xref: /openbsd-src/sys/netinet/ip_input.c (revision 1a8dbaac879b9f3335ad7fb25429ce63ac1d6bac)
1 /*	$OpenBSD: ip_input.c,v 1.351 2020/08/22 17:55:30 gnezdo Exp $	*/
2 /*	$NetBSD: ip_input.c,v 1.30 1996/03/16 23:53:58 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
33  */
34 
35 #include "pf.h"
36 #include "carp.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/mbuf.h>
41 #include <sys/domain.h>
42 #include <sys/mutex.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/sysctl.h>
47 #include <sys/pool.h>
48 #include <sys/task.h>
49 
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/if_dl.h>
53 #include <net/route.h>
54 #include <net/netisr.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/if_ether.h>
59 #include <netinet/ip.h>
60 #include <netinet/in_pcb.h>
61 #include <netinet/in_var.h>
62 #include <netinet/ip_var.h>
63 #include <netinet/ip_icmp.h>
64 #include <net/if_types.h>
65 
66 #ifdef INET6
67 #include <netinet6/ip6protosw.h>
68 #include <netinet6/ip6_var.h>
69 #endif
70 
71 #if NPF > 0
72 #include <net/pfvar.h>
73 #endif
74 
75 #ifdef MROUTING
76 #include <netinet/ip_mroute.h>
77 #endif
78 
79 #ifdef IPSEC
80 #include <netinet/ip_ipsp.h>
81 #endif /* IPSEC */
82 
83 #if NCARP > 0
84 #include <netinet/ip_carp.h>
85 #endif
86 
87 /* values controllable via sysctl */
88 int	ipforwarding = 0;
89 int	ipmforwarding = 0;
90 int	ipmultipath = 0;
91 int	ipsendredirects = 1;
92 int	ip_dosourceroute = 0;
93 int	ip_defttl = IPDEFTTL;
94 int	ip_mtudisc = 1;
95 u_int	ip_mtudisc_timeout = IPMTUDISCTIMEOUT;
96 int	ip_directedbcast = 0;
97 
98 struct rttimer_queue *ip_mtudisc_timeout_q = NULL;
99 
100 /* Protects `ipq' and `ip_frags'. */
101 struct mutex	ipq_mutex = MUTEX_INITIALIZER(IPL_SOFTNET);
102 
103 /* IP reassembly queue */
104 LIST_HEAD(, ipq) ipq;
105 
106 /* Keep track of memory used for reassembly */
107 int	ip_maxqueue = 300;
108 int	ip_frags = 0;
109 
110 const struct sysctl_bounded_args ipctl_vars[] = {
111 	{ IPCTL_FORWARDING, &ipforwarding, 0, 1 },
112 	{ IPCTL_SENDREDIRECTS, &ipsendredirects, 0, 1 },
113 	{ IPCTL_DEFTTL, &ip_defttl, 0, 255 },
114 	{ IPCTL_DIRECTEDBCAST, &ip_directedbcast, 0, 1 },
115 	{ IPCTL_IPPORT_FIRSTAUTO, &ipport_firstauto, 0, 65535 },
116 	{ IPCTL_IPPORT_LASTAUTO, &ipport_lastauto, 0, 65535 },
117 	{ IPCTL_IPPORT_HIFIRSTAUTO, &ipport_hifirstauto, 0, 65535 },
118 	{ IPCTL_IPPORT_HILASTAUTO, &ipport_hilastauto, 0, 65535 },
119 	{ IPCTL_IPPORT_MAXQUEUE, &ip_maxqueue, 0, 10000 },
120 	{ IPCTL_MFORWARDING, &ipmforwarding, 0, 1 },
121 	{ IPCTL_MULTIPATH, &ipmultipath, 0, 1 },
122 	{ IPCTL_ARPQUEUED, &la_hold_total, 0, 1000 },
123 	{ IPCTL_ARPTIMEOUT, &arpt_keep, 0, INT_MAX },
124 	{ IPCTL_ARPDOWN, &arpt_down, 0, INT_MAX },
125 };
126 
127 struct pool ipqent_pool;
128 struct pool ipq_pool;
129 
130 struct cpumem *ipcounters;
131 
132 int ip_sysctl_ipstat(void *, size_t *, void *);
133 
134 static struct mbuf_queue	ipsend_mq;
135 
136 extern struct niqueue		arpinq;
137 
138 int	ip_ours(struct mbuf **, int *, int, int);
139 int	ip_dooptions(struct mbuf *, struct ifnet *);
140 int	in_ouraddr(struct mbuf *, struct ifnet *, struct rtentry **);
141 
142 static void ip_send_dispatch(void *);
143 static struct task ipsend_task = TASK_INITIALIZER(ip_send_dispatch, &ipsend_mq);
144 /*
145  * Used to save the IP options in case a protocol wants to respond
146  * to an incoming packet over the same route if the packet got here
147  * using IP source routing.  This allows connection establishment and
148  * maintenance when the remote end is on a network that is not known
149  * to us.
150  */
151 struct ip_srcrt {
152 	int		isr_nhops;		   /* number of hops */
153 	struct in_addr	isr_dst;		   /* final destination */
154 	char		isr_nop;		   /* one NOP to align */
155 	char		isr_hdr[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN & OFFSET */
156 	struct in_addr	isr_routes[MAX_IPOPTLEN/sizeof(struct in_addr)];
157 };
158 
159 void save_rte(struct mbuf *, u_char *, struct in_addr);
160 
161 /*
162  * IP initialization: fill in IP protocol switch table.
163  * All protocols not implemented in kernel go to raw IP protocol handler.
164  */
165 void
166 ip_init(void)
167 {
168 	const struct protosw *pr;
169 	int i;
170 	const u_int16_t defbaddynamicports_tcp[] = DEFBADDYNAMICPORTS_TCP;
171 	const u_int16_t defbaddynamicports_udp[] = DEFBADDYNAMICPORTS_UDP;
172 	const u_int16_t defrootonlyports_tcp[] = DEFROOTONLYPORTS_TCP;
173 	const u_int16_t defrootonlyports_udp[] = DEFROOTONLYPORTS_UDP;
174 
175 	ipcounters = counters_alloc(ips_ncounters);
176 
177 	pool_init(&ipqent_pool, sizeof(struct ipqent), 0,
178 	    IPL_SOFTNET, 0, "ipqe",  NULL);
179 	pool_init(&ipq_pool, sizeof(struct ipq), 0,
180 	    IPL_SOFTNET, 0, "ipq", NULL);
181 
182 	pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
183 	if (pr == NULL)
184 		panic("ip_init");
185 	for (i = 0; i < IPPROTO_MAX; i++)
186 		ip_protox[i] = pr - inetsw;
187 	for (pr = inetdomain.dom_protosw;
188 	    pr < inetdomain.dom_protoswNPROTOSW; pr++)
189 		if (pr->pr_domain->dom_family == PF_INET &&
190 		    pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW &&
191 		    pr->pr_protocol < IPPROTO_MAX)
192 			ip_protox[pr->pr_protocol] = pr - inetsw;
193 	LIST_INIT(&ipq);
194 	if (ip_mtudisc != 0)
195 		ip_mtudisc_timeout_q =
196 		    rt_timer_queue_create(ip_mtudisc_timeout);
197 
198 	/* Fill in list of ports not to allocate dynamically. */
199 	memset(&baddynamicports, 0, sizeof(baddynamicports));
200 	for (i = 0; defbaddynamicports_tcp[i] != 0; i++)
201 		DP_SET(baddynamicports.tcp, defbaddynamicports_tcp[i]);
202 	for (i = 0; defbaddynamicports_udp[i] != 0; i++)
203 		DP_SET(baddynamicports.udp, defbaddynamicports_udp[i]);
204 
205 	/* Fill in list of ports only root can bind to. */
206 	memset(&rootonlyports, 0, sizeof(rootonlyports));
207 	for (i = 0; defrootonlyports_tcp[i] != 0; i++)
208 		DP_SET(rootonlyports.tcp, defrootonlyports_tcp[i]);
209 	for (i = 0; defrootonlyports_udp[i] != 0; i++)
210 		DP_SET(rootonlyports.udp, defrootonlyports_udp[i]);
211 
212 	mq_init(&ipsend_mq, 64, IPL_SOFTNET);
213 
214 #ifdef IPSEC
215 	ipsec_init();
216 #endif
217 }
218 
219 /*
220  * IPv4 input routine.
221  *
222  * Checksum and byte swap header.  Process options. Forward or deliver.
223  */
224 void
225 ipv4_input(struct ifnet *ifp, struct mbuf *m)
226 {
227 	int off, nxt;
228 
229 	off = 0;
230 	nxt = ip_input_if(&m, &off, IPPROTO_IPV4, AF_UNSPEC, ifp);
231 	KASSERT(nxt == IPPROTO_DONE);
232 }
233 
234 int
235 ip_input_if(struct mbuf **mp, int *offp, int nxt, int af, struct ifnet *ifp)
236 {
237 	struct mbuf	*m = *mp;
238 	struct rtentry	*rt = NULL;
239 	struct ip	*ip;
240 	int hlen, len;
241 	in_addr_t pfrdr = 0;
242 
243 	KASSERT(*offp == 0);
244 
245 	ipstat_inc(ips_total);
246 	if (m->m_len < sizeof (struct ip) &&
247 	    (m = *mp = m_pullup(m, sizeof (struct ip))) == NULL) {
248 		ipstat_inc(ips_toosmall);
249 		goto bad;
250 	}
251 	ip = mtod(m, struct ip *);
252 	if (ip->ip_v != IPVERSION) {
253 		ipstat_inc(ips_badvers);
254 		goto bad;
255 	}
256 	hlen = ip->ip_hl << 2;
257 	if (hlen < sizeof(struct ip)) {	/* minimum header length */
258 		ipstat_inc(ips_badhlen);
259 		goto bad;
260 	}
261 	if (hlen > m->m_len) {
262 		if ((m = *mp = m_pullup(m, hlen)) == NULL) {
263 			ipstat_inc(ips_badhlen);
264 			goto bad;
265 		}
266 		ip = mtod(m, struct ip *);
267 	}
268 
269 	/* 127/8 must not appear on wire - RFC1122 */
270 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
271 	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
272 		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
273 			ipstat_inc(ips_badaddr);
274 			goto bad;
275 		}
276 	}
277 
278 	if ((m->m_pkthdr.csum_flags & M_IPV4_CSUM_IN_OK) == 0) {
279 		if (m->m_pkthdr.csum_flags & M_IPV4_CSUM_IN_BAD) {
280 			ipstat_inc(ips_badsum);
281 			goto bad;
282 		}
283 
284 		ipstat_inc(ips_inswcsum);
285 		if (in_cksum(m, hlen) != 0) {
286 			ipstat_inc(ips_badsum);
287 			goto bad;
288 		}
289 	}
290 
291 	/* Retrieve the packet length. */
292 	len = ntohs(ip->ip_len);
293 
294 	/*
295 	 * Convert fields to host representation.
296 	 */
297 	if (len < hlen) {
298 		ipstat_inc(ips_badlen);
299 		goto bad;
300 	}
301 
302 	/*
303 	 * Check that the amount of data in the buffers
304 	 * is at least as much as the IP header would have us expect.
305 	 * Trim mbufs if longer than we expect.
306 	 * Drop packet if shorter than we expect.
307 	 */
308 	if (m->m_pkthdr.len < len) {
309 		ipstat_inc(ips_tooshort);
310 		goto bad;
311 	}
312 	if (m->m_pkthdr.len > len) {
313 		if (m->m_len == m->m_pkthdr.len) {
314 			m->m_len = len;
315 			m->m_pkthdr.len = len;
316 		} else
317 			m_adj(m, len - m->m_pkthdr.len);
318 	}
319 
320 #if NCARP > 0
321 	if (carp_lsdrop(ifp, m, AF_INET, &ip->ip_src.s_addr,
322 	    &ip->ip_dst.s_addr, (ip->ip_p == IPPROTO_ICMP ? 0 : 1)))
323 		goto bad;
324 #endif
325 
326 #if NPF > 0
327 	/*
328 	 * Packet filter
329 	 */
330 	pfrdr = ip->ip_dst.s_addr;
331 	if (pf_test(AF_INET, PF_IN, ifp, mp) != PF_PASS)
332 		goto bad;
333 	m = *mp;
334 	if (m == NULL)
335 		goto bad;
336 
337 	ip = mtod(m, struct ip *);
338 	hlen = ip->ip_hl << 2;
339 	pfrdr = (pfrdr != ip->ip_dst.s_addr);
340 #endif
341 
342 	/*
343 	 * Process options and, if not destined for us,
344 	 * ship it on.  ip_dooptions returns 1 when an
345 	 * error was detected (causing an icmp message
346 	 * to be sent and the original packet to be freed).
347 	 */
348 	if (hlen > sizeof (struct ip) && ip_dooptions(m, ifp)) {
349 		m = *mp = NULL;
350 		goto bad;
351 	}
352 
353 	if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
354 	    ip->ip_dst.s_addr == INADDR_ANY) {
355 		nxt = ip_ours(mp, offp, nxt, af);
356 		goto out;
357 	}
358 
359 	switch(in_ouraddr(m, ifp, &rt)) {
360 	case 2:
361 		goto bad;
362 	case 1:
363 		nxt = ip_ours(mp, offp, nxt, af);
364 		goto out;
365 	}
366 
367 	if (IN_MULTICAST(ip->ip_dst.s_addr)) {
368 		/*
369 		 * Make sure M_MCAST is set.  It should theoretically
370 		 * already be there, but let's play safe because upper
371 		 * layers check for this flag.
372 		 */
373 		m->m_flags |= M_MCAST;
374 
375 #ifdef MROUTING
376 		if (ipmforwarding && ip_mrouter[ifp->if_rdomain]) {
377 			int error;
378 
379 			if (m->m_flags & M_EXT) {
380 				if ((m = *mp = m_pullup(m, hlen)) == NULL) {
381 					ipstat_inc(ips_toosmall);
382 					goto bad;
383 				}
384 				ip = mtod(m, struct ip *);
385 			}
386 			/*
387 			 * If we are acting as a multicast router, all
388 			 * incoming multicast packets are passed to the
389 			 * kernel-level multicast forwarding function.
390 			 * The packet is returned (relatively) intact; if
391 			 * ip_mforward() returns a non-zero value, the packet
392 			 * must be discarded, else it may be accepted below.
393 			 *
394 			 * (The IP ident field is put in the same byte order
395 			 * as expected when ip_mforward() is called from
396 			 * ip_output().)
397 			 */
398 			KERNEL_LOCK();
399 			error = ip_mforward(m, ifp);
400 			KERNEL_UNLOCK();
401 			if (error) {
402 				ipstat_inc(ips_cantforward);
403 				goto bad;
404 			}
405 
406 			/*
407 			 * The process-level routing daemon needs to receive
408 			 * all multicast IGMP packets, whether or not this
409 			 * host belongs to their destination groups.
410 			 */
411 			if (ip->ip_p == IPPROTO_IGMP) {
412 				nxt = ip_ours(mp, offp, nxt, af);
413 				goto out;
414 			}
415 			ipstat_inc(ips_forward);
416 		}
417 #endif
418 		/*
419 		 * See if we belong to the destination multicast group on the
420 		 * arrival interface.
421 		 */
422 		if (!in_hasmulti(&ip->ip_dst, ifp)) {
423 			ipstat_inc(ips_notmember);
424 			if (!IN_LOCAL_GROUP(ip->ip_dst.s_addr))
425 				ipstat_inc(ips_cantforward);
426 			goto bad;
427 		}
428 		nxt = ip_ours(mp, offp, nxt, af);
429 		goto out;
430 	}
431 
432 #if NCARP > 0
433 	if (ip->ip_p == IPPROTO_ICMP &&
434 	    carp_lsdrop(ifp, m, AF_INET, &ip->ip_src.s_addr,
435 	    &ip->ip_dst.s_addr, 1))
436 		goto bad;
437 #endif
438 	/*
439 	 * Not for us; forward if possible and desirable.
440 	 */
441 	if (ipforwarding == 0) {
442 		ipstat_inc(ips_cantforward);
443 		goto bad;
444 	}
445 #ifdef IPSEC
446 	if (ipsec_in_use) {
447 		int rv;
448 
449 		rv = ipsec_forward_check(m, hlen, AF_INET);
450 		if (rv != 0) {
451 			ipstat_inc(ips_cantforward);
452 			goto bad;
453 		}
454 		/*
455 		 * Fall through, forward packet. Outbound IPsec policy
456 		 * checking will occur in ip_output().
457 		 */
458 	}
459 #endif /* IPSEC */
460 
461 	ip_forward(m, ifp, rt, pfrdr);
462 	*mp = NULL;
463 	return IPPROTO_DONE;
464  bad:
465 	nxt = IPPROTO_DONE;
466 	m_freemp(mp);
467  out:
468 	rtfree(rt);
469 	return nxt;
470 }
471 
472 /*
473  * IPv4 local-delivery routine.
474  *
475  * If fragmented try to reassemble.  Pass to next level.
476  */
477 int
478 ip_ours(struct mbuf **mp, int *offp, int nxt, int af)
479 {
480 	struct mbuf *m = *mp;
481 	struct ip *ip = mtod(m, struct ip *);
482 	struct ipq *fp;
483 	struct ipqent *ipqe;
484 	int mff, hlen;
485 
486 	hlen = ip->ip_hl << 2;
487 
488 	/*
489 	 * If offset or IP_MF are set, must reassemble.
490 	 * Otherwise, nothing need be done.
491 	 * (We could look in the reassembly queue to see
492 	 * if the packet was previously fragmented,
493 	 * but it's not worth the time; just let them time out.)
494 	 */
495 	if (ip->ip_off &~ htons(IP_DF | IP_RF)) {
496 		if (m->m_flags & M_EXT) {		/* XXX */
497 			if ((m = *mp = m_pullup(m, hlen)) == NULL) {
498 				ipstat_inc(ips_toosmall);
499 				return IPPROTO_DONE;
500 			}
501 			ip = mtod(m, struct ip *);
502 		}
503 
504 		mtx_enter(&ipq_mutex);
505 
506 		/*
507 		 * Look for queue of fragments
508 		 * of this datagram.
509 		 */
510 		LIST_FOREACH(fp, &ipq, ipq_q) {
511 			if (ip->ip_id == fp->ipq_id &&
512 			    ip->ip_src.s_addr == fp->ipq_src.s_addr &&
513 			    ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
514 			    ip->ip_p == fp->ipq_p)
515 				break;
516 		}
517 
518 		/*
519 		 * Adjust ip_len to not reflect header,
520 		 * set ipqe_mff if more fragments are expected,
521 		 * convert offset of this to bytes.
522 		 */
523 		ip->ip_len = htons(ntohs(ip->ip_len) - hlen);
524 		mff = (ip->ip_off & htons(IP_MF)) != 0;
525 		if (mff) {
526 			/*
527 			 * Make sure that fragments have a data length
528 			 * that's a non-zero multiple of 8 bytes.
529 			 */
530 			if (ntohs(ip->ip_len) == 0 ||
531 			    (ntohs(ip->ip_len) & 0x7) != 0) {
532 				ipstat_inc(ips_badfrags);
533 				goto bad;
534 			}
535 		}
536 		ip->ip_off = htons(ntohs(ip->ip_off) << 3);
537 
538 		/*
539 		 * If datagram marked as having more fragments
540 		 * or if this is not the first fragment,
541 		 * attempt reassembly; if it succeeds, proceed.
542 		 */
543 		if (mff || ip->ip_off) {
544 			ipstat_inc(ips_fragments);
545 			if (ip_frags + 1 > ip_maxqueue) {
546 				ip_flush();
547 				ipstat_inc(ips_rcvmemdrop);
548 				goto bad;
549 			}
550 
551 			ipqe = pool_get(&ipqent_pool, PR_NOWAIT);
552 			if (ipqe == NULL) {
553 				ipstat_inc(ips_rcvmemdrop);
554 				goto bad;
555 			}
556 			ip_frags++;
557 			ipqe->ipqe_mff = mff;
558 			ipqe->ipqe_m = m;
559 			ipqe->ipqe_ip = ip;
560 			m = *mp = ip_reass(ipqe, fp);
561 			if (m == NULL)
562 				goto bad;
563 			ipstat_inc(ips_reassembled);
564 			ip = mtod(m, struct ip *);
565 			hlen = ip->ip_hl << 2;
566 			ip->ip_len = htons(ntohs(ip->ip_len) + hlen);
567 		} else
568 			if (fp)
569 				ip_freef(fp);
570 
571 		mtx_leave(&ipq_mutex);
572 	}
573 
574 	*offp = hlen;
575 	nxt = ip->ip_p;
576 	/* Check wheter we are already in a IPv4/IPv6 local deliver loop. */
577 	if (af == AF_UNSPEC)
578 		nxt = ip_deliver(mp, offp, nxt, AF_INET);
579 	return nxt;
580  bad:
581 	mtx_leave(&ipq_mutex);
582 	m_freemp(mp);
583 	return IPPROTO_DONE;
584 }
585 
586 #ifndef INET6
587 #define IPSTAT_INC(name)	ipstat_inc(ips_##name)
588 #else
589 #define IPSTAT_INC(name)	(af == AF_INET ?	\
590     ipstat_inc(ips_##name) : ip6stat_inc(ip6s_##name))
591 #endif
592 
593 int
594 ip_deliver(struct mbuf **mp, int *offp, int nxt, int af)
595 {
596 	const struct protosw *psw;
597 	int naf = af;
598 #ifdef INET6
599 	int nest = 0;
600 #endif /* INET6 */
601 
602 	/* pf might have modified stuff, might have to chksum */
603 	switch (af) {
604 	case AF_INET:
605 		in_proto_cksum_out(*mp, NULL);
606 		break;
607 #ifdef INET6
608 	case AF_INET6:
609 		in6_proto_cksum_out(*mp, NULL);
610 		break;
611 #endif /* INET6 */
612 	}
613 
614 	/*
615 	 * Tell launch routine the next header
616 	 */
617 	IPSTAT_INC(delivered);
618 
619 	while (nxt != IPPROTO_DONE) {
620 #ifdef INET6
621 		if (af == AF_INET6 &&
622 		    ip6_hdrnestlimit && (++nest > ip6_hdrnestlimit)) {
623 			ip6stat_inc(ip6s_toomanyhdr);
624 			goto bad;
625 		}
626 #endif /* INET6 */
627 
628 		/*
629 		 * protection against faulty packet - there should be
630 		 * more sanity checks in header chain processing.
631 		 */
632 		if ((*mp)->m_pkthdr.len < *offp) {
633 			IPSTAT_INC(tooshort);
634 			goto bad;
635 		}
636 
637 #ifdef IPSEC
638 		if (ipsec_in_use) {
639 			if (ipsec_local_check(*mp, *offp, nxt, af) != 0) {
640 				IPSTAT_INC(cantforward);
641 				goto bad;
642 			}
643 		}
644 		/* Otherwise, just fall through and deliver the packet */
645 #endif /* IPSEC */
646 
647 		switch (nxt) {
648 		case IPPROTO_IPV4:
649 			naf = AF_INET;
650 			ipstat_inc(ips_delivered);
651 			break;
652 #ifdef INET6
653 		case IPPROTO_IPV6:
654 			naf = AF_INET6;
655 			ip6stat_inc(ip6s_delivered);
656 			break;
657 #endif /* INET6 */
658 		}
659 		switch (af) {
660 		case AF_INET:
661 			psw = &inetsw[ip_protox[nxt]];
662 			break;
663 #ifdef INET6
664 		case AF_INET6:
665 			psw = &inet6sw[ip6_protox[nxt]];
666 			break;
667 #endif /* INET6 */
668 		}
669 		nxt = (*psw->pr_input)(mp, offp, nxt, af);
670 		af = naf;
671 	}
672 	return nxt;
673  bad:
674 	m_freemp(mp);
675 	return IPPROTO_DONE;
676 }
677 #undef IPSTAT_INC
678 
679 int
680 in_ouraddr(struct mbuf *m, struct ifnet *ifp, struct rtentry **prt)
681 {
682 	struct rtentry		*rt;
683 	struct ip		*ip;
684 	struct sockaddr_in	 sin;
685 	int			 match = 0;
686 
687 #if NPF > 0
688 	switch (pf_ouraddr(m)) {
689 	case 0:
690 		return (0);
691 	case 1:
692 		return (1);
693 	default:
694 		/* pf does not know it */
695 		break;
696 	}
697 #endif
698 
699 	ip = mtod(m, struct ip *);
700 
701 	memset(&sin, 0, sizeof(sin));
702 	sin.sin_len = sizeof(sin);
703 	sin.sin_family = AF_INET;
704 	sin.sin_addr = ip->ip_dst;
705 	rt = rtalloc_mpath(sintosa(&sin), &ip->ip_src.s_addr,
706 	    m->m_pkthdr.ph_rtableid);
707 	if (rtisvalid(rt)) {
708 		if (ISSET(rt->rt_flags, RTF_LOCAL))
709 			match = 1;
710 
711 		/*
712 		 * If directedbcast is enabled we only consider it local
713 		 * if it is received on the interface with that address.
714 		 */
715 		if (ISSET(rt->rt_flags, RTF_BROADCAST) &&
716 		    (!ip_directedbcast || rt->rt_ifidx == ifp->if_index)) {
717 			match = 1;
718 
719 			/* Make sure M_BCAST is set */
720 			m->m_flags |= M_BCAST;
721 		}
722 	}
723 	*prt = rt;
724 
725 	if (!match) {
726 		struct ifaddr *ifa;
727 
728 		/*
729 		 * No local address or broadcast address found, so check for
730 		 * ancient classful broadcast addresses.
731 		 * It must have been broadcast on the link layer, and for an
732 		 * address on the interface it was received on.
733 		 */
734 		if (!ISSET(m->m_flags, M_BCAST) ||
735 		    !IN_CLASSFULBROADCAST(ip->ip_dst.s_addr, ip->ip_dst.s_addr))
736 			return (0);
737 
738 		if (ifp->if_rdomain != rtable_l2(m->m_pkthdr.ph_rtableid))
739 			return (0);
740 		/*
741 		 * The check in the loop assumes you only rx a packet on an UP
742 		 * interface, and that M_BCAST will only be set on a BROADCAST
743 		 * interface.
744 		 */
745 		NET_ASSERT_LOCKED();
746 		TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
747 			if (ifa->ifa_addr->sa_family != AF_INET)
748 				continue;
749 
750 			if (IN_CLASSFULBROADCAST(ip->ip_dst.s_addr,
751 			    ifatoia(ifa)->ia_addr.sin_addr.s_addr)) {
752 				match = 1;
753 				break;
754 			}
755 		}
756 	} else if (ipforwarding == 0 && rt->rt_ifidx != ifp->if_index &&
757 	    !((ifp->if_flags & IFF_LOOPBACK) || (ifp->if_type == IFT_ENC) ||
758 	    (m->m_pkthdr.pf.flags & PF_TAG_TRANSLATE_LOCALHOST))) {
759 		/* received on wrong interface. */
760 #if NCARP > 0
761 		struct ifnet *out_if;
762 
763 		/*
764 		 * Virtual IPs on carp interfaces need to be checked also
765 		 * against the parent interface and other carp interfaces
766 		 * sharing the same parent.
767 		 */
768 		out_if = if_get(rt->rt_ifidx);
769 		if (!(out_if && carp_strict_addr_chk(out_if, ifp))) {
770 			ipstat_inc(ips_wrongif);
771 			match = 2;
772 		}
773 		if_put(out_if);
774 #else
775 		ipstat_inc(ips_wrongif);
776 		match = 2;
777 #endif
778 	}
779 
780 	return (match);
781 }
782 
783 /*
784  * Take incoming datagram fragment and try to
785  * reassemble it into whole datagram.  If a chain for
786  * reassembly of this datagram already exists, then it
787  * is given as fp; otherwise have to make a chain.
788  */
789 struct mbuf *
790 ip_reass(struct ipqent *ipqe, struct ipq *fp)
791 {
792 	struct mbuf *m = ipqe->ipqe_m;
793 	struct ipqent *nq, *p, *q;
794 	struct ip *ip;
795 	struct mbuf *t;
796 	int hlen = ipqe->ipqe_ip->ip_hl << 2;
797 	int i, next;
798 	u_int8_t ecn, ecn0;
799 
800 	MUTEX_ASSERT_LOCKED(&ipq_mutex);
801 
802 	/*
803 	 * Presence of header sizes in mbufs
804 	 * would confuse code below.
805 	 */
806 	m->m_data += hlen;
807 	m->m_len -= hlen;
808 
809 	/*
810 	 * If first fragment to arrive, create a reassembly queue.
811 	 */
812 	if (fp == NULL) {
813 		fp = pool_get(&ipq_pool, PR_NOWAIT);
814 		if (fp == NULL)
815 			goto dropfrag;
816 		LIST_INSERT_HEAD(&ipq, fp, ipq_q);
817 		fp->ipq_ttl = IPFRAGTTL;
818 		fp->ipq_p = ipqe->ipqe_ip->ip_p;
819 		fp->ipq_id = ipqe->ipqe_ip->ip_id;
820 		LIST_INIT(&fp->ipq_fragq);
821 		fp->ipq_src = ipqe->ipqe_ip->ip_src;
822 		fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
823 		p = NULL;
824 		goto insert;
825 	}
826 
827 	/*
828 	 * Handle ECN by comparing this segment with the first one;
829 	 * if CE is set, do not lose CE.
830 	 * drop if CE and not-ECT are mixed for the same packet.
831 	 */
832 	ecn = ipqe->ipqe_ip->ip_tos & IPTOS_ECN_MASK;
833 	ecn0 = LIST_FIRST(&fp->ipq_fragq)->ipqe_ip->ip_tos & IPTOS_ECN_MASK;
834 	if (ecn == IPTOS_ECN_CE) {
835 		if (ecn0 == IPTOS_ECN_NOTECT)
836 			goto dropfrag;
837 		if (ecn0 != IPTOS_ECN_CE)
838 			LIST_FIRST(&fp->ipq_fragq)->ipqe_ip->ip_tos |=
839 			    IPTOS_ECN_CE;
840 	}
841 	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
842 		goto dropfrag;
843 
844 	/*
845 	 * Find a segment which begins after this one does.
846 	 */
847 	for (p = NULL, q = LIST_FIRST(&fp->ipq_fragq); q != NULL;
848 	    p = q, q = LIST_NEXT(q, ipqe_q))
849 		if (ntohs(q->ipqe_ip->ip_off) > ntohs(ipqe->ipqe_ip->ip_off))
850 			break;
851 
852 	/*
853 	 * If there is a preceding segment, it may provide some of
854 	 * our data already.  If so, drop the data from the incoming
855 	 * segment.  If it provides all of our data, drop us.
856 	 */
857 	if (p != NULL) {
858 		i = ntohs(p->ipqe_ip->ip_off) + ntohs(p->ipqe_ip->ip_len) -
859 		    ntohs(ipqe->ipqe_ip->ip_off);
860 		if (i > 0) {
861 			if (i >= ntohs(ipqe->ipqe_ip->ip_len))
862 				goto dropfrag;
863 			m_adj(ipqe->ipqe_m, i);
864 			ipqe->ipqe_ip->ip_off =
865 			    htons(ntohs(ipqe->ipqe_ip->ip_off) + i);
866 			ipqe->ipqe_ip->ip_len =
867 			    htons(ntohs(ipqe->ipqe_ip->ip_len) - i);
868 		}
869 	}
870 
871 	/*
872 	 * While we overlap succeeding segments trim them or,
873 	 * if they are completely covered, dequeue them.
874 	 */
875 	for (; q != NULL &&
876 	    ntohs(ipqe->ipqe_ip->ip_off) + ntohs(ipqe->ipqe_ip->ip_len) >
877 	    ntohs(q->ipqe_ip->ip_off); q = nq) {
878 		i = (ntohs(ipqe->ipqe_ip->ip_off) +
879 		    ntohs(ipqe->ipqe_ip->ip_len)) - ntohs(q->ipqe_ip->ip_off);
880 		if (i < ntohs(q->ipqe_ip->ip_len)) {
881 			q->ipqe_ip->ip_len =
882 			    htons(ntohs(q->ipqe_ip->ip_len) - i);
883 			q->ipqe_ip->ip_off =
884 			    htons(ntohs(q->ipqe_ip->ip_off) + i);
885 			m_adj(q->ipqe_m, i);
886 			break;
887 		}
888 		nq = LIST_NEXT(q, ipqe_q);
889 		m_freem(q->ipqe_m);
890 		LIST_REMOVE(q, ipqe_q);
891 		pool_put(&ipqent_pool, q);
892 		ip_frags--;
893 	}
894 
895 insert:
896 	/*
897 	 * Stick new segment in its place;
898 	 * check for complete reassembly.
899 	 */
900 	if (p == NULL) {
901 		LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
902 	} else {
903 		LIST_INSERT_AFTER(p, ipqe, ipqe_q);
904 	}
905 	next = 0;
906 	for (p = NULL, q = LIST_FIRST(&fp->ipq_fragq); q != NULL;
907 	    p = q, q = LIST_NEXT(q, ipqe_q)) {
908 		if (ntohs(q->ipqe_ip->ip_off) != next)
909 			return (0);
910 		next += ntohs(q->ipqe_ip->ip_len);
911 	}
912 	if (p->ipqe_mff)
913 		return (0);
914 
915 	/*
916 	 * Reassembly is complete.  Check for a bogus message size and
917 	 * concatenate fragments.
918 	 */
919 	q = LIST_FIRST(&fp->ipq_fragq);
920 	ip = q->ipqe_ip;
921 	if ((next + (ip->ip_hl << 2)) > IP_MAXPACKET) {
922 		ipstat_inc(ips_toolong);
923 		ip_freef(fp);
924 		return (0);
925 	}
926 	m = q->ipqe_m;
927 	t = m->m_next;
928 	m->m_next = 0;
929 	m_cat(m, t);
930 	nq = LIST_NEXT(q, ipqe_q);
931 	pool_put(&ipqent_pool, q);
932 	ip_frags--;
933 	for (q = nq; q != NULL; q = nq) {
934 		t = q->ipqe_m;
935 		nq = LIST_NEXT(q, ipqe_q);
936 		pool_put(&ipqent_pool, q);
937 		ip_frags--;
938 		m_removehdr(t);
939 		m_cat(m, t);
940 	}
941 
942 	/*
943 	 * Create header for new ip packet by
944 	 * modifying header of first packet;
945 	 * dequeue and discard fragment reassembly header.
946 	 * Make header visible.
947 	 */
948 	ip->ip_len = htons(next);
949 	ip->ip_src = fp->ipq_src;
950 	ip->ip_dst = fp->ipq_dst;
951 	LIST_REMOVE(fp, ipq_q);
952 	pool_put(&ipq_pool, fp);
953 	m->m_len += (ip->ip_hl << 2);
954 	m->m_data -= (ip->ip_hl << 2);
955 	m_calchdrlen(m);
956 	return (m);
957 
958 dropfrag:
959 	ipstat_inc(ips_fragdropped);
960 	m_freem(m);
961 	pool_put(&ipqent_pool, ipqe);
962 	ip_frags--;
963 	return (NULL);
964 }
965 
966 /*
967  * Free a fragment reassembly header and all
968  * associated datagrams.
969  */
970 void
971 ip_freef(struct ipq *fp)
972 {
973 	struct ipqent *q;
974 
975 	MUTEX_ASSERT_LOCKED(&ipq_mutex);
976 
977 	while ((q = LIST_FIRST(&fp->ipq_fragq)) != NULL) {
978 		LIST_REMOVE(q, ipqe_q);
979 		m_freem(q->ipqe_m);
980 		pool_put(&ipqent_pool, q);
981 		ip_frags--;
982 	}
983 	LIST_REMOVE(fp, ipq_q);
984 	pool_put(&ipq_pool, fp);
985 }
986 
987 /*
988  * IP timer processing;
989  * if a timer expires on a reassembly queue, discard it.
990  */
991 void
992 ip_slowtimo(void)
993 {
994 	struct ipq *fp, *nfp;
995 
996 	mtx_enter(&ipq_mutex);
997 	LIST_FOREACH_SAFE(fp, &ipq, ipq_q, nfp) {
998 		if (--fp->ipq_ttl == 0) {
999 			ipstat_inc(ips_fragtimeout);
1000 			ip_freef(fp);
1001 		}
1002 	}
1003 	mtx_leave(&ipq_mutex);
1004 }
1005 
1006 /*
1007  * Flush a bunch of datagram fragments, till we are down to 75%.
1008  */
1009 void
1010 ip_flush(void)
1011 {
1012 	int max = 50;
1013 
1014 	MUTEX_ASSERT_LOCKED(&ipq_mutex);
1015 
1016 	while (!LIST_EMPTY(&ipq) && ip_frags > ip_maxqueue * 3 / 4 && --max) {
1017 		ipstat_inc(ips_fragdropped);
1018 		ip_freef(LIST_FIRST(&ipq));
1019 	}
1020 }
1021 
1022 /*
1023  * Do option processing on a datagram,
1024  * possibly discarding it if bad options are encountered,
1025  * or forwarding it if source-routed.
1026  * Returns 1 if packet has been forwarded/freed,
1027  * 0 if the packet should be processed further.
1028  */
1029 int
1030 ip_dooptions(struct mbuf *m, struct ifnet *ifp)
1031 {
1032 	struct ip *ip = mtod(m, struct ip *);
1033 	unsigned int rtableid = m->m_pkthdr.ph_rtableid;
1034 	struct rtentry *rt;
1035 	struct sockaddr_in ipaddr;
1036 	u_char *cp;
1037 	struct ip_timestamp ipt;
1038 	struct in_ifaddr *ia;
1039 	int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
1040 	struct in_addr sin, dst;
1041 	u_int32_t ntime;
1042 
1043 	dst = ip->ip_dst;
1044 	cp = (u_char *)(ip + 1);
1045 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1046 
1047 	KERNEL_LOCK();
1048 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1049 		opt = cp[IPOPT_OPTVAL];
1050 		if (opt == IPOPT_EOL)
1051 			break;
1052 		if (opt == IPOPT_NOP)
1053 			optlen = 1;
1054 		else {
1055 			if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1056 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1057 				goto bad;
1058 			}
1059 			optlen = cp[IPOPT_OLEN];
1060 			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1061 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1062 				goto bad;
1063 			}
1064 		}
1065 
1066 		switch (opt) {
1067 
1068 		default:
1069 			break;
1070 
1071 		/*
1072 		 * Source routing with record.
1073 		 * Find interface with current destination address.
1074 		 * If none on this machine then drop if strictly routed,
1075 		 * or do nothing if loosely routed.
1076 		 * Record interface address and bring up next address
1077 		 * component.  If strictly routed make sure next
1078 		 * address is on directly accessible net.
1079 		 */
1080 		case IPOPT_LSRR:
1081 		case IPOPT_SSRR:
1082 			if (!ip_dosourceroute) {
1083 				type = ICMP_UNREACH;
1084 				code = ICMP_UNREACH_SRCFAIL;
1085 				goto bad;
1086 			}
1087 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1088 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1089 				goto bad;
1090 			}
1091 			memset(&ipaddr, 0, sizeof(ipaddr));
1092 			ipaddr.sin_family = AF_INET;
1093 			ipaddr.sin_len = sizeof(ipaddr);
1094 			ipaddr.sin_addr = ip->ip_dst;
1095 			ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr),
1096 			    m->m_pkthdr.ph_rtableid));
1097 			if (ia == NULL) {
1098 				if (opt == IPOPT_SSRR) {
1099 					type = ICMP_UNREACH;
1100 					code = ICMP_UNREACH_SRCFAIL;
1101 					goto bad;
1102 				}
1103 				/*
1104 				 * Loose routing, and not at next destination
1105 				 * yet; nothing to do except forward.
1106 				 */
1107 				break;
1108 			}
1109 			off--;			/* 0 origin */
1110 			if ((off + sizeof(struct in_addr)) > optlen) {
1111 				/*
1112 				 * End of source route.  Should be for us.
1113 				 */
1114 				save_rte(m, cp, ip->ip_src);
1115 				break;
1116 			}
1117 
1118 			/*
1119 			 * locate outgoing interface
1120 			 */
1121 			memset(&ipaddr, 0, sizeof(ipaddr));
1122 			ipaddr.sin_family = AF_INET;
1123 			ipaddr.sin_len = sizeof(ipaddr);
1124 			memcpy(&ipaddr.sin_addr, cp + off,
1125 			    sizeof(ipaddr.sin_addr));
1126 			/* keep packet in the virtual instance */
1127 			rt = rtalloc(sintosa(&ipaddr), RT_RESOLVE, rtableid);
1128 			if (!rtisvalid(rt) || ((opt == IPOPT_SSRR) &&
1129 			    ISSET(rt->rt_flags, RTF_GATEWAY))) {
1130 				type = ICMP_UNREACH;
1131 				code = ICMP_UNREACH_SRCFAIL;
1132 				rtfree(rt);
1133 				goto bad;
1134 			}
1135 			ia = ifatoia(rt->rt_ifa);
1136 			memcpy(cp + off, &ia->ia_addr.sin_addr,
1137 			    sizeof(struct in_addr));
1138 			rtfree(rt);
1139 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1140 			ip->ip_dst = ipaddr.sin_addr;
1141 			/*
1142 			 * Let ip_intr's mcast routing check handle mcast pkts
1143 			 */
1144 			forward = !IN_MULTICAST(ip->ip_dst.s_addr);
1145 			break;
1146 
1147 		case IPOPT_RR:
1148 			if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1149 				code = &cp[IPOPT_OLEN] - (u_char *)ip;
1150 				goto bad;
1151 			}
1152 			if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1153 				code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1154 				goto bad;
1155 			}
1156 
1157 			/*
1158 			 * If no space remains, ignore.
1159 			 */
1160 			off--;			/* 0 origin */
1161 			if ((off + sizeof(struct in_addr)) > optlen)
1162 				break;
1163 			memset(&ipaddr, 0, sizeof(ipaddr));
1164 			ipaddr.sin_family = AF_INET;
1165 			ipaddr.sin_len = sizeof(ipaddr);
1166 			ipaddr.sin_addr = ip->ip_dst;
1167 			/*
1168 			 * locate outgoing interface; if we're the destination,
1169 			 * use the incoming interface (should be same).
1170 			 * Again keep the packet inside the virtual instance.
1171 			 */
1172 			rt = rtalloc(sintosa(&ipaddr), RT_RESOLVE, rtableid);
1173 			if (!rtisvalid(rt)) {
1174 				type = ICMP_UNREACH;
1175 				code = ICMP_UNREACH_HOST;
1176 				rtfree(rt);
1177 				goto bad;
1178 			}
1179 			ia = ifatoia(rt->rt_ifa);
1180 			memcpy(cp + off, &ia->ia_addr.sin_addr,
1181 			    sizeof(struct in_addr));
1182 			rtfree(rt);
1183 			cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1184 			break;
1185 
1186 		case IPOPT_TS:
1187 			code = cp - (u_char *)ip;
1188 			if (optlen < sizeof(struct ip_timestamp))
1189 				goto bad;
1190 			memcpy(&ipt, cp, sizeof(struct ip_timestamp));
1191 			if (ipt.ipt_ptr < 5 || ipt.ipt_len < 5)
1192 				goto bad;
1193 			if (ipt.ipt_ptr - 1 + sizeof(u_int32_t) > ipt.ipt_len) {
1194 				if (++ipt.ipt_oflw == 0)
1195 					goto bad;
1196 				break;
1197 			}
1198 			memcpy(&sin, cp + ipt.ipt_ptr - 1, sizeof sin);
1199 			switch (ipt.ipt_flg) {
1200 
1201 			case IPOPT_TS_TSONLY:
1202 				break;
1203 
1204 			case IPOPT_TS_TSANDADDR:
1205 				if (ipt.ipt_ptr - 1 + sizeof(u_int32_t) +
1206 				    sizeof(struct in_addr) > ipt.ipt_len)
1207 					goto bad;
1208 				memset(&ipaddr, 0, sizeof(ipaddr));
1209 				ipaddr.sin_family = AF_INET;
1210 				ipaddr.sin_len = sizeof(ipaddr);
1211 				ipaddr.sin_addr = dst;
1212 				ia = ifatoia(ifaof_ifpforaddr(sintosa(&ipaddr),
1213 				    ifp));
1214 				if (ia == NULL)
1215 					continue;
1216 				memcpy(&sin, &ia->ia_addr.sin_addr,
1217 				    sizeof(struct in_addr));
1218 				ipt.ipt_ptr += sizeof(struct in_addr);
1219 				break;
1220 
1221 			case IPOPT_TS_PRESPEC:
1222 				if (ipt.ipt_ptr - 1 + sizeof(u_int32_t) +
1223 				    sizeof(struct in_addr) > ipt.ipt_len)
1224 					goto bad;
1225 				memset(&ipaddr, 0, sizeof(ipaddr));
1226 				ipaddr.sin_family = AF_INET;
1227 				ipaddr.sin_len = sizeof(ipaddr);
1228 				ipaddr.sin_addr = sin;
1229 				if (ifa_ifwithaddr(sintosa(&ipaddr),
1230 				    m->m_pkthdr.ph_rtableid) == NULL)
1231 					continue;
1232 				ipt.ipt_ptr += sizeof(struct in_addr);
1233 				break;
1234 
1235 			default:
1236 				/* XXX can't take &ipt->ipt_flg */
1237 				code = (u_char *)&ipt.ipt_ptr -
1238 				    (u_char *)ip + 1;
1239 				goto bad;
1240 			}
1241 			ntime = iptime();
1242 			memcpy(cp + ipt.ipt_ptr - 1, &ntime, sizeof(u_int32_t));
1243 			ipt.ipt_ptr += sizeof(u_int32_t);
1244 		}
1245 	}
1246 	KERNEL_UNLOCK();
1247 	if (forward && ipforwarding) {
1248 		ip_forward(m, ifp, NULL, 1);
1249 		return (1);
1250 	}
1251 	return (0);
1252 bad:
1253 	KERNEL_UNLOCK();
1254 	icmp_error(m, type, code, 0, 0);
1255 	ipstat_inc(ips_badoptions);
1256 	return (1);
1257 }
1258 
1259 /*
1260  * Save incoming source route for use in replies,
1261  * to be picked up later by ip_srcroute if the receiver is interested.
1262  */
1263 void
1264 save_rte(struct mbuf *m, u_char *option, struct in_addr dst)
1265 {
1266 	struct ip_srcrt *isr;
1267 	struct m_tag *mtag;
1268 	unsigned olen;
1269 
1270 	olen = option[IPOPT_OLEN];
1271 	if (olen > sizeof(isr->isr_hdr) + sizeof(isr->isr_routes))
1272 		return;
1273 
1274 	mtag = m_tag_get(PACKET_TAG_SRCROUTE, sizeof(*isr), M_NOWAIT);
1275 	if (mtag == NULL)
1276 		return;
1277 	isr = (struct ip_srcrt *)(mtag + 1);
1278 
1279 	memcpy(isr->isr_hdr, option, olen);
1280 	isr->isr_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1281 	isr->isr_dst = dst;
1282 	m_tag_prepend(m, mtag);
1283 }
1284 
1285 /*
1286  * Retrieve incoming source route for use in replies,
1287  * in the same form used by setsockopt.
1288  * The first hop is placed before the options, will be removed later.
1289  */
1290 struct mbuf *
1291 ip_srcroute(struct mbuf *m0)
1292 {
1293 	struct in_addr *p, *q;
1294 	struct mbuf *m;
1295 	struct ip_srcrt *isr;
1296 	struct m_tag *mtag;
1297 
1298 	if (!ip_dosourceroute)
1299 		return (NULL);
1300 
1301 	mtag = m_tag_find(m0, PACKET_TAG_SRCROUTE, NULL);
1302 	if (mtag == NULL)
1303 		return (NULL);
1304 	isr = (struct ip_srcrt *)(mtag + 1);
1305 
1306 	if (isr->isr_nhops == 0)
1307 		return (NULL);
1308 	m = m_get(M_DONTWAIT, MT_SOOPTS);
1309 	if (m == NULL)
1310 		return (NULL);
1311 
1312 #define OPTSIZ	(sizeof(isr->isr_nop) + sizeof(isr->isr_hdr))
1313 
1314 	/* length is (nhops+1)*sizeof(addr) + sizeof(nop + header) */
1315 	m->m_len = (isr->isr_nhops + 1) * sizeof(struct in_addr) + OPTSIZ;
1316 
1317 	/*
1318 	 * First save first hop for return route
1319 	 */
1320 	p = &(isr->isr_routes[isr->isr_nhops - 1]);
1321 	*(mtod(m, struct in_addr *)) = *p--;
1322 
1323 	/*
1324 	 * Copy option fields and padding (nop) to mbuf.
1325 	 */
1326 	isr->isr_nop = IPOPT_NOP;
1327 	isr->isr_hdr[IPOPT_OFFSET] = IPOPT_MINOFF;
1328 	memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &isr->isr_nop,
1329 	    OPTSIZ);
1330 	q = (struct in_addr *)(mtod(m, caddr_t) +
1331 	    sizeof(struct in_addr) + OPTSIZ);
1332 #undef OPTSIZ
1333 	/*
1334 	 * Record return path as an IP source route,
1335 	 * reversing the path (pointers are now aligned).
1336 	 */
1337 	while (p >= isr->isr_routes) {
1338 		*q++ = *p--;
1339 	}
1340 	/*
1341 	 * Last hop goes to final destination.
1342 	 */
1343 	*q = isr->isr_dst;
1344 	m_tag_delete(m0, (struct m_tag *)isr);
1345 	return (m);
1346 }
1347 
1348 /*
1349  * Strip out IP options, at higher level protocol in the kernel.
1350  */
1351 void
1352 ip_stripoptions(struct mbuf *m)
1353 {
1354 	int i;
1355 	struct ip *ip = mtod(m, struct ip *);
1356 	caddr_t opts;
1357 	int olen;
1358 
1359 	olen = (ip->ip_hl<<2) - sizeof (struct ip);
1360 	opts = (caddr_t)(ip + 1);
1361 	i = m->m_len - (sizeof (struct ip) + olen);
1362 	memmove(opts, opts  + olen, i);
1363 	m->m_len -= olen;
1364 	if (m->m_flags & M_PKTHDR)
1365 		m->m_pkthdr.len -= olen;
1366 	ip->ip_hl = sizeof(struct ip) >> 2;
1367 	ip->ip_len = htons(ntohs(ip->ip_len) - olen);
1368 }
1369 
1370 const u_char inetctlerrmap[PRC_NCMDS] = {
1371 	0,		0,		0,		0,
1372 	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1373 	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1374 	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1375 	0,		0,		0,		0,
1376 	ENOPROTOOPT
1377 };
1378 
1379 /*
1380  * Forward a packet.  If some error occurs return the sender
1381  * an icmp packet.  Note we can't always generate a meaningful
1382  * icmp message because icmp doesn't have a large enough repertoire
1383  * of codes and types.
1384  *
1385  * If not forwarding, just drop the packet.  This could be confusing
1386  * if ipforwarding was zero but some routing protocol was advancing
1387  * us as a gateway to somewhere.  However, we must let the routing
1388  * protocol deal with that.
1389  *
1390  * The srcrt parameter indicates whether the packet is being forwarded
1391  * via a source route.
1392  */
1393 void
1394 ip_forward(struct mbuf *m, struct ifnet *ifp, struct rtentry *rt, int srcrt)
1395 {
1396 	struct mbuf mfake, *mcopy = NULL;
1397 	struct ip *ip = mtod(m, struct ip *);
1398 	struct sockaddr_in *sin;
1399 	struct route ro;
1400 	int error, type = 0, code = 0, destmtu = 0, fake = 0, len;
1401 	u_int32_t dest;
1402 
1403 	dest = 0;
1404 	if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
1405 		ipstat_inc(ips_cantforward);
1406 		m_freem(m);
1407 		goto freecopy;
1408 	}
1409 	if (ip->ip_ttl <= IPTTLDEC) {
1410 		icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1411 		goto freecopy;
1412 	}
1413 
1414 	sin = satosin(&ro.ro_dst);
1415 	memset(sin, 0, sizeof(*sin));
1416 	sin->sin_family = AF_INET;
1417 	sin->sin_len = sizeof(*sin);
1418 	sin->sin_addr = ip->ip_dst;
1419 
1420 	if (!rtisvalid(rt)) {
1421 		rtfree(rt);
1422 		rt = rtalloc_mpath(sintosa(sin), &ip->ip_src.s_addr,
1423 		    m->m_pkthdr.ph_rtableid);
1424 		if (rt == NULL) {
1425 			icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1426 			return;
1427 		}
1428 	}
1429 
1430 	/*
1431 	 * Save at most 68 bytes of the packet in case
1432 	 * we need to generate an ICMP message to the src.
1433 	 * The data is saved in the mbuf on the stack that
1434 	 * acts as a temporary storage not intended to be
1435 	 * passed down the IP stack or to the mfree.
1436 	 */
1437 	memset(&mfake.m_hdr, 0, sizeof(mfake.m_hdr));
1438 	mfake.m_type = m->m_type;
1439 	if (m_dup_pkthdr(&mfake, m, M_DONTWAIT) == 0) {
1440 		mfake.m_data = mfake.m_pktdat;
1441 		len = min(ntohs(ip->ip_len), 68);
1442 		m_copydata(m, 0, len, mfake.m_pktdat);
1443 		mfake.m_pkthdr.len = mfake.m_len = len;
1444 #if NPF > 0
1445 		pf_pkt_addr_changed(&mfake);
1446 #endif	/* NPF > 0 */
1447 		fake = 1;
1448 	}
1449 
1450 	ip->ip_ttl -= IPTTLDEC;
1451 
1452 	/*
1453 	 * If forwarding packet using same interface that it came in on,
1454 	 * perhaps should send a redirect to sender to shortcut a hop.
1455 	 * Only send redirect if source is sending directly to us,
1456 	 * and if packet was not source routed (or has any options).
1457 	 * Also, don't send redirect if forwarding using a default route
1458 	 * or a route modified by a redirect.
1459 	 * Don't send redirect if we advertise destination's arp address
1460 	 * as ours (proxy arp).
1461 	 */
1462 	if ((rt->rt_ifidx == ifp->if_index) &&
1463 	    (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
1464 	    satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
1465 	    ipsendredirects && !srcrt &&
1466 	    !arpproxy(satosin(rt_key(rt))->sin_addr, m->m_pkthdr.ph_rtableid)) {
1467 		if ((ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_netmask) ==
1468 		    ifatoia(rt->rt_ifa)->ia_net) {
1469 		    if (rt->rt_flags & RTF_GATEWAY)
1470 			dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1471 		    else
1472 			dest = ip->ip_dst.s_addr;
1473 		    /* Router requirements says to only send host redirects */
1474 		    type = ICMP_REDIRECT;
1475 		    code = ICMP_REDIRECT_HOST;
1476 		}
1477 	}
1478 
1479 	ro.ro_rt = rt;
1480 	ro.ro_tableid = m->m_pkthdr.ph_rtableid;
1481 	error = ip_output(m, NULL, &ro,
1482 	    (IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)),
1483 	    NULL, NULL, 0);
1484 	rt = ro.ro_rt;
1485 	if (error)
1486 		ipstat_inc(ips_cantforward);
1487 	else {
1488 		ipstat_inc(ips_forward);
1489 		if (type)
1490 			ipstat_inc(ips_redirectsent);
1491 		else
1492 			goto freecopy;
1493 	}
1494 	if (!fake)
1495 		goto freecopy;
1496 
1497 	switch (error) {
1498 
1499 	case 0:				/* forwarded, but need redirect */
1500 		/* type, code set above */
1501 		break;
1502 
1503 	case ENETUNREACH:		/* shouldn't happen, checked above */
1504 	case EHOSTUNREACH:
1505 	case ENETDOWN:
1506 	case EHOSTDOWN:
1507 	default:
1508 		type = ICMP_UNREACH;
1509 		code = ICMP_UNREACH_HOST;
1510 		break;
1511 
1512 	case EMSGSIZE:
1513 		type = ICMP_UNREACH;
1514 		code = ICMP_UNREACH_NEEDFRAG;
1515 
1516 #ifdef IPSEC
1517 		if (rt != NULL) {
1518 			if (rt->rt_mtu)
1519 				destmtu = rt->rt_mtu;
1520 			else {
1521 				struct ifnet *destifp;
1522 
1523 				destifp = if_get(rt->rt_ifidx);
1524 				if (destifp != NULL)
1525 					destmtu = destifp->if_mtu;
1526 				if_put(destifp);
1527 			}
1528 		}
1529 #endif /*IPSEC*/
1530 		ipstat_inc(ips_cantfrag);
1531 		break;
1532 
1533 	case EACCES:
1534 		/*
1535 		 * pf(4) blocked the packet. There is no need to send an ICMP
1536 		 * packet back since pf(4) takes care of it.
1537 		 */
1538 		goto freecopy;
1539 	case ENOBUFS:
1540 		/*
1541 		 * a router should not generate ICMP_SOURCEQUENCH as
1542 		 * required in RFC1812 Requirements for IP Version 4 Routers.
1543 		 * source quench could be a big problem under DoS attacks,
1544 		 * or the underlying interface is rate-limited.
1545 		 */
1546 		goto freecopy;
1547 	}
1548 
1549 	mcopy = m_copym(&mfake, 0, len, M_DONTWAIT);
1550 	if (mcopy)
1551 		icmp_error(mcopy, type, code, dest, destmtu);
1552 
1553 freecopy:
1554 	if (fake)
1555 		m_tag_delete_chain(&mfake);
1556 	rtfree(rt);
1557 }
1558 
1559 int
1560 ip_sysctl(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp,
1561     size_t newlen)
1562 {
1563 	int error;
1564 #ifdef MROUTING
1565 	extern int ip_mrtproto;
1566 	extern struct mrtstat mrtstat;
1567 #endif
1568 
1569 	/* Almost all sysctl names at this level are terminal. */
1570 	if (namelen != 1 && name[0] != IPCTL_IFQUEUE &&
1571 	    name[0] != IPCTL_ARPQUEUE)
1572 		return (ENOTDIR);
1573 
1574 	switch (name[0]) {
1575 	case IPCTL_SOURCEROUTE:
1576 		/*
1577 		 * Don't allow this to change in a secure environment.
1578 		 */
1579 		if (newp && securelevel > 0)
1580 			return (EPERM);
1581 		NET_LOCK();
1582 		error = sysctl_int(oldp, oldlenp, newp, newlen,
1583 		    &ip_dosourceroute);
1584 		NET_UNLOCK();
1585 		return (error);
1586 	case IPCTL_MTUDISC:
1587 		NET_LOCK();
1588 		error = sysctl_int(oldp, oldlenp, newp, newlen,
1589 		    &ip_mtudisc);
1590 		if (ip_mtudisc != 0 && ip_mtudisc_timeout_q == NULL) {
1591 			ip_mtudisc_timeout_q =
1592 			    rt_timer_queue_create(ip_mtudisc_timeout);
1593 		} else if (ip_mtudisc == 0 && ip_mtudisc_timeout_q != NULL) {
1594 			rt_timer_queue_destroy(ip_mtudisc_timeout_q);
1595 			ip_mtudisc_timeout_q = NULL;
1596 		}
1597 		NET_UNLOCK();
1598 		return error;
1599 	case IPCTL_MTUDISCTIMEOUT:
1600 		NET_LOCK();
1601 		error = sysctl_int(oldp, oldlenp, newp, newlen,
1602 		   &ip_mtudisc_timeout);
1603 		if (ip_mtudisc_timeout_q != NULL)
1604 			rt_timer_queue_change(ip_mtudisc_timeout_q,
1605 					      ip_mtudisc_timeout);
1606 		NET_UNLOCK();
1607 		return (error);
1608 #ifdef IPSEC
1609 	case IPCTL_ENCDEBUG:
1610 	case IPCTL_IPSEC_STATS:
1611 	case IPCTL_IPSEC_EXPIRE_ACQUIRE:
1612 	case IPCTL_IPSEC_EMBRYONIC_SA_TIMEOUT:
1613 	case IPCTL_IPSEC_REQUIRE_PFS:
1614 	case IPCTL_IPSEC_SOFT_ALLOCATIONS:
1615 	case IPCTL_IPSEC_ALLOCATIONS:
1616 	case IPCTL_IPSEC_SOFT_BYTES:
1617 	case IPCTL_IPSEC_BYTES:
1618 	case IPCTL_IPSEC_TIMEOUT:
1619 	case IPCTL_IPSEC_SOFT_TIMEOUT:
1620 	case IPCTL_IPSEC_SOFT_FIRSTUSE:
1621 	case IPCTL_IPSEC_FIRSTUSE:
1622 	case IPCTL_IPSEC_ENC_ALGORITHM:
1623 	case IPCTL_IPSEC_AUTH_ALGORITHM:
1624 	case IPCTL_IPSEC_IPCOMP_ALGORITHM:
1625 		return (ipsec_sysctl(name, namelen, oldp, oldlenp, newp,
1626 		    newlen));
1627 #endif
1628 	case IPCTL_IFQUEUE:
1629 		return (EOPNOTSUPP);
1630 	case IPCTL_ARPQUEUE:
1631 		return (sysctl_niq(name + 1, namelen - 1,
1632 		    oldp, oldlenp, newp, newlen, &arpinq));
1633 	case IPCTL_STATS:
1634 		return (ip_sysctl_ipstat(oldp, oldlenp, newp));
1635 #ifdef MROUTING
1636 	case IPCTL_MRTSTATS:
1637 		return (sysctl_rdstruct(oldp, oldlenp, newp,
1638 		    &mrtstat, sizeof(mrtstat)));
1639 	case IPCTL_MRTPROTO:
1640 		return (sysctl_rdint(oldp, oldlenp, newp, ip_mrtproto));
1641 	case IPCTL_MRTMFC:
1642 		if (newp)
1643 			return (EPERM);
1644 		NET_LOCK();
1645 		error = mrt_sysctl_mfc(oldp, oldlenp);
1646 		NET_UNLOCK();
1647 		return (error);
1648 	case IPCTL_MRTVIF:
1649 		if (newp)
1650 			return (EPERM);
1651 		NET_LOCK();
1652 		error = mrt_sysctl_vif(oldp, oldlenp);
1653 		NET_UNLOCK();
1654 		return (error);
1655 #else
1656 	case IPCTL_MRTPROTO:
1657 	case IPCTL_MRTSTATS:
1658 	case IPCTL_MRTMFC:
1659 	case IPCTL_MRTVIF:
1660 		return (EOPNOTSUPP);
1661 #endif
1662 	default:
1663 		NET_LOCK();
1664 		error = sysctl_bounded_arr(ipctl_vars, nitems(ipctl_vars),
1665 		    name, namelen, oldp, oldlenp, newp, newlen);
1666 		NET_UNLOCK();
1667 		return (error);
1668 	}
1669 	/* NOTREACHED */
1670 }
1671 
1672 int
1673 ip_sysctl_ipstat(void *oldp, size_t *oldlenp, void *newp)
1674 {
1675 	uint64_t counters[ips_ncounters];
1676 	struct ipstat ipstat;
1677 	u_long *words = (u_long *)&ipstat;
1678 	int i;
1679 
1680 	CTASSERT(sizeof(ipstat) == (nitems(counters) * sizeof(u_long)));
1681 	memset(&ipstat, 0, sizeof ipstat);
1682 	counters_read(ipcounters, counters, nitems(counters));
1683 
1684 	for (i = 0; i < nitems(counters); i++)
1685 		words[i] = (u_long)counters[i];
1686 
1687 	return (sysctl_rdstruct(oldp, oldlenp, newp, &ipstat, sizeof(ipstat)));
1688 }
1689 
1690 void
1691 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
1692     struct mbuf *m)
1693 {
1694 	if (inp->inp_socket->so_options & SO_TIMESTAMP) {
1695 		struct timeval tv;
1696 
1697 		m_microtime(m, &tv);
1698 		*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
1699 		    SCM_TIMESTAMP, SOL_SOCKET);
1700 		if (*mp)
1701 			mp = &(*mp)->m_next;
1702 	}
1703 
1704 	if (inp->inp_flags & INP_RECVDSTADDR) {
1705 		*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
1706 		    sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
1707 		if (*mp)
1708 			mp = &(*mp)->m_next;
1709 	}
1710 #ifdef notyet
1711 	/* this code is broken and will probably never be fixed. */
1712 	/* options were tossed already */
1713 	if (inp->inp_flags & INP_RECVOPTS) {
1714 		*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
1715 		    sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
1716 		if (*mp)
1717 			mp = &(*mp)->m_next;
1718 	}
1719 	/* ip_srcroute doesn't do what we want here, need to fix */
1720 	if (inp->inp_flags & INP_RECVRETOPTS) {
1721 		*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
1722 		    sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
1723 		if (*mp)
1724 			mp = &(*mp)->m_next;
1725 	}
1726 #endif
1727 	if (inp->inp_flags & INP_RECVIF) {
1728 		struct sockaddr_dl sdl;
1729 		struct ifnet *ifp;
1730 
1731 		ifp = if_get(m->m_pkthdr.ph_ifidx);
1732 		if (ifp == NULL || ifp->if_sadl == NULL) {
1733 			memset(&sdl, 0, sizeof(sdl));
1734 			sdl.sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]);
1735 			sdl.sdl_family = AF_LINK;
1736 			sdl.sdl_index = ifp != NULL ? ifp->if_index : 0;
1737 			sdl.sdl_nlen = sdl.sdl_alen = sdl.sdl_slen = 0;
1738 			*mp = sbcreatecontrol((caddr_t) &sdl, sdl.sdl_len,
1739 			    IP_RECVIF, IPPROTO_IP);
1740 		} else {
1741 			*mp = sbcreatecontrol((caddr_t) ifp->if_sadl,
1742 			    ifp->if_sadl->sdl_len, IP_RECVIF, IPPROTO_IP);
1743 		}
1744 		if (*mp)
1745 			mp = &(*mp)->m_next;
1746 		if_put(ifp);
1747 	}
1748 	if (inp->inp_flags & INP_RECVTTL) {
1749 		*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
1750 		    sizeof(u_int8_t), IP_RECVTTL, IPPROTO_IP);
1751 		if (*mp)
1752 			mp = &(*mp)->m_next;
1753 	}
1754 	if (inp->inp_flags & INP_RECVRTABLE) {
1755 		u_int rtableid = inp->inp_rtableid;
1756 
1757 #if NPF > 0
1758 		if (m && m->m_pkthdr.pf.flags & PF_TAG_DIVERTED) {
1759 			struct pf_divert *divert;
1760 
1761 			divert = pf_find_divert(m);
1762 			KASSERT(divert != NULL);
1763 			rtableid = divert->rdomain;
1764 		}
1765 #endif
1766 
1767 		*mp = sbcreatecontrol((caddr_t) &rtableid,
1768 		    sizeof(u_int), IP_RECVRTABLE, IPPROTO_IP);
1769 		if (*mp)
1770 			mp = &(*mp)->m_next;
1771 	}
1772 }
1773 
1774 void
1775 ip_send_dispatch(void *xmq)
1776 {
1777 	struct mbuf_queue *mq = xmq;
1778 	struct mbuf *m;
1779 	struct mbuf_list ml;
1780 
1781 	mq_delist(mq, &ml);
1782 	if (ml_empty(&ml))
1783 		return;
1784 
1785 	NET_LOCK();
1786 	while ((m = ml_dequeue(&ml)) != NULL) {
1787 		ip_output(m, NULL, NULL, 0, NULL, NULL, 0);
1788 	}
1789 	NET_UNLOCK();
1790 }
1791 
1792 void
1793 ip_send(struct mbuf *m)
1794 {
1795 	mq_enqueue(&ipsend_mq, m);
1796 	task_add(net_tq(0), &ipsend_task);
1797 }
1798