin_addr = vifcp->vifc_lcl_addr;
829 		ifa = ifa_ifwithaddr(sintosa(&sin), /* XXX */ 0);
830 		if (ifa == NULL)
831 			return (EADDRNOTAVAIL);
832 	}
833 
834 	if (vifcp->vifc_flags & VIFF_TUNNEL) {
835 		/* tunnels are no longer supported use gif(4) instead */
836 		return (EOPNOTSUPP);
837 #ifdef PIM
838 	} else if (vifcp->vifc_flags & VIFF_REGISTER) {
839 		ifp = &multicast_register_if;
840 		if (mrtdebug)
841 			log(LOG_DEBUG, "Adding a register vif, ifp: %p\n",
842 			    (void *)ifp);
843 		if (reg_vif_num == VIFI_INVALID) {
844 			bzero(ifp, sizeof(*ifp));
845 			snprintf(ifp->if_xname, sizeof ifp->if_xname,
846 				 "register_vif");
847 			ifp->if_flags = IFF_LOOPBACK;
848 			bzero(&vifp->v_route, sizeof(vifp->v_route));
849 			reg_vif_num = vifcp->vifc_vifi;
850 		}
851 #endif
852 	} else {
853 		/* Use the physical interface associated with the address. */
854 		ifp = ifa->ifa_ifp;
855 
856 		/* Make sure the interface supports multicast. */
857 		if ((ifp->if_flags & IFF_MULTICAST) == 0)
858 			return (EOPNOTSUPP);
859 
860 		/* Enable promiscuous reception of all IP multicasts. */
861 		satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
862 		satosin(&ifr.ifr_addr)->sin_family = AF_INET;
863 		satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
864 		error = (*ifp->if_ioctl)(ifp, SIOCADDMULTI, (caddr_t)&ifr);
865 		if (error)
866 			return (error);
867 	}
868 
869 	s = splsoftnet();
870 
871 	vifp->v_flags = vifcp->vifc_flags;
872 	vifp->v_threshold = vifcp->vifc_threshold;
873 	vifp->v_lcl_addr = vifcp->vifc_lcl_addr;
874 	vifp->v_rmt_addr = vifcp->vifc_rmt_addr;
875 	vifp->v_ifp = ifp;
876 	/* Initialize per vif pkt counters. */
877 	vifp->v_pkt_in = 0;
878 	vifp->v_pkt_out = 0;
879 	vifp->v_bytes_in = 0;
880 	vifp->v_bytes_out = 0;
881 
882 	timeout_del(&vifp->v_repq_ch);
883 
884 #ifdef RSVP_ISI
885 	vifp->v_rsvp_on = 0;
886 	vifp->v_rsvpd = NULL;
887 #endif /* RSVP_ISI */
888 
889 	splx(s);
890 
891 	/* Adjust numvifs up if the vifi is higher than numvifs. */
892 	if (numvifs <= vifcp->vifc_vifi)
893 		numvifs = vifcp->vifc_vifi + 1;
894 
895 	if (mrtdebug)
896 		log(LOG_DEBUG, "add_vif #%d, lcladdr %x, %s %x, "
897 		    "thresh %x\n",
898 		    vifcp->vifc_vifi,
899 		    ntohl(vifcp->vifc_lcl_addr.s_addr),
900 		    (vifcp->vifc_flags & VIFF_TUNNEL) ? "rmtaddr" : "mask",
901 		    ntohl(vifcp->vifc_rmt_addr.s_addr),
902 		    vifcp->vifc_threshold);
903 
904 	return (0);
905 }
906 
907 void
908 reset_vif(struct vif *vifp)
909 {
910 	struct ifnet *ifp;
911 	struct ifreq ifr;
912 
913 	if (vifp->v_flags & VIFF_TUNNEL) {
914 		/* empty */
915 	} else if (vifp->v_flags & VIFF_REGISTER) {
916 #ifdef PIM
917 		reg_vif_num = VIFI_INVALID;
918 #endif
919 	} else {
920 		satosin(&ifr.ifr_addr)->sin_len = sizeof(struct sockaddr_in);
921 		satosin(&ifr.ifr_addr)->sin_family = AF_INET;
922 		satosin(&ifr.ifr_addr)->sin_addr = zeroin_addr;
923 		ifp = vifp->v_ifp;
924 		(*ifp->if_ioctl)(ifp, SIOCDELMULTI, (caddr_t)&ifr);
925 	}
926 	bzero((caddr_t)vifp, sizeof(*vifp));
927 }
928 
929 /*
930  * Delete a vif from the vif table
931  */
932 static int
933 del_vif(struct mbuf *m)
934 {
935 	vifi_t *vifip;
936 	struct vif *vifp;
937 	vifi_t vifi;
938 	int s;
939 
940 	if (m == NULL || m->m_len < sizeof(vifi_t))
941 		return (EINVAL);
942 
943 	vifip = mtod(m, vifi_t *);
944 	if (*vifip >= numvifs)
945 		return (EINVAL);
946 
947 	vifp = &viftable[*vifip];
948 	if (in_nullhost(vifp->v_lcl_addr))
949 		return (EADDRNOTAVAIL);
950 
951 	s = splsoftnet();
952 
953 	reset_vif(vifp);
954 
955 	/* Adjust numvifs down */
956 	for (vifi = numvifs; vifi > 0; vifi--)
957 		if (!in_nullhost(viftable[vifi - 1].v_lcl_addr))
958 			break;
959 	numvifs = vifi;
960 
961 	splx(s);
962 
963 	if (mrtdebug)
964 		log(LOG_DEBUG, "del_vif %d, numvifs %d\n", *vifip, numvifs);
965 
966 	return (0);
967 }
968 
969 void
970 vif_delete(struct ifnet *ifp)
971 {
972 	int i;
973 	struct vif *vifp;
974 	struct mfc *rt;
975 	struct rtdetq *rte;
976 
977 	for (i = 0; i < numvifs; i++) {
978 		vifp = &viftable[i];
979 		if (vifp->v_ifp == ifp)
980 			bzero((caddr_t)vifp, sizeof *vifp);
981 	}
982 
983 	for (i = numvifs; i > 0; i--)
984 		if (!in_nullhost(viftable[i - 1].v_lcl_addr))
985 			break;
986 	numvifs = i;
987 
988 	for (i = 0; i < MFCTBLSIZ; i++) {
989 		if (nexpire[i] == 0)
990 			continue;
991 		LIST_FOREACH(rt, &mfchashtbl[i], mfc_hash) {
992 			for (rte = rt->mfc_stall; rte; rte = rte->next) {
993 				if (rte->ifp == ifp)
994 					rte->ifp = NULL;
995 			}
996 		}
997 	}
998 }
999 
1000 /*
1001  * update an mfc entry without resetting counters and S,G addresses.
1002  */
1003 static void
1004 update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1005 {
1006 	int i;
1007 
1008 	rt->mfc_parent = mfccp->mfcc_parent;
1009 	for (i = 0; i < numvifs; i++) {
1010 		rt->mfc_ttls[i] = mfccp->mfcc_ttls[i];
1011 		rt->mfc_flags[i] = mfccp->mfcc_flags[i] & mrt_api_config &
1012 		    MRT_MFC_FLAGS_ALL;
1013 	}
1014 	/* set the RP address */
1015 	if (mrt_api_config & MRT_MFC_RP)
1016 		rt->mfc_rp = mfccp->mfcc_rp;
1017 	else
1018 		rt->mfc_rp = zeroin_addr;
1019 }
1020 
1021 /*
1022  * fully initialize an mfc entry from the parameter.
1023  */
1024 static void
1025 init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp)
1026 {
1027 	rt->mfc_origin     = mfccp->mfcc_origin;
1028 	rt->mfc_mcastgrp   = mfccp->mfcc_mcastgrp;
1029 
1030 	update_mfc_params(rt, mfccp);
1031 
1032 	/* initialize pkt counters per src-grp */
1033 	rt->mfc_pkt_cnt    = 0;
1034 	rt->mfc_byte_cnt   = 0;
1035 	rt->mfc_wrong_if   = 0;
1036 	timerclear(&rt->mfc_last_assert);
1037 }
1038 
1039 static void
1040 expire_mfc(struct mfc *rt)
1041 {
1042 	struct rtdetq *rte, *nrte;
1043 
1044 	free_bw_list(rt->mfc_bw_meter);
1045 
1046 	for (rte = rt->mfc_stall; rte != NULL; rte = nrte) {
1047 		nrte = rte->next;
1048 		m_freem(rte->m);
1049 		free(rte, M_MRTABLE);
1050 	}
1051 
1052 	LIST_REMOVE(rt, mfc_hash);
1053 	free(rt, M_MRTABLE);
1054 }
1055 
1056 /*
1057  * Add an mfc entry
1058  */
1059 static int
1060 add_mfc(struct mbuf *m)
1061 {
1062 	struct mfcctl2 mfcctl2;
1063 	struct mfcctl2 *mfccp;
1064 	struct mfc *rt;
1065 	u_int32_t hash = 0;
1066 	struct rtdetq *rte, *nrte;
1067 	u_short nstl;
1068 	int s;
1069 	int mfcctl_size = sizeof(struct mfcctl);
1070 
1071 	if (mrt_api_config & MRT_API_FLAGS_ALL)
1072 		mfcctl_size = sizeof(struct mfcctl2);
1073 
1074 	if (m == NULL || m->m_len < mfcctl_size)
1075 		return (EINVAL);
1076 
1077 	/*
1078 	 * select data size depending on API version.
1079 	 */
1080 	if (mrt_api_config & MRT_API_FLAGS_ALL) {
1081 		struct mfcctl2 *mp2 = mtod(m, struct mfcctl2 *);
1082 		bcopy(mp2, (caddr_t)&mfcctl2, sizeof(*mp2));
1083 	} else {
1084 		struct mfcctl *mp = mtod(m, struct mfcctl *);
1085 		bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp));
1086 		bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl),
1087 		    sizeof(mfcctl2) - sizeof(struct mfcctl));
1088 	}
1089 	mfccp = &mfcctl2;
1090 
1091 	s = splsoftnet();
1092 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1093 
1094 	/* If an entry already exists, just update the fields */
1095 	if (rt) {
1096 		if (mrtdebug & DEBUG_MFC)
1097 			log(LOG_DEBUG, "add_mfc update o %x g %x p %x\n",
1098 			    ntohl(mfccp->mfcc_origin.s_addr),
1099 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
1100 			    mfccp->mfcc_parent);
1101 
1102 		update_mfc_params(rt, mfccp);
1103 
1104 		splx(s);
1105 		return (0);
1106 	}
1107 
1108 	/*
1109 	 * Find the entry for which the upcall was made and update
1110 	 */
1111 	nstl = 0;
1112 	hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp);
1113 	LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1114 		if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1115 		    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) &&
1116 		    rt->mfc_stall != NULL) {
1117 			if (nstl++)
1118 				log(LOG_ERR, "add_mfc %s o %x g %x "
1119 				    "p %x dbx %p\n",
1120 				    "multiple kernel entries",
1121 				    ntohl(mfccp->mfcc_origin.s_addr),
1122 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
1123 				    mfccp->mfcc_parent, rt->mfc_stall);
1124 
1125 			if (mrtdebug & DEBUG_MFC)
1126 				log(LOG_DEBUG, "add_mfc o %x g %x "
1127 				    "p %x dbg %p\n",
1128 				    ntohl(mfccp->mfcc_origin.s_addr),
1129 				    ntohl(mfccp->mfcc_mcastgrp.s_addr),
1130 				    mfccp->mfcc_parent, rt->mfc_stall);
1131 
1132 			rte = rt->mfc_stall;
1133 			init_mfc_params(rt, mfccp);
1134 			rt->mfc_stall = NULL;
1135 
1136 			rt->mfc_expire = 0; /* Don't clean this guy up */
1137 			nexpire[hash]--;
1138 
1139 			/* free packets Qed at the end of this entry */
1140 			for (; rte != NULL; rte = nrte) {
1141 				nrte = rte->next;
1142 				if (rte->ifp) {
1143 #ifdef RSVP_ISI
1144 					ip_mdq(rte->m, rte->ifp, rt, -1);
1145 #else
1146 					ip_mdq(rte->m, rte->ifp, rt);
1147 #endif /* RSVP_ISI */
1148 				}
1149 				m_freem(rte->m);
1150 #ifdef UPCALL_TIMING
1151 				collate(&rte->t);
1152 #endif /* UPCALL_TIMING */
1153 				free(rte, M_MRTABLE);
1154 			}
1155 		}
1156 	}
1157 
1158 	/*
1159 	 * It is possible that an entry is being inserted without an upcall
1160 	 */
1161 	if (nstl == 0) {
1162 		/*
1163 		 * No mfc; make a new one
1164 		 */
1165 		if (mrtdebug & DEBUG_MFC)
1166 			log(LOG_DEBUG, "add_mfc no upcall o %x g %x p %x\n",
1167 			    ntohl(mfccp->mfcc_origin.s_addr),
1168 			    ntohl(mfccp->mfcc_mcastgrp.s_addr),
1169 			    mfccp->mfcc_parent);
1170 
1171 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1172 			if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) &&
1173 			    in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) {
1174 				init_mfc_params(rt, mfccp);
1175 				if (rt->mfc_expire)
1176 					nexpire[hash]--;
1177 				rt->mfc_expire = 0;
1178 				break; /* XXX */
1179 			}
1180 		}
1181 		if (rt == NULL) {	/* no upcall, so make a new entry */
1182 			rt = (struct mfc *)malloc(sizeof(*rt), M_MRTABLE,
1183 			    M_NOWAIT);
1184 			if (rt == NULL) {
1185 				splx(s);
1186 				return (ENOBUFS);
1187 			}
1188 
1189 			init_mfc_params(rt, mfccp);
1190 			rt->mfc_expire	= 0;
1191 			rt->mfc_stall	= NULL;
1192 			rt->mfc_bw_meter = NULL;
1193 
1194 			/* insert new entry at head of hash chain */
1195 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1196 		}
1197 	}
1198 
1199 	splx(s);
1200 	return (0);
1201 }
1202 
1203 #ifdef UPCALL_TIMING
1204 /*
1205  * collect delay statistics on the upcalls
1206  */
1207 static void
1208 collate(struct timeval *t)
1209 {
1210 	u_int32_t d;
1211 	struct timeval tp;
1212 	u_int32_t delta;
1213 
1214 	microtime(&tp);
1215 
1216 	if (timercmp(t, &tp, <)) {
1217 		TV_DELTA(tp, *t, delta);
1218 
1219 		d = delta >> 10;
1220 		if (d > 50)
1221 			d = 50;
1222 
1223 		++upcall_data[d];
1224 	}
1225 }
1226 #endif /* UPCALL_TIMING */
1227 
1228 /*
1229  * Delete an mfc entry
1230  */
1231 static int
1232 del_mfc(struct mbuf *m)
1233 {
1234 	struct mfcctl2 mfcctl2;
1235 	struct mfcctl2 *mfccp;
1236 	struct mfc *rt;
1237 	int s;
1238 	int mfcctl_size = sizeof(struct mfcctl);
1239 	struct mfcctl *mp = mtod(m, struct mfcctl *);
1240 
1241 	/*
1242 	 * XXX: for deleting MFC entries the information in entries
1243 	 * of size "struct mfcctl" is sufficient.
1244 	 */
1245 
1246 	if (m == NULL || m->m_len < mfcctl_size)
1247 		return (EINVAL);
1248 
1249 	bcopy(mp, (caddr_t)&mfcctl2, sizeof(*mp));
1250 	bzero((caddr_t)&mfcctl2 + sizeof(struct mfcctl),
1251 	    sizeof(mfcctl2) - sizeof(struct mfcctl));
1252 
1253 	mfccp = &mfcctl2;
1254 
1255 	if (mrtdebug & DEBUG_MFC)
1256 		log(LOG_DEBUG, "del_mfc origin %x mcastgrp %x\n",
1257 		    ntohl(mfccp->mfcc_origin.s_addr),
1258 		    ntohl(mfccp->mfcc_mcastgrp.s_addr));
1259 
1260 	s = splsoftnet();
1261 
1262 	rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp);
1263 	if (rt == NULL) {
1264 		splx(s);
1265 		return (EADDRNOTAVAIL);
1266 	}
1267 
1268 	/*
1269 	 * free the bw_meter entries
1270 	 */
1271 	free_bw_list(rt->mfc_bw_meter);
1272 	rt->mfc_bw_meter = NULL;
1273 
1274 	LIST_REMOVE(rt, mfc_hash);
1275 	free(rt, M_MRTABLE);
1276 
1277 	splx(s);
1278 	return (0);
1279 }
1280 
1281 static int
1282 socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src)
1283 {
1284 	if (s != NULL) {
1285 		if (sbappendaddr(&s->so_rcv, sintosa(src), mm,
1286 		    (struct mbuf *)NULL) != 0) {
1287 			sorwakeup(s);
1288 			return (0);
1289 		}
1290 	}
1291 	m_freem(mm);
1292 	return (-1);
1293 }
1294 
1295 /*
1296  * IP multicast forwarding function. This function assumes that the packet
1297  * pointed to by "ip" has arrived on (or is about to be sent to) the interface
1298  * pointed to by "ifp", and the packet is to be relayed to other networks
1299  * that have members of the packet's destination IP multicast group.
1300  *
1301  * The packet is returned unscathed to the caller, unless it is
1302  * erroneous, in which case a non-zero return value tells the caller to
1303  * discard it.
1304  */
1305 
1306 #define IP_HDR_LEN  20	/* # bytes of fixed IP header (excluding options) */
1307 #define TUNNEL_LEN  12  /* # bytes of IP option for tunnel encapsulation  */
1308 
1309 int
1310 #ifdef RSVP_ISI
1311 ip_mforward(struct mbuf *m, struct ifnet *ifp, struct ip_moptions *imo)
1312 #else
1313 ip_mforward(struct mbuf *m, struct ifnet *ifp)
1314 #endif /* RSVP_ISI */
1315 {
1316 	struct ip *ip = mtod(m, struct ip *);
1317 	struct mfc *rt;
1318 	static int srctun = 0;
1319 	struct mbuf *mm;
1320 	int s;
1321 	vifi_t vifi;
1322 
1323 	if (mrtdebug & DEBUG_FORWARD)
1324 		log(LOG_DEBUG, "ip_mforward: src %x, dst %x, ifp %p\n",
1325 		    ntohl(ip->ip_src.s_addr), ntohl(ip->ip_dst.s_addr), ifp);
1326 
1327 	if (ip->ip_hl < (IP_HDR_LEN + TUNNEL_LEN) >> 2 ||
1328 	    ((u_char *)(ip + 1))[1] != IPOPT_LSRR) {
1329 		/*
1330 		 * Packet arrived via a physical interface or
1331 		 * an encapsulated tunnel or a register_vif.
1332 		 */
1333 	} else {
1334 		/*
1335 		 * Packet arrived through a source-route tunnel.
1336 		 * Source-route tunnels are no longer supported.
1337 		 */
1338 		if ((srctun++ % 1000) == 0)
1339 			log(LOG_ERR, "ip_mforward: received source-routed "
1340 			    "packet from %x\n", ntohl(ip->ip_src.s_addr));
1341 
1342 		return (1);
1343 	}
1344 
1345 #ifdef RSVP_ISI
1346 	if (imo && ((vifi = imo->imo_multicast_vif) < numvifs)) {
1347 		if (ip->ip_ttl < MAXTTL) {
1348 			/* compensate for -1 in *_send routines */
1349 			ip->ip_ttl++;
1350 		}
1351 		if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1352 			struct vif *vifp = viftable + vifi;
1353 			printf("Sending IPPROTO_RSVP from %x to %x on "
1354 			    "vif %d (%s%s)\n",
1355 			    ntohl(ip->ip_src), ntohl(ip->ip_dst), vifi,
1356 			    (vifp->v_flags & VIFF_TUNNEL) ? "tunnel on " : "",
1357 			    vifp->v_ifp->if_xname);
1358 		}
1359 		return (ip_mdq(m, ifp, (struct mfc *)NULL, vifi));
1360 	}
1361 	if (rsvpdebug && ip->ip_p == IPPROTO_RSVP) {
1362 		printf("Warning: IPPROTO_RSVP from %x to %x without "
1363 		    "vif option\n", ntohl(ip->ip_src), ntohl(ip->ip_dst));
1364 	}
1365 #endif /* RSVP_ISI */
1366 
1367 	/*
1368 	 * Don't forward a packet with time-to-live of zero or one,
1369 	 * or a packet destined to a local-only group.
1370 	 */
1371 	if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ip->ip_dst.s_addr))
1372 		return (0);
1373 
1374 	/*
1375 	 * Determine forwarding vifs from the forwarding cache table
1376 	 */
1377 	s = splsoftnet();
1378 	++mrtstat.mrts_mfc_lookups;
1379 	rt = mfc_find(&ip->ip_src, &ip->ip_dst);
1380 
1381 	/* Entry exists, so forward if necessary */
1382 	if (rt != NULL) {
1383 		splx(s);
1384 #ifdef RSVP_ISI
1385 		return (ip_mdq(m, ifp, rt, -1));
1386 #else
1387 		return (ip_mdq(m, ifp, rt));
1388 #endif /* RSVP_ISI */
1389 	} else {
1390 		/*
1391 		 * If we don't have a route for packet's origin,
1392 		 * Make a copy of the packet & send message to routing daemon
1393 		 */
1394 
1395 		struct mbuf *mb0;
1396 		struct rtdetq *rte;
1397 		u_int32_t hash;
1398 		int hlen = ip->ip_hl << 2;
1399 #ifdef UPCALL_TIMING
1400 		struct timeval tp;
1401 
1402 		microtime(&tp);
1403 #endif /* UPCALL_TIMING */
1404 
1405 		++mrtstat.mrts_mfc_misses;
1406 
1407 		mrtstat.mrts_no_route++;
1408 		if (mrtdebug & (DEBUG_FORWARD | DEBUG_MFC))
1409 			log(LOG_DEBUG, "ip_mforward: no rte s %x g %x\n",
1410 			    ntohl(ip->ip_src.s_addr),
1411 			    ntohl(ip->ip_dst.s_addr));
1412 
1413 		/*
1414 		 * Allocate mbufs early so that we don't do extra work if we are
1415 		 * just going to fail anyway.  Make sure to pullup the header so
1416 		 * that other people can't step on it.
1417 		 */
1418 		rte = (struct rtdetq *)malloc(sizeof(*rte),
1419 		    M_MRTABLE, M_NOWAIT);
1420 		if (rte == NULL) {
1421 			splx(s);
1422 			return (ENOBUFS);
1423 		}
1424 		mb0 = m_copy(m, 0, M_COPYALL);
1425 		M_PULLUP(mb0, hlen);
1426 		if (mb0 == NULL) {
1427 			free(rte, M_MRTABLE);
1428 			splx(s);
1429 			return (ENOBUFS);
1430 		}
1431 
1432 		/* is there an upcall waiting for this flow? */
1433 		hash = MFCHASH(ip->ip_src, ip->ip_dst);
1434 		LIST_FOREACH(rt, &mfchashtbl[hash], mfc_hash) {
1435 			if (in_hosteq(ip->ip_src, rt->mfc_origin) &&
1436 			    in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) &&
1437 			    rt->mfc_stall != NULL)
1438 				break;
1439 		}
1440 
1441 		if (rt == NULL) {
1442 			int i;
1443 			struct igmpmsg *im;
1444 
1445 			/*
1446 			 * Locate the vifi for the incoming interface for
1447 			 * this packet.
1448 			 * If none found, drop packet.
1449 			 */
1450 			for (vifi = 0; vifi < numvifs &&
1451 				 viftable[vifi].v_ifp != ifp; vifi++)
1452 				;
1453 			if (vifi >= numvifs) /* vif not found, drop packet */
1454 				goto non_fatal;
1455 
1456 			/* no upcall, so make a new entry */
1457 			rt = (struct mfc *)malloc(sizeof(*rt),
1458 			    M_MRTABLE, M_NOWAIT);
1459 			if (rt == NULL)
1460 				goto fail;
1461 			/*
1462 			 * Make a copy of the header to send to the user level
1463 			 * process
1464 			 */
1465 			mm = m_copy(m, 0, hlen);
1466 			M_PULLUP(mm, hlen);
1467 			if (mm == NULL)
1468 				goto fail1;
1469 
1470 			/*
1471 			 * Send message to routing daemon to install
1472 			 * a route into the kernel table
1473 			 */
1474 
1475 			im = mtod(mm, struct igmpmsg *);
1476 			im->im_msgtype = IGMPMSG_NOCACHE;
1477 			im->im_mbz = 0;
1478 			im->im_vif = vifi;
1479 
1480 			mrtstat.mrts_upcalls++;
1481 
1482 			sin.sin_addr = ip->ip_src;
1483 			if (socket_send(ip_mrouter, mm, &sin) < 0) {
1484 				log(LOG_WARNING, "ip_mforward: ip_mrouter "
1485 				    "socket queue full\n");
1486 				++mrtstat.mrts_upq_sockfull;
1487 			fail1:
1488 				free(rt, M_MRTABLE);
1489 			fail:
1490 				free(rte, M_MRTABLE);
1491 				m_freem(mb0);
1492 				splx(s);
1493 				return (ENOBUFS);
1494 			}
1495 
1496 			/* insert new entry at head of hash chain */
1497 			rt->mfc_origin = ip->ip_src;
1498 			rt->mfc_mcastgrp = ip->ip_dst;
1499 			rt->mfc_pkt_cnt = 0;
1500 			rt->mfc_byte_cnt = 0;
1501 			rt->mfc_wrong_if = 0;
1502 			rt->mfc_expire = UPCALL_EXPIRE;
1503 			nexpire[hash]++;
1504 			for (i = 0; i < numvifs; i++) {
1505 				rt->mfc_ttls[i] = 0;
1506 				rt->mfc_flags[i] = 0;
1507 			}
1508 			rt->mfc_parent = -1;
1509 
1510 			/* clear the RP address */
1511 			rt->mfc_rp = zeroin_addr;
1512 
1513 			rt->mfc_bw_meter = NULL;
1514 
1515 			/* link into table */
1516 			LIST_INSERT_HEAD(&mfchashtbl[hash], rt, mfc_hash);
1517 			/* Add this entry to the end of the queue */
1518 			rt->mfc_stall = rte;
1519 		} else {
1520 			/* determine if q has overflowed */
1521 			struct rtdetq **p;
1522 			int npkts = 0;
1523 
1524 			/*
1525 			 * XXX ouch! we need to append to the list, but we
1526 			 * only have a pointer to the front, so we have to
1527 			 * scan the entire list every time.
1528 			 */
1529 			for (p = &rt->mfc_stall; *p != NULL; p = &(*p)->next)
1530 				if (++npkts > MAX_UPQ) {
1531 					mrtstat.mrts_upq_ovflw++;
1532 				non_fatal:
1533 					free(rte, M_MRTABLE);
1534 					m_freem(mb0);
1535 					splx(s);
1536 					return (0);
1537 				}
1538 
1539 			/* Add this entry to the end of the queue */
1540 			*p = rte;
1541 		}
1542 
1543 		rte->next = NULL;
1544 		rte->m = mb0;
1545 		rte->ifp = ifp;
1546 	#ifdef UPCALL_TIMING
1547 		rte->t = tp;
1548 	#endif /* UPCALL_TIMING */
1549 
1550 		splx(s);
1551 
1552 		return (0);
1553 	}
1554 }
1555 
1556 
1557 /*ARGSUSED*/
1558 static void
1559 expire_upcalls(void *v)
1560 {
1561 	int i;
1562 	int s;
1563 
1564 	s = splsoftnet();
1565 
1566 	for (i = 0; i < MFCTBLSIZ; i++) {
1567 		struct mfc *rt, *nrt;
1568 
1569 		if (nexpire[i] == 0)
1570 			continue;
1571 
1572 		for (rt = LIST_FIRST(&mfchashtbl[i]); rt; rt = nrt) {
1573 			nrt = LIST_NEXT(rt, mfc_hash);
1574 
1575 			if (rt->mfc_expire == 0 || --rt->mfc_expire > 0)
1576 				continue;
1577 			nexpire[i]--;
1578 
1579 			/*
1580 			 * free the bw_meter entries
1581 			 */
1582 			while (rt->mfc_bw_meter != NULL) {
1583 				struct bw_meter *x = rt->mfc_bw_meter;
1584 
1585 				rt->mfc_bw_meter = x->bm_mfc_next;
1586 				free(x, M_BWMETER);
1587 			}
1588 
1589 			++mrtstat.mrts_cache_cleanups;
1590 			if (mrtdebug & DEBUG_EXPIRE)
1591 				log(LOG_DEBUG,
1592 				    "expire_upcalls: expiring (%x %x)\n",
1593 				    ntohl(rt->mfc_origin.s_addr),
1594 				    ntohl(rt->mfc_mcastgrp.s_addr));
1595 
1596 			expire_mfc(rt);
1597 		}
1598 	}
1599 
1600 	splx(s);
1601 	timeout_add_msec(&expire_upcalls_ch, EXPIRE_TIMEOUT);
1602 }
1603 
1604 /*
1605  * Packet forwarding routine once entry in the cache is made
1606  */
1607 static int
1608 #ifdef RSVP_ISI
1609 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif)
1610 #else
1611 ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt)
1612 #endif /* RSVP_ISI */
1613 {
1614 	struct ip  *ip = mtod(m, struct ip *);
1615 	vifi_t vifi;
1616 	struct vif *vifp;
1617 	int plen = ntohs(ip->ip_len) - (ip->ip_hl << 2);
1618 
1619 /*
1620  * Macro to send packet on vif.  Since RSVP packets don't get counted on
1621  * input, they shouldn't get counted on output, so statistics keeping is
1622  * separate.
1623  */
1624 #define MC_SEND(ip, vifp, m) do {					\
1625 	if ((vifp)->v_flags & VIFF_TUNNEL)				\
1626 		encap_send((ip), (vifp), (m));				\
1627 	else								\
1628 		phyint_send((ip), (vifp), (m));				\
1629 } while (/*CONSTCOND*/ 0)
1630 
1631 #ifdef RSVP_ISI
1632 	/*
1633 	 * If xmt_vif is not -1, send on only the requested vif.
1634 	 *
1635 	 * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.
1636 	 */
1637 	if (xmt_vif < numvifs) {
1638 #ifdef PIM
1639 		if (viftable[xmt_vif].v_flags & VIFF_REGISTER)
1640 			pim_register_send(ip, viftable + xmt_vif, m, rt);
1641 		else
1642 #endif
1643 		MC_SEND(ip, viftable + xmt_vif, m);
1644 		return (1);
1645 	}
1646 #endif /* RSVP_ISI */
1647 
1648 	/*
1649 	 * Don't forward if it didn't arrive from the parent vif for its origin.
1650 	 */
1651 	vifi = rt->mfc_parent;
1652 	if ((vifi >= numvifs) || (viftable[vifi].v_ifp != ifp)) {
1653 		/* came in the wrong interface */
1654 		if (mrtdebug & DEBUG_FORWARD)
1655 			log(LOG_DEBUG, "wrong if: ifp %p vifi %d vififp %p\n",
1656 			    ifp, vifi,
1657 			    vifi >= numvifs ? 0 : viftable[vifi].v_ifp);
1658 		++mrtstat.mrts_wrong_if;
1659 		++rt->mfc_wrong_if;
1660 		/*
1661 		 * If we are doing PIM assert processing, send a message
1662 		 * to the routing daemon.
1663 		 *
1664 		 * XXX: A PIM-SM router needs the WRONGVIF detection so it
1665 		 * can complete the SPT switch, regardless of the type
1666 		 * of interface (broadcast media, GRE tunnel, etc).
1667 		 */
1668 		if (pim_assert && (vifi < numvifs) && viftable[vifi].v_ifp) {
1669 			struct timeval now;
1670 			u_int32_t delta;
1671 
1672 #ifdef PIM
1673 			if (ifp == &multicast_register_if)
1674 				pimstat.pims_rcv_registers_wrongiif++;
1675 #endif
1676 
1677 			/* Get vifi for the incoming packet */
1678 			for (vifi = 0;
1679 			     vifi < numvifs && viftable[vifi].v_ifp != ifp;
1680 			     vifi++)
1681 			    ;
1682 			if (vifi >= numvifs) {
1683 				/* The iif is not found: ignore the packet. */
1684 				return (0);
1685 			}
1686 
1687 			if (rt->mfc_flags[vifi] &
1688 			    MRT_MFC_FLAGS_DISABLE_WRONGVIF) {
1689 				/* WRONGVIF disabled: ignore the packet */
1690 				return (0);
1691 			}
1692 
1693 			microtime(&now);
1694 
1695 			TV_DELTA(rt->mfc_last_assert, now, delta);
1696 
1697 			if (delta > ASSERT_MSG_TIME) {
1698 				struct igmpmsg *im;
1699 				int hlen = ip->ip_hl << 2;
1700 				struct mbuf *mm = m_copy(m, 0, hlen);
1701 
1702 				M_PULLUP(mm, hlen);
1703 				if (mm == NULL)
1704 					return (ENOBUFS);
1705 
1706 				rt->mfc_last_assert = now;
1707 
1708 				im = mtod(mm, struct igmpmsg *);
1709 				im->im_msgtype	= IGMPMSG_WRONGVIF;
1710 				im->im_mbz	= 0;
1711 				im->im_vif	= vifi;
1712 
1713 				mrtstat.mrts_upcalls++;
1714 
1715 				sin.sin_addr = im->im_src;
1716 				if (socket_send(ip_mrouter, mm, &sin) < 0) {
1717 					log(LOG_WARNING, "ip_mforward: "
1718 					    "ip_mrouter socket queue full\n");
1719 					++mrtstat.mrts_upq_sockfull;
1720 					return (ENOBUFS);
1721 				}
1722 			}
1723 		}
1724 		return (0);
1725 	}
1726 
1727 	/* If I sourced this packet, it counts as output, else it was input. */
1728 	if (in_hosteq(ip->ip_src, viftable[vifi].v_lcl_addr)) {
1729 		viftable[vifi].v_pkt_out++;
1730 		viftable[vifi].v_bytes_out += plen;
1731 	} else {
1732 		viftable[vifi].v_pkt_in++;
1733 		viftable[vifi].v_bytes_in += plen;
1734 	}
1735 	rt->mfc_pkt_cnt++;
1736 	rt->mfc_byte_cnt += plen;
1737 
1738 	/*
1739 	 * For each vif, decide if a copy of the packet should be forwarded.
1740 	 * Forward if:
1741 	 *		- the ttl exceeds the vif's threshold
1742 	 *		- there are group members downstream on interface
1743 	 */
1744 	for (vifp = viftable, vifi = 0; vifi < numvifs; vifp++, vifi++)
1745 		if ((rt->mfc_ttls[vifi] > 0) &&
1746 			(ip->ip_ttl > rt->mfc_ttls[vifi])) {
1747 			vifp->v_pkt_out++;
1748 			vifp->v_bytes_out += plen;
1749 #ifdef PIM
1750 			if (vifp->v_flags & VIFF_REGISTER)
1751 				pim_register_send(ip, vifp, m, rt);
1752 			else
1753 #endif
1754 			MC_SEND(ip, vifp, m);
1755 		}
1756 
1757 	/*
1758 	 * Perform upcall-related bw measuring.
1759 	 */
1760 	if (rt->mfc_bw_meter != NULL) {
1761 		struct bw_meter *x;
1762 		struct timeval now;
1763 
1764 		microtime(&now);
1765 		for (x = rt->mfc_bw_meter; x != NULL; x = x->bm_mfc_next)
1766 			bw_meter_receive_packet(x, plen, &now);
1767 	}
1768 
1769 	return (0);
1770 }
1771 
1772 #ifdef RSVP_ISI
1773 /*
1774  * check if a vif number is legal/ok. This is used by ip_output.
1775  */
1776 int
1777 legal_vif_num(int vif)
1778 {
1779 	if (vif >= 0 && vif < numvifs)
1780 		return (1);
1781 	else
1782 		return (0);
1783 }
1784 #endif /* RSVP_ISI */
1785 
1786 static void
1787 phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1788 {
1789 	struct mbuf *mb_copy;
1790 	int hlen = ip->ip_hl << 2;
1791 
1792 	/*
1793 	 * Make a new reference to the packet; make sure that
1794 	 * the IP header is actually copied, not just referenced,
1795 	 * so that ip_output() only scribbles on the copy.
1796 	 */
1797 	mb_copy = m_copy(m, 0, M_COPYALL);
1798 	M_PULLUP(mb_copy, hlen);
1799 	if (mb_copy == NULL)
1800 		return;
1801 
1802 	send_packet(vifp, mb_copy);
1803 }
1804 
1805 static void
1806 encap_send(struct ip *ip, struct vif *vifp, struct mbuf *m)
1807 {
1808 	struct mbuf *mb_copy;
1809 	struct ip *ip_copy;
1810 	int i, len = ntohs(ip->ip_len) + sizeof(multicast_encap_iphdr);
1811 
1812 	in_proto_cksum_out(m, NULL);
1813 
1814 	/*
1815 	 * copy the old packet & pullup its IP header into the
1816 	 * new mbuf so we can modify it.  Try to fill the new
1817 	 * mbuf since if we don't the ethernet driver will.
1818 	 */
1819 	MGETHDR(mb_copy, M_DONTWAIT, MT_DATA);
1820 	if (mb_copy == NULL)
1821 		return;
1822 	mb_copy->m_data += max_linkhdr;
1823 	mb_copy->m_pkthdr.len = len;
1824 	mb_copy->m_len = sizeof(multicast_encap_iphdr);
1825 
1826 	if ((mb_copy->m_next = m_copy(m, 0, M_COPYALL)) == NULL) {
1827 		m_freem(mb_copy);
1828 		return;
1829 	}
1830 	i = MHLEN - max_linkhdr;
1831 	if (i > len)
1832 		i = len;
1833 	mb_copy = m_pullup(mb_copy, i);
1834 	if (mb_copy == NULL)
1835 		return;
1836 
1837 	/*
1838 	 * fill in the encapsulating IP header.
1839 	 */
1840 	ip_copy = mtod(mb_copy, struct ip *);
1841 	*ip_copy = multicast_encap_iphdr;
1842 	ip_copy->ip_id = htons(ip_randomid());
1843 	ip_copy->ip_len = htons(len);
1844 	ip_copy->ip_src = vifp->v_lcl_addr;
1845 	ip_copy->ip_dst = vifp->v_rmt_addr;
1846 
1847 	/*
1848 	 * turn the encapsulated IP header back into a valid one.
1849 	 */
1850 	ip = (struct ip *)((caddr_t)ip_copy + sizeof(multicast_encap_iphdr));
1851 	--ip->ip_ttl;
1852 	ip->ip_sum = 0;
1853 	mb_copy->m_data += sizeof(multicast_encap_iphdr);
1854 	ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
1855 	mb_copy->m_data -= sizeof(multicast_encap_iphdr);
1856 
1857 	send_packet(vifp, mb_copy);
1858 }
1859 
1860 static void
1861 send_packet(struct vif *vifp, struct mbuf *m)
1862 {
1863 	int error;
1864 	int s = splsoftnet();
1865 
1866 	if (vifp->v_flags & VIFF_TUNNEL) {
1867 		/* If tunnel options */
1868 		ip_output(m, (struct mbuf *)NULL, &vifp->v_route,
1869 		    IP_FORWARDING, (struct ip_moptions *)NULL,
1870 		    (struct inpcb *)NULL);
1871 	} else {
1872 		/*
1873 		 * if physical interface option, extract the options
1874 		 * and then send
1875 		 */
1876 		struct ip_moptions imo;
1877 
1878 		imo.imo_multicast_ifp = vifp->v_ifp;
1879 		imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - IPTTLDEC;
1880 		imo.imo_multicast_loop = 1;
1881 #ifdef RSVP_ISI
1882 		imo.imo_multicast_vif = -1;
1883 #endif
1884 
1885 		error = ip_output(m, (struct mbuf *)NULL, (struct route *)NULL,
1886 		    IP_FORWARDING|IP_MULTICASTOPTS, &imo,
1887 		    (struct inpcb *)NULL);
1888 
1889 		if (mrtdebug & DEBUG_XMIT)
1890 			log(LOG_DEBUG, "phyint_send on vif %ld err %d\n",
1891 			    (long)(vifp - viftable), error);
1892 	}
1893 	splx(s);
1894 }
1895 
1896 #ifdef RSVP_ISI
1897 int
1898 ip_rsvp_vif_init(struct socket *so, struct mbuf *m)
1899 {
1900 	int vifi, s;
1901 
1902 	if (rsvpdebug)
1903 		printf("ip_rsvp_vif_init: so_type = %d, pr_protocol = %d\n",
1904 		    so->so_type, so->so_proto->pr_protocol);
1905 
1906 	if (so->so_type != SOCK_RAW ||
1907 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1908 		return (EOPNOTSUPP);
1909 
1910 	/* Check mbuf. */
1911 	if (m == NULL || m->m_len != sizeof(int)) {
1912 		return (EINVAL);
1913 	}
1914 	vifi = *(mtod(m, int *));
1915 
1916 	if (rsvpdebug)
1917 		printf("ip_rsvp_vif_init: vif = %d rsvp_on = %d\n",
1918 		    vifi, rsvp_on);
1919 
1920 	s = splsoftnet();
1921 
1922 	/* Check vif. */
1923 	if (!legal_vif_num(vifi)) {
1924 		splx(s);
1925 		return (EADDRNOTAVAIL);
1926 	}
1927 
1928 	/* Check if socket is available. */
1929 	if (viftable[vifi].v_rsvpd != NULL) {
1930 		splx(s);
1931 		return (EADDRINUSE);
1932 	}
1933 
1934 	viftable[vifi].v_rsvpd = so;
1935 	/* This may seem silly, but we need to be sure we don't over-increment
1936 	 * the RSVP counter, in case something slips up.
1937 	 */
1938 	if (!viftable[vifi].v_rsvp_on) {
1939 		viftable[vifi].v_rsvp_on = 1;
1940 		rsvp_on++;
1941 	}
1942 
1943 	splx(s);
1944 	return (0);
1945 }
1946 
1947 int
1948 ip_rsvp_vif_done(struct socket *so, struct mbuf *m)
1949 {
1950 	int vifi, s;
1951 
1952 	if (rsvpdebug)
1953 		printf("ip_rsvp_vif_done: so_type = %d, pr_protocol = %d\n",
1954 		    so->so_type, so->so_proto->pr_protocol);
1955 
1956 	if (so->so_type != SOCK_RAW ||
1957 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
1958 		return (EOPNOTSUPP);
1959 
1960 	/* Check mbuf. */
1961 	if (m == NULL || m->m_len != sizeof(int)) {
1962 		return (EINVAL);
1963 	}
1964 	vifi = *(mtod(m, int *));
1965 
1966 	s = splsoftnet();
1967 
1968 	/* Check vif. */
1969 	if (!legal_vif_num(vifi)) {
1970 		splx(s);
1971 		return (EADDRNOTAVAIL);
1972 	}
1973 
1974 	if (rsvpdebug)
1975 		printf("ip_rsvp_vif_done: v_rsvpd = %x so = %x\n",
1976 		    viftable[vifi].v_rsvpd, so);
1977 
1978 	viftable[vifi].v_rsvpd = NULL;
1979 	/*
1980 	 * This may seem silly, but we need to be sure we don't over-decrement
1981 	 * the RSVP counter, in case something slips up.
1982 	 */
1983 	if (viftable[vifi].v_rsvp_on) {
1984 		viftable[vifi].v_rsvp_on = 0;
1985 		rsvp_on--;
1986 	}
1987 
1988 	splx(s);
1989 	return (0);
1990 }
1991 
1992 void
1993 ip_rsvp_force_done(struct socket *so)
1994 {
1995 	int vifi, s;
1996 
1997 	/* Don't bother if it is not the right type of socket. */
1998 	if (so->so_type != SOCK_RAW ||
1999 	    so->so_proto->pr_protocol != IPPROTO_RSVP)
2000 		return;
2001 
2002 	s = splsoftnet();
2003 
2004 	/*
2005 	 * The socket may be attached to more than one vif...this
2006 	 * is perfectly legal.
2007 	 */
2008 	for (vifi = 0; vifi < numvifs; vifi++) {
2009 		if (viftable[vifi].v_rsvpd == so) {
2010 			viftable[vifi].v_rsvpd = NULL;
2011 			/*
2012 			 * This may seem silly, but we need to be sure we don't
2013 			 * over-decrement the RSVP counter, in case something
2014 			 * slips up.
2015 			 */
2016 			if (viftable[vifi].v_rsvp_on) {
2017 				viftable[vifi].v_rsvp_on = 0;
2018 				rsvp_on--;
2019 			}
2020 		}
2021 	}
2022 
2023 	splx(s);
2024 	return;
2025 }
2026 
2027 void
2028 rsvp_input(struct mbuf *m, struct ifnet *ifp)
2029 {
2030 	int vifi, s;
2031 	struct ip *ip = mtod(m, struct ip *);
2032 	static struct sockaddr_in rsvp_src = { sizeof(sin), AF_INET };
2033 
2034 	if (rsvpdebug)
2035 		printf("rsvp_input: rsvp_on %d\n", rsvp_on);
2036 
2037 	/*
2038 	 * Can still get packets with rsvp_on = 0 if there is a local member
2039 	 * of the group to which the RSVP packet is addressed.  But in this
2040 	 * case we want to throw the packet away.
2041 	 */
2042 	if (!rsvp_on) {
2043 		m_freem(m);
2044 		return;
2045 	}
2046 
2047 	/*
2048 	 * If the old-style non-vif-associated socket is set, then use
2049 	 * it and ignore the new ones.
2050 	 */
2051 	if (ip_rsvpd != NULL) {
2052 		if (rsvpdebug)
2053 			printf("rsvp_input: "
2054 			    "Sending packet up old-style socket\n");
2055 		rip_input(m, 0);	/*XXX*/
2056 		return;
2057 	}
2058 
2059 	s = splsoftnet();
2060 
2061 	if (rsvpdebug)
2062 		printf("rsvp_input: check vifs\n");
2063 
2064 	/* Find which vif the packet arrived on. */
2065 	for (vifi = 0; vifi < numvifs; vifi++) {
2066 		if (viftable[vifi].v_ifp == ifp)
2067 			break;
2068 	}
2069 
2070 	if (vifi == numvifs) {
2071 		/* Can't find vif packet arrived on. Drop packet. */
2072 		if (rsvpdebug)
2073 			printf("rsvp_input: "
2074 			    "Can't find vif for packet...dropping it.\n");
2075 		m_freem(m);
2076 		splx(s);
2077 		return;
2078 	}
2079 
2080 	if (rsvpdebug)
2081 		printf("rsvp_input: check socket\n");
2082 
2083 	if (viftable[vifi].v_rsvpd == NULL) {
2084 		/*
2085 	 	 * drop packet, since there is no specific socket for this
2086 		 * interface
2087 		 */
2088 		if (rsvpdebug)
2089 			printf("rsvp_input: No socket defined for vif %d\n",
2090 			    vifi);
2091 		m_freem(m);
2092 		splx(s);
2093 		return;
2094 	}
2095 
2096 	rsvp_src.sin_addr = ip->ip_src;
2097 
2098 	if (rsvpdebug && m)
2099 		printf("rsvp_input: m->m_len = %d, sbspace() = %d\n",
2100 		    m->m_len, sbspace(&viftable[vifi].v_rsvpd->so_rcv));
2101 
2102 	if (socket_send(viftable[vifi].v_rsvpd, m, &rsvp_src) < 0)
2103 		if (rsvpdebug)
2104 			printf("rsvp_input: Failed to append to socket\n");
2105 	else
2106 		if (rsvpdebug)
2107 			printf("rsvp_input: send packet up\n");
2108 
2109 	splx(s);
2110 }
2111 #endif /* RSVP_ISI */
2112 
2113 /*
2114  * Code for bandwidth monitors
2115  */
2116 
2117 /*
2118  * Define common interface for timeval-related methods
2119  */
2120 #define	BW_TIMEVALCMP(tvp, uvp, cmp) timercmp((tvp), (uvp), cmp)
2121 #define	BW_TIMEVALDECR(vvp, uvp) timersub((vvp), (uvp), (vvp))
2122 #define	BW_TIMEVALADD(vvp, uvp) timeradd((vvp), (uvp), (vvp))
2123 
2124 static uint32_t
2125 compute_bw_meter_flags(struct bw_upcall *req)
2126 {
2127 	uint32_t flags = 0;
2128 
2129 	if (req->bu_flags & BW_UPCALL_UNIT_PACKETS)
2130 		flags |= BW_METER_UNIT_PACKETS;
2131 	if (req->bu_flags & BW_UPCALL_UNIT_BYTES)
2132 		flags |= BW_METER_UNIT_BYTES;
2133 	if (req->bu_flags & BW_UPCALL_GEQ)
2134 		flags |= BW_METER_GEQ;
2135 	if (req->bu_flags & BW_UPCALL_LEQ)
2136 		flags |= BW_METER_LEQ;
2137 
2138 	return (flags);
2139 }
2140 
2141 /*
2142  * Add a bw_meter entry
2143  */
2144 static int
2145 add_bw_upcall(struct mbuf *m)
2146 {
2147 	int s;
2148 	struct mfc *mfc;
2149 	struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC,
2150 	    BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC };
2151 	struct timeval now;
2152 	struct bw_meter *x;
2153 	uint32_t flags;
2154 	struct bw_upcall *req;
2155 
2156 	if (m == NULL || m->m_len < sizeof(struct bw_upcall))
2157 		return (EINVAL);
2158 
2159 	req = mtod(m, struct bw_upcall *);
2160 
2161 	if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2162 		return (EOPNOTSUPP);
2163 
2164 	/* Test if the flags are valid */
2165 	if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES)))
2166 		return (EINVAL);
2167 	if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)))
2168 		return (EINVAL);
2169 	if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2170 	    == (BW_UPCALL_GEQ | BW_UPCALL_LEQ))
2171 		return (EINVAL);
2172 
2173 	/* Test if the threshold time interval is valid */
2174 	if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <))
2175 		return (EINVAL);
2176 
2177 	flags = compute_bw_meter_flags(req);
2178 
2179 	/* Find if we have already same bw_meter entry */
2180 	s = splsoftnet();
2181 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
2182 	if (mfc == NULL) {
2183 		splx(s);
2184 		return (EADDRNOTAVAIL);
2185 	}
2186 	for (x = mfc->mfc_bw_meter; x != NULL; x = x->bm_mfc_next) {
2187 		if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2188 		    &req->bu_threshold.b_time, ==)) &&
2189 		    (x->bm_threshold.b_packets ==
2190 		    req->bu_threshold.b_packets) &&
2191 		    (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) &&
2192 		    (x->bm_flags & BW_METER_USER_FLAGS) == flags)  {
2193 			splx(s);
2194 			return (0);	/* XXX Already installed */
2195 		}
2196 	}
2197 
2198 	/* Allocate the new bw_meter entry */
2199 	x = (struct bw_meter *)malloc(sizeof(*x), M_BWMETER, M_NOWAIT);
2200 	if (x == NULL) {
2201 		splx(s);
2202 		return (ENOBUFS);
2203 	}
2204 
2205 	/* Set the new bw_meter entry */
2206 	x->bm_threshold.b_time = req->bu_threshold.b_time;
2207 	microtime(&now);
2208 	x->bm_start_time = now;
2209 	x->bm_threshold.b_packets = req->bu_threshold.b_packets;
2210 	x->bm_threshold.b_bytes = req->bu_threshold.b_bytes;
2211 	x->bm_measured.b_packets = 0;
2212 	x->bm_measured.b_bytes = 0;
2213 	x->bm_flags = flags;
2214 	x->bm_time_next = NULL;
2215 	x->bm_time_hash = BW_METER_BUCKETS;
2216 
2217 	/* Add the new bw_meter entry to the front of entries for this MFC */
2218 	x->bm_mfc = mfc;
2219 	x->bm_mfc_next = mfc->mfc_bw_meter;
2220 	mfc->mfc_bw_meter = x;
2221 	schedule_bw_meter(x, &now);
2222 	splx(s);
2223 
2224 	return (0);
2225 }
2226 
2227 static void
2228 free_bw_list(struct bw_meter *list)
2229 {
2230 	while (list != NULL) {
2231 		struct bw_meter *x = list;
2232 
2233 		list = list->bm_mfc_next;
2234 		unschedule_bw_meter(x);
2235 		free(x, M_BWMETER);
2236 	}
2237 }
2238 
2239 /*
2240  * Delete one or multiple bw_meter entries
2241  */
2242 static int
2243 del_bw_upcall(struct mbuf *m)
2244 {
2245 	int s;
2246 	struct mfc *mfc;
2247 	struct bw_meter *x;
2248 	struct bw_upcall *req;
2249 
2250 	if (m == NULL || m->m_len < sizeof(struct bw_upcall))
2251 		return (EINVAL);
2252 
2253 	req = mtod(m, struct bw_upcall *);
2254 
2255 	if (!(mrt_api_config & MRT_MFC_BW_UPCALL))
2256 		return (EOPNOTSUPP);
2257 
2258 	s = splsoftnet();
2259 	/* Find the corresponding MFC entry */
2260 	mfc = mfc_find(&req->bu_src, &req->bu_dst);
2261 	if (mfc == NULL) {
2262 		splx(s);
2263 		return (EADDRNOTAVAIL);
2264 	} else if (req->bu_flags & BW_UPCALL_DELETE_ALL) {
2265 		/* Delete all bw_meter entries for this mfc */
2266 		struct bw_meter *list;
2267 
2268 		list = mfc->mfc_bw_meter;
2269 		mfc->mfc_bw_meter = NULL;
2270 		free_bw_list(list);
2271 		splx(s);
2272 		return (0);
2273 	} else {	/* Delete a single bw_meter entry */
2274 		struct bw_meter *prev;
2275 		uint32_t flags = 0;
2276 
2277 		flags = compute_bw_meter_flags(req);
2278 
2279 		/* Find the bw_meter entry to delete */
2280 		for (prev = NULL, x = mfc->mfc_bw_meter; x != NULL;
2281 		    prev = x, x = x->bm_mfc_next) {
2282 			if ((BW_TIMEVALCMP(&x->bm_threshold.b_time,
2283 			    &req->bu_threshold.b_time, ==)) &&
2284 			    (x->bm_threshold.b_packets ==
2285 			    req->bu_threshold.b_packets) &&
2286 			    (x->bm_threshold.b_bytes ==
2287 			    req->bu_threshold.b_bytes) &&
2288 			    (x->bm_flags & BW_METER_USER_FLAGS) == flags)
2289 				break;
2290 		}
2291 		if (x != NULL) { /* Delete entry from the list for this MFC */
2292 			if (prev != NULL) {
2293 				/* remove from middle */
2294 				prev->bm_mfc_next = x->bm_mfc_next;
2295 			} else {
2296 				/* new head of list */
2297 				x->bm_mfc->mfc_bw_meter = x->bm_mfc_next;
2298 			}
2299 
2300 			unschedule_bw_meter(x);
2301 			splx(s);
2302 			/* Free the bw_meter entry */
2303 			free(x, M_BWMETER);
2304 			return (0);
2305 		} else {
2306 			splx(s);
2307 			return (EINVAL);
2308 		}
2309 	}
2310 	/* NOTREACHED */
2311 }
2312 
2313 /*
2314  * Perform bandwidth measurement processing that may result in an upcall
2315  */
2316 static void
2317 bw_meter_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp)
2318 {
2319 	struct timeval delta;
2320 
2321 	delta = *nowp;
2322 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2323 
2324 	if (x->bm_flags & BW_METER_GEQ) {
2325 		/* Processing for ">=" type of bw_meter entry */
2326 		if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2327 			/* Reset the bw_meter entry */
2328 			x->bm_start_time = *nowp;
2329 			x->bm_measured.b_packets = 0;
2330 			x->bm_measured.b_bytes = 0;
2331 			x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2332 		}
2333 
2334 		/* Record that a packet is received */
2335 		x->bm_measured.b_packets++;
2336 		x->bm_measured.b_bytes += plen;
2337 
2338 		/* Test if we should deliver an upcall */
2339 		if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) {
2340 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2341 			    (x->bm_measured.b_packets >=
2342 			    x->bm_threshold.b_packets)) ||
2343 			    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2344 			    (x->bm_measured.b_bytes >=
2345 			    x->bm_threshold.b_bytes))) {
2346 				/* Prepare an upcall for delivery */
2347 				bw_meter_prepare_upcall(x, nowp);
2348 				x->bm_flags |= BW_METER_UPCALL_DELIVERED;
2349 			}
2350 		}
2351 	} else if (x->bm_flags & BW_METER_LEQ) {
2352 		/* Processing for "<=" type of bw_meter entry */
2353 		if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) {
2354 			/*
2355 			 * We are behind time with the multicast forwarding
2356 			 * table scanning for "<=" type of bw_meter entries,
2357 			 * so test now if we should deliver an upcall.
2358 			 */
2359 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2360 			    (x->bm_measured.b_packets <=
2361 			    x->bm_threshold.b_packets)) ||
2362 			    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2363 			    (x->bm_measured.b_bytes <=
2364 			    x->bm_threshold.b_bytes))) {
2365 				/* Prepare an upcall for delivery */
2366 				bw_meter_prepare_upcall(x, nowp);
2367 			}
2368 			/* Reschedule the bw_meter entry */
2369 			unschedule_bw_meter(x);
2370 			schedule_bw_meter(x, nowp);
2371 		}
2372 
2373 		/* Record that a packet is received */
2374 		x->bm_measured.b_packets++;
2375 		x->bm_measured.b_bytes += plen;
2376 
2377 		/* Test if we should restart the measuring interval */
2378 		if ((x->bm_flags & BW_METER_UNIT_PACKETS &&
2379 		    x->bm_measured.b_packets <= x->bm_threshold.b_packets) ||
2380 		    (x->bm_flags & BW_METER_UNIT_BYTES &&
2381 		    x->bm_measured.b_bytes <= x->bm_threshold.b_bytes)) {
2382 			/* Don't restart the measuring interval */
2383 		} else {
2384 			/* Do restart the measuring interval */
2385 			/*
2386 			 * XXX: note that we don't unschedule and schedule,
2387 			 * because this might be too much overhead per packet.
2388 			 * Instead, when we process all entries for a given
2389 			 * timer hash bin, we check whether it is really a
2390 			 * timeout. If not, we reschedule at that time.
2391 			 */
2392 			x->bm_start_time = *nowp;
2393 			x->bm_measured.b_packets = 0;
2394 			x->bm_measured.b_bytes = 0;
2395 			x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2396 		}
2397 	}
2398 }
2399 
2400 /*
2401  * Prepare a bandwidth-related upcall
2402  */
2403 static void
2404 bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp)
2405 {
2406 	struct timeval delta;
2407 	struct bw_upcall *u;
2408 
2409 	/* Compute the measured time interval */
2410 	delta = *nowp;
2411 	BW_TIMEVALDECR(&delta, &x->bm_start_time);
2412 
2413 	/* If there are too many pending upcalls, deliver them now */
2414 	if (bw_upcalls_n >= BW_UPCALLS_MAX)
2415 		bw_upcalls_send();
2416 
2417 	/* Set the bw_upcall entry */
2418 	u = &bw_upcalls[bw_upcalls_n++];
2419 	u->bu_src = x->bm_mfc->mfc_origin;
2420 	u->bu_dst = x->bm_mfc->mfc_mcastgrp;
2421 	u->bu_threshold.b_time = x->bm_threshold.b_time;
2422 	u->bu_threshold.b_packets = x->bm_threshold.b_packets;
2423 	u->bu_threshold.b_bytes = x->bm_threshold.b_bytes;
2424 	u->bu_measured.b_time = delta;
2425 	u->bu_measured.b_packets = x->bm_measured.b_packets;
2426 	u->bu_measured.b_bytes = x->bm_measured.b_bytes;
2427 	u->bu_flags = 0;
2428 	if (x->bm_flags & BW_METER_UNIT_PACKETS)
2429 		u->bu_flags |= BW_UPCALL_UNIT_PACKETS;
2430 	if (x->bm_flags & BW_METER_UNIT_BYTES)
2431 		u->bu_flags |= BW_UPCALL_UNIT_BYTES;
2432 	if (x->bm_flags & BW_METER_GEQ)
2433 		u->bu_flags |= BW_UPCALL_GEQ;
2434 	if (x->bm_flags & BW_METER_LEQ)
2435 		u->bu_flags |= BW_UPCALL_LEQ;
2436 }
2437 
2438 /*
2439  * Send the pending bandwidth-related upcalls
2440  */
2441 static void
2442 bw_upcalls_send(void)
2443 {
2444 	struct mbuf *m;
2445 	int len = bw_upcalls_n * sizeof(bw_upcalls[0]);
2446 	struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2447 	static struct igmpmsg igmpmsg = {
2448 	    0,			/* unused1 */
2449 	    0,			/* unused2 */
2450 	    IGMPMSG_BW_UPCALL,	/* im_msgtype */
2451 	    0,			/* im_mbz  */
2452 	    0,			/* im_vif  */
2453 	    0,			/* unused3 */
2454 	    { 0 },		/* im_src  */
2455 	    { 0 } };		/* im_dst  */
2456 
2457 	if (bw_upcalls_n == 0)
2458 		return;		/* No pending upcalls */
2459 
2460 	bw_upcalls_n = 0;
2461 
2462 	/*
2463 	 * Allocate a new mbuf, initialize it with the header and
2464 	 * the payload for the pending calls.
2465 	 */
2466 	MGETHDR(m, M_DONTWAIT, MT_HEADER);
2467 	if (m == NULL) {
2468 		log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n");
2469 		return;
2470 	}
2471 
2472 	m->m_len = m->m_pkthdr.len = 0;
2473 	m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg, M_NOWAIT);
2474 	m_copyback(m, sizeof(struct igmpmsg), len, (caddr_t)&bw_upcalls[0],
2475 	    M_NOWAIT);
2476 
2477 	/*
2478 	 * Send the upcalls
2479 	 * XXX do we need to set the address in k_igmpsrc ?
2480 	 */
2481 	mrtstat.mrts_upcalls++;
2482 	if (socket_send(ip_mrouter, m, &k_igmpsrc) < 0) {
2483 		log(LOG_WARNING,
2484 		    "bw_upcalls_send: ip_mrouter socket queue full\n");
2485 		++mrtstat.mrts_upq_sockfull;
2486 	}
2487 }
2488 
2489 /*
2490  * Compute the timeout hash value for the bw_meter entries
2491  */
2492 #define	BW_METER_TIMEHASH(bw_meter, hash) do {				\
2493 	struct timeval next_timeval = (bw_meter)->bm_start_time;	\
2494 									\
2495 	BW_TIMEVALADD(&next_timeval, &(bw_meter)->bm_threshold.b_time); \
2496 	(hash) = next_timeval.tv_sec;					\
2497 	if (next_timeval.tv_usec)					\
2498 		(hash)++; /* XXX: make sure we don't timeout early */	\
2499 	(hash) %= BW_METER_BUCKETS;					\
2500 } while (/*CONSTCOND*/ 0)
2501 
2502 /*
2503  * Schedule a timer to process periodically bw_meter entry of type "<="
2504  * by linking the entry in the proper hash bucket.
2505  */
2506 static void
2507 schedule_bw_meter(struct bw_meter *x, struct timeval *nowp)
2508 {
2509 	int time_hash;
2510 
2511 	if (!(x->bm_flags & BW_METER_LEQ))
2512 		return;	/* XXX: we schedule timers only for "<=" entries */
2513 
2514 	/* Reset the bw_meter entry */
2515 	x->bm_start_time = *nowp;
2516 	x->bm_measured.b_packets = 0;
2517 	x->bm_measured.b_bytes = 0;
2518 	x->bm_flags &= ~BW_METER_UPCALL_DELIVERED;
2519 
2520 	/* Compute the timeout hash value and insert the entry */
2521 	BW_METER_TIMEHASH(x, time_hash);
2522 	x->bm_time_next = bw_meter_timers[time_hash];
2523 	bw_meter_timers[time_hash] = x;
2524 	x->bm_time_hash = time_hash;
2525 }
2526 
2527 /*
2528  * Unschedule the periodic timer that processes bw_meter entry of type "<="
2529  * by removing the entry from the proper hash bucket.
2530  */
2531 static void
2532 unschedule_bw_meter(struct bw_meter *x)
2533 {
2534 	int time_hash;
2535 	struct bw_meter *prev, *tmp;
2536 
2537 	if (!(x->bm_flags & BW_METER_LEQ))
2538 		return;	/* XXX: we schedule timers only for "<=" entries */
2539 
2540 	/* Compute the timeout hash value and delete the entry */
2541 	time_hash = x->bm_time_hash;
2542 	if (time_hash >= BW_METER_BUCKETS)
2543 		return;		/* Entry was not scheduled */
2544 
2545 	for (prev = NULL, tmp = bw_meter_timers[time_hash];
2546 	    tmp != NULL; prev = tmp, tmp = tmp->bm_time_next)
2547 		if (tmp == x)
2548 			break;
2549 
2550 	if (tmp == NULL)
2551 		panic("unschedule_bw_meter: bw_meter entry not found");
2552 
2553 	if (prev != NULL)
2554 		prev->bm_time_next = x->bm_time_next;
2555 	else
2556 		bw_meter_timers[time_hash] = x->bm_time_next;
2557 
2558 	x->bm_time_next = NULL;
2559 	x->bm_time_hash = BW_METER_BUCKETS;
2560 }
2561 
2562 /*
2563  * Process all "<=" type of bw_meter that should be processed now,
2564  * and for each entry prepare an upcall if necessary. Each processed
2565  * entry is rescheduled again for the (periodic) processing.
2566  *
2567  * This is run periodically (once per second normally). On each round,
2568  * all the potentially matching entries are in the hash slot that we are
2569  * looking at.
2570  */
2571 static void
2572 bw_meter_process()
2573 {
2574 	int s;
2575 	static uint32_t last_tv_sec;	/* last time we processed this */
2576 
2577 	uint32_t loops;
2578 	int i;
2579 	struct timeval now, process_endtime;
2580 
2581 	microtime(&now);
2582 	if (last_tv_sec == now.tv_sec)
2583 		return;		/* nothing to do */
2584 
2585 	loops = now.tv_sec - last_tv_sec;
2586 	last_tv_sec = now.tv_sec;
2587 	if (loops > BW_METER_BUCKETS)
2588 		loops = BW_METER_BUCKETS;
2589 
2590 	s = splsoftnet();
2591 	/*
2592 	 * Process all bins of bw_meter entries from the one after the last
2593 	 * processed to the current one. On entry, i points to the last bucket
2594 	 * visited, so we need to increment i at the beginning of the loop.
2595 	 */
2596 	for (i = (now.tv_sec - loops) % BW_METER_BUCKETS; loops > 0; loops--) {
2597 		struct bw_meter *x, *tmp_list;
2598 
2599 		if (++i >= BW_METER_BUCKETS)
2600 			i = 0;
2601 
2602 		/* Disconnect the list of bw_meter entries from the bin */
2603 		tmp_list = bw_meter_timers[i];
2604 		bw_meter_timers[i] = NULL;
2605 
2606 		/* Process the list of bw_meter entries */
2607 		while (tmp_list != NULL) {
2608 			x = tmp_list;
2609 			tmp_list = tmp_list->bm_time_next;
2610 
2611 			/* Test if the time interval is over */
2612 			process_endtime = x->bm_start_time;
2613 			BW_TIMEVALADD(&process_endtime,
2614 			    &x->bm_threshold.b_time);
2615 			if (BW_TIMEVALCMP(&process_endtime, &now, >)) {
2616 				/* Not yet: reschedule, but don't reset */
2617 				int time_hash;
2618 
2619 				BW_METER_TIMEHASH(x, time_hash);
2620 				if (time_hash == i &&
2621 				    process_endtime.tv_sec == now.tv_sec) {
2622 					/*
2623 					 * XXX: somehow the bin processing is
2624 					 * a bit ahead of time. Put the entry
2625 					 * in the next bin.
2626 					 */
2627 					if (++time_hash >= BW_METER_BUCKETS)
2628 						time_hash = 0;
2629 				}
2630 				x->bm_time_next = bw_meter_timers[time_hash];
2631 				bw_meter_timers[time_hash] = x;
2632 				x->bm_time_hash = time_hash;
2633 
2634 				continue;
2635 			}
2636 
2637 			/* Test if we should deliver an upcall */
2638 			if (((x->bm_flags & BW_METER_UNIT_PACKETS) &&
2639 			    (x->bm_measured.b_packets <=
2640 			    x->bm_threshold.b_packets)) ||
2641 			    ((x->bm_flags & BW_METER_UNIT_BYTES) &&
2642 			    (x->bm_measured.b_bytes <=
2643 			    x->bm_threshold.b_bytes))) {
2644 				/* Prepare an upcall for delivery */
2645 				bw_meter_prepare_upcall(x, &now);
2646 			}
2647 
2648 			/* Reschedule for next processing */
2649 			schedule_bw_meter(x, &now);
2650 		}
2651 	}
2652 
2653 	/* Send all upcalls that are pending delivery */
2654 	bw_upcalls_send();
2655 
2656 	splx(s);
2657 }
2658 
2659 /*
2660  * A periodic function for sending all upcalls that are pending delivery
2661  */
2662 static void
2663 expire_bw_upcalls_send(void *unused)
2664 {
2665 	int s;
2666 
2667 	s = splsoftnet();
2668 	bw_upcalls_send();
2669 	splx(s);
2670 
2671 	timeout_add_msec(&bw_upcalls_ch, BW_UPCALLS_PERIOD);
2672 }
2673 
2674 /*
2675  * A periodic function for periodic scanning of the multicast forwarding
2676  * table for processing all "<=" bw_meter entries.
2677  */
2678 static void
2679 expire_bw_meter_process(void *unused)
2680 {
2681 	if (mrt_api_config & MRT_MFC_BW_UPCALL)
2682 		bw_meter_process();
2683 
2684 	timeout_add_msec(&bw_meter_ch, BW_METER_PERIOD);
2685 }
2686 
2687 /*
2688  * End of bandwidth monitoring code
2689  */
2690 
2691 #ifdef PIM
2692 /*
2693  * Send the packet up to the user daemon, or eventually do kernel encapsulation
2694  */
2695 static int
2696 pim_register_send(struct ip *ip, struct vif *vifp,
2697 	struct mbuf *m, struct mfc *rt)
2698 {
2699 	struct mbuf *mb_copy, *mm;
2700 
2701 	if (mrtdebug & DEBUG_PIM)
2702 		log(LOG_DEBUG, "pim_register_send: ");
2703 
2704 	mb_copy = pim_register_prepare(ip, m);
2705 	if (mb_copy == NULL)
2706 		return (ENOBUFS);
2707 
2708 	/*
2709 	 * Send all the fragments. Note that the mbuf for each fragment
2710 	 * is freed by the sending machinery.
2711 	 */
2712 	for (mm = mb_copy; mm; mm = mb_copy) {
2713 		mb_copy = mm->m_nextpkt;
2714 		mm->m_nextpkt = NULL;
2715 		mm = m_pullup(mm, sizeof(struct ip));
2716 		if (mm != NULL) {
2717 			ip = mtod(mm, struct ip *);
2718 			if ((mrt_api_config & MRT_MFC_RP) &&
2719 			    !in_nullhost(rt->mfc_rp)) {
2720 				pim_register_send_rp(ip, vifp, mm, rt);
2721 			} else {
2722 				pim_register_send_upcall(ip, vifp, mm, rt);
2723 			}
2724 		}
2725 	}
2726 
2727 	return (0);
2728 }
2729 
2730 /*
2731  * Return a copy of the data packet that is ready for PIM Register
2732  * encapsulation.
2733  * XXX: Note that in the returned copy the IP header is a valid one.
2734  */
2735 static struct mbuf *
2736 pim_register_prepare(struct ip *ip, struct mbuf *m)
2737 {
2738 	struct mbuf *mb_copy = NULL;
2739 	int mtu;
2740 
2741 	in_proto_cksum_out(m, NULL);
2742 
2743 	/*
2744 	 * Copy the old packet & pullup its IP header into the
2745 	 * new mbuf so we can modify it.
2746 	 */
2747 	mb_copy = m_copy(m, 0, M_COPYALL);
2748 	if (mb_copy == NULL)
2749 		return (NULL);
2750 	mb_copy = m_pullup(mb_copy, ip->ip_hl << 2);
2751 	if (mb_copy == NULL)
2752 		return (NULL);
2753 
2754 	/* take care of the TTL */
2755 	ip = mtod(mb_copy, struct ip *);
2756 	--ip->ip_ttl;
2757 
2758 	/* Compute the MTU after the PIM Register encapsulation */
2759 	mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr);
2760 
2761 	if (ntohs(ip->ip_len) <= mtu) {
2762 		/* Turn the IP header into a valid one */
2763 		ip->ip_sum = 0;
2764 		ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2);
2765 	} else {
2766 		/* Fragment the packet */
2767 		if (ip_fragment(mb_copy, NULL, mtu) != 0) {
2768 			/* XXX: mb_copy was freed by ip_fragment() */
2769 			return (NULL);
2770 		}
2771 	}
2772 	return (mb_copy);
2773 }
2774 
2775 /*
2776  * Send an upcall with the data packet to the user-level process.
2777  */
2778 static int
2779 pim_register_send_upcall(struct ip *ip, struct vif *vifp,
2780 	struct mbuf *mb_copy, struct mfc *rt)
2781 {
2782 	struct mbuf *mb_first;
2783 	int len = ntohs(ip->ip_len);
2784 	struct igmpmsg *im;
2785 	struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET };
2786 
2787 	/* Add a new mbuf with an upcall header */
2788 	MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
2789 	if (mb_first == NULL) {
2790 		m_freem(mb_copy);
2791 		return (ENOBUFS);
2792 	}
2793 	mb_first->m_data += max_linkhdr;
2794 	mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg);
2795 	mb_first->m_len = sizeof(struct igmpmsg);
2796 	mb_first->m_next = mb_copy;
2797 
2798 	/* Send message to routing daemon */
2799 	im = mtod(mb_first, struct igmpmsg *);
2800 	im->im_msgtype = IGMPMSG_WHOLEPKT;
2801 	im->im_mbz = 0;
2802 	im->im_vif = vifp - viftable;
2803 	im->im_src = ip->ip_src;
2804 	im->im_dst = ip->ip_dst;
2805 
2806 	k_igmpsrc.sin_addr = ip->ip_src;
2807 
2808 	mrtstat.mrts_upcalls++;
2809 
2810 	if (socket_send(ip_mrouter, mb_first, &k_igmpsrc) < 0) {
2811 		if (mrtdebug & DEBUG_PIM)
2812 			log(LOG_WARNING, "mcast: pim_register_send_upcall: "
2813 			    "ip_mrouter socket queue full");
2814 		++mrtstat.mrts_upq_sockfull;
2815 		return (ENOBUFS);
2816 	}
2817 
2818 	/* Keep statistics */
2819 	pimstat.pims_snd_registers_msgs++;
2820 	pimstat.pims_snd_registers_bytes += len;
2821 
2822 	return (0);
2823 }
2824 
2825 /*
2826  * Encapsulate the data packet in PIM Register message and send it to the RP.
2827  */
2828 static int
2829 pim_register_send_rp(struct ip *ip, struct vif *vifp,
2830 	struct mbuf *mb_copy, struct mfc *rt)
2831 {
2832 	struct mbuf *mb_first;
2833 	struct ip *ip_outer;
2834 	struct pim_encap_pimhdr *pimhdr;
2835 	int len = ntohs(ip->ip_len);
2836 	vifi_t vifi = rt->mfc_parent;
2837 
2838 	if ((vifi >= numvifs) || in_nullhost(viftable[vifi].v_lcl_addr)) {
2839 		m_freem(mb_copy);
2840 		return (EADDRNOTAVAIL);		/* The iif vif is invalid */
2841 	}
2842 
2843 	/* Add a new mbuf with the encapsulating header */
2844 	MGETHDR(mb_first, M_DONTWAIT, MT_HEADER);
2845 	if (mb_first == NULL) {
2846 		m_freem(mb_copy);
2847 		return (ENOBUFS);
2848 	}
2849 	mb_first->m_data += max_linkhdr;
2850 	mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr);
2851 	mb_first->m_next = mb_copy;
2852 
2853 	mb_first->m_pkthdr.len = len + mb_first->m_len;
2854 
2855 	/* Fill in the encapsulating IP and PIM header */
2856 	ip_outer = mtod(mb_first, struct ip *);
2857 	*ip_outer = pim_encap_iphdr;
2858 	ip_outer->ip_id = htons(ip_randomid());
2859 	ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) +
2860 	    sizeof(pim_encap_pimhdr));
2861 	ip_outer->ip_src = viftable[vifi].v_lcl_addr;
2862 	ip_outer->ip_dst = rt->mfc_rp;
2863 	/*
2864 	 * Copy the inner header TOS to the outer header, and take care of the
2865 	 * IP_DF bit.
2866 	 */
2867 	ip_outer->ip_tos = ip->ip_tos;
2868 	if (ntohs(ip->ip_off) & IP_DF)
2869 		ip_outer->ip_off |= htons(IP_DF);
2870 	pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer
2871 	    + sizeof(pim_encap_iphdr));
2872 	*pimhdr = pim_encap_pimhdr;
2873 	/* If the iif crosses a border, set the Border-bit */
2874 	if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & mrt_api_config)
2875 		pimhdr->flags |= htonl(PIM_BORDER_REGISTER);
2876 
2877 	mb_first->m_data += sizeof(pim_encap_iphdr);
2878 	pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr));
2879 	mb_first->m_data -= sizeof(pim_encap_iphdr);
2880 
2881 	send_packet(vifp, mb_first);
2882 
2883 	/* Keep statistics */
2884 	pimstat.pims_snd_registers_msgs++;
2885 	pimstat.pims_snd_registers_bytes += len;
2886 
2887 	return (0);
2888 }
2889 
2890 /*
2891  * PIM-SMv2 and PIM-DM messages processing.
2892  * Receives and verifies the PIM control messages, and passes them
2893  * up to the listening socket, using rip_input().
2894  * The only message with special processing is the PIM_REGISTER message
2895  * (used by PIM-SM): the PIM header is stripped off, and the inner packet
2896  * is passed to if_simloop().
2897  */
2898 void
2899 pim_input(struct mbuf *m, ...)
2900 {
2901 	struct ip *ip = mtod(m, struct ip *);
2902 	struct pim *pim;
2903 	int minlen;
2904 	int datalen;
2905 	int ip_tos;
2906 	int iphlen;
2907 	va_list ap;
2908 
2909 	va_start(ap, m);
2910 	iphlen = va_arg(ap, int);
2911 	va_end(ap);
2912 
2913 	datalen = ntohs(ip->ip_len) - iphlen;
2914 
2915 	/* Keep statistics */
2916 	pimstat.pims_rcv_total_msgs++;
2917 	pimstat.pims_rcv_total_bytes += datalen;
2918 
2919 	/* Validate lengths */
2920 	if (datalen < PIM_MINLEN) {
2921 		pimstat.pims_rcv_tooshort++;
2922 		log(LOG_ERR, "pim_input: packet size too small %d from %lx\n",
2923 		    datalen, (u_long)ip->ip_src.s_addr);
2924 		m_freem(m);
2925 		return;
2926 	}
2927 
2928 	/*
2929 	 * If the packet is at least as big as a REGISTER, go agead
2930 	 * and grab the PIM REGISTER header size, to avoid another
2931 	 * possible m_pullup() later.
2932 	 *
2933 	 * PIM_MINLEN       == pimhdr + u_int32_t == 4 + 4 = 8
2934 	 * PIM_REG_MINLEN   == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28
2935 	 */
2936 	minlen = iphlen + (datalen >= PIM_REG_MINLEN ?
2937 	    PIM_REG_MINLEN : PIM_MINLEN);
2938 	/*
2939 	 * Get the IP and PIM headers in contiguous memory, and
2940 	 * possibly the PIM REGISTER header.
2941 	 */
2942 	if ((m->m_flags & M_EXT || m->m_len < minlen) &&
2943 	    (m = m_pullup(m, minlen)) == NULL) {
2944 		log(LOG_ERR, "pim_input: m_pullup failure\n");
2945 		return;
2946 	}
2947 	/* m_pullup() may have given us a new mbuf so reset ip. */
2948 	ip = mtod(m, struct ip *);
2949 	ip_tos = ip->ip_tos;
2950 
2951 	/* adjust mbuf to point to the PIM header */
2952 	m->m_data += iphlen;
2953 	m->m_len  -= iphlen;
2954 	pim = mtod(m, struct pim *);
2955 
2956 	/*
2957 	 * Validate checksum. If PIM REGISTER, exclude the data packet.
2958 	 *
2959 	 * XXX: some older PIMv2 implementations don't make this distinction,
2960 	 * so for compatibility reason perform the checksum over part of the
2961 	 * message, and if error, then over the whole message.
2962 	 */
2963 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER &&
2964 	    in_cksum(m, PIM_MINLEN) == 0) {
2965 		/* do nothing, checksum okay */
2966 	} else if (in_cksum(m, datalen)) {
2967 		pimstat.pims_rcv_badsum++;
2968 		if (mrtdebug & DEBUG_PIM)
2969 			log(LOG_DEBUG, "pim_input: invalid checksum");
2970 		m_freem(m);
2971 		return;
2972 	}
2973 
2974 	/* PIM version check */
2975 	if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) {
2976 		pimstat.pims_rcv_badversion++;
2977 		log(LOG_ERR, "pim_input: incorrect version %d, expecting %d\n",
2978 		    PIM_VT_V(pim->pim_vt), PIM_VERSION);
2979 		m_freem(m);
2980 		return;
2981 	}
2982 
2983 	/* restore mbuf back to the outer IP */
2984 	m->m_data -= iphlen;
2985 	m->m_len  += iphlen;
2986 
2987 	if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) {
2988 		/*
2989 		 * Since this is a REGISTER, we'll make a copy of the register
2990 		 * headers ip + pim + u_int32 + encap_ip, to be passed up to the
2991 		 * routing daemon.
2992 		 */
2993 		int s;
2994 		struct sockaddr_in dst = { sizeof(dst), AF_INET };
2995 		struct mbuf *mcp;
2996 		struct ip *encap_ip;
2997 		u_int32_t *reghdr;
2998 		struct ifnet *vifp;
2999 
3000 		s = splsoftnet();
3001 		if ((reg_vif_num >= numvifs) || (reg_vif_num == VIFI_INVALID)) {
3002 			splx(s);
3003 			if (mrtdebug & DEBUG_PIM)
3004 				log(LOG_DEBUG, "pim_input: register vif "
3005 				    "not set: %d\n", reg_vif_num);
3006 			m_freem(m);
3007 			return;
3008 		}
3009 		/* XXX need refcnt? */
3010 		vifp = viftable[reg_vif_num].v_ifp;
3011 		splx(s);
3012 
3013 		/* Validate length */
3014 		if (datalen < PIM_REG_MINLEN) {
3015 			pimstat.pims_rcv_tooshort++;
3016 			pimstat.pims_rcv_badregisters++;
3017 			log(LOG_ERR, "pim_input: register packet size "
3018 			    "too small %d from %lx\n",
3019 			    datalen, (u_long)ip->ip_src.s_addr);
3020 			m_freem(m);
3021 			return;
3022 		}
3023 
3024 		reghdr = (u_int32_t *)(pim + 1);
3025 		encap_ip = (struct ip *)(reghdr + 1);
3026 
3027 		if (mrtdebug & DEBUG_PIM) {
3028 			log(LOG_DEBUG, "pim_input[register], encap_ip: "
3029 			    "%lx -> %lx, encap_ip len %d\n",
3030 			    (u_long)ntohl(encap_ip->ip_src.s_addr),
3031 			    (u_long)ntohl(encap_ip->ip_dst.s_addr),
3032 			    ntohs(encap_ip->ip_len));
3033 		}
3034 
3035 		/* verify the version number of the inner packet */
3036 		if (encap_ip->ip_v != IPVERSION) {
3037 			pimstat.pims_rcv_badregisters++;
3038 			if (mrtdebug & DEBUG_PIM) {
3039 				log(LOG_DEBUG, "pim_input: invalid IP version"
3040 				    " (%d) of the inner packet\n",
3041 				    encap_ip->ip_v);
3042 			}
3043 			m_freem(m);
3044 			return;
3045 		}
3046 
3047 		/* verify the inner packet is destined to a mcast group */
3048 		if (!IN_MULTICAST(encap_ip->ip_dst.s_addr)) {
3049 			pimstat.pims_rcv_badregisters++;
3050 			if (mrtdebug & DEBUG_PIM)
3051 				log(LOG_DEBUG,
3052 				    "pim_input: inner packet of register is"
3053 				    " not multicast %lx\n",
3054 				    (u_long)ntohl(encap_ip->ip_dst.s_addr));
3055 			m_freem(m);
3056 			return;
3057 		}
3058 
3059 		/* If a NULL_REGISTER, pass it to the daemon */
3060 		if ((ntohl(*reghdr) & PIM_NULL_REGISTER))
3061 			goto pim_input_to_daemon;
3062 
3063 		/*
3064 		 * Copy the TOS from the outer IP header to the inner
3065 		 * IP header.
3066 		 */
3067 		if (encap_ip->ip_tos != ip_tos) {
3068 			/* Outer TOS -> inner TOS */
3069 			encap_ip->ip_tos = ip_tos;
3070 			/* Recompute the inner header checksum. Sigh... */
3071 
3072 			/* adjust mbuf to point to the inner IP header */
3073 			m->m_data += (iphlen + PIM_MINLEN);
3074 			m->m_len  -= (iphlen + PIM_MINLEN);
3075 
3076 			encap_ip->ip_sum = 0;
3077 			encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2);
3078 
3079 			/* restore mbuf to point back to the outer IP header */
3080 			m->m_data -= (iphlen + PIM_MINLEN);
3081 			m->m_len  += (iphlen + PIM_MINLEN);
3082 		}
3083 
3084 		/*
3085 		 * Decapsulate the inner IP packet and loopback to forward it
3086 		 * as a normal multicast packet. Also, make a copy of the
3087 		 *     outer_iphdr + pimhdr + reghdr + encap_iphdr
3088 		 * to pass to the daemon later, so it can take the appropriate
3089 		 * actions (e.g., send back PIM_REGISTER_STOP).
3090 		 * XXX: here m->m_data points to the outer IP header.
3091 		 */
3092 		mcp = m_copy(m, 0, iphlen + PIM_REG_MINLEN);
3093 		if (mcp == NULL) {
3094 			log(LOG_ERR, "pim_input: pim register: could not "
3095 			    "copy register head\n");
3096 			m_freem(m);
3097 			return;
3098 		}
3099 
3100 		/* Keep statistics */
3101 		/* XXX: registers_bytes include only the encap. mcast pkt */
3102 		pimstat.pims_rcv_registers_msgs++;
3103 		pimstat.pims_rcv_registers_bytes += ntohs(encap_ip->ip_len);
3104 
3105 		/* forward the inner ip packet; point m_data at the inner ip. */
3106 		m_adj(m, iphlen + PIM_MINLEN);
3107 
3108 		if (mrtdebug & DEBUG_PIM) {
3109 			log(LOG_DEBUG,
3110 			    "pim_input: forwarding decapsulated register: "
3111 			    "src %lx, dst %lx, vif %d\n",
3112 			    (u_long)ntohl(encap_ip->ip_src.s_addr),
3113 			    (u_long)ntohl(encap_ip->ip_dst.s_addr),
3114 			    reg_vif_num);
3115 		}
3116 		/* NB: vifp was collected above; can it change on us? */
3117 		looutput(vifp, m, (struct sockaddr *)&dst,
3118 		    (struct rtentry *)NULL);
3119 
3120 		/* prepare the register head to send to the mrouting daemon */
3121 		m = mcp;
3122 	}
3123 
3124 pim_input_to_daemon:
3125 	/*
3126 	 * Pass the PIM message up to the daemon; if it is a Register message,
3127 	 * pass the 'head' only up to the daemon. This includes the
3128 	 * outer IP header, PIM header, PIM-Register header and the
3129 	 * inner IP header.
3130 	 * XXX: the outer IP header pkt size of a Register is not adjust to
3131 	 * reflect the fact that the inner multicast data is truncated.
3132 	 */
3133 	rip_input(m);
3134 
3135 	return;
3136 }
3137 
3138 /*
3139  * Sysctl for pim variables.
3140  */
3141 int
3142 pim_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp,
3143     void *newp, size_t newlen)
3144 {
3145 	/* All sysctl names at this level are terminal. */
3146 	if (namelen != 1)
3147 		return (ENOTDIR);
3148 
3149 	switch (name[0]) {
3150 	case PIMCTL_STATS:
3151 		if (newp != NULL)
3152 			return (EPERM);
3153 		return (sysctl_struct(oldp, oldlenp, newp, newlen,
3154 		    &pimstat, sizeof(pimstat)));
3155 
3156 	default:
3157 		return (ENOPROTOOPT);
3158 	}
3159 	/* NOTREACHED */
3160 }
3161 
3162 
3163 #endif /* PIM */
3164