1 /* $OpenBSD: if_ether.h,v 1.53 2014/01/09 06:29:05 tedu Exp $ */ 2 /* $NetBSD: if_ether.h,v 1.22 1996/05/11 13:00:00 mycroft Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)if_ether.h 8.1 (Berkeley) 6/10/93 33 */ 34 35 #ifndef _NETINET_IF_ETHER_H_ 36 #define _NETINET_IF_ETHER_H_ 37 38 /* 39 * Some basic Ethernet constants. 40 */ 41 #define ETHER_ADDR_LEN 6 /* Ethernet address length */ 42 #define ETHER_TYPE_LEN 2 /* Ethernet type field length */ 43 #define ETHER_CRC_LEN 4 /* Ethernet CRC length */ 44 #define ETHER_HDR_LEN ((ETHER_ADDR_LEN * 2) + ETHER_TYPE_LEN) 45 #define ETHER_MIN_LEN 64 /* Minimum frame length, CRC included */ 46 #define ETHER_MAX_LEN 1518 /* Maximum frame length, CRC included */ 47 #define ETHER_MAX_DIX_LEN 1536 /* Maximum DIX frame length */ 48 49 /* 50 * Some Ethernet extensions. 51 */ 52 #define ETHER_VLAN_ENCAP_LEN 4 /* len of 802.1Q VLAN encapsulation */ 53 54 /* 55 * Mbuf adjust factor to force 32-bit alignment of IP header. 56 * Drivers should do m_adj(m, ETHER_ALIGN) when setting up a 57 * receive so the upper layers get the IP header properly aligned 58 * past the 14-byte Ethernet header. 59 */ 60 #define ETHER_ALIGN 2 /* driver adjust for IP hdr alignment */ 61 62 /* 63 * Ethernet address - 6 octets 64 */ 65 struct ether_addr { 66 u_int8_t ether_addr_octet[ETHER_ADDR_LEN]; 67 }; 68 69 /* 70 * The length of the combined header. 71 */ 72 struct ether_header { 73 u_int8_t ether_dhost[ETHER_ADDR_LEN]; 74 u_int8_t ether_shost[ETHER_ADDR_LEN]; 75 u_int16_t ether_type; 76 }; 77 78 #include <net/ethertypes.h> 79 80 #define ETHER_IS_MULTICAST(addr) (*(addr) & 0x01) /* is address mcast/bcast? */ 81 82 #define ETHERMTU (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN) 83 #define ETHERMIN (ETHER_MIN_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN) 84 85 /* 86 * Ethernet CRC32 polynomials (big- and little-endian verions). 87 */ 88 #define ETHER_CRC_POLY_LE 0xedb88320 89 #define ETHER_CRC_POLY_BE 0x04c11db6 90 91 #ifdef _KERNEL 92 /* 93 * Macro to map an IP multicast address to an Ethernet multicast address. 94 * The high-order 25 bits of the Ethernet address are statically assigned, 95 * and the low-order 23 bits are taken from the low end of the IP address. 96 */ 97 #define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr) \ 98 /* struct in_addr *ipaddr; */ \ 99 /* u_int8_t enaddr[ETHER_ADDR_LEN]; */ \ 100 do { \ 101 (enaddr)[0] = 0x01; \ 102 (enaddr)[1] = 0x00; \ 103 (enaddr)[2] = 0x5e; \ 104 (enaddr)[3] = ((u_int8_t *)ipaddr)[1] & 0x7f; \ 105 (enaddr)[4] = ((u_int8_t *)ipaddr)[2]; \ 106 (enaddr)[5] = ((u_int8_t *)ipaddr)[3]; \ 107 } while (/* CONSTCOND */ 0) 108 109 /* 110 * Macro to map an IPv6 multicast address to an Ethernet multicast address. 111 * The high-order 16 bits of the Ethernet address are statically assigned, 112 * and the low-order 32 bits are taken from the low end of the IPv6 address. 113 */ 114 #define ETHER_MAP_IPV6_MULTICAST(ip6addr, enaddr) \ 115 /* struct in6_addr *ip6addr; */ \ 116 /* u_int8_t enaddr[ETHER_ADDR_LEN]; */ \ 117 do { \ 118 (enaddr)[0] = 0x33; \ 119 (enaddr)[1] = 0x33; \ 120 (enaddr)[2] = ((u_int8_t *)ip6addr)[12]; \ 121 (enaddr)[3] = ((u_int8_t *)ip6addr)[13]; \ 122 (enaddr)[4] = ((u_int8_t *)ip6addr)[14]; \ 123 (enaddr)[5] = ((u_int8_t *)ip6addr)[15]; \ 124 } while (/* CONSTCOND */ 0) 125 126 void ether_fakeaddr(struct ifnet *); 127 #endif 128 129 /* 130 * Ethernet Address Resolution Protocol. 131 * 132 * See RFC 826 for protocol description. Structure below is adapted 133 * to resolving internet addresses. Field names used correspond to 134 * RFC 826. 135 */ 136 struct ether_arp { 137 struct arphdr ea_hdr; /* fixed-size header */ 138 u_int8_t arp_sha[ETHER_ADDR_LEN]; /* sender hardware address */ 139 u_int8_t arp_spa[4]; /* sender protocol address */ 140 u_int8_t arp_tha[ETHER_ADDR_LEN]; /* target hardware address */ 141 u_int8_t arp_tpa[4]; /* target protocol address */ 142 }; 143 #define arp_hrd ea_hdr.ar_hrd 144 #define arp_pro ea_hdr.ar_pro 145 #define arp_hln ea_hdr.ar_hln 146 #define arp_pln ea_hdr.ar_pln 147 #define arp_op ea_hdr.ar_op 148 149 #ifdef _KERNEL 150 /* 151 * Structure shared between the ethernet driver modules and 152 * the address resolution code. For example, each ec_softc or il_softc 153 * begins with this structure. 154 */ 155 struct arpcom { 156 struct ifnet ac_if; /* network-visible interface */ 157 u_int8_t ac_enaddr[ETHER_ADDR_LEN]; /* ethernet hardware address */ 158 char ac__pad[2]; /* pad for some machines */ 159 LIST_HEAD(, ether_multi) ac_multiaddrs; /* list of multicast addrs */ 160 int ac_multicnt; /* length of ac_multiaddrs */ 161 int ac_multirangecnt; /* number of mcast ranges */ 162 163 }; 164 165 struct llinfo_arp { 166 LIST_ENTRY(llinfo_arp) la_list; 167 struct rtentry *la_rt; 168 struct mbuf *la_hold_head; /* packet hold queue */ 169 struct mbuf *la_hold_tail; 170 int la_hold_count; /* number of packets queued */ 171 long la_asked; /* last time we QUERIED for this addr */ 172 }; 173 #define MAX_HOLD_QUEUE 10 174 #define MAX_HOLD_TOTAL 100 175 #endif 176 177 struct sockaddr_inarp { 178 u_int8_t sin_len; 179 u_int8_t sin_family; 180 u_int16_t sin_port; 181 struct in_addr sin_addr; 182 struct in_addr sin_srcaddr; 183 u_int16_t sin_tos; 184 u_int16_t sin_other; 185 #define SIN_PROXY 1 186 }; 187 188 /* 189 * IP and ethernet specific routing flags 190 */ 191 #define RTF_USETRAILERS RTF_PROTO1 /* use trailers */ 192 #define RTF_ANNOUNCE RTF_PROTO2 /* announce new arp entry */ 193 #define RTF_PERMANENT_ARP RTF_PROTO3 /* only manual overwrite of entry */ 194 195 #ifdef _KERNEL 196 extern u_int8_t etherbroadcastaddr[ETHER_ADDR_LEN]; 197 extern u_int8_t ether_ipmulticast_min[ETHER_ADDR_LEN]; 198 extern u_int8_t ether_ipmulticast_max[ETHER_ADDR_LEN]; 199 extern struct ifqueue arpintrq; 200 201 void arpwhohas(struct arpcom *, struct in_addr *); 202 void arpintr(void); 203 int arpresolve(struct arpcom *, 204 struct rtentry *, struct mbuf *, struct sockaddr *, u_char *); 205 void arp_ifinit(struct arpcom *, struct ifaddr *); 206 void arp_rtrequest(int, struct rtentry *); 207 208 int ether_addmulti(struct ifreq *, struct arpcom *); 209 int ether_delmulti(struct ifreq *, struct arpcom *); 210 int ether_multiaddr(struct sockaddr *, u_int8_t[], u_int8_t[]); 211 212 /* 213 * Ethernet multicast address structure. There is one of these for each 214 * multicast address or range of multicast addresses that we are supposed 215 * to listen to on a particular interface. They are kept in a linked list, 216 * rooted in the interface's arpcom structure. (This really has nothing to 217 * do with ARP, or with the Internet address family, but this appears to be 218 * the minimally-disrupting place to put it.) 219 */ 220 struct ether_multi { 221 u_int8_t enm_addrlo[ETHER_ADDR_LEN]; /* low or only address of range */ 222 u_int8_t enm_addrhi[ETHER_ADDR_LEN]; /* high or only address of range */ 223 struct arpcom *enm_ac; /* back pointer to arpcom */ 224 u_int enm_refcount; /* no. claims to this addr/range */ 225 LIST_ENTRY(ether_multi) enm_list; 226 }; 227 228 /* 229 * Structure used by macros below to remember position when stepping through 230 * all of the ether_multi records. 231 */ 232 struct ether_multistep { 233 struct ether_multi *e_enm; 234 }; 235 236 /* 237 * Macro for looking up the ether_multi record for a given range of Ethernet 238 * multicast addresses connected to a given arpcom structure. If no matching 239 * record is found, "enm" returns NULL. 240 */ 241 #define ETHER_LOOKUP_MULTI(addrlo, addrhi, ac, enm) \ 242 /* u_int8_t addrlo[ETHER_ADDR_LEN]; */ \ 243 /* u_int8_t addrhi[ETHER_ADDR_LEN]; */ \ 244 /* struct arpcom *ac; */ \ 245 /* struct ether_multi *enm; */ \ 246 do { \ 247 for ((enm) = LIST_FIRST(&(ac)->ac_multiaddrs); \ 248 (enm) != NULL && \ 249 (memcmp((enm)->enm_addrlo, (addrlo), ETHER_ADDR_LEN) != 0 ||\ 250 memcmp((enm)->enm_addrhi, (addrhi), ETHER_ADDR_LEN) != 0); \ 251 (enm) = LIST_NEXT((enm), enm_list)); \ 252 } while (/* CONSTCOND */ 0) 253 254 /* 255 * Macro to step through all of the ether_multi records, one at a time. 256 * The current position is remembered in "step", which the caller must 257 * provide. ETHER_FIRST_MULTI(), below, must be called to initialize "step" 258 * and get the first record. Both macros return a NULL "enm" when there 259 * are no remaining records. 260 */ 261 #define ETHER_NEXT_MULTI(step, enm) \ 262 /* struct ether_multistep step; */ \ 263 /* struct ether_multi *enm; */ \ 264 do { \ 265 if (((enm) = (step).e_enm) != NULL) \ 266 (step).e_enm = LIST_NEXT((enm), enm_list); \ 267 } while (/* CONSTCOND */ 0) 268 269 #define ETHER_FIRST_MULTI(step, ac, enm) \ 270 /* struct ether_multistep step; */ \ 271 /* struct arpcom *ac; */ \ 272 /* struct ether_multi *enm; */ \ 273 do { \ 274 (step).e_enm = LIST_FIRST(&(ac)->ac_multiaddrs); \ 275 ETHER_NEXT_MULTI((step), (enm)); \ 276 } while (/* CONSTCOND */ 0) 277 278 #ifdef NFSCLIENT 279 extern struct ifnet *revarp_ifp; 280 #endif /* NFSCLIENT */ 281 282 void arprequest(struct ifnet *, u_int32_t *, u_int32_t *, u_int8_t *); 283 int arpproxy(struct in_addr, u_int); 284 void revarpinput(struct mbuf *); 285 void in_revarpinput(struct mbuf *); 286 void revarprequest(struct ifnet *); 287 int revarpwhoarewe(struct ifnet *, struct in_addr *, struct in_addr *); 288 int revarpwhoami(struct in_addr *, struct ifnet *); 289 int db_show_arptab(void); 290 291 u_int32_t ether_crc32_le_update(u_int32_t crc, const u_int8_t *, size_t); 292 u_int32_t ether_crc32_be_update(u_int32_t crc, const u_int8_t *, size_t); 293 u_int32_t ether_crc32_le(const u_int8_t *, size_t); 294 u_int32_t ether_crc32_be(const u_int8_t *, size_t); 295 296 #else 297 298 __BEGIN_DECLS 299 char *ether_ntoa(struct ether_addr *); 300 struct ether_addr *ether_aton(const char *); 301 int ether_ntohost(char *, struct ether_addr *); 302 int ether_hostton(const char *, struct ether_addr *); 303 int ether_line(const char *, struct ether_addr *, char *); 304 __END_DECLS 305 306 #endif /* _KERNEL */ 307 #endif /* _NETINET_IF_ETHER_H_ */ 308