1 /* $OpenBSD: if_ether.h,v 1.44 2008/11/08 12:54:58 dlg Exp $ */ 2 /* $NetBSD: if_ether.h,v 1.22 1996/05/11 13:00:00 mycroft Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)if_ether.h 8.1 (Berkeley) 6/10/93 33 */ 34 35 #ifndef _NETINET_IF_ETHER_H_ 36 #define _NETINET_IF_ETHER_H_ 37 38 /* 39 * Some basic Ethernet constants. 40 */ 41 #define ETHER_ADDR_LEN 6 /* Ethernet address length */ 42 #define ETHER_TYPE_LEN 2 /* Ethernet type field length */ 43 #define ETHER_CRC_LEN 4 /* Ethernet CRC length */ 44 #define ETHER_HDR_LEN ((ETHER_ADDR_LEN * 2) + ETHER_TYPE_LEN) 45 #define ETHER_MIN_LEN 64 /* Minimum frame length, CRC included */ 46 #define ETHER_MAX_LEN 1518 /* Maximum frame length, CRC included */ 47 #define ETHER_MAX_DIX_LEN 1536 /* Maximum DIX frame length */ 48 49 /* 50 * Some Ethernet extensions. 51 */ 52 #define ETHER_VLAN_ENCAP_LEN 4 /* len of 802.1Q VLAN encapsulation */ 53 54 /* 55 * Mbuf adjust factor to force 32-bit alignment of IP header. 56 * Drivers should do m_adj(m, ETHER_ALIGN) when setting up a 57 * receive so the upper layers get the IP header properly aligned 58 * past the 14-byte Ethernet header. 59 */ 60 #define ETHER_ALIGN 2 /* driver adjust for IP hdr alignment */ 61 62 /* 63 * Ethernet address - 6 octets 64 */ 65 struct ether_addr { 66 u_int8_t ether_addr_octet[ETHER_ADDR_LEN]; 67 }; 68 69 /* 70 * The length of the combined header. 71 */ 72 struct ether_header { 73 u_int8_t ether_dhost[ETHER_ADDR_LEN]; 74 u_int8_t ether_shost[ETHER_ADDR_LEN]; 75 u_int16_t ether_type; 76 }; 77 78 #include <net/ethertypes.h> 79 80 #define ETHER_IS_MULTICAST(addr) (*(addr) & 0x01) /* is address mcast/bcast? */ 81 82 #define ETHERMTU (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN) 83 #define ETHERMIN (ETHER_MIN_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN) 84 85 /* 86 * Ethernet CRC32 polynomials (big- and little-endian verions). 87 */ 88 #define ETHER_CRC_POLY_LE 0xedb88320 89 #define ETHER_CRC_POLY_BE 0x04c11db6 90 91 #ifdef _KERNEL 92 /* 93 * Macro to map an IP multicast address to an Ethernet multicast address. 94 * The high-order 25 bits of the Ethernet address are statically assigned, 95 * and the low-order 23 bits are taken from the low end of the IP address. 96 */ 97 #define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr) \ 98 /* struct in_addr *ipaddr; */ \ 99 /* u_int8_t enaddr[ETHER_ADDR_LEN]; */ \ 100 do { \ 101 (enaddr)[0] = 0x01; \ 102 (enaddr)[1] = 0x00; \ 103 (enaddr)[2] = 0x5e; \ 104 (enaddr)[3] = ((u_int8_t *)ipaddr)[1] & 0x7f; \ 105 (enaddr)[4] = ((u_int8_t *)ipaddr)[2]; \ 106 (enaddr)[5] = ((u_int8_t *)ipaddr)[3]; \ 107 } while (/* CONSTCOND */ 0) 108 109 /* 110 * Macro to map an IPv6 multicast address to an Ethernet multicast address. 111 * The high-order 16 bits of the Ethernet address are statically assigned, 112 * and the low-order 32 bits are taken from the low end of the IPv6 address. 113 */ 114 #define ETHER_MAP_IPV6_MULTICAST(ip6addr, enaddr) \ 115 /* struct in6_addr *ip6addr; */ \ 116 /* u_int8_t enaddr[ETHER_ADDR_LEN]; */ \ 117 do { \ 118 (enaddr)[0] = 0x33; \ 119 (enaddr)[1] = 0x33; \ 120 (enaddr)[2] = ((u_int8_t *)ip6addr)[12]; \ 121 (enaddr)[3] = ((u_int8_t *)ip6addr)[13]; \ 122 (enaddr)[4] = ((u_int8_t *)ip6addr)[14]; \ 123 (enaddr)[5] = ((u_int8_t *)ip6addr)[15]; \ 124 } while (/* CONSTCOND */ 0) 125 #endif 126 127 /* 128 * Ethernet Address Resolution Protocol. 129 * 130 * See RFC 826 for protocol description. Structure below is adapted 131 * to resolving internet addresses. Field names used correspond to 132 * RFC 826. 133 */ 134 struct ether_arp { 135 struct arphdr ea_hdr; /* fixed-size header */ 136 u_int8_t arp_sha[ETHER_ADDR_LEN]; /* sender hardware address */ 137 u_int8_t arp_spa[4]; /* sender protocol address */ 138 u_int8_t arp_tha[ETHER_ADDR_LEN]; /* target hardware address */ 139 u_int8_t arp_tpa[4]; /* target protocol address */ 140 }; 141 #define arp_hrd ea_hdr.ar_hrd 142 #define arp_pro ea_hdr.ar_pro 143 #define arp_hln ea_hdr.ar_hln 144 #define arp_pln ea_hdr.ar_pln 145 #define arp_op ea_hdr.ar_op 146 147 /* 148 * Structure shared between the ethernet driver modules and 149 * the address resolution code. For example, each ec_softc or il_softc 150 * begins with this structure. 151 */ 152 struct arpcom { 153 struct ifnet ac_if; /* network-visible interface */ 154 u_int8_t ac_enaddr[ETHER_ADDR_LEN]; /* ethernet hardware address */ 155 char ac__pad[2]; /* pad for some machines */ 156 LIST_HEAD(, ether_multi) ac_multiaddrs; /* list of multicast addrs */ 157 int ac_multicnt; /* length of ac_multiaddrs */ 158 int ac_multirangecnt; /* number of mcast ranges */ 159 160 }; 161 162 struct llinfo_arp { 163 LIST_ENTRY(llinfo_arp) la_list; 164 struct rtentry *la_rt; 165 struct mbuf *la_hold_head; /* packet hold queue */ 166 struct mbuf *la_hold_tail; 167 int la_hold_count; /* number of packets queued */ 168 long la_asked; /* last time we QUERIED for this addr */ 169 #define la_timer la_rt->rt_rmx.rmx_expire /* deletion time in seconds */ 170 }; 171 #define MAX_HOLD_QUEUE 10 172 #define MAX_HOLD_TOTAL 100 173 174 struct sockaddr_inarp { 175 u_int8_t sin_len; 176 u_int8_t sin_family; 177 u_int16_t sin_port; 178 struct in_addr sin_addr; 179 struct in_addr sin_srcaddr; 180 u_int16_t sin_tos; 181 u_int16_t sin_other; 182 #define SIN_PROXY 1 183 }; 184 185 /* 186 * IP and ethernet specific routing flags 187 */ 188 #define RTF_USETRAILERS RTF_PROTO1 /* use trailers */ 189 #define RTF_ANNOUNCE RTF_PROTO2 /* announce new arp entry */ 190 #define RTF_PERMANENT_ARP RTF_PROTO3 /* only manual overwrite of entry */ 191 192 #ifdef _KERNEL 193 extern u_int8_t etherbroadcastaddr[ETHER_ADDR_LEN]; 194 extern u_int8_t ether_ipmulticast_min[ETHER_ADDR_LEN]; 195 extern u_int8_t ether_ipmulticast_max[ETHER_ADDR_LEN]; 196 extern struct ifqueue arpintrq; 197 198 void arpwhohas(struct arpcom *, struct in_addr *); 199 void arpintr(void); 200 int arpresolve(struct arpcom *, 201 struct rtentry *, struct mbuf *, struct sockaddr *, u_char *); 202 void arp_ifinit(struct arpcom *, struct ifaddr *); 203 void arp_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 204 205 int ether_addmulti(struct ifreq *, struct arpcom *); 206 int ether_delmulti(struct ifreq *, struct arpcom *); 207 int ether_multiaddr(struct sockaddr *, u_int8_t[], u_int8_t[]); 208 #endif /* _KERNEL */ 209 210 /* 211 * Ethernet multicast address structure. There is one of these for each 212 * multicast address or range of multicast addresses that we are supposed 213 * to listen to on a particular interface. They are kept in a linked list, 214 * rooted in the interface's arpcom structure. (This really has nothing to 215 * do with ARP, or with the Internet address family, but this appears to be 216 * the minimally-disrupting place to put it.) 217 */ 218 struct ether_multi { 219 u_int8_t enm_addrlo[ETHER_ADDR_LEN]; /* low or only address of range */ 220 u_int8_t enm_addrhi[ETHER_ADDR_LEN]; /* high or only address of range */ 221 struct arpcom *enm_ac; /* back pointer to arpcom */ 222 u_int enm_refcount; /* no. claims to this addr/range */ 223 LIST_ENTRY(ether_multi) enm_list; 224 }; 225 226 /* 227 * Structure used by macros below to remember position when stepping through 228 * all of the ether_multi records. 229 */ 230 struct ether_multistep { 231 struct ether_multi *e_enm; 232 }; 233 234 /* 235 * Macro for looking up the ether_multi record for a given range of Ethernet 236 * multicast addresses connected to a given arpcom structure. If no matching 237 * record is found, "enm" returns NULL. 238 */ 239 #define ETHER_LOOKUP_MULTI(addrlo, addrhi, ac, enm) \ 240 /* u_int8_t addrlo[ETHER_ADDR_LEN]; */ \ 241 /* u_int8_t addrhi[ETHER_ADDR_LEN]; */ \ 242 /* struct arpcom *ac; */ \ 243 /* struct ether_multi *enm; */ \ 244 do { \ 245 for ((enm) = LIST_FIRST(&(ac)->ac_multiaddrs); \ 246 (enm) != LIST_END(&(ac)->ac_multiaddrs) && \ 247 (bcmp((enm)->enm_addrlo, (addrlo), ETHER_ADDR_LEN) != 0 || \ 248 bcmp((enm)->enm_addrhi, (addrhi), ETHER_ADDR_LEN) != 0); \ 249 (enm) = LIST_NEXT((enm), enm_list)); \ 250 } while (/* CONSTCOND */ 0) 251 252 /* 253 * Macro to step through all of the ether_multi records, one at a time. 254 * The current position is remembered in "step", which the caller must 255 * provide. ETHER_FIRST_MULTI(), below, must be called to initialize "step" 256 * and get the first record. Both macros return a NULL "enm" when there 257 * are no remaining records. 258 */ 259 #define ETHER_NEXT_MULTI(step, enm) \ 260 /* struct ether_multistep step; */ \ 261 /* struct ether_multi *enm; */ \ 262 do { \ 263 if (((enm) = (step).e_enm) != NULL) \ 264 (step).e_enm = LIST_NEXT((enm), enm_list); \ 265 } while (/* CONSTCOND */ 0) 266 267 #define ETHER_FIRST_MULTI(step, ac, enm) \ 268 /* struct ether_multistep step; */ \ 269 /* struct arpcom *ac; */ \ 270 /* struct ether_multi *enm; */ \ 271 do { \ 272 (step).e_enm = LIST_FIRST(&(ac)->ac_multiaddrs); \ 273 ETHER_NEXT_MULTI((step), (enm)); \ 274 } while (/* CONSTCOND */ 0) 275 276 #ifdef _KERNEL 277 278 extern struct ifnet *myip_ifp; 279 280 int arpioctl(u_long, caddr_t); 281 void arprequest(struct ifnet *, u_int32_t *, u_int32_t *, u_int8_t *); 282 void revarpinput(struct mbuf *); 283 void in_revarpinput(struct mbuf *); 284 void revarprequest(struct ifnet *); 285 int revarpwhoarewe(struct ifnet *, struct in_addr *, struct in_addr *); 286 int revarpwhoami(struct in_addr *, struct ifnet *); 287 int db_show_arptab(void); 288 289 u_int32_t ether_crc32_le_update(u_int32_t crc, const u_int8_t *, size_t); 290 u_int32_t ether_crc32_be_update(u_int32_t crc, const u_int8_t *, size_t); 291 u_int32_t ether_crc32_le(const u_int8_t *, size_t); 292 u_int32_t ether_crc32_be(const u_int8_t *, size_t); 293 294 #else 295 296 __BEGIN_DECLS 297 char *ether_ntoa(struct ether_addr *); 298 struct ether_addr *ether_aton(const char *); 299 int ether_ntohost(char *, struct ether_addr *); 300 int ether_hostton(const char *, struct ether_addr *); 301 int ether_line(const char *, struct ether_addr *, char *); 302 __END_DECLS 303 304 #endif /* _KERNEL */ 305 #endif /* _NETINET_IF_ETHER_H_ */ 306