1 /* $OpenBSD: if_ether.h,v 1.72 2016/06/28 17:18:24 chris Exp $ */ 2 /* $NetBSD: if_ether.h,v 1.22 1996/05/11 13:00:00 mycroft Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)if_ether.h 8.1 (Berkeley) 6/10/93 33 */ 34 35 #ifndef _NETINET_IF_ETHER_H_ 36 #define _NETINET_IF_ETHER_H_ 37 38 /* 39 * Some basic Ethernet constants. 40 */ 41 #define ETHER_ADDR_LEN 6 /* Ethernet address length */ 42 #define ETHER_TYPE_LEN 2 /* Ethernet type field length */ 43 #define ETHER_CRC_LEN 4 /* Ethernet CRC length */ 44 #define ETHER_HDR_LEN ((ETHER_ADDR_LEN * 2) + ETHER_TYPE_LEN) 45 #define ETHER_MIN_LEN 64 /* Minimum frame length, CRC included */ 46 #define ETHER_MAX_LEN 1518 /* Maximum frame length, CRC included */ 47 #define ETHER_MAX_DIX_LEN 1536 /* Maximum DIX frame length */ 48 49 /* 50 * Some Ethernet extensions. 51 */ 52 #define ETHER_VLAN_ENCAP_LEN 4 /* len of 802.1Q VLAN encapsulation */ 53 54 /* 55 * Mbuf adjust factor to force 32-bit alignment of IP header. 56 * Drivers should do m_adj(m, ETHER_ALIGN) when setting up a 57 * receive so the upper layers get the IP header properly aligned 58 * past the 14-byte Ethernet header. 59 */ 60 #define ETHER_ALIGN 2 /* driver adjust for IP hdr alignment */ 61 62 /* 63 * Ethernet address - 6 octets 64 */ 65 struct ether_addr { 66 u_int8_t ether_addr_octet[ETHER_ADDR_LEN]; 67 }; 68 69 /* 70 * The length of the combined header. 71 */ 72 struct ether_header { 73 u_int8_t ether_dhost[ETHER_ADDR_LEN]; 74 u_int8_t ether_shost[ETHER_ADDR_LEN]; 75 u_int16_t ether_type; 76 }; 77 78 /* 79 * VLAN headers. 80 */ 81 82 struct ether_vlan_header { 83 u_char evl_dhost[ETHER_ADDR_LEN]; 84 u_char evl_shost[ETHER_ADDR_LEN]; 85 u_int16_t evl_encap_proto; 86 u_int16_t evl_tag; 87 u_int16_t evl_proto; 88 }; 89 90 #define EVL_VLID_MASK 0xFFF 91 #define EVL_VLID_NULL 0x000 92 /* 0x000 and 0xfff are reserved */ 93 #define EVL_VLID_MIN 0x001 94 #define EVL_VLID_MAX 0xFFE 95 #define EVL_VLANOFTAG(tag) ((tag) & EVL_VLID_MASK) 96 97 #define EVL_PRIO_MAX 7 98 #define EVL_PRIO_BITS 13 99 #define EVL_PRIOFTAG(tag) (((tag) >> EVL_PRIO_BITS) & 7) 100 101 #define EVL_ENCAPLEN 4 /* length in octets of encapsulation */ 102 103 #include <net/ethertypes.h> 104 105 #define ETHER_IS_MULTICAST(addr) (*(addr) & 0x01) /* is address mcast/bcast? */ 106 107 #define ETHERMTU (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN) 108 #define ETHERMIN (ETHER_MIN_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN) 109 110 /* 111 * Ethernet CRC32 polynomials (big- and little-endian verions). 112 */ 113 #define ETHER_CRC_POLY_LE 0xedb88320 114 #define ETHER_CRC_POLY_BE 0x04c11db6 115 116 /* 117 * Ethernet Address Resolution Protocol. 118 * 119 * See RFC 826 for protocol description. Structure below is adapted 120 * to resolving internet addresses. Field names used correspond to 121 * RFC 826. 122 */ 123 struct ether_arp { 124 struct arphdr ea_hdr; /* fixed-size header */ 125 u_int8_t arp_sha[ETHER_ADDR_LEN]; /* sender hardware address */ 126 u_int8_t arp_spa[4]; /* sender protocol address */ 127 u_int8_t arp_tha[ETHER_ADDR_LEN]; /* target hardware address */ 128 u_int8_t arp_tpa[4]; /* target protocol address */ 129 }; 130 #define arp_hrd ea_hdr.ar_hrd 131 #define arp_pro ea_hdr.ar_pro 132 #define arp_hln ea_hdr.ar_hln 133 #define arp_pln ea_hdr.ar_pln 134 #define arp_op ea_hdr.ar_op 135 136 struct sockaddr_inarp { 137 u_int8_t sin_len; 138 u_int8_t sin_family; 139 u_int16_t sin_port; 140 struct in_addr sin_addr; 141 struct in_addr sin_srcaddr; 142 u_int16_t sin_tos; 143 u_int16_t sin_other; 144 #define SIN_PROXY 1 145 }; 146 147 /* 148 * IP and ethernet specific routing flags 149 */ 150 #define RTF_USETRAILERS RTF_PROTO1 /* use trailers */ 151 #define RTF_PERMANENT_ARP RTF_PROTO3 /* only manual overwrite of entry */ 152 153 #ifdef _KERNEL 154 /* 155 * Macro to map an IP multicast address to an Ethernet multicast address. 156 * The high-order 25 bits of the Ethernet address are statically assigned, 157 * and the low-order 23 bits are taken from the low end of the IP address. 158 */ 159 #define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr) \ 160 /* struct in_addr *ipaddr; */ \ 161 /* u_int8_t enaddr[ETHER_ADDR_LEN]; */ \ 162 do { \ 163 (enaddr)[0] = 0x01; \ 164 (enaddr)[1] = 0x00; \ 165 (enaddr)[2] = 0x5e; \ 166 (enaddr)[3] = ((u_int8_t *)ipaddr)[1] & 0x7f; \ 167 (enaddr)[4] = ((u_int8_t *)ipaddr)[2]; \ 168 (enaddr)[5] = ((u_int8_t *)ipaddr)[3]; \ 169 } while (/* CONSTCOND */ 0) 170 171 /* 172 * Macro to map an IPv6 multicast address to an Ethernet multicast address. 173 * The high-order 16 bits of the Ethernet address are statically assigned, 174 * and the low-order 32 bits are taken from the low end of the IPv6 address. 175 */ 176 #define ETHER_MAP_IPV6_MULTICAST(ip6addr, enaddr) \ 177 /* struct in6_addr *ip6addr; */ \ 178 /* u_int8_t enaddr[ETHER_ADDR_LEN]; */ \ 179 do { \ 180 (enaddr)[0] = 0x33; \ 181 (enaddr)[1] = 0x33; \ 182 (enaddr)[2] = ((u_int8_t *)ip6addr)[12]; \ 183 (enaddr)[3] = ((u_int8_t *)ip6addr)[13]; \ 184 (enaddr)[4] = ((u_int8_t *)ip6addr)[14]; \ 185 (enaddr)[5] = ((u_int8_t *)ip6addr)[15]; \ 186 } while (/* CONSTCOND */ 0) 187 188 #include <net/if_var.h> /* for "struct ifnet" */ 189 190 /* 191 * Structure shared between the ethernet driver modules and 192 * the address resolution code. For example, each ec_softc or il_softc 193 * begins with this structure. 194 */ 195 struct arpcom { 196 struct ifnet ac_if; /* network-visible interface */ 197 u_int8_t ac_enaddr[ETHER_ADDR_LEN]; /* ethernet hardware address */ 198 char ac__pad[2]; /* pad for some machines */ 199 LIST_HEAD(, ether_multi) ac_multiaddrs; /* list of multicast addrs */ 200 int ac_multicnt; /* length of ac_multiaddrs */ 201 int ac_multirangecnt; /* number of mcast ranges */ 202 203 }; 204 205 extern int arpt_keep; /* arp resolved cache expire */ 206 extern int arpt_down; /* arp down cache expire */ 207 208 extern u_int8_t etherbroadcastaddr[ETHER_ADDR_LEN]; 209 extern u_int8_t etheranyaddr[ETHER_ADDR_LEN]; 210 extern u_int8_t ether_ipmulticast_min[ETHER_ADDR_LEN]; 211 extern u_int8_t ether_ipmulticast_max[ETHER_ADDR_LEN]; 212 213 #ifdef NFSCLIENT 214 extern unsigned int revarp_ifidx; 215 #endif /* NFSCLIENT */ 216 217 void revarpinput(struct ifnet *, struct mbuf *); 218 void revarprequest(struct ifnet *); 219 int revarpwhoarewe(struct ifnet *, struct in_addr *, struct in_addr *); 220 int revarpwhoami(struct in_addr *, struct ifnet *); 221 222 void arpinput(struct ifnet *, struct mbuf *); 223 void arprequest(struct ifnet *, u_int32_t *, u_int32_t *, u_int8_t *); 224 void arpwhohas(struct arpcom *, struct in_addr *); 225 int arpproxy(struct in_addr, unsigned int); 226 int arpresolve(struct ifnet *, struct rtentry *, struct mbuf *, 227 struct sockaddr *, u_char *); 228 void arp_rtrequest(struct ifnet *, int, struct rtentry *); 229 230 void ether_fakeaddr(struct ifnet *); 231 int ether_addmulti(struct ifreq *, struct arpcom *); 232 int ether_delmulti(struct ifreq *, struct arpcom *); 233 int ether_multiaddr(struct sockaddr *, u_int8_t[], u_int8_t[]); 234 void ether_ifattach(struct ifnet *); 235 void ether_ifdetach(struct ifnet *); 236 int ether_ioctl(struct ifnet *, struct arpcom *, u_long, caddr_t); 237 int ether_input(struct ifnet *, struct mbuf *, void *); 238 int ether_output(struct ifnet *, 239 struct mbuf *, struct sockaddr *, struct rtentry *); 240 void ether_rtrequest(struct ifnet *, int, struct rtentry *); 241 char *ether_sprintf(u_char *); 242 243 244 /* 245 * Ethernet multicast address structure. There is one of these for each 246 * multicast address or range of multicast addresses that we are supposed 247 * to listen to on a particular interface. They are kept in a linked list, 248 * rooted in the interface's arpcom structure. (This really has nothing to 249 * do with ARP, or with the Internet address family, but this appears to be 250 * the minimally-disrupting place to put it.) 251 */ 252 struct ether_multi { 253 u_int8_t enm_addrlo[ETHER_ADDR_LEN]; /* low or only address of range */ 254 u_int8_t enm_addrhi[ETHER_ADDR_LEN]; /* high or only address of range */ 255 u_int enm_refcount; /* no. claims to this addr/range */ 256 LIST_ENTRY(ether_multi) enm_list; 257 }; 258 259 /* 260 * Structure used by macros below to remember position when stepping through 261 * all of the ether_multi records. 262 */ 263 struct ether_multistep { 264 struct ether_multi *e_enm; 265 }; 266 267 /* 268 * Macro for looking up the ether_multi record for a given range of Ethernet 269 * multicast addresses connected to a given arpcom structure. If no matching 270 * record is found, "enm" returns NULL. 271 */ 272 #define ETHER_LOOKUP_MULTI(addrlo, addrhi, ac, enm) \ 273 /* u_int8_t addrlo[ETHER_ADDR_LEN]; */ \ 274 /* u_int8_t addrhi[ETHER_ADDR_LEN]; */ \ 275 /* struct arpcom *ac; */ \ 276 /* struct ether_multi *enm; */ \ 277 do { \ 278 for ((enm) = LIST_FIRST(&(ac)->ac_multiaddrs); \ 279 (enm) != NULL && \ 280 (memcmp((enm)->enm_addrlo, (addrlo), ETHER_ADDR_LEN) != 0 ||\ 281 memcmp((enm)->enm_addrhi, (addrhi), ETHER_ADDR_LEN) != 0); \ 282 (enm) = LIST_NEXT((enm), enm_list)); \ 283 } while (/* CONSTCOND */ 0) 284 285 /* 286 * Macro to step through all of the ether_multi records, one at a time. 287 * The current position is remembered in "step", which the caller must 288 * provide. ETHER_FIRST_MULTI(), below, must be called to initialize "step" 289 * and get the first record. Both macros return a NULL "enm" when there 290 * are no remaining records. 291 */ 292 #define ETHER_NEXT_MULTI(step, enm) \ 293 /* struct ether_multistep step; */ \ 294 /* struct ether_multi *enm; */ \ 295 do { \ 296 if (((enm) = (step).e_enm) != NULL) \ 297 (step).e_enm = LIST_NEXT((enm), enm_list); \ 298 } while (/* CONSTCOND */ 0) 299 300 #define ETHER_FIRST_MULTI(step, ac, enm) \ 301 /* struct ether_multistep step; */ \ 302 /* struct arpcom *ac; */ \ 303 /* struct ether_multi *enm; */ \ 304 do { \ 305 (step).e_enm = LIST_FIRST(&(ac)->ac_multiaddrs); \ 306 ETHER_NEXT_MULTI((step), (enm)); \ 307 } while (/* CONSTCOND */ 0) 308 309 u_int32_t ether_crc32_le_update(u_int32_t crc, const u_int8_t *, size_t); 310 u_int32_t ether_crc32_be_update(u_int32_t crc, const u_int8_t *, size_t); 311 u_int32_t ether_crc32_le(const u_int8_t *, size_t); 312 u_int32_t ether_crc32_be(const u_int8_t *, size_t); 313 314 #else /* _KERNEL */ 315 316 __BEGIN_DECLS 317 char *ether_ntoa(struct ether_addr *); 318 struct ether_addr *ether_aton(const char *); 319 int ether_ntohost(char *, struct ether_addr *); 320 int ether_hostton(const char *, struct ether_addr *); 321 int ether_line(const char *, struct ether_addr *, char *); 322 __END_DECLS 323 324 #endif /* _KERNEL */ 325 #endif /* _NETINET_IF_ETHER_H_ */ 326