xref: /openbsd-src/sys/netinet/ip_id.c (revision b2ea75c1b17e1a9a339660e7ed45cd24946b230e)
1 /* $OpenBSD: ip_id.c,v 1.4 2001/06/08 03:53:46 angelos Exp $ */
2 
3 /*
4  * Copyright 1998 Niels Provos <provos@citi.umich.edu>
5  * All rights reserved.
6  *
7  * Theo de Raadt <deraadt@openbsd.org> came up with the idea of using
8  * such a mathematical system to generate more random (yet non-repeating)
9  * ids to solve the resolver/named problem.  But Niels designed the
10  * actual system based on the constraints.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by Niels Provos.
23  * 4. The name of the author may not be used to endorse or promote products
24  *    derived from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
27  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
28  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
30  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
31  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
35  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * seed = random 15bit
40  * n = prime, g0 = generator to n,
41  * j = random so that gcd(j,n-1) == 1
42  * g = g0^j mod n will be a generator again.
43  *
44  * X[0] = random seed.
45  * X[n] = a*X[n-1]+b mod m is a Linear Congruential Generator
46  * with a = 7^(even random) mod m,
47  *      b = random with gcd(b,m) == 1
48  *      m = 31104 and a maximal period of m-1.
49  *
50  * The transaction id is determined by:
51  * id[n] = seed xor (g^X[n] mod n)
52  *
53  * Effectivly the id is restricted to the lower 15 bits, thus
54  * yielding two different cycles by toggling the msb on and off.
55  * This avoids reuse issues caused by reseeding.
56  */
57 
58 #include <sys/param.h>
59 #include <sys/kernel.h>
60 
61 #include <dev/rndvar.h>
62 
63 #define RU_OUT  180		/* Time after wich will be reseeded */
64 #define RU_MAX	30000		/* Uniq cycle, avoid blackjack prediction */
65 #define RU_GEN	2		/* Starting generator */
66 #define RU_N	32749		/* RU_N-1 = 2*2*3*2729 */
67 #define RU_AGEN	7		/* determine ru_a as RU_AGEN^(2*rand) */
68 #define RU_M	31104		/* RU_M = 2^7*3^5 - don't change */
69 
70 #define PFAC_N 3
71 const static u_int16_t pfacts[PFAC_N] = {
72 	2,
73 	3,
74 	2729
75 };
76 
77 static u_int16_t ru_x;
78 static u_int16_t ru_seed, ru_seed2;
79 static u_int16_t ru_a, ru_b;
80 static u_int16_t ru_g;
81 static u_int16_t ru_counter = 0;
82 static u_int16_t ru_msb = 0;
83 static long ru_reseed;
84 static u_int32_t tmp;		/* Storage for unused random */
85 
86 static u_int16_t pmod __P((u_int16_t, u_int16_t, u_int16_t));
87 static void ip_initid __P((void));
88 u_int16_t ip_randomid __P((void));
89 
90 /*
91  * Do a fast modular exponation, returned value will be in the range
92  * of 0 - (mod-1)
93  */
94 
95 #ifdef __STDC__
96 static u_int16_t
97 pmod(u_int16_t gen, u_int16_t exp, u_int16_t mod)
98 #else
99 static u_int16_t
100 pmod(gen, exp, mod)
101 	u_int16_t gen, exp, mod;
102 #endif
103 {
104 	u_int16_t s, t, u;
105 
106 	s = 1;
107 	t = gen;
108 	u = exp;
109 
110 	while (u) {
111 		if (u & 1)
112 			s = (s*t) % mod;
113 		u >>= 1;
114 		t = (t*t) % mod;
115 	}
116 	return (s);
117 }
118 
119 /*
120  * Initalizes the seed and chooses a suitable generator. Also toggles
121  * the msb flag. The msb flag is used to generate two distinct
122  * cycles of random numbers and thus avoiding reuse of ids.
123  *
124  * This function is called from id_randomid() when needed, an
125  * application does not have to worry about it.
126  */
127 static void
128 ip_initid(void)
129 {
130 	u_int16_t j, i;
131 	int noprime = 1;
132 
133 	ru_x = ((tmp = arc4random()) & 0xFFFF) % RU_M;
134 
135 	/* 15 bits of random seed */
136 	ru_seed = (tmp >> 16) & 0x7FFF;
137 	ru_seed2 = arc4random() & 0x7FFF;
138 
139 	/* Determine the LCG we use */
140 	ru_b = ((tmp = arc4random()) & 0xfffe) | 1;
141 	ru_a = pmod(RU_AGEN, (tmp >> 16) & 0xfffe, RU_M);
142 	while (ru_b % 3 == 0)
143 		ru_b += 2;
144 
145 	j = (tmp = arc4random()) % RU_N;
146 	tmp = tmp >> 16;
147 
148 	/*
149 	 * Do a fast gcd(j,RU_N-1), so we can find a j with
150 	 * gcd(j, RU_N-1) == 1, giving a new generator for
151 	 * RU_GEN^j mod RU_N
152 	 */
153 
154 	while (noprime) {
155 		for (i = 0; i < PFAC_N; i++)
156 			if (j % pfacts[i] == 0)
157 				break;
158 
159 		if (i >= PFAC_N)
160 			noprime = 0;
161 		else
162 			j = (j+1) % RU_N;
163 	}
164 
165 	ru_g = pmod(RU_GEN,j,RU_N);
166 	ru_counter = 0;
167 
168 	ru_reseed = time.tv_sec + RU_OUT;
169 	ru_msb = ru_msb == 0x8000 ? 0 : 0x8000;
170 }
171 
172 u_int16_t
173 ip_randomid(void)
174 {
175 	int i, n;
176 
177 	if (ru_counter >= RU_MAX || time.tv_sec > ru_reseed)
178 		ip_initid();
179 
180 	if (!tmp)
181 		tmp = arc4random();
182 
183 	/* Skip a random number of ids */
184 	n = tmp & 0x3; tmp = tmp >> 2;
185 	if (ru_counter + n >= RU_MAX)
186 		ip_initid();
187 
188 	for (i = 0; i <= n; i++)
189 		/* Linear Congruential Generator */
190 		ru_x = (ru_a * ru_x + ru_b) % RU_M;
191 
192 	ru_counter += i;
193 
194 	return (ru_seed ^ pmod(ru_g,ru_seed2 ^ ru_x,RU_N)) | ru_msb;
195 }
196