xref: /openbsd-src/sys/netinet/ip_input.c (revision fb8aa7497fded39583f40e800732f9c046411717)
1 /*	$OpenBSD: ip_input.c,v 1.277 2016/06/18 10:36:13 vgross Exp $	*/
2 /*	$NetBSD: ip_input.c,v 1.30 1996/03/16 23:53:58 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
33  */
34 
35 #include "pf.h"
36 #include "carp.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/domain.h>
42 #include <sys/protosw.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/sysctl.h>
46 #include <sys/pool.h>
47 #include <sys/task.h>
48 
49 #include <net/if.h>
50 #include <net/if_var.h>
51 #include <net/if_dl.h>
52 #include <net/route.h>
53 #include <net/netisr.h>
54 
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/if_ether.h>
58 #include <netinet/ip.h>
59 #include <netinet/in_pcb.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip_var.h>
62 #include <netinet/ip_icmp.h>
63 
64 #if NPF > 0
65 #include <net/pfvar.h>
66 #endif
67 
68 #ifdef MROUTING
69 #include <netinet/ip_mroute.h>
70 #endif
71 
72 #ifdef IPSEC
73 #include <netinet/ip_ipsp.h>
74 #endif /* IPSEC */
75 
76 #if NCARP > 0
77 #include <net/if_types.h>
78 #include <netinet/ip_carp.h>
79 #endif
80 
81 struct ipqhead ipq;
82 
83 int encdebug = 0;
84 int ipsec_keep_invalid = IPSEC_DEFAULT_EMBRYONIC_SA_TIMEOUT;
85 int ipsec_require_pfs = IPSEC_DEFAULT_PFS;
86 int ipsec_soft_allocations = IPSEC_DEFAULT_SOFT_ALLOCATIONS;
87 int ipsec_exp_allocations = IPSEC_DEFAULT_EXP_ALLOCATIONS;
88 int ipsec_soft_bytes = IPSEC_DEFAULT_SOFT_BYTES;
89 int ipsec_exp_bytes = IPSEC_DEFAULT_EXP_BYTES;
90 int ipsec_soft_timeout = IPSEC_DEFAULT_SOFT_TIMEOUT;
91 int ipsec_exp_timeout = IPSEC_DEFAULT_EXP_TIMEOUT;
92 int ipsec_soft_first_use = IPSEC_DEFAULT_SOFT_FIRST_USE;
93 int ipsec_exp_first_use = IPSEC_DEFAULT_EXP_FIRST_USE;
94 int ipsec_expire_acquire = IPSEC_DEFAULT_EXPIRE_ACQUIRE;
95 char ipsec_def_enc[20];
96 char ipsec_def_auth[20];
97 char ipsec_def_comp[20];
98 
99 /* values controllable via sysctl */
100 int	ipforwarding = 0;
101 int	ipmforwarding = 0;
102 int	ipmultipath = 0;
103 int	ipsendredirects = 1;
104 int	ip_dosourceroute = 0;
105 int	ip_defttl = IPDEFTTL;
106 int	ip_mtudisc = 1;
107 u_int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
108 int	ip_directedbcast = 0;
109 
110 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
111 
112 /* Keep track of memory used for reassembly */
113 int	ip_maxqueue = 300;
114 int	ip_frags = 0;
115 
116 int *ipctl_vars[IPCTL_MAXID] = IPCTL_VARS;
117 
118 struct niqueue ipintrq = NIQUEUE_INITIALIZER(IFQ_MAXLEN, NETISR_IP);
119 
120 struct pool ipqent_pool;
121 struct pool ipq_pool;
122 
123 struct ipstat ipstat;
124 
125 static struct mbuf_queue	ipsend_mq;
126 
127 void	ip_ours(struct mbuf *);
128 int	ip_dooptions(struct mbuf *, struct ifnet *);
129 int	in_ouraddr(struct mbuf *, struct ifnet *, struct rtentry **);
130 void	ip_forward(struct mbuf *, struct ifnet *, struct rtentry *, int);
131 #ifdef IPSEC
132 int	ip_input_ipsec_fwd_check(struct mbuf *, int);
133 int	ip_input_ipsec_ours_check(struct mbuf *, int);
134 #endif /* IPSEC */
135 
136 static void ip_send_dispatch(void *);
137 static struct task ipsend_task = TASK_INITIALIZER(ip_send_dispatch, &ipsend_mq);
138 /*
139  * Used to save the IP options in case a protocol wants to respond
140  * to an incoming packet over the same route if the packet got here
141  * using IP source routing.  This allows connection establishment and
142  * maintenance when the remote end is on a network that is not known
143  * to us.
144  */
145 struct ip_srcrt {
146 	int		isr_nhops;		   /* number of hops */
147 	struct in_addr	isr_dst;		   /* final destination */
148 	char		isr_nop;		   /* one NOP to align */
149 	char		isr_hdr[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN & OFFSET */
150 	struct in_addr	isr_routes[MAX_IPOPTLEN/sizeof(struct in_addr)];
151 };
152 
153 void save_rte(struct mbuf *, u_char *, struct in_addr);
154 
155 /*
156  * IP initialization: fill in IP protocol switch table.
157  * All protocols not implemented in kernel go to raw IP protocol handler.
158  */
159 void
160 ip_init(void)
161 {
162 	struct protosw *pr;
163 	int i;
164 	const u_int16_t defbaddynamicports_tcp[] = DEFBADDYNAMICPORTS_TCP;
165 	const u_int16_t defbaddynamicports_udp[] = DEFBADDYNAMICPORTS_UDP;
166 	const u_int16_t defrootonlyports_tcp[] = DEFROOTONLYPORTS_TCP;
167 	const u_int16_t defrootonlyports_udp[] = DEFROOTONLYPORTS_UDP;
168 
169 	pool_init(&ipqent_pool, sizeof(struct ipqent), 0, 0, 0, "ipqe",  NULL);
170 	pool_init(&ipq_pool, sizeof(struct ipq), 0, 0, 0, "ipq", NULL);
171 
172 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
173 	if (pr == NULL)
174 		panic("ip_init");
175 	for (i = 0; i < IPPROTO_MAX; i++)
176 		ip_protox[i] = pr - inetsw;
177 	for (pr = inetdomain.dom_protosw;
178 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
179 		if (pr->pr_domain->dom_family == PF_INET &&
180 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW &&
181 		    pr->pr_protocol < IPPROTO_MAX)
182 			ip_protox[pr->pr_protocol] = pr - inetsw;
183 	LIST_INIT(&ipq);
184 	if (ip_mtudisc != 0)
185 		ip_mtudisc_timeout_q =
186 		    rt_timer_queue_create(ip_mtudisc_timeout);
187 
188 	/* Fill in list of ports not to allocate dynamically. */
189 	memset(&baddynamicports, 0, sizeof(baddynamicports));
190 	for (i = 0; defbaddynamicports_tcp[i] != 0; i++)
191 		DP_SET(baddynamicports.tcp, defbaddynamicports_tcp[i]);
192 	for (i = 0; defbaddynamicports_udp[i] != 0; i++)
193 		DP_SET(baddynamicports.udp, defbaddynamicports_udp[i]);
194 
195 	/* Fill in list of ports only root can bind to. */
196 	memset(&rootonlyports, 0, sizeof(rootonlyports));
197 	for (i = 0; defrootonlyports_tcp[i] != 0; i++)
198 		DP_SET(rootonlyports.tcp, defrootonlyports_tcp[i]);
199 	for (i = 0; defrootonlyports_udp[i] != 0; i++)
200 		DP_SET(rootonlyports.udp, defrootonlyports_udp[i]);
201 
202 	strlcpy(ipsec_def_enc, IPSEC_DEFAULT_DEF_ENC, sizeof(ipsec_def_enc));
203 	strlcpy(ipsec_def_auth, IPSEC_DEFAULT_DEF_AUTH, sizeof(ipsec_def_auth));
204 	strlcpy(ipsec_def_comp, IPSEC_DEFAULT_DEF_COMP, sizeof(ipsec_def_comp));
205 
206 	mq_init(&ipsend_mq, 64, IPL_SOFTNET);
207 }
208 
209 void
210 ipintr(void)
211 {
212 	struct mbuf *m;
213 
214 	/*
215 	 * Get next datagram off input queue and get IP header
216 	 * in first mbuf.
217 	 */
218 	while ((m = niq_dequeue(&ipintrq)) != NULL) {
219 #ifdef	DIAGNOSTIC
220 		if ((m->m_flags & M_PKTHDR) == 0)
221 			panic("ipintr no HDR");
222 #endif
223 		ipv4_input(m);
224 	}
225 }
226 
227 /*
228  * IPv4 input routine.
229  *
230  * Checksum and byte swap header.  Process options. Forward or deliver.
231  */
232 void
233 ipv4_input(struct mbuf *m)
234 {
235 	struct ifnet	*ifp;
236 	struct rtentry	*rt = NULL;
237 	struct ip	*ip;
238 	int hlen, len;
239 #if defined(MROUTING) || defined(IPSEC)
240 	int rv;
241 #endif
242 	in_addr_t pfrdr = 0;
243 
244 	ifp = if_get(m->m_pkthdr.ph_ifidx);
245 	if (ifp == NULL)
246 		goto bad;
247 
248 	ipstat.ips_total++;
249 	if (m->m_len < sizeof (struct ip) &&
250 	    (m = m_pullup(m, sizeof (struct ip))) == NULL) {
251 		ipstat.ips_toosmall++;
252 		goto out;
253 	}
254 	ip = mtod(m, struct ip *);
255 	if (ip->ip_v != IPVERSION) {
256 		ipstat.ips_badvers++;
257 		goto bad;
258 	}
259 	hlen = ip->ip_hl << 2;
260 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
261 		ipstat.ips_badhlen++;
262 		goto bad;
263 	}
264 	if (hlen > m->m_len) {
265 		if ((m = m_pullup(m, hlen)) == NULL) {
266 			ipstat.ips_badhlen++;
267 			goto out;
268 		}
269 		ip = mtod(m, struct ip *);
270 	}
271 
272 	/* 127/8 must not appear on wire - RFC1122 */
273 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
274 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
275 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
276 			ipstat.ips_badaddr++;
277 			goto bad;
278 		}
279 	}
280 
281 	if ((m->m_pkthdr.csum_flags & M_IPV4_CSUM_IN_OK) == 0) {
282 		if (m->m_pkthdr.csum_flags & M_IPV4_CSUM_IN_BAD) {
283 			ipstat.ips_badsum++;
284 			goto bad;
285 		}
286 
287 		ipstat.ips_inswcsum++;
288 		if (in_cksum(m, hlen) != 0) {
289 			ipstat.ips_badsum++;
290 			goto bad;
291 		}
292 	}
293 
294 	/* Retrieve the packet length. */
295 	len = ntohs(ip->ip_len);
296 
297 	/*
298 	 * Convert fields to host representation.
299 	 */
300 	if (len < hlen) {
301 		ipstat.ips_badlen++;
302 		goto bad;
303 	}
304 
305 	/*
306 	 * Check that the amount of data in the buffers
307 	 * is at least as much as the IP header would have us expect.
308 	 * Trim mbufs if longer than we expect.
309 	 * Drop packet if shorter than we expect.
310 	 */
311 	if (m->m_pkthdr.len < len) {
312 		ipstat.ips_tooshort++;
313 		goto bad;
314 	}
315 	if (m->m_pkthdr.len > len) {
316 		if (m->m_len == m->m_pkthdr.len) {
317 			m->m_len = len;
318 			m->m_pkthdr.len = len;
319 		} else
320 			m_adj(m, len - m->m_pkthdr.len);
321 	}
322 
323 #if NCARP > 0
324 	if (ifp->if_type == IFT_CARP && ip->ip_p != IPPROTO_ICMP &&
325 	    carp_lsdrop(m, AF_INET, &ip->ip_src.s_addr, &ip->ip_dst.s_addr))
326 		goto bad;
327 #endif
328 
329 #if NPF > 0
330 	/*
331 	 * Packet filter
332 	 */
333 	pfrdr = ip->ip_dst.s_addr;
334 	if (pf_test(AF_INET, PF_IN, ifp, &m) != PF_PASS)
335 		goto bad;
336 	if (m == NULL)
337 		goto out;
338 
339 	ip = mtod(m, struct ip *);
340 	hlen = ip->ip_hl << 2;
341 	pfrdr = (pfrdr != ip->ip_dst.s_addr);
342 #endif
343 
344 	/*
345 	 * Process options and, if not destined for us,
346 	 * ship it on.  ip_dooptions returns 1 when an
347 	 * error was detected (causing an icmp message
348 	 * to be sent and the original packet to be freed).
349 	 */
350 	if (hlen > sizeof (struct ip) && ip_dooptions(m, ifp)) {
351 	        goto out;
352 	}
353 
354 	if (in_ouraddr(m, ifp, &rt)) {
355 		ip_ours(m);
356 		goto out;
357 	}
358 
359 	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
360 		/*
361 		 * Make sure M_MCAST is set.  It should theoretically
362 		 * already be there, but let's play safe because upper
363 		 * layers check for this flag.
364 		 */
365 		m->m_flags |= M_MCAST;
366 
367 #ifdef MROUTING
368 		if (ipmforwarding && ip_mrouter) {
369 			if (m->m_flags & M_EXT) {
370 				if ((m = m_pullup(m, hlen)) == NULL) {
371 					ipstat.ips_toosmall++;
372 					goto out;
373 				}
374 				ip = mtod(m, struct ip *);
375 			}
376 			/*
377 			 * If we are acting as a multicast router, all
378 			 * incoming multicast packets are passed to the
379 			 * kernel-level multicast forwarding function.
380 			 * The packet is returned (relatively) intact; if
381 			 * ip_mforward() returns a non-zero value, the packet
382 			 * must be discarded, else it may be accepted below.
383 			 *
384 			 * (The IP ident field is put in the same byte order
385 			 * as expected when ip_mforward() is called from
386 			 * ip_output().)
387 			 */
388 			KERNEL_LOCK();
389 			rv = ip_mforward(m, ifp);
390 			KERNEL_UNLOCK();
391 			if (rv != 0) {
392 				ipstat.ips_cantforward++;
393 				goto bad;
394 			}
395 
396 			/*
397 			 * The process-level routing daemon needs to receive
398 			 * all multicast IGMP packets, whether or not this
399 			 * host belongs to their destination groups.
400 			 */
401 			if (ip->ip_p == IPPROTO_IGMP) {
402 				ip_ours(m);
403 				goto out;
404 			}
405 			ipstat.ips_forward++;
406 		}
407 #endif
408 		/*
409 		 * See if we belong to the destination multicast group on the
410 		 * arrival interface.
411 		 */
412 		if (!in_hasmulti(&ip->ip_dst, ifp)) {
413 			ipstat.ips_notmember++;
414 			if (!IN_LOCAL_GROUP(ip->ip_dst.s_addr))
415 				ipstat.ips_cantforward++;
416 			goto bad;
417 		}
418 		ip_ours(m);
419 		goto out;
420 	}
421 
422 	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
423 	    ip->ip_dst.s_addr == INADDR_ANY) {
424 		ip_ours(m);
425 		goto out;
426 	}
427 
428 #if NCARP > 0
429 	if (ifp->if_type == IFT_CARP && ip->ip_p == IPPROTO_ICMP &&
430 	    carp_lsdrop(m, AF_INET, &ip->ip_src.s_addr, &ip->ip_dst.s_addr))
431 		goto bad;
432 #endif
433 	/*
434 	 * Not for us; forward if possible and desirable.
435 	 */
436 	if (ipforwarding == 0) {
437 		ipstat.ips_cantforward++;
438 		goto bad;
439 	}
440 #ifdef IPSEC
441 	if (ipsec_in_use) {
442 		KERNEL_LOCK();
443 		rv = ip_input_ipsec_fwd_check(m, hlen);
444 		KERNEL_UNLOCK();
445 		if (rv != 0) {
446 			ipstat.ips_cantforward++;
447 			goto bad;
448 		}
449 		/*
450 		 * Fall through, forward packet. Outbound IPsec policy
451 		 * checking will occur in ip_output().
452 		 */
453 	}
454 #endif /* IPSEC */
455 
456 	ip_forward(m, ifp, rt, pfrdr);
457 	if_put(ifp);
458 	return;
459 bad:
460 	m_freem(m);
461 out:
462 	rtfree(rt);
463 	if_put(ifp);
464 }
465 
466 /*
467  * IPv4 local-delivery routine.
468  *
469  * If fragmented try to reassemble.  Pass to next level.
470  */
471 void
472 ip_ours(struct mbuf *m)
473 {
474 	struct ip *ip = mtod(m, struct ip *);
475 	struct ipq *fp;
476 	struct ipqent *ipqe;
477 	int mff, hlen;
478 
479 	hlen = ip->ip_hl << 2;
480 
481 	/* pf might have modified stuff, might have to chksum */
482 	in_proto_cksum_out(m, NULL);
483 
484 	/*
485 	 * If offset or IP_MF are set, must reassemble.
486 	 * Otherwise, nothing need be done.
487 	 * (We could look in the reassembly queue to see
488 	 * if the packet was previously fragmented,
489 	 * but it's not worth the time; just let them time out.)
490 	 */
491 	if (ip->ip_off &~ htons(IP_DF | IP_RF)) {
492 		if (m->m_flags & M_EXT) {		/* XXX */
493 			if ((m = m_pullup(m, hlen)) == NULL) {
494 				ipstat.ips_toosmall++;
495 				return;
496 			}
497 			ip = mtod(m, struct ip *);
498 		}
499 
500 		/*
501 		 * Look for queue of fragments
502 		 * of this datagram.
503 		 */
504 		LIST_FOREACH(fp, &ipq, ipq_q)
505 			if (ip->ip_id == fp->ipq_id &&
506 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
507 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
508 			    ip->ip_p == fp->ipq_p)
509 				goto found;
510 		fp = 0;
511 found:
512 
513 		/*
514 		 * Adjust ip_len to not reflect header,
515 		 * set ipqe_mff if more fragments are expected,
516 		 * convert offset of this to bytes.
517 		 */
518 		ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
519 		mff = (ip->ip_off & htons(IP_MF)) != 0;
520 		if (mff) {
521 			/*
522 			 * Make sure that fragments have a data length
523 			 * that's a non-zero multiple of 8 bytes.
524 			 */
525 			if (ntohs(ip->ip_len) == 0 ||
526 			    (ntohs(ip->ip_len) & 0x7) != 0) {
527 				ipstat.ips_badfrags++;
528 				goto bad;
529 			}
530 		}
531 		ip->ip_off = htons(ntohs(ip->ip_off) << 3);
532 
533 		/*
534 		 * If datagram marked as having more fragments
535 		 * or if this is not the first fragment,
536 		 * attempt reassembly; if it succeeds, proceed.
537 		 */
538 		if (mff || ip->ip_off) {
539 			ipstat.ips_fragments++;
540 			if (ip_frags + 1 > ip_maxqueue) {
541 				ip_flush();
542 				ipstat.ips_rcvmemdrop++;
543 				goto bad;
544 			}
545 
546 			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
547 			if (ipqe == NULL) {
548 				ipstat.ips_rcvmemdrop++;
549 				goto bad;
550 			}
551 			ip_frags++;
552 			ipqe->ipqe_mff = mff;
553 			ipqe->ipqe_m = m;
554 			ipqe->ipqe_ip = ip;
555 			m = ip_reass(ipqe, fp);
556 			if (m == NULL) {
557 				return;
558 			}
559 			ipstat.ips_reassembled++;
560 			ip = mtod(m, struct ip *);
561 			hlen = ip->ip_hl << 2;
562 			ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
563 		} else
564 			if (fp)
565 				ip_freef(fp);
566 	}
567 
568 #ifdef IPSEC
569 	if (ipsec_in_use) {
570 		if (ip_input_ipsec_ours_check(m, hlen) != 0) {
571 			ipstat.ips_cantforward++;
572 			goto bad;
573 		}
574 	}
575 	/* Otherwise, just fall through and deliver the packet */
576 #endif /* IPSEC */
577 
578 	/*
579 	 * Switch out to protocol's input routine.
580 	 */
581 	ipstat.ips_delivered++;
582 	(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, NULL, 0);
583 	return;
584 bad:
585 	m_freem(m);
586 }
587 
588 int
589 in_ouraddr(struct mbuf *m, struct ifnet *ifp, struct rtentry **prt)
590 {
591 	struct rtentry		*rt;
592 	struct ip		*ip;
593 	struct sockaddr_in	 sin;
594 	int			 match = 0;
595 #if NPF > 0
596 	struct pf_state_key	*key;
597 
598 	if (m->m_pkthdr.pf.flags & PF_TAG_DIVERTED)
599 		return (1);
600 
601 	key = m->m_pkthdr.pf.statekey;
602 	if (key != NULL) {
603 		if (key->inp != NULL)
604 			return (1);
605 
606 		/* If we have linked state keys it is certainly forwarded. */
607 		if (key->reverse != NULL)
608 			return (0);
609 	}
610 #endif
611 
612 	ip = mtod(m, struct ip *);
613 
614 	memset(&sin, 0, sizeof(sin));
615 	sin.sin_len = sizeof(sin);
616 	sin.sin_family = AF_INET;
617 	sin.sin_addr = ip->ip_dst;
618 	rt = rtalloc_mpath(sintosa(&sin), &ip->ip_src.s_addr,
619 	    m->m_pkthdr.ph_rtableid);
620 	if (rtisvalid(rt)) {
621 		if (ISSET(rt->rt_flags, RTF_LOCAL))
622 			match = 1;
623 
624 		/*
625 		 * If directedbcast is enabled we only consider it local
626 		 * if it is received on the interface with that address.
627 		 */
628 		if (ISSET(rt->rt_flags, RTF_BROADCAST) &&
629 		    (!ip_directedbcast || rt->rt_ifidx == ifp->if_index)) {
630 			match = 1;
631 
632 			/* Make sure M_BCAST is set */
633 			m->m_flags |= M_BCAST;
634 		}
635 	}
636 	*prt = rt;
637 
638 	if (!match) {
639 		struct ifaddr *ifa;
640 
641 		/*
642 		 * No local address or broadcast address found, so check for
643 		 * ancient classful broadcast addresses.
644 		 * It must have been broadcast on the link layer, and for an
645 		 * address on the interface it was received on.
646 		 */
647 		if (!ISSET(m->m_flags, M_BCAST) ||
648 		    !IN_CLASSFULBROADCAST(ip->ip_dst.s_addr, ip->ip_dst.s_addr))
649 			return (0);
650 
651 		if (ifp->if_rdomain != rtable_l2(m->m_pkthdr.ph_rtableid))
652 			return (0);
653 		/*
654 		 * The check in the loop assumes you only rx a packet on an UP
655 		 * interface, and that M_BCAST will only be set on a BROADCAST
656 		 * interface.
657 		 */
658 		KERNEL_LOCK();
659 		TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
660 			if (ifa->ifa_addr->sa_family != AF_INET)
661 				continue;
662 
663 			if (IN_CLASSFULBROADCAST(ip->ip_dst.s_addr,
664 			    ifatoia(ifa)->ia_addr.sin_addr.s_addr)) {
665 			    	match = 1;
666 			    	break;
667 			}
668 		}
669 		KERNEL_UNLOCK();
670 	}
671 
672 	return (match);
673 }
674 
675 #ifdef IPSEC
676 int
677 ip_input_ipsec_fwd_check(struct mbuf *m, int hlen)
678 {
679 	struct tdb *tdb;
680 	struct tdb_ident *tdbi;
681 	struct m_tag *mtag;
682 	int error = 0;
683 
684 	/*
685 	 * IPsec policy check for forwarded packets. Look at
686 	 * inner-most IPsec SA used.
687 	 */
688 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
689 	if (mtag != NULL) {
690 		tdbi = (struct tdb_ident *)(mtag + 1);
691 		tdb = gettdb(tdbi->rdomain, tdbi->spi, &tdbi->dst, tdbi->proto);
692 	} else
693 		tdb = NULL;
694 	ipsp_spd_lookup(m, AF_INET, hlen, &error, IPSP_DIRECTION_IN, tdb, NULL,
695 	    0);
696 
697 	return error;
698 }
699 
700 int
701 ip_input_ipsec_ours_check(struct mbuf *m, int hlen)
702 {
703 	struct ip *ip = mtod(m, struct ip *);
704 	struct tdb *tdb;
705 	struct tdb_ident *tdbi;
706 	struct m_tag *mtag;
707 	int error = 0;
708 
709 	/*
710 	 * If it's a protected packet for us, skip the policy check.
711 	 * That's because we really only care about the properties of
712 	 * the protected packet, and not the intermediate versions.
713 	 * While this is not the most paranoid setting, it allows
714 	 * some flexibility in handling nested tunnels (in setting up
715 	 * the policies).
716 	 */
717 	if ((ip->ip_p == IPPROTO_ESP) || (ip->ip_p == IPPROTO_AH) ||
718 	    (ip->ip_p == IPPROTO_IPCOMP))
719 		return 0;
720 
721 	/*
722 	 * If the protected packet was tunneled, then we need to
723 	 * verify the protected packet's information, not the
724 	 * external headers. Thus, skip the policy lookup for the
725 	 * external packet, and keep the IPsec information linked on
726 	 * the packet header (the encapsulation routines know how
727 	 * to deal with that).
728 	 */
729 	if ((ip->ip_p == IPPROTO_IPIP) || (ip->ip_p == IPPROTO_IPV6))
730 		return 0;
731 
732 	/*
733 	 * If the protected packet is TCP or UDP, we'll do the
734 	 * policy check in the respective input routine, so we can
735 	 * check for bypass sockets.
736 	 */
737 	if ((ip->ip_p == IPPROTO_TCP) || (ip->ip_p == IPPROTO_UDP))
738 		return 0;
739 
740 	/*
741 	 * IPsec policy check for local-delivery packets. Look at the
742 	 * inner-most SA that protected the packet. This is in fact
743 	 * a bit too restrictive (it could end up causing packets to
744 	 * be dropped that semantically follow the policy, e.g., in
745 	 * certain SA-bundle configurations); but the alternative is
746 	 * very complicated (and requires keeping track of what
747 	 * kinds of tunneling headers have been seen in-between the
748 	 * IPsec headers), and I don't think we lose much functionality
749 	 * that's needed in the real world (who uses bundles anyway ?).
750 	 */
751 	mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
752 	if (mtag) {
753 		tdbi = (struct tdb_ident *)(mtag + 1);
754 		tdb = gettdb(tdbi->rdomain, tdbi->spi, &tdbi->dst,
755 		    tdbi->proto);
756 	} else
757 		tdb = NULL;
758 	ipsp_spd_lookup(m, AF_INET, hlen, &error, IPSP_DIRECTION_IN,
759 	    tdb, NULL, 0);
760 
761 	return error;
762 }
763 #endif /* IPSEC */
764 
765 /*
766  * Take incoming datagram fragment and try to
767  * reassemble it into whole datagram.  If a chain for
768  * reassembly of this datagram already exists, then it
769  * is given as fp; otherwise have to make a chain.
770  */
771 struct mbuf *
772 ip_reass(struct ipqent *ipqe, struct ipq *fp)
773 {
774 	struct mbuf *m = ipqe->ipqe_m;
775 	struct ipqent *nq, *p, *q;
776 	struct ip *ip;
777 	struct mbuf *t;
778 	int hlen = ipqe->ipqe_ip->ip_hl << 2;
779 	int i, next;
780 	u_int8_t ecn, ecn0;
781 
782 	/*
783 	 * Presence of header sizes in mbufs
784 	 * would confuse code below.
785 	 */
786 	m->m_data += hlen;
787 	m->m_len -= hlen;
788 
789 	/*
790 	 * If first fragment to arrive, create a reassembly queue.
791 	 */
792 	if (fp == NULL) {
793 		fp = pool_get(&ipq_pool, PR_NOWAIT);
794 		if (fp == NULL)
795 			goto dropfrag;
796 		LIST_INSERT_HEAD(&ipq, fp, ipq_q);
797 		fp->ipq_ttl = IPFRAGTTL;
798 		fp->ipq_p = ipqe->ipqe_ip->ip_p;
799 		fp->ipq_id = ipqe->ipqe_ip->ip_id;
800 		LIST_INIT(&fp->ipq_fragq);
801 		fp->ipq_src = ipqe->ipqe_ip->ip_src;
802 		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
803 		p = NULL;
804 		goto insert;
805 	}
806 
807 	/*
808 	 * Handle ECN by comparing this segment with the first one;
809 	 * if CE is set, do not lose CE.
810 	 * drop if CE and not-ECT are mixed for the same packet.
811 	 */
812 	ecn = ipqe->ipqe_ip->ip_tos & IPTOS_ECN_MASK;
813 	ecn0 = LIST_FIRST(&fp->ipq_fragq)->ipqe_ip->ip_tos & IPTOS_ECN_MASK;
814 	if (ecn == IPTOS_ECN_CE) {
815 		if (ecn0 == IPTOS_ECN_NOTECT)
816 			goto dropfrag;
817 		if (ecn0 != IPTOS_ECN_CE)
818 			LIST_FIRST(&fp->ipq_fragq)->ipqe_ip->ip_tos |= IPTOS_ECN_CE;
819 	}
820 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
821 		goto dropfrag;
822 
823 	/*
824 	 * Find a segment which begins after this one does.
825 	 */
826 	for (p = NULL, q = LIST_FIRST(&fp->ipq_fragq); q != NULL;
827 	    p = q, q = LIST_NEXT(q, ipqe_q))
828 		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
829 			break;
830 
831 	/*
832 	 * If there is a preceding segment, it may provide some of
833 	 * our data already.  If so, drop the data from the incoming
834 	 * segment.  If it provides all of our data, drop us.
835 	 */
836 	if (p != NULL) {
837 		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
838 		    ntohs(ipqe->ipqe_ip->ip_off);
839 		if (i > 0) {
840 			if (i >= ntohs(ipqe->ipqe_ip->ip_len))
841 				goto dropfrag;
842 			m_adj(ipqe->ipqe_m, i);
843 			ipqe->ipqe_ip->ip_off =
844 			    htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
845 			ipqe->ipqe_ip->ip_len =
846 			    htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
847 		}
848 	}
849 
850 	/*
851 	 * While we overlap succeeding segments trim them or,
852 	 * if they are completely covered, dequeue them.
853 	 */
854 	for (; q != NULL &&
855 	    ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
856 	    ntohs(q->ipqe_ip->ip_off); q = nq) {
857 		i = (ntohs(ipqe->ipqe_ip->ip_off) +
858 		    ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
859 		if (i < ntohs(q->ipqe_ip->ip_len)) {
860 			q->ipqe_ip->ip_len =
861 			    htons(ntohs(q->ipqe_ip->ip_len) - i);
862 			q->ipqe_ip->ip_off =
863 			    htons(ntohs(q->ipqe_ip->ip_off) + i);
864 			m_adj(q->ipqe_m, i);
865 			break;
866 		}
867 		nq = LIST_NEXT(q, ipqe_q);
868 		m_freem(q->ipqe_m);
869 		LIST_REMOVE(q, ipqe_q);
870 		pool_put(&ipqent_pool, q);
871 		ip_frags--;
872 	}
873 
874 insert:
875 	/*
876 	 * Stick new segment in its place;
877 	 * check for complete reassembly.
878 	 */
879 	if (p == NULL) {
880 		LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
881 	} else {
882 		LIST_INSERT_AFTER(p, ipqe, ipqe_q);
883 	}
884 	next = 0;
885 	for (p = NULL, q = LIST_FIRST(&fp->ipq_fragq); q != NULL;
886 	    p = q, q = LIST_NEXT(q, ipqe_q)) {
887 		if (ntohs(q->ipqe_ip->ip_off) != next)
888 			return (0);
889 		next += ntohs(q->ipqe_ip->ip_len);
890 	}
891 	if (p->ipqe_mff)
892 		return (0);
893 
894 	/*
895 	 * Reassembly is complete.  Check for a bogus message size and
896 	 * concatenate fragments.
897 	 */
898 	q = LIST_FIRST(&fp->ipq_fragq);
899 	ip = q->ipqe_ip;
900 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
901 		ipstat.ips_toolong++;
902 		ip_freef(fp);
903 		return (0);
904 	}
905 	m = q->ipqe_m;
906 	t = m->m_next;
907 	m->m_next = 0;
908 	m_cat(m, t);
909 	nq = LIST_NEXT(q, ipqe_q);
910 	pool_put(&ipqent_pool, q);
911 	ip_frags--;
912 	for (q = nq; q != NULL; q = nq) {
913 		t = q->ipqe_m;
914 		nq = LIST_NEXT(q, ipqe_q);
915 		pool_put(&ipqent_pool, q);
916 		ip_frags--;
917 		m_cat(m, t);
918 	}
919 
920 	/*
921 	 * Create header for new ip packet by
922 	 * modifying header of first packet;
923 	 * dequeue and discard fragment reassembly header.
924 	 * Make header visible.
925 	 */
926 	ip->ip_len = htons(next);
927 	ip->ip_src = fp->ipq_src;
928 	ip->ip_dst = fp->ipq_dst;
929 	LIST_REMOVE(fp, ipq_q);
930 	pool_put(&ipq_pool, fp);
931 	m->m_len += (ip->ip_hl << 2);
932 	m->m_data -= (ip->ip_hl << 2);
933 	/* some debugging cruft by sklower, below, will go away soon */
934 	if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
935 		int plen = 0;
936 		for (t = m; t; t = t->m_next)
937 			plen += t->m_len;
938 		m->m_pkthdr.len = plen;
939 	}
940 	return (m);
941 
942 dropfrag:
943 	ipstat.ips_fragdropped++;
944 	m_freem(m);
945 	pool_put(&ipqent_pool, ipqe);
946 	ip_frags--;
947 	return (0);
948 }
949 
950 /*
951  * Free a fragment reassembly header and all
952  * associated datagrams.
953  */
954 void
955 ip_freef(struct ipq *fp)
956 {
957 	struct ipqent *q, *p;
958 
959 	for (q = LIST_FIRST(&fp->ipq_fragq); q != NULL; q = p) {
960 		p = LIST_NEXT(q, ipqe_q);
961 		m_freem(q->ipqe_m);
962 		LIST_REMOVE(q, ipqe_q);
963 		pool_put(&ipqent_pool, q);
964 		ip_frags--;
965 	}
966 	LIST_REMOVE(fp, ipq_q);
967 	pool_put(&ipq_pool, fp);
968 }
969 
970 /*
971  * IP timer processing;
972  * if a timer expires on a reassembly queue, discard it.
973  * clear the forwarding cache, there might be a better route.
974  */
975 void
976 ip_slowtimo(void)
977 {
978 	struct ipq *fp, *nfp;
979 	int s = splsoftnet();
980 
981 	for (fp = LIST_FIRST(&ipq); fp != NULL; fp = nfp) {
982 		nfp = LIST_NEXT(fp, ipq_q);
983 		if (--fp->ipq_ttl == 0) {
984 			ipstat.ips_fragtimeout++;
985 			ip_freef(fp);
986 		}
987 	}
988 	splx(s);
989 }
990 
991 /*
992  * Drain off all datagram fragments.
993  */
994 void
995 ip_drain(void)
996 {
997 	while (!LIST_EMPTY(&ipq)) {
998 		ipstat.ips_fragdropped++;
999 		ip_freef(LIST_FIRST(&ipq));
1000 	}
1001 }
1002 
1003 /*
1004  * Flush a bunch of datagram fragments, till we are down to 75%.
1005  */
1006 void
1007 ip_flush(void)
1008 {
1009 	int max = 50;
1010 
1011 	/* ipq already locked */
1012 	while (!LIST_EMPTY(&ipq) && ip_frags > ip_maxqueue * 3 / 4 && --max) {
1013 		ipstat.ips_fragdropped++;
1014 		ip_freef(LIST_FIRST(&ipq));
1015 	}
1016 }
1017 
1018 /*
1019  * Do option processing on a datagram,
1020  * possibly discarding it if bad options are encountered,
1021  * or forwarding it if source-routed.
1022  * Returns 1 if packet has been forwarded/freed,
1023  * 0 if the packet should be processed further.
1024  */
1025 int
1026 ip_dooptions(struct mbuf *m, struct ifnet *ifp)
1027 {
1028 	struct ip *ip = mtod(m, struct ip *);
1029 	unsigned int rtableid = m->m_pkthdr.ph_rtableid;
1030 	struct rtentry *rt;
1031 	struct sockaddr_in ipaddr;
1032 	u_char *cp;
1033 	struct ip_timestamp ipt;
1034 	struct in_ifaddr *ia;
1035 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1036 	struct in_addr sin, dst;
1037 	u_int32_t ntime;
1038 
1039 	dst = ip->ip_dst;
1040 	cp = (u_char *)(ip + 1);
1041 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1042 
1043 	KERNEL_LOCK();
1044 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1045 		opt = cp[IPOPT_OPTVAL];
1046 		if (opt == IPOPT_EOL)
1047 			break;
1048 		if (opt == IPOPT_NOP)
1049 			optlen = 1;
1050 		else {
1051 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1052 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1053 				goto bad;
1054 			}
1055 			optlen = cp[IPOPT_OLEN];
1056 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1057 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1058 				goto bad;
1059 			}
1060 		}
1061 
1062 		switch (opt) {
1063 
1064 		default:
1065 			break;
1066 
1067 		/*
1068 		 * Source routing with record.
1069 		 * Find interface with current destination address.
1070 		 * If none on this machine then drop if strictly routed,
1071 		 * or do nothing if loosely routed.
1072 		 * Record interface address and bring up next address
1073 		 * component.  If strictly routed make sure next
1074 		 * address is on directly accessible net.
1075 		 */
1076 		case IPOPT_LSRR:
1077 		case IPOPT_SSRR:
1078 			if (!ip_dosourceroute) {
1079 				type = ICMP_UNREACH;
1080 				code = ICMP_UNREACH_SRCFAIL;
1081 				goto bad;
1082 			}
1083 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1084 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1085 				goto bad;
1086 			}
1087 			memset(&ipaddr, 0, sizeof(ipaddr));
1088 			ipaddr.sin_family = AF_INET;
1089 			ipaddr.sin_len = sizeof(ipaddr);
1090 			ipaddr.sin_addr = ip->ip_dst;
1091 			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr),
1092 			    m->m_pkthdr.ph_rtableid));
1093 			if (ia == NULL) {
1094 				if (opt == IPOPT_SSRR) {
1095 					type = ICMP_UNREACH;
1096 					code = ICMP_UNREACH_SRCFAIL;
1097 					goto bad;
1098 				}
1099 				/*
1100 				 * Loose routing, and not at next destination
1101 				 * yet; nothing to do except forward.
1102 				 */
1103 				break;
1104 			}
1105 			off--;			/* 0 origin */
1106 			if ((off + sizeof(struct in_addr)) > optlen) {
1107 				/*
1108 				 * End of source route.  Should be for us.
1109 				 */
1110 				save_rte(m, cp, ip->ip_src);
1111 				break;
1112 			}
1113 
1114 			/*
1115 			 * locate outgoing interface
1116 			 */
1117 			memset(&ipaddr, 0, sizeof(ipaddr));
1118 			ipaddr.sin_family = AF_INET;
1119 			ipaddr.sin_len = sizeof(ipaddr);
1120 			memcpy(&ipaddr.sin_addr, cp + off,
1121 			    sizeof(ipaddr.sin_addr));
1122 			if (opt == IPOPT_SSRR) {
1123 			    if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(&ipaddr),
1124 				m->m_pkthdr.ph_rtableid))) == NULL)
1125 				ia = ifatoia(ifa_ifwithnet(sintosa(&ipaddr),
1126 				    m->m_pkthdr.ph_rtableid));
1127 				if (ia == NULL) {
1128 					type = ICMP_UNREACH;
1129 					code = ICMP_UNREACH_SRCFAIL;
1130 					goto bad;
1131 				}
1132 				memcpy(cp + off, &ia->ia_addr.sin_addr,
1133 				    sizeof(struct in_addr));
1134 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1135 			} else {
1136 				/* keep packet in the virtual instance */
1137 				rt = rtalloc(sintosa(&ipaddr), RT_RESOLVE,
1138 				    rtableid);
1139 				if (!rtisvalid(rt)) {
1140 					type = ICMP_UNREACH;
1141 					code = ICMP_UNREACH_SRCFAIL;
1142 					rtfree(rt);
1143 					goto bad;
1144 				}
1145 				ia = ifatoia(rt->rt_ifa);
1146 				memcpy(cp + off, &ia->ia_addr.sin_addr,
1147 				    sizeof(struct in_addr));
1148 				rtfree(rt);
1149 				cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1150 			}
1151 			ip->ip_dst = ipaddr.sin_addr;
1152 			/*
1153 			 * Let ip_intr's mcast routing check handle mcast pkts
1154 			 */
1155 			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1156 			break;
1157 
1158 		case IPOPT_RR:
1159 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1160 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1161 				goto bad;
1162 			}
1163 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1164 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1165 				goto bad;
1166 			}
1167 
1168 			/*
1169 			 * If no space remains, ignore.
1170 			 */
1171 			off--;			/* 0 origin */
1172 			if ((off + sizeof(struct in_addr)) > optlen)
1173 				break;
1174 			memset(&ipaddr, 0, sizeof(ipaddr));
1175 			ipaddr.sin_family = AF_INET;
1176 			ipaddr.sin_len = sizeof(ipaddr);
1177 			ipaddr.sin_addr = ip->ip_dst;
1178 			/*
1179 			 * locate outgoing interface; if we're the destination,
1180 			 * use the incoming interface (should be same).
1181 			 * Again keep the packet inside the virtual instance.
1182 			 */
1183 			rt = rtalloc(sintosa(&ipaddr), RT_RESOLVE, rtableid);
1184 			if (!rtisvalid(rt)) {
1185 				type = ICMP_UNREACH;
1186 				code = ICMP_UNREACH_HOST;
1187 				rtfree(rt);
1188 				goto bad;
1189 			}
1190 			ia = ifatoia(rt->rt_ifa);
1191 			memcpy(cp + off, &ia->ia_addr.sin_addr,
1192 			    sizeof(struct in_addr));
1193 			rtfree(rt);
1194 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1195 			break;
1196 
1197 		case IPOPT_TS:
1198 			code = cp - (u_char *)ip;
1199 			if (optlen < sizeof(struct ip_timestamp))
1200 				goto bad;
1201 			memcpy(&ipt, cp, sizeof(struct ip_timestamp));
1202 			if (ipt.ipt_ptr < 5 || ipt.ipt_len < 5)
1203 				goto bad;
1204 			if (ipt.ipt_ptr - 1 + sizeof(u_int32_t) > ipt.ipt_len) {
1205 				if (++ipt.ipt_oflw == 0)
1206 					goto bad;
1207 				break;
1208 			}
1209 			memcpy(&sin, cp + ipt.ipt_ptr - 1, sizeof sin);
1210 			switch (ipt.ipt_flg) {
1211 
1212 			case IPOPT_TS_TSONLY:
1213 				break;
1214 
1215 			case IPOPT_TS_TSANDADDR:
1216 				if (ipt.ipt_ptr - 1 + sizeof(u_int32_t) +
1217 				    sizeof(struct in_addr) > ipt.ipt_len)
1218 					goto bad;
1219 				memset(&ipaddr, 0, sizeof(ipaddr));
1220 				ipaddr.sin_family = AF_INET;
1221 				ipaddr.sin_len = sizeof(ipaddr);
1222 				ipaddr.sin_addr = dst;
1223 				ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1224 				    ifp));
1225 				if (ia == NULL)
1226 					continue;
1227 				memcpy(&sin, &ia->ia_addr.sin_addr,
1228 				    sizeof(struct in_addr));
1229 				ipt.ipt_ptr += sizeof(struct in_addr);
1230 				break;
1231 
1232 			case IPOPT_TS_PRESPEC:
1233 				if (ipt.ipt_ptr - 1 + sizeof(u_int32_t) +
1234 				    sizeof(struct in_addr) > ipt.ipt_len)
1235 					goto bad;
1236 				memset(&ipaddr, 0, sizeof(ipaddr));
1237 				ipaddr.sin_family = AF_INET;
1238 				ipaddr.sin_len = sizeof(ipaddr);
1239 				ipaddr.sin_addr = sin;
1240 				if (ifa_ifwithaddr(sintosa(&ipaddr),
1241 				    m->m_pkthdr.ph_rtableid) == NULL)
1242 					continue;
1243 				ipt.ipt_ptr += sizeof(struct in_addr);
1244 				break;
1245 
1246 			default:
1247 				/* XXX can't take &ipt->ipt_flg */
1248 				code = (u_char *)&ipt.ipt_ptr -
1249 				    (u_char *)ip + 1;
1250 				goto bad;
1251 			}
1252 			ntime = iptime();
1253 			memcpy(cp + ipt.ipt_ptr - 1, &ntime, sizeof(u_int32_t));
1254 			ipt.ipt_ptr += sizeof(u_int32_t);
1255 		}
1256 	}
1257 	KERNEL_UNLOCK();
1258 	if (forward && ipforwarding) {
1259 		ip_forward(m, ifp, NULL, 1);
1260 		return (1);
1261 	}
1262 	return (0);
1263 bad:
1264 	KERNEL_UNLOCK();
1265 	icmp_error(m, type, code, 0, 0);
1266 	ipstat.ips_badoptions++;
1267 	return (1);
1268 }
1269 
1270 /*
1271  * Save incoming source route for use in replies,
1272  * to be picked up later by ip_srcroute if the receiver is interested.
1273  */
1274 void
1275 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1276 {
1277 	struct ip_srcrt *isr;
1278 	struct m_tag *mtag;
1279 	unsigned olen;
1280 
1281 	olen = option[IPOPT_OLEN];
1282 	if (olen > sizeof(isr->isr_hdr) + sizeof(isr->isr_routes))
1283 		return;
1284 
1285 	mtag = m_tag_get(PACKET_TAG_SRCROUTE, sizeof(*isr), M_NOWAIT);
1286 	if (mtag == NULL)
1287 		return;
1288 	isr = (struct ip_srcrt *)(mtag + 1);
1289 
1290 	memcpy(isr->isr_hdr, option, olen);
1291 	isr->isr_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1292 	isr->isr_dst = dst;
1293 	m_tag_prepend(m, mtag);
1294 }
1295 
1296 /*
1297  * Retrieve incoming source route for use in replies,
1298  * in the same form used by setsockopt.
1299  * The first hop is placed before the options, will be removed later.
1300  */
1301 struct mbuf *
1302 ip_srcroute(struct mbuf *m0)
1303 {
1304 	struct in_addr *p, *q;
1305 	struct mbuf *m;
1306 	struct ip_srcrt *isr;
1307 	struct m_tag *mtag;
1308 
1309 	if (!ip_dosourceroute)
1310 		return (NULL);
1311 
1312 	mtag = m_tag_find(m0, PACKET_TAG_SRCROUTE, NULL);
1313 	if (mtag == NULL)
1314 		return (NULL);
1315 	isr = (struct ip_srcrt *)(mtag + 1);
1316 
1317 	if (isr->isr_nhops == 0)
1318 		return (NULL);
1319 	m = m_get(M_DONTWAIT, MT_SOOPTS);
1320 	if (m == NULL)
1321 		return (NULL);
1322 
1323 #define OPTSIZ	(sizeof(isr->isr_nop) + sizeof(isr->isr_hdr))
1324 
1325 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + header) */
1326 	m->m_len = (isr->isr_nhops + 1) * sizeof(struct in_addr) + OPTSIZ;
1327 
1328 	/*
1329 	 * First save first hop for return route
1330 	 */
1331 	p = &(isr->isr_routes[isr->isr_nhops - 1]);
1332 	*(mtod(m, struct in_addr *)) = *p--;
1333 
1334 	/*
1335 	 * Copy option fields and padding (nop) to mbuf.
1336 	 */
1337 	isr->isr_nop = IPOPT_NOP;
1338 	isr->isr_hdr[IPOPT_OFFSET] = IPOPT_MINOFF;
1339 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &isr->isr_nop,
1340 	    OPTSIZ);
1341 	q = (struct in_addr *)(mtod(m, caddr_t) +
1342 	    sizeof(struct in_addr) + OPTSIZ);
1343 #undef OPTSIZ
1344 	/*
1345 	 * Record return path as an IP source route,
1346 	 * reversing the path (pointers are now aligned).
1347 	 */
1348 	while (p >= isr->isr_routes) {
1349 		*q++ = *p--;
1350 	}
1351 	/*
1352 	 * Last hop goes to final destination.
1353 	 */
1354 	*q = isr->isr_dst;
1355 	m_tag_delete(m0, (struct m_tag *)isr);
1356 	return (m);
1357 }
1358 
1359 /*
1360  * Strip out IP options, at higher level protocol in the kernel.
1361  */
1362 void
1363 ip_stripoptions(struct mbuf *m)
1364 {
1365 	int i;
1366 	struct ip *ip = mtod(m, struct ip *);
1367 	caddr_t opts;
1368 	int olen;
1369 
1370 	olen = (ip->ip_hl<<2) - sizeof (struct ip);
1371 	opts = (caddr_t)(ip + 1);
1372 	i = m->m_len - (sizeof (struct ip) + olen);
1373 	memmove(opts, opts  + olen, i);
1374 	m->m_len -= olen;
1375 	if (m->m_flags & M_PKTHDR)
1376 		m->m_pkthdr.len -= olen;
1377 	ip->ip_hl = sizeof(struct ip) >> 2;
1378 	ip->ip_len = htons(ntohs(ip->ip_len) - olen);
1379 }
1380 
1381 int inetctlerrmap[PRC_NCMDS] = {
1382 	0,		0,		0,		0,
1383 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1384 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1385 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1386 	0,		0,		0,		0,
1387 	ENOPROTOOPT
1388 };
1389 
1390 /*
1391  * Forward a packet.  If some error occurs return the sender
1392  * an icmp packet.  Note we can't always generate a meaningful
1393  * icmp message because icmp doesn't have a large enough repertoire
1394  * of codes and types.
1395  *
1396  * If not forwarding, just drop the packet.  This could be confusing
1397  * if ipforwarding was zero but some routing protocol was advancing
1398  * us as a gateway to somewhere.  However, we must let the routing
1399  * protocol deal with that.
1400  *
1401  * The srcrt parameter indicates whether the packet is being forwarded
1402  * via a source route.
1403  */
1404 void
1405 ip_forward(struct mbuf *m, struct ifnet *ifp, struct rtentry *rt, int srcrt)
1406 {
1407 	struct mbuf mfake, *mcopy = NULL;
1408 	struct ip *ip = mtod(m, struct ip *);
1409 	struct sockaddr_in *sin;
1410 	struct route ro;
1411 	int error, type = 0, code = 0, destmtu = 0, fake = 0, len;
1412 	u_int32_t dest;
1413 
1414 	dest = 0;
1415 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1416 		ipstat.ips_cantforward++;
1417 		m_freem(m);
1418 		goto freecopy;
1419 	}
1420 	if (ip->ip_ttl <= IPTTLDEC) {
1421 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1422 		goto freecopy;
1423 	}
1424 
1425 	sin = satosin(&ro.ro_dst);
1426 	memset(sin, 0, sizeof(*sin));
1427 	sin->sin_family = AF_INET;
1428 	sin->sin_len = sizeof(*sin);
1429 	sin->sin_addr = ip->ip_dst;
1430 
1431 	if (!rtisvalid(rt)) {
1432 		rtfree(rt);
1433 		rt = rtalloc_mpath(sintosa(sin), &ip->ip_src.s_addr,
1434 		    m->m_pkthdr.ph_rtableid);
1435 		if (rt == NULL) {
1436 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1437 			return;
1438 		}
1439 	}
1440 
1441 	/*
1442 	 * Save at most 68 bytes of the packet in case
1443 	 * we need to generate an ICMP message to the src.
1444 	 * The data is saved in the mbuf on the stack that
1445 	 * acts as a temporary storage not intended to be
1446 	 * passed down the IP stack or to the mfree.
1447 	 */
1448 	memset(&mfake.m_hdr, 0, sizeof(mfake.m_hdr));
1449 	mfake.m_type = m->m_type;
1450 	if (m_dup_pkthdr(&mfake, m, M_DONTWAIT) == 0) {
1451 		mfake.m_data = mfake.m_pktdat;
1452 		len = min(ntohs(ip->ip_len), 68);
1453 		m_copydata(m, 0, len, mfake.m_pktdat);
1454 		mfake.m_pkthdr.len = mfake.m_len = len;
1455 #if NPF > 0
1456 		pf_pkt_unlink_state_key(&mfake);
1457 #endif	/* NPF > 0 */
1458 		fake = 1;
1459 	}
1460 
1461 	ip->ip_ttl -= IPTTLDEC;
1462 
1463 	/*
1464 	 * If forwarding packet using same interface that it came in on,
1465 	 * perhaps should send a redirect to sender to shortcut a hop.
1466 	 * Only send redirect if source is sending directly to us,
1467 	 * and if packet was not source routed (or has any options).
1468 	 * Also, don't send redirect if forwarding using a default route
1469 	 * or a route modified by a redirect.
1470 	 * Don't send redirect if we advertise destination's arp address
1471 	 * as ours (proxy arp).
1472 	 */
1473 	if ((rt->rt_ifidx == ifp->if_index) &&
1474 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1475 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1476 	    ipsendredirects && !srcrt &&
1477 	    !arpproxy(satosin(rt_key(rt))->sin_addr, m->m_pkthdr.ph_rtableid)) {
1478 		if ((ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_netmask) ==
1479 		    ifatoia(rt->rt_ifa)->ia_net) {
1480 		    if (rt->rt_flags & RTF_GATEWAY)
1481 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1482 		    else
1483 			dest = ip->ip_dst.s_addr;
1484 		    /* Router requirements says to only send host redirects */
1485 		    type = ICMP_REDIRECT;
1486 		    code = ICMP_REDIRECT_HOST;
1487 		}
1488 	}
1489 
1490 	ro.ro_rt = rt;
1491 	ro.ro_tableid = m->m_pkthdr.ph_rtableid;
1492 	error = ip_output(m, NULL, &ro,
1493 	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1494 	    NULL, NULL, 0);
1495 	if (error)
1496 		ipstat.ips_cantforward++;
1497 	else {
1498 		ipstat.ips_forward++;
1499 		if (type)
1500 			ipstat.ips_redirectsent++;
1501 		else
1502 			goto freecopy;
1503 	}
1504 	if (!fake)
1505 		goto freecopy;
1506 
1507 	switch (error) {
1508 
1509 	case 0:				/* forwarded, but need redirect */
1510 		/* type, code set above */
1511 		break;
1512 
1513 	case ENETUNREACH:		/* shouldn't happen, checked above */
1514 	case EHOSTUNREACH:
1515 	case ENETDOWN:
1516 	case EHOSTDOWN:
1517 	default:
1518 		type = ICMP_UNREACH;
1519 		code = ICMP_UNREACH_HOST;
1520 		break;
1521 
1522 	case EMSGSIZE:
1523 		type = ICMP_UNREACH;
1524 		code = ICMP_UNREACH_NEEDFRAG;
1525 
1526 #ifdef IPSEC
1527 		if (rt != NULL) {
1528 			if (rt->rt_rmx.rmx_mtu)
1529 				destmtu = rt->rt_rmx.rmx_mtu;
1530 			else {
1531 				struct ifnet *destifp;
1532 
1533 				destifp = if_get(rt->rt_ifidx);
1534 				if (destifp != NULL)
1535 					destmtu = destifp->if_mtu;
1536 				if_put(destifp);
1537 			}
1538 		}
1539 #endif /*IPSEC*/
1540 		ipstat.ips_cantfrag++;
1541 		break;
1542 
1543 	case EACCES:
1544 		/*
1545 		 * pf(4) blocked the packet. There is no need to send an ICMP
1546 		 * packet back since pf(4) takes care of it.
1547 		 */
1548 		goto freecopy;
1549 	case ENOBUFS:
1550 		/*
1551 		 * a router should not generate ICMP_SOURCEQUENCH as
1552 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1553 		 * source quench could be a big problem under DoS attacks,
1554 		 * or the underlying interface is rate-limited.
1555 		 */
1556 		goto freecopy;
1557 	}
1558 
1559 	mcopy = m_copym(&mfake, 0, len, M_DONTWAIT);
1560 	if (mcopy)
1561 		icmp_error(mcopy, type, code, dest, destmtu);
1562 
1563 freecopy:
1564 	if (fake)
1565 		m_tag_delete_chain(&mfake);
1566 	rtfree(rt);
1567 }
1568 
1569 int
1570 ip_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
1571     size_t newlen)
1572 {
1573 	int s, error;
1574 #ifdef MROUTING
1575 	extern int ip_mrtproto;
1576 	extern struct mrtstat mrtstat;
1577 #endif
1578 
1579 	/* Almost all sysctl names at this level are terminal. */
1580 	if (namelen != 1 && name[0] != IPCTL_IFQUEUE)
1581 		return (ENOTDIR);
1582 
1583 	switch (name[0]) {
1584 #ifdef notyet
1585 	case IPCTL_DEFMTU:
1586 		return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
1587 #endif
1588 	case IPCTL_SOURCEROUTE:
1589 		/*
1590 		 * Don't allow this to change in a secure environment.
1591 		 */
1592 		if (newp && securelevel > 0)
1593 			return (EPERM);
1594 		return (sysctl_int(oldp, oldlenp, newp, newlen,
1595 		    &ip_dosourceroute));
1596 	case IPCTL_MTUDISC:
1597 		error = sysctl_int(oldp, oldlenp, newp, newlen,
1598 		    &ip_mtudisc);
1599 		if (ip_mtudisc != 0 && ip_mtudisc_timeout_q == NULL) {
1600 			ip_mtudisc_timeout_q =
1601 			    rt_timer_queue_create(ip_mtudisc_timeout);
1602 		} else if (ip_mtudisc == 0 && ip_mtudisc_timeout_q != NULL) {
1603 			s = splsoftnet();
1604 			rt_timer_queue_destroy(ip_mtudisc_timeout_q);
1605 			ip_mtudisc_timeout_q = NULL;
1606 			splx(s);
1607 		}
1608 		return error;
1609 	case IPCTL_MTUDISCTIMEOUT:
1610 		error = sysctl_int(oldp, oldlenp, newp, newlen,
1611 		   &ip_mtudisc_timeout);
1612 		if (ip_mtudisc_timeout_q != NULL) {
1613 			s = splsoftnet();
1614 			rt_timer_queue_change(ip_mtudisc_timeout_q,
1615 					      ip_mtudisc_timeout);
1616 			splx(s);
1617 		}
1618 		return (error);
1619 	case IPCTL_IPSEC_ENC_ALGORITHM:
1620 	        return (sysctl_tstring(oldp, oldlenp, newp, newlen,
1621 				       ipsec_def_enc, sizeof(ipsec_def_enc)));
1622 	case IPCTL_IPSEC_AUTH_ALGORITHM:
1623 	        return (sysctl_tstring(oldp, oldlenp, newp, newlen,
1624 				       ipsec_def_auth,
1625 				       sizeof(ipsec_def_auth)));
1626 	case IPCTL_IPSEC_IPCOMP_ALGORITHM:
1627 	        return (sysctl_tstring(oldp, oldlenp, newp, newlen,
1628 				       ipsec_def_comp,
1629 				       sizeof(ipsec_def_comp)));
1630 	case IPCTL_IFQUEUE:
1631 	        return (sysctl_niq(name + 1, namelen - 1,
1632 		    oldp, oldlenp, newp, newlen, &ipintrq));
1633 	case IPCTL_STATS:
1634 		return (sysctl_rdstruct(oldp, oldlenp, newp,
1635 		    &ipstat, sizeof(ipstat)));
1636 #ifdef MROUTING
1637 	case IPCTL_MRTSTATS:
1638 		return (sysctl_rdstruct(oldp, oldlenp, newp,
1639 		    &mrtstat, sizeof(mrtstat)));
1640 	case IPCTL_MRTPROTO:
1641 		return (sysctl_rdint(oldp, oldlenp, newp, ip_mrtproto));
1642 	case IPCTL_MRTMFC:
1643 		if (newp)
1644 			return (EPERM);
1645 		return mrt_sysctl_mfc(oldp, oldlenp);
1646 	case IPCTL_MRTVIF:
1647 		if (newp)
1648 			return (EPERM);
1649 		return mrt_sysctl_vif(oldp, oldlenp);
1650 #else
1651 	case IPCTL_MRTPROTO:
1652 	case IPCTL_MRTSTATS:
1653 	case IPCTL_MRTMFC:
1654 	case IPCTL_MRTVIF:
1655 		return (EOPNOTSUPP);
1656 #endif
1657 	default:
1658 		if (name[0] < IPCTL_MAXID)
1659 			return (sysctl_int_arr(ipctl_vars, name, namelen,
1660 			    oldp, oldlenp, newp, newlen));
1661 		return (EOPNOTSUPP);
1662 	}
1663 	/* NOTREACHED */
1664 }
1665 
1666 void
1667 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1668     struct mbuf *m)
1669 {
1670 #ifdef SO_TIMESTAMP
1671 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1672 		struct timeval tv;
1673 
1674 		microtime(&tv);
1675 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1676 		    SCM_TIMESTAMP, SOL_SOCKET);
1677 		if (*mp)
1678 			mp = &(*mp)->m_next;
1679 	}
1680 #endif
1681 	if (inp->inp_flags & INP_RECVDSTADDR) {
1682 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1683 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1684 		if (*mp)
1685 			mp = &(*mp)->m_next;
1686 	}
1687 #ifdef notyet
1688 	/* this code is broken and will probably never be fixed. */
1689 	/* options were tossed already */
1690 	if (inp->inp_flags & INP_RECVOPTS) {
1691 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1692 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1693 		if (*mp)
1694 			mp = &(*mp)->m_next;
1695 	}
1696 	/* ip_srcroute doesn't do what we want here, need to fix */
1697 	if (inp->inp_flags & INP_RECVRETOPTS) {
1698 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1699 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1700 		if (*mp)
1701 			mp = &(*mp)->m_next;
1702 	}
1703 #endif
1704 	if (inp->inp_flags & INP_RECVIF) {
1705 		struct sockaddr_dl sdl;
1706 		struct ifnet *ifp;
1707 
1708 		ifp = if_get(m->m_pkthdr.ph_ifidx);
1709 		if (ifp == NULL || ifp->if_sadl == NULL) {
1710 			memset(&sdl, 0, sizeof(sdl));
1711 			sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
1712 			sdl.sdl_family = AF_LINK;
1713 			sdl.sdl_index = ifp != NULL ? ifp->if_index : 0;
1714 			sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
1715 			*mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
1716 			    IP_RECVIF, IPPROTO_IP);
1717 		} else {
1718 			*mp = sbcreatecontrol((caddr_t) ifp->if_sadl,
1719 			    ifp->if_sadl->sdl_len, IP_RECVIF, IPPROTO_IP);
1720 		}
1721 		if (*mp)
1722 			mp = &(*mp)->m_next;
1723 		if_put(ifp);
1724 	}
1725 	if (inp->inp_flags & INP_RECVTTL) {
1726 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1727 		    sizeof(u_int8_t), IP_RECVTTL, IPPROTO_IP);
1728 		if (*mp)
1729 			mp = &(*mp)->m_next;
1730 	}
1731 	if (inp->inp_flags & INP_RECVRTABLE) {
1732 		u_int rtableid = inp->inp_rtableid;
1733 #if NPF > 0
1734 		struct pf_divert *divert;
1735 
1736 		if (m && m->m_pkthdr.pf.flags & PF_TAG_DIVERTED &&
1737 		    (divert = pf_find_divert(m)) != NULL)
1738 			rtableid = divert->rdomain;
1739 #endif
1740 
1741 		*mp = sbcreatecontrol((caddr_t) &rtableid,
1742 		    sizeof(u_int), IP_RECVRTABLE, IPPROTO_IP);
1743 		if (*mp)
1744 			mp = &(*mp)->m_next;
1745 	}
1746 }
1747 
1748 void
1749 ip_send_dispatch(void *xmq)
1750 {
1751 	struct mbuf_queue *mq = xmq;
1752 	struct mbuf *m;
1753 	struct mbuf_list ml;
1754 	int s;
1755 
1756 	mq_delist(mq, &ml);
1757 	KERNEL_LOCK();
1758 	s = splsoftnet();
1759 	while ((m = ml_dequeue(&ml)) != NULL) {
1760 		ip_output(m, NULL, NULL, 0, NULL, NULL, 0);
1761 	}
1762 	splx(s);
1763 	KERNEL_UNLOCK();
1764 }
1765 
1766 void
1767 ip_send(struct mbuf *m)
1768 {
1769 	mq_enqueue(&ipsend_mq, m);
1770 	task_add(softnettq, &ipsend_task);
1771 }
1772