1 /* $OpenBSD: ieee80211.c,v 1.76 2019/06/10 16:33:02 stsp Exp $ */ 2 /* $NetBSD: ieee80211.c,v 1.19 2004/06/06 05:45:29 dyoung Exp $ */ 3 4 /*- 5 * Copyright (c) 2001 Atsushi Onoe 6 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * IEEE 802.11 generic handler 34 */ 35 36 #include "bpfilter.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/mbuf.h> 41 #include <sys/kernel.h> 42 #include <sys/socket.h> 43 #include <sys/sockio.h> 44 #include <sys/endian.h> 45 #include <sys/errno.h> 46 #include <sys/sysctl.h> 47 48 #include <net/if.h> 49 #include <net/if_dl.h> 50 #include <net/if_media.h> 51 52 #if NBPFILTER > 0 53 #include <net/bpf.h> 54 #endif 55 56 #include <netinet/in.h> 57 #include <netinet/if_ether.h> 58 59 #include <net80211/ieee80211_var.h> 60 #include <net80211/ieee80211_priv.h> 61 62 #ifdef IEEE80211_DEBUG 63 int ieee80211_debug = 0; 64 #endif 65 66 int ieee80211_cache_size = IEEE80211_CACHE_SIZE; 67 68 void ieee80211_setbasicrates(struct ieee80211com *); 69 int ieee80211_findrate(struct ieee80211com *, enum ieee80211_phymode, int); 70 71 void 72 ieee80211_begin_bgscan(struct ifnet *ifp) 73 { 74 struct ieee80211com *ic = (void *)ifp; 75 76 if ((ic->ic_flags & IEEE80211_F_BGSCAN) || 77 ic->ic_state != IEEE80211_S_RUN) 78 return; 79 80 if (ic->ic_bgscan_start != NULL && ic->ic_bgscan_start(ic) == 0) { 81 /* 82 * Free the nodes table to ensure we get an up-to-date view 83 * of APs around us. In particular, we need to kick out the 84 * AP we are associated to. Otherwise, our current AP might 85 * stay cached if it is turned off while we are scanning, and 86 * we could end up picking a now non-existent AP over and over. 87 */ 88 ieee80211_free_allnodes(ic, 0 /* keep ic->ic_bss */); 89 90 ic->ic_flags |= IEEE80211_F_BGSCAN; 91 if (ifp->if_flags & IFF_DEBUG) 92 printf("%s: begin background scan\n", ifp->if_xname); 93 94 /* Driver calls ieee80211_end_scan() when done. */ 95 } 96 } 97 98 void 99 ieee80211_bgscan_timeout(void *arg) 100 { 101 struct ifnet *ifp = arg; 102 103 ieee80211_begin_bgscan(ifp); 104 } 105 106 void 107 ieee80211_channel_init(struct ifnet *ifp) 108 { 109 struct ieee80211com *ic = (void *)ifp; 110 struct ieee80211_channel *c; 111 int i; 112 113 /* 114 * Fill in 802.11 available channel set, mark 115 * all available channels as active, and pick 116 * a default channel if not already specified. 117 */ 118 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 119 ic->ic_modecaps |= 1<<IEEE80211_MODE_AUTO; 120 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { 121 c = &ic->ic_channels[i]; 122 if (c->ic_flags) { 123 /* 124 * Verify driver passed us valid data. 125 */ 126 if (i != ieee80211_chan2ieee(ic, c)) { 127 printf("%s: bad channel ignored; " 128 "freq %u flags %x number %u\n", 129 ifp->if_xname, c->ic_freq, c->ic_flags, 130 i); 131 c->ic_flags = 0; /* NB: remove */ 132 continue; 133 } 134 setbit(ic->ic_chan_avail, i); 135 /* 136 * Identify mode capabilities. 137 */ 138 if (IEEE80211_IS_CHAN_A(c)) 139 ic->ic_modecaps |= 1<<IEEE80211_MODE_11A; 140 if (IEEE80211_IS_CHAN_B(c)) 141 ic->ic_modecaps |= 1<<IEEE80211_MODE_11B; 142 if (IEEE80211_IS_CHAN_PUREG(c)) 143 ic->ic_modecaps |= 1<<IEEE80211_MODE_11G; 144 if (IEEE80211_IS_CHAN_N(c)) 145 ic->ic_modecaps |= 1<<IEEE80211_MODE_11N; 146 if (IEEE80211_IS_CHAN_AC(c)) 147 ic->ic_modecaps |= 1<<IEEE80211_MODE_11AC; 148 } 149 } 150 /* validate ic->ic_curmode */ 151 if ((ic->ic_modecaps & (1<<ic->ic_curmode)) == 0) 152 ic->ic_curmode = IEEE80211_MODE_AUTO; 153 ic->ic_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 154 } 155 156 void 157 ieee80211_ifattach(struct ifnet *ifp) 158 { 159 struct ieee80211com *ic = (void *)ifp; 160 161 memcpy(((struct arpcom *)ifp)->ac_enaddr, ic->ic_myaddr, 162 ETHER_ADDR_LEN); 163 ether_ifattach(ifp); 164 165 ifp->if_output = ieee80211_output; 166 167 #if NBPFILTER > 0 168 bpfattach(&ic->ic_rawbpf, ifp, DLT_IEEE802_11, 169 sizeof(struct ieee80211_frame_addr4)); 170 #endif 171 ieee80211_crypto_attach(ifp); 172 173 ieee80211_channel_init(ifp); 174 175 /* IEEE 802.11 defines a MTU >= 2290 */ 176 ifp->if_capabilities |= IFCAP_VLAN_MTU; 177 178 ieee80211_setbasicrates(ic); 179 (void)ieee80211_setmode(ic, ic->ic_curmode); 180 181 if (ic->ic_lintval == 0) 182 ic->ic_lintval = 100; /* default sleep */ 183 ic->ic_bmissthres = 7; /* default 7 beacons */ 184 ic->ic_dtim_period = 1; /* all TIMs are DTIMs */ 185 186 ieee80211_node_attach(ifp); 187 ieee80211_proto_attach(ifp); 188 189 if_addgroup(ifp, "wlan"); 190 ifp->if_priority = IF_WIRELESS_DEFAULT_PRIORITY; 191 192 ieee80211_set_link_state(ic, LINK_STATE_DOWN); 193 194 timeout_set(&ic->ic_bgscan_timeout, ieee80211_bgscan_timeout, ifp); 195 } 196 197 void 198 ieee80211_ifdetach(struct ifnet *ifp) 199 { 200 struct ieee80211com *ic = (void *)ifp; 201 202 timeout_del(&ic->ic_bgscan_timeout); 203 ieee80211_proto_detach(ifp); 204 ieee80211_crypto_detach(ifp); 205 ieee80211_node_detach(ifp); 206 ifmedia_delete_instance(&ic->ic_media, IFM_INST_ANY); 207 ether_ifdetach(ifp); 208 } 209 210 /* 211 * Convert MHz frequency to IEEE channel number. 212 */ 213 u_int 214 ieee80211_mhz2ieee(u_int freq, u_int flags) 215 { 216 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 217 if (freq == 2484) 218 return 14; 219 if (freq < 2484) 220 return (freq - 2407) / 5; 221 else 222 return 15 + ((freq - 2512) / 20); 223 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5GHz band */ 224 return (freq - 5000) / 5; 225 } else { /* either, guess */ 226 if (freq == 2484) 227 return 14; 228 if (freq < 2484) 229 return (freq - 2407) / 5; 230 if (freq < 5000) 231 return 15 + ((freq - 2512) / 20); 232 return (freq - 5000) / 5; 233 } 234 } 235 236 /* 237 * Convert channel to IEEE channel number. 238 */ 239 u_int 240 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 241 { 242 struct ifnet *ifp = &ic->ic_if; 243 if (ic->ic_channels <= c && c <= &ic->ic_channels[IEEE80211_CHAN_MAX]) 244 return c - ic->ic_channels; 245 else if (c == IEEE80211_CHAN_ANYC) 246 return IEEE80211_CHAN_ANY; 247 248 panic("%s: bogus channel pointer", ifp->if_xname); 249 } 250 251 /* 252 * Convert IEEE channel number to MHz frequency. 253 */ 254 u_int 255 ieee80211_ieee2mhz(u_int chan, u_int flags) 256 { 257 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 258 if (chan == 14) 259 return 2484; 260 if (chan < 14) 261 return 2407 + chan*5; 262 else 263 return 2512 + ((chan-15)*20); 264 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5GHz band */ 265 return 5000 + (chan*5); 266 } else { /* either, guess */ 267 if (chan == 14) 268 return 2484; 269 if (chan < 14) /* 0-13 */ 270 return 2407 + chan*5; 271 if (chan < 27) /* 15-26 */ 272 return 2512 + ((chan-15)*20); 273 return 5000 + (chan*5); 274 } 275 } 276 277 /* 278 * Setup the media data structures according to the channel and 279 * rate tables. This must be called by the driver after 280 * ieee80211_attach and before most anything else. 281 */ 282 void 283 ieee80211_media_init(struct ifnet *ifp, 284 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 285 { 286 #define ADD(_ic, _s, _o) \ 287 ifmedia_add(&(_ic)->ic_media, \ 288 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 289 struct ieee80211com *ic = (void *)ifp; 290 struct ifmediareq imr; 291 int i, j, mode, rate, maxrate, r; 292 uint64_t mword, mopt; 293 const struct ieee80211_rateset *rs; 294 struct ieee80211_rateset allrates; 295 296 /* 297 * Do late attach work that must wait for any subclass 298 * (i.e. driver) work such as overriding methods. 299 */ 300 ieee80211_node_lateattach(ifp); 301 302 /* 303 * Fill in media characteristics. 304 */ 305 ifmedia_init(&ic->ic_media, 0, media_change, media_stat); 306 maxrate = 0; 307 memset(&allrates, 0, sizeof(allrates)); 308 for (mode = IEEE80211_MODE_AUTO; mode <= IEEE80211_MODE_11G; mode++) { 309 static const uint64_t mopts[] = { 310 IFM_AUTO, 311 IFM_IEEE80211_11A, 312 IFM_IEEE80211_11B, 313 IFM_IEEE80211_11G, 314 }; 315 if ((ic->ic_modecaps & (1<<mode)) == 0) 316 continue; 317 mopt = mopts[mode]; 318 ADD(ic, IFM_AUTO, mopt); /* e.g. 11a auto */ 319 #ifndef IEEE80211_STA_ONLY 320 if (ic->ic_caps & IEEE80211_C_IBSS) 321 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); 322 if (ic->ic_caps & IEEE80211_C_HOSTAP) 323 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); 324 if (ic->ic_caps & IEEE80211_C_AHDEMO) 325 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC); 326 #endif 327 if (ic->ic_caps & IEEE80211_C_MONITOR) 328 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); 329 if (mode == IEEE80211_MODE_AUTO) 330 continue; 331 rs = &ic->ic_sup_rates[mode]; 332 for (i = 0; i < rs->rs_nrates; i++) { 333 rate = rs->rs_rates[i]; 334 mword = ieee80211_rate2media(ic, rate, mode); 335 if (mword == 0) 336 continue; 337 ADD(ic, mword, mopt); 338 #ifndef IEEE80211_STA_ONLY 339 if (ic->ic_caps & IEEE80211_C_IBSS) 340 ADD(ic, mword, mopt | IFM_IEEE80211_IBSS); 341 if (ic->ic_caps & IEEE80211_C_HOSTAP) 342 ADD(ic, mword, mopt | IFM_IEEE80211_HOSTAP); 343 if (ic->ic_caps & IEEE80211_C_AHDEMO) 344 ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC); 345 #endif 346 if (ic->ic_caps & IEEE80211_C_MONITOR) 347 ADD(ic, mword, mopt | IFM_IEEE80211_MONITOR); 348 /* 349 * Add rate to the collection of all rates. 350 */ 351 r = rate & IEEE80211_RATE_VAL; 352 for (j = 0; j < allrates.rs_nrates; j++) 353 if (allrates.rs_rates[j] == r) 354 break; 355 if (j == allrates.rs_nrates) { 356 /* unique, add to the set */ 357 allrates.rs_rates[j] = r; 358 allrates.rs_nrates++; 359 } 360 rate = (rate & IEEE80211_RATE_VAL) / 2; 361 if (rate > maxrate) 362 maxrate = rate; 363 } 364 } 365 for (i = 0; i < allrates.rs_nrates; i++) { 366 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 367 IEEE80211_MODE_AUTO); 368 if (mword == 0) 369 continue; 370 mword = IFM_SUBTYPE(mword); /* remove media options */ 371 ADD(ic, mword, 0); 372 #ifndef IEEE80211_STA_ONLY 373 if (ic->ic_caps & IEEE80211_C_IBSS) 374 ADD(ic, mword, IFM_IEEE80211_IBSS); 375 if (ic->ic_caps & IEEE80211_C_HOSTAP) 376 ADD(ic, mword, IFM_IEEE80211_HOSTAP); 377 if (ic->ic_caps & IEEE80211_C_AHDEMO) 378 ADD(ic, mword, IFM_IEEE80211_ADHOC); 379 #endif 380 if (ic->ic_caps & IEEE80211_C_MONITOR) 381 ADD(ic, mword, IFM_IEEE80211_MONITOR); 382 } 383 384 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) { 385 mopt = IFM_IEEE80211_11N; 386 ADD(ic, IFM_AUTO, mopt); 387 #ifndef IEEE80211_STA_ONLY 388 if (ic->ic_caps & IEEE80211_C_IBSS) 389 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); 390 if (ic->ic_caps & IEEE80211_C_HOSTAP) 391 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); 392 #endif 393 if (ic->ic_caps & IEEE80211_C_MONITOR) 394 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); 395 for (i = 0; i < IEEE80211_HT_NUM_MCS; i++) { 396 if (!isset(ic->ic_sup_mcs, i)) 397 continue; 398 ADD(ic, IFM_IEEE80211_HT_MCS0 + i, mopt); 399 #ifndef IEEE80211_STA_ONLY 400 if (ic->ic_caps & IEEE80211_C_IBSS) 401 ADD(ic, IFM_IEEE80211_HT_MCS0 + i, 402 mopt | IFM_IEEE80211_IBSS); 403 if (ic->ic_caps & IEEE80211_C_HOSTAP) 404 ADD(ic, IFM_IEEE80211_HT_MCS0 + i, 405 mopt | IFM_IEEE80211_HOSTAP); 406 #endif 407 if (ic->ic_caps & IEEE80211_C_MONITOR) 408 ADD(ic, IFM_IEEE80211_HT_MCS0 + i, 409 mopt | IFM_IEEE80211_MONITOR); 410 } 411 ic->ic_flags |= IEEE80211_F_HTON; /* enable 11n by default */ 412 } 413 414 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) { 415 mopt = IFM_IEEE80211_11AC; 416 ADD(ic, IFM_AUTO, mopt); 417 #ifndef IEEE80211_STA_ONLY 418 if (ic->ic_caps & IEEE80211_C_IBSS) 419 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); 420 if (ic->ic_caps & IEEE80211_C_HOSTAP) 421 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); 422 #endif 423 if (ic->ic_caps & IEEE80211_C_MONITOR) 424 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); 425 for (i = 0; i < IEEE80211_VHT_NUM_MCS; i++) { 426 #if 0 427 /* TODO: Obtain VHT MCS information from VHT CAP IE. */ 428 if (!vht_mcs_supported) 429 continue; 430 #endif 431 ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, mopt); 432 #ifndef IEEE80211_STA_ONLY 433 if (ic->ic_caps & IEEE80211_C_IBSS) 434 ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, 435 mopt | IFM_IEEE80211_IBSS); 436 if (ic->ic_caps & IEEE80211_C_HOSTAP) 437 ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, 438 mopt | IFM_IEEE80211_HOSTAP); 439 #endif 440 if (ic->ic_caps & IEEE80211_C_MONITOR) 441 ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, 442 mopt | IFM_IEEE80211_MONITOR); 443 } 444 #if 0 445 ic->ic_flags |= IEEE80211_F_VHTON; /* enable 11ac by default */ 446 #endif 447 } 448 449 ieee80211_media_status(ifp, &imr); 450 ifmedia_set(&ic->ic_media, imr.ifm_active); 451 452 if (maxrate) 453 ifp->if_baudrate = IF_Mbps(maxrate); 454 455 #undef ADD 456 } 457 458 int 459 ieee80211_findrate(struct ieee80211com *ic, enum ieee80211_phymode mode, 460 int rate) 461 { 462 #define IEEERATE(_ic,_m,_i) \ 463 ((_ic)->ic_sup_rates[_m].rs_rates[_i] & IEEE80211_RATE_VAL) 464 int i, nrates = ic->ic_sup_rates[mode].rs_nrates; 465 for (i = 0; i < nrates; i++) 466 if (IEEERATE(ic, mode, i) == rate) 467 return i; 468 return -1; 469 #undef IEEERATE 470 } 471 472 /* 473 * Handle a media change request. 474 */ 475 int 476 ieee80211_media_change(struct ifnet *ifp) 477 { 478 struct ieee80211com *ic = (void *)ifp; 479 struct ifmedia_entry *ime; 480 enum ieee80211_opmode newopmode; 481 enum ieee80211_phymode newphymode; 482 int i, j, newrate, error = 0; 483 484 ime = ic->ic_media.ifm_cur; 485 /* 486 * First, identify the phy mode. 487 */ 488 switch (IFM_MODE(ime->ifm_media)) { 489 case IFM_IEEE80211_11A: 490 newphymode = IEEE80211_MODE_11A; 491 break; 492 case IFM_IEEE80211_11B: 493 newphymode = IEEE80211_MODE_11B; 494 break; 495 case IFM_IEEE80211_11G: 496 newphymode = IEEE80211_MODE_11G; 497 break; 498 case IFM_IEEE80211_11N: 499 newphymode = IEEE80211_MODE_11N; 500 break; 501 case IFM_IEEE80211_11AC: 502 newphymode = IEEE80211_MODE_11AC; 503 break; 504 case IFM_AUTO: 505 newphymode = IEEE80211_MODE_AUTO; 506 break; 507 default: 508 return EINVAL; 509 } 510 511 /* 512 * Validate requested mode is available. 513 */ 514 if ((ic->ic_modecaps & (1<<newphymode)) == 0) 515 return EINVAL; 516 517 /* 518 * Next, the fixed/variable rate. 519 */ 520 i = -1; 521 if (IFM_SUBTYPE(ime->ifm_media) >= IFM_IEEE80211_VHT_MCS0 && 522 IFM_SUBTYPE(ime->ifm_media) <= IFM_IEEE80211_VHT_MCS9) { 523 if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) == 0) 524 return EINVAL; 525 if (newphymode != IEEE80211_MODE_AUTO && 526 newphymode != IEEE80211_MODE_11AC) 527 return EINVAL; 528 i = ieee80211_media2mcs(ime->ifm_media); 529 /* TODO: Obtain VHT MCS information from VHT CAP IE. */ 530 if (i == -1 /* || !vht_mcs_supported */) 531 return EINVAL; 532 } else if (IFM_SUBTYPE(ime->ifm_media) >= IFM_IEEE80211_HT_MCS0 && 533 IFM_SUBTYPE(ime->ifm_media) <= IFM_IEEE80211_HT_MCS76) { 534 if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) == 0) 535 return EINVAL; 536 if (newphymode != IEEE80211_MODE_AUTO && 537 newphymode != IEEE80211_MODE_11N) 538 return EINVAL; 539 i = ieee80211_media2mcs(ime->ifm_media); 540 if (i == -1 || isclr(ic->ic_sup_mcs, i)) 541 return EINVAL; 542 } else if (IFM_SUBTYPE(ime->ifm_media) != IFM_AUTO) { 543 /* 544 * Convert media subtype to rate. 545 */ 546 newrate = ieee80211_media2rate(ime->ifm_media); 547 if (newrate == 0) 548 return EINVAL; 549 /* 550 * Check the rate table for the specified/current phy. 551 */ 552 if (newphymode == IEEE80211_MODE_AUTO) { 553 /* 554 * In autoselect mode search for the rate. 555 */ 556 for (j = IEEE80211_MODE_11A; 557 j < IEEE80211_MODE_MAX; j++) { 558 if ((ic->ic_modecaps & (1<<j)) == 0) 559 continue; 560 i = ieee80211_findrate(ic, j, newrate); 561 if (i != -1) { 562 /* lock mode too */ 563 newphymode = j; 564 break; 565 } 566 } 567 } else { 568 i = ieee80211_findrate(ic, newphymode, newrate); 569 } 570 if (i == -1) /* mode/rate mismatch */ 571 return EINVAL; 572 } 573 /* NB: defer rate setting to later */ 574 575 /* 576 * Deduce new operating mode but don't install it just yet. 577 */ 578 #ifndef IEEE80211_STA_ONLY 579 if (ime->ifm_media & IFM_IEEE80211_ADHOC) 580 newopmode = IEEE80211_M_AHDEMO; 581 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP) 582 newopmode = IEEE80211_M_HOSTAP; 583 else if (ime->ifm_media & IFM_IEEE80211_IBSS) 584 newopmode = IEEE80211_M_IBSS; 585 else 586 #endif 587 if (ime->ifm_media & IFM_IEEE80211_MONITOR) 588 newopmode = IEEE80211_M_MONITOR; 589 else 590 newopmode = IEEE80211_M_STA; 591 592 #ifndef IEEE80211_STA_ONLY 593 /* 594 * Autoselect doesn't make sense when operating as an AP. 595 * If no phy mode has been selected, pick one and lock it 596 * down so rate tables can be used in forming beacon frames 597 * and the like. 598 */ 599 if (newopmode == IEEE80211_M_HOSTAP && 600 newphymode == IEEE80211_MODE_AUTO) { 601 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) 602 newphymode = IEEE80211_MODE_11AC; 603 else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) 604 newphymode = IEEE80211_MODE_11N; 605 else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11A)) 606 newphymode = IEEE80211_MODE_11A; 607 else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11G)) 608 newphymode = IEEE80211_MODE_11G; 609 else 610 newphymode = IEEE80211_MODE_11B; 611 } 612 #endif 613 614 /* 615 * Handle phy mode change. 616 */ 617 if (ic->ic_curmode != newphymode) { /* change phy mode */ 618 error = ieee80211_setmode(ic, newphymode); 619 if (error != 0) 620 return error; 621 error = ENETRESET; 622 } 623 624 /* 625 * Committed to changes, install the MCS/rate setting. 626 */ 627 ic->ic_flags &= ~(IEEE80211_F_HTON | IEEE80211_F_VHTON); 628 if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) && 629 (newphymode == IEEE80211_MODE_AUTO || 630 newphymode == IEEE80211_MODE_11AC)) 631 ic->ic_flags |= IEEE80211_F_VHTON; 632 else if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) && 633 (newphymode == IEEE80211_MODE_AUTO || 634 newphymode == IEEE80211_MODE_11N)) 635 ic->ic_flags |= IEEE80211_F_HTON; 636 if ((ic->ic_flags & (IEEE80211_F_HTON | IEEE80211_F_VHTON)) == 0) { 637 ic->ic_fixed_mcs = -1; 638 if (ic->ic_fixed_rate != i) { 639 ic->ic_fixed_rate = i; /* set fixed tx rate */ 640 error = ENETRESET; 641 } 642 } else { 643 ic->ic_fixed_rate = -1; 644 if (ic->ic_fixed_mcs != i) { 645 ic->ic_fixed_mcs = i; /* set fixed mcs */ 646 error = ENETRESET; 647 } 648 } 649 650 /* 651 * Handle operating mode change. 652 */ 653 if (ic->ic_opmode != newopmode) { 654 ic->ic_opmode = newopmode; 655 #ifndef IEEE80211_STA_ONLY 656 switch (newopmode) { 657 case IEEE80211_M_AHDEMO: 658 case IEEE80211_M_HOSTAP: 659 case IEEE80211_M_STA: 660 case IEEE80211_M_MONITOR: 661 ic->ic_flags &= ~IEEE80211_F_IBSSON; 662 break; 663 case IEEE80211_M_IBSS: 664 ic->ic_flags |= IEEE80211_F_IBSSON; 665 break; 666 } 667 #endif 668 /* 669 * Yech, slot time may change depending on the 670 * operating mode so reset it to be sure everything 671 * is setup appropriately. 672 */ 673 ieee80211_reset_erp(ic); 674 error = ENETRESET; 675 } 676 #ifdef notdef 677 if (error == 0) 678 ifp->if_baudrate = ifmedia_baudrate(ime->ifm_media); 679 #endif 680 return error; 681 } 682 683 void 684 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 685 { 686 struct ieee80211com *ic = (void *)ifp; 687 const struct ieee80211_node *ni = NULL; 688 689 imr->ifm_status = IFM_AVALID; 690 imr->ifm_active = IFM_IEEE80211; 691 if (ic->ic_state == IEEE80211_S_RUN && 692 (ic->ic_opmode != IEEE80211_M_STA || 693 !(ic->ic_flags & IEEE80211_F_RSNON) || 694 ic->ic_bss->ni_port_valid)) 695 imr->ifm_status |= IFM_ACTIVE; 696 imr->ifm_active |= IFM_AUTO; 697 switch (ic->ic_opmode) { 698 case IEEE80211_M_STA: 699 ni = ic->ic_bss; 700 if (ic->ic_curmode == IEEE80211_MODE_11N || 701 ic->ic_curmode == IEEE80211_MODE_11AC) 702 imr->ifm_active |= ieee80211_mcs2media(ic, 703 ni->ni_txmcs, ic->ic_curmode); 704 else 705 /* calculate rate subtype */ 706 imr->ifm_active |= ieee80211_rate2media(ic, 707 ni->ni_rates.rs_rates[ni->ni_txrate], 708 ic->ic_curmode); 709 break; 710 #ifndef IEEE80211_STA_ONLY 711 case IEEE80211_M_IBSS: 712 imr->ifm_active |= IFM_IEEE80211_IBSS; 713 break; 714 case IEEE80211_M_AHDEMO: 715 imr->ifm_active |= IFM_IEEE80211_ADHOC; 716 break; 717 case IEEE80211_M_HOSTAP: 718 imr->ifm_active |= IFM_IEEE80211_HOSTAP; 719 break; 720 #endif 721 case IEEE80211_M_MONITOR: 722 imr->ifm_active |= IFM_IEEE80211_MONITOR; 723 break; 724 default: 725 break; 726 } 727 switch (ic->ic_curmode) { 728 case IEEE80211_MODE_11A: 729 imr->ifm_active |= IFM_IEEE80211_11A; 730 break; 731 case IEEE80211_MODE_11B: 732 imr->ifm_active |= IFM_IEEE80211_11B; 733 break; 734 case IEEE80211_MODE_11G: 735 imr->ifm_active |= IFM_IEEE80211_11G; 736 break; 737 case IEEE80211_MODE_11N: 738 imr->ifm_active |= IFM_IEEE80211_11N; 739 break; 740 case IEEE80211_MODE_11AC: 741 imr->ifm_active |= IFM_IEEE80211_11AC; 742 break; 743 } 744 } 745 746 void 747 ieee80211_watchdog(struct ifnet *ifp) 748 { 749 struct ieee80211com *ic = (void *)ifp; 750 751 if (ic->ic_mgt_timer && --ic->ic_mgt_timer == 0) 752 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 753 754 if (ic->ic_mgt_timer != 0) 755 ifp->if_timer = 1; 756 } 757 758 const struct ieee80211_rateset ieee80211_std_rateset_11a = 759 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 760 761 const struct ieee80211_rateset ieee80211_std_rateset_11b = 762 { 4, { 2, 4, 11, 22 } }; 763 764 const struct ieee80211_rateset ieee80211_std_rateset_11g = 765 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 766 767 const struct ieee80211_ht_rateset ieee80211_std_ratesets_11n[] = { 768 /* MCS 0-7, 20MHz channel, no SGI */ 769 { 8, { 13, 26, 39, 52, 78, 104, 117, 130 }, 0x000000ff, 0, 7, 0}, 770 771 /* MCS 0-7, 20MHz channel, SGI */ 772 { 8, { 14, 29, 43, 58, 87, 116, 130, 144 }, 0x000000ff, 0, 7, 1 }, 773 774 /* MCS 8-15, 20MHz channel, no SGI */ 775 { 8, { 26, 52, 78, 104, 156, 208, 234, 260 }, 0x0000ff00, 8, 15, 0 }, 776 777 /* MCS 8-15, 20MHz channel, SGI */ 778 { 8, { 29, 58, 87, 116, 173, 231, 261, 289 }, 0x0000ff00, 8, 15, 1 }, 779 780 /* MCS 16-23, 20MHz channel, no SGI */ 781 { 8, { 39, 78, 117, 156, 234, 312, 351, 390 }, 0x00ff0000, 16, 23, 0 }, 782 783 /* MCS 16-23, 20MHz channel, SGI */ 784 { 8, { 43, 87, 130, 173, 260, 347, 390, 433 }, 0x00ff0000, 16, 23, 1 }, 785 786 /* MCS 24-31, 20MHz channel, no SGI */ 787 { 8, { 52, 104, 156, 208, 312, 416, 468, 520 }, 0xff000000, 24, 31, 0 }, 788 789 /* MCS 24-31, 20MHz channel, SGI */ 790 { 8, { 58, 116, 173, 231, 347, 462, 520, 578 }, 0xff000000, 24, 31, 1 }, 791 }; 792 793 const struct ieee80211_vht_rateset ieee80211_std_ratesets_11ac[] = { 794 /* MCS 0-8 (MCS 9 N/A), 1 SS, 20MHz channel, no SGI */ 795 { 9, { 13, 26, 39, 52, 78, 104, 117, 130, 156 }, 1, 0 }, 796 797 /* MCS 0-8 (MCS 9 N/A), 1 SS, 20MHz channel, SGI */ 798 { 9, { 14, 29, 43, 58, 87, 116, 130, 144, 174 }, 1, 1 }, 799 800 /* MCS 0-8 (MCS 9 N/A), 2 SS, 20MHz channel, no SGI */ 801 { 9, { 26, 52, 78, 104, 156, 208, 234, 260, 312 }, 2, 0 }, 802 803 /* MCS 0-8 (MCS 9 N/A), 2 SS, 20MHz channel, SGI */ 804 { 9, { 29, 58, 87, 116, 173, 231, 261, 289, 347 }, 2, 1 }, 805 806 /* MCS 0-9, 1 SS, 40MHz channel, no SGI */ 807 { 10, { 27, 54, 81, 108, 162, 216, 243, 270, 324, 360 }, 1, 0 }, 808 809 /* MCS 0-9, 1 SS, 40MHz channel, SGI */ 810 { 10, { 30, 60, 90, 120, 180, 240, 270, 300, 360, 400 }, 1, 1 }, 811 812 /* MCS 0-9, 2 SS, 40MHz channel, no SGI */ 813 { 10, { 54, 108, 162, 216, 324, 432, 486, 540, 648, 720 }, 2, 0 }, 814 815 /* MCS 0-9, 2 SS, 40MHz channel, SGI */ 816 { 10, { 60, 120, 180, 240, 360, 480, 540, 600, 720, 800 }, 2, 1 }, 817 818 /* MCS 0-9, 1 SS, 80MHz channel, no SGI */ 819 { 10, { 59, 117, 176, 234, 351, 468, 527, 585, 702, 780 }, 1, 0 }, 820 821 /* MCS 0-9, 1 SS, 80MHz channel, SGI */ 822 { 10, { 65, 130, 195, 260, 390, 520, 585, 650, 780, 867 }, 1, 1 }, 823 824 /* MCS 0-9, 2 SS, 80MHz channel, no SGI */ 825 { 10, { 117, 234, 351, 468, 702, 936, 1053, 1404, 1560 }, 2, 0 }, 826 827 /* MCS 0-9, 2 SS, 80MHz channel, SGI */ 828 { 10, { 130, 260, 390, 520, 780, 1040, 1170, 1300, 1560, 1734 }, 2, 1 }, 829 }; 830 831 /* 832 * Mark the basic rates for the 11g rate table based on the 833 * operating mode. For real 11g we mark all the 11b rates 834 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 835 * 11b rates. There's also a pseudo 11a-mode used to mark only 836 * the basic OFDM rates. 837 */ 838 void 839 ieee80211_setbasicrates(struct ieee80211com *ic) 840 { 841 static const struct ieee80211_rateset basic[] = { 842 { 0 }, /* IEEE80211_MODE_AUTO */ 843 { 3, { 12, 24, 48 } }, /* IEEE80211_MODE_11A */ 844 { 2, { 2, 4 } }, /* IEEE80211_MODE_11B */ 845 { 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_11G */ 846 { 0 }, /* IEEE80211_MODE_11N */ 847 { 0 }, /* IEEE80211_MODE_11AC */ 848 }; 849 enum ieee80211_phymode mode; 850 struct ieee80211_rateset *rs; 851 int i, j; 852 853 for (mode = 0; mode < IEEE80211_MODE_MAX; mode++) { 854 rs = &ic->ic_sup_rates[mode]; 855 for (i = 0; i < rs->rs_nrates; i++) { 856 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 857 for (j = 0; j < basic[mode].rs_nrates; j++) { 858 if (basic[mode].rs_rates[j] == 859 rs->rs_rates[i]) { 860 rs->rs_rates[i] |= 861 IEEE80211_RATE_BASIC; 862 break; 863 } 864 } 865 } 866 } 867 } 868 869 int 870 ieee80211_min_basic_rate(struct ieee80211com *ic) 871 { 872 struct ieee80211_rateset *rs = &ic->ic_bss->ni_rates; 873 int i, min, rval; 874 875 min = -1; 876 877 for (i = 0; i < rs->rs_nrates; i++) { 878 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) == 0) 879 continue; 880 rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL); 881 if (min == -1) 882 min = rval; 883 else if (rval < min) 884 min = rval; 885 } 886 887 /* Default to 1 Mbit/s on 2GHz and 6 Mbit/s on 5GHz. */ 888 if (min == -1) 889 min = IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ? 2 : 12; 890 891 return min; 892 } 893 894 int 895 ieee80211_max_basic_rate(struct ieee80211com *ic) 896 { 897 struct ieee80211_rateset *rs = &ic->ic_bss->ni_rates; 898 int i, max, rval; 899 900 /* Default to 1 Mbit/s on 2GHz and 6 Mbit/s on 5GHz. */ 901 max = IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ? 2 : 12; 902 903 for (i = 0; i < rs->rs_nrates; i++) { 904 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) == 0) 905 continue; 906 rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL); 907 if (rval > max) 908 max = rval; 909 } 910 911 return max; 912 } 913 914 /* 915 * Set the current phy mode and recalculate the active channel 916 * set based on the available channels for this mode. Also 917 * select a new default/current channel if the current one is 918 * inappropriate for this mode. 919 */ 920 int 921 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 922 { 923 struct ifnet *ifp = &ic->ic_if; 924 static const u_int chanflags[] = { 925 0, /* IEEE80211_MODE_AUTO */ 926 IEEE80211_CHAN_A, /* IEEE80211_MODE_11A */ 927 IEEE80211_CHAN_B, /* IEEE80211_MODE_11B */ 928 IEEE80211_CHAN_PUREG, /* IEEE80211_MODE_11G */ 929 IEEE80211_CHAN_HT, /* IEEE80211_MODE_11N */ 930 IEEE80211_CHAN_VHT, /* IEEE80211_MODE_11AC */ 931 }; 932 const struct ieee80211_channel *c; 933 u_int modeflags; 934 int i; 935 936 /* validate new mode */ 937 if ((ic->ic_modecaps & (1<<mode)) == 0) { 938 DPRINTF(("mode %u not supported (caps 0x%x)\n", 939 mode, ic->ic_modecaps)); 940 return EINVAL; 941 } 942 943 /* 944 * Verify at least one channel is present in the available 945 * channel list before committing to the new mode. 946 */ 947 if (mode >= nitems(chanflags)) 948 panic("%s: unexpected mode %u", __func__, mode); 949 modeflags = chanflags[mode]; 950 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { 951 c = &ic->ic_channels[i]; 952 if (mode == IEEE80211_MODE_AUTO) { 953 if (c->ic_flags != 0) 954 break; 955 } else if ((c->ic_flags & modeflags) == modeflags) 956 break; 957 } 958 if (i > IEEE80211_CHAN_MAX) { 959 DPRINTF(("no channels found for mode %u\n", mode)); 960 return EINVAL; 961 } 962 963 /* 964 * Calculate the active channel set. 965 */ 966 memset(ic->ic_chan_active, 0, sizeof(ic->ic_chan_active)); 967 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { 968 c = &ic->ic_channels[i]; 969 if (mode == IEEE80211_MODE_AUTO) { 970 if (c->ic_flags != 0) 971 setbit(ic->ic_chan_active, i); 972 } else if ((c->ic_flags & modeflags) == modeflags) 973 setbit(ic->ic_chan_active, i); 974 } 975 /* 976 * If no current/default channel is setup or the current 977 * channel is wrong for the mode then pick the first 978 * available channel from the active list. This is likely 979 * not the right one. 980 */ 981 if (ic->ic_ibss_chan == NULL || isclr(ic->ic_chan_active, 982 ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) { 983 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) 984 if (isset(ic->ic_chan_active, i)) { 985 ic->ic_ibss_chan = &ic->ic_channels[i]; 986 break; 987 } 988 if ((ic->ic_ibss_chan == NULL) || isclr(ic->ic_chan_active, 989 ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) 990 panic("Bad IBSS channel %u", 991 ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); 992 } 993 994 /* 995 * Reset the scan state for the new mode. This avoids scanning 996 * of invalid channels, ie. 5GHz channels in 11b mode. 997 */ 998 ieee80211_reset_scan(ifp); 999 1000 ic->ic_curmode = mode; 1001 ieee80211_reset_erp(ic); /* reset ERP state */ 1002 1003 return 0; 1004 } 1005 1006 enum ieee80211_phymode 1007 ieee80211_next_mode(struct ifnet *ifp) 1008 { 1009 struct ieee80211com *ic = (void *)ifp; 1010 uint16_t mode; 1011 1012 /* 1013 * Indicate a wrap-around if we're running in a fixed, user-specified 1014 * phy mode or if the driver scans all bands in one scan iteration. 1015 */ 1016 if (IFM_MODE(ic->ic_media.ifm_cur->ifm_media) != IFM_AUTO || 1017 (ic->ic_caps & IEEE80211_C_SCANALLBAND)) 1018 return (IEEE80211_MODE_AUTO); 1019 1020 /* 1021 * Get the next supported mode; effectively, this alternates between 1022 * the 11a (5GHz) and 11b/g (2GHz) modes. What matters is that each 1023 * supported channel gets scanned. 1024 */ 1025 for (mode = ic->ic_curmode + 1; mode <= IEEE80211_MODE_MAX; mode++) { 1026 /* 1027 * Skip over 11n mode. Its set of channels is the superset 1028 * of all channels supported by the other modes. 1029 */ 1030 if (mode == IEEE80211_MODE_11N) 1031 continue; 1032 /* 1033 * Skip over 11ac mode. Its set of channels is the set 1034 * of all channels supported by 11a. 1035 */ 1036 if (mode == IEEE80211_MODE_11AC) 1037 continue; 1038 1039 /* Start over if we have already tried all modes. */ 1040 if (mode == IEEE80211_MODE_MAX) { 1041 mode = IEEE80211_MODE_AUTO; 1042 break; 1043 } 1044 1045 if (ic->ic_modecaps & (1 << mode)) 1046 break; 1047 } 1048 1049 if (mode != ic->ic_curmode) 1050 ieee80211_setmode(ic, mode); 1051 1052 return (ic->ic_curmode); 1053 } 1054 1055 /* 1056 * Return the phy mode for with the specified channel so the 1057 * caller can select a rate set. This is problematic and the 1058 * work here assumes how things work elsewhere in this code. 1059 * 1060 * Because the result of this function is ultimately used to select a 1061 * rate from the rate set of the returned mode, it must return one of the 1062 * legacy 11a/b/g modes; 11n and 11ac modes use MCS instead of rate sets. 1063 */ 1064 enum ieee80211_phymode 1065 ieee80211_chan2mode(struct ieee80211com *ic, 1066 const struct ieee80211_channel *chan) 1067 { 1068 /* 1069 * Are we fixed in 11a/b/g mode? 1070 * NB: this assumes the channel would not be supplied to us 1071 * unless it was already compatible with the current mode. 1072 */ 1073 if (ic->ic_curmode == IEEE80211_MODE_11A || 1074 ic->ic_curmode == IEEE80211_MODE_11B || 1075 ic->ic_curmode == IEEE80211_MODE_11G) 1076 return ic->ic_curmode; 1077 1078 /* If no channel was provided, return the most suitable legacy mode. */ 1079 if (chan == IEEE80211_CHAN_ANYC) { 1080 switch (ic->ic_curmode) { 1081 case IEEE80211_MODE_AUTO: 1082 case IEEE80211_MODE_11N: 1083 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11A)) 1084 return IEEE80211_MODE_11A; 1085 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11G)) 1086 return IEEE80211_MODE_11G; 1087 return IEEE80211_MODE_11B; 1088 case IEEE80211_MODE_11AC: 1089 return IEEE80211_MODE_11A; 1090 default: 1091 return ic->ic_curmode; 1092 } 1093 } 1094 1095 /* Deduce a legacy mode based on the channel characteristics. */ 1096 if (IEEE80211_IS_CHAN_5GHZ(chan)) 1097 return IEEE80211_MODE_11A; 1098 else if (chan->ic_flags & (IEEE80211_CHAN_OFDM|IEEE80211_CHAN_DYN)) 1099 return IEEE80211_MODE_11G; 1100 else 1101 return IEEE80211_MODE_11B; 1102 } 1103 1104 /* 1105 * Convert IEEE80211 MCS index to ifmedia subtype. 1106 */ 1107 uint64_t 1108 ieee80211_mcs2media(struct ieee80211com *ic, int mcs, 1109 enum ieee80211_phymode mode) 1110 { 1111 switch (mode) { 1112 case IEEE80211_MODE_11A: 1113 case IEEE80211_MODE_11B: 1114 case IEEE80211_MODE_11G: 1115 /* these modes use rates, not MCS */ 1116 panic("%s: unexpected mode %d", __func__, mode); 1117 break; 1118 case IEEE80211_MODE_11N: 1119 if (mcs >= 0 && mcs < IEEE80211_HT_NUM_MCS) 1120 return (IFM_IEEE80211_11N | 1121 (IFM_IEEE80211_HT_MCS0 + mcs)); 1122 break; 1123 case IEEE80211_MODE_11AC: 1124 if (mcs >= 0 && mcs < IEEE80211_VHT_NUM_MCS) 1125 return (IFM_IEEE80211_11AC | 1126 (IFM_IEEE80211_VHT_MCS0 + mcs)); 1127 break; 1128 case IEEE80211_MODE_AUTO: 1129 break; 1130 } 1131 1132 return IFM_AUTO; 1133 } 1134 1135 /* 1136 * Convert ifmedia subtype to IEEE80211 MCS index. 1137 */ 1138 int 1139 ieee80211_media2mcs(uint64_t mword) 1140 { 1141 uint64_t subtype; 1142 1143 subtype = IFM_SUBTYPE(mword); 1144 1145 if (subtype == IFM_AUTO) 1146 return -1; 1147 else if (subtype == IFM_MANUAL || subtype == IFM_NONE) 1148 return 0; 1149 1150 if (subtype >= IFM_IEEE80211_HT_MCS0 && 1151 subtype <= IFM_IEEE80211_HT_MCS76) 1152 return (int)(subtype - IFM_IEEE80211_HT_MCS0); 1153 1154 if (subtype >= IFM_IEEE80211_VHT_MCS0 && 1155 subtype <= IFM_IEEE80211_VHT_MCS9) 1156 return (int)(subtype - IFM_IEEE80211_VHT_MCS0); 1157 1158 return -1; 1159 } 1160 1161 /* 1162 * convert IEEE80211 rate value to ifmedia subtype. 1163 * ieee80211 rate is in unit of 0.5Mbps. 1164 */ 1165 uint64_t 1166 ieee80211_rate2media(struct ieee80211com *ic, int rate, 1167 enum ieee80211_phymode mode) 1168 { 1169 static const struct { 1170 uint64_t m; /* rate + mode */ 1171 uint64_t r; /* if_media rate */ 1172 } rates[] = { 1173 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1174 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1175 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1176 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1177 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1178 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1179 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1180 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1181 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1182 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1183 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1184 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1185 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1186 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1187 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1188 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1189 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1190 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1191 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1192 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1193 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1194 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1195 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1196 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1197 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1198 /* NB: OFDM72 doesn't really exist so we don't handle it */ 1199 }; 1200 uint64_t mask; 1201 int i; 1202 1203 mask = rate & IEEE80211_RATE_VAL; 1204 switch (mode) { 1205 case IEEE80211_MODE_11A: 1206 mask |= IFM_IEEE80211_11A; 1207 break; 1208 case IEEE80211_MODE_11B: 1209 mask |= IFM_IEEE80211_11B; 1210 break; 1211 case IEEE80211_MODE_AUTO: 1212 /* NB: hack, 11g matches both 11b+11a rates */ 1213 /* FALLTHROUGH */ 1214 case IEEE80211_MODE_11G: 1215 mask |= IFM_IEEE80211_11G; 1216 break; 1217 case IEEE80211_MODE_11N: 1218 case IEEE80211_MODE_11AC: 1219 /* 11n/11ac uses MCS, not rates. */ 1220 panic("%s: unexpected mode %d", __func__, mode); 1221 break; 1222 } 1223 for (i = 0; i < nitems(rates); i++) 1224 if (rates[i].m == mask) 1225 return rates[i].r; 1226 return IFM_AUTO; 1227 } 1228 1229 int 1230 ieee80211_media2rate(uint64_t mword) 1231 { 1232 int i; 1233 static const struct { 1234 uint64_t subtype; 1235 int rate; 1236 } ieeerates[] = { 1237 { IFM_AUTO, -1 }, 1238 { IFM_MANUAL, 0 }, 1239 { IFM_NONE, 0 }, 1240 { IFM_IEEE80211_DS1, 2 }, 1241 { IFM_IEEE80211_DS2, 4 }, 1242 { IFM_IEEE80211_DS5, 11 }, 1243 { IFM_IEEE80211_DS11, 22 }, 1244 { IFM_IEEE80211_DS22, 44 }, 1245 { IFM_IEEE80211_OFDM6, 12 }, 1246 { IFM_IEEE80211_OFDM9, 18 }, 1247 { IFM_IEEE80211_OFDM12, 24 }, 1248 { IFM_IEEE80211_OFDM18, 36 }, 1249 { IFM_IEEE80211_OFDM24, 48 }, 1250 { IFM_IEEE80211_OFDM36, 72 }, 1251 { IFM_IEEE80211_OFDM48, 96 }, 1252 { IFM_IEEE80211_OFDM54, 108 }, 1253 { IFM_IEEE80211_OFDM72, 144 }, 1254 }; 1255 for (i = 0; i < nitems(ieeerates); i++) { 1256 if (ieeerates[i].subtype == IFM_SUBTYPE(mword)) 1257 return ieeerates[i].rate; 1258 } 1259 return 0; 1260 } 1261 1262 /* 1263 * Convert bit rate (in 0.5Mbps units) to PLCP signal (R4-R1) and vice versa. 1264 */ 1265 u_int8_t 1266 ieee80211_rate2plcp(u_int8_t rate, enum ieee80211_phymode mode) 1267 { 1268 rate &= IEEE80211_RATE_VAL; 1269 1270 if (mode == IEEE80211_MODE_11B) { 1271 /* IEEE Std 802.11b-1999 page 15, subclause 18.2.3.3 */ 1272 switch (rate) { 1273 case 2: return 10; 1274 case 4: return 20; 1275 case 11: return 55; 1276 case 22: return 110; 1277 /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ 1278 case 44: return 220; 1279 } 1280 } else if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11A) { 1281 /* IEEE Std 802.11a-1999 page 14, subclause 17.3.4.1 */ 1282 switch (rate) { 1283 case 12: return 0x0b; 1284 case 18: return 0x0f; 1285 case 24: return 0x0a; 1286 case 36: return 0x0e; 1287 case 48: return 0x09; 1288 case 72: return 0x0d; 1289 case 96: return 0x08; 1290 case 108: return 0x0c; 1291 } 1292 } else 1293 panic("%s: unexpected mode %u", __func__, mode); 1294 1295 DPRINTF(("unsupported rate %u\n", rate)); 1296 1297 return 0; 1298 } 1299 1300 u_int8_t 1301 ieee80211_plcp2rate(u_int8_t plcp, enum ieee80211_phymode mode) 1302 { 1303 if (mode == IEEE80211_MODE_11B) { 1304 /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ 1305 switch (plcp) { 1306 case 10: return 2; 1307 case 20: return 4; 1308 case 55: return 11; 1309 case 110: return 22; 1310 /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ 1311 case 220: return 44; 1312 } 1313 } else if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11A) { 1314 /* IEEE Std 802.11a-1999 page 14, subclause 17.3.4.1 */ 1315 switch (plcp) { 1316 case 0x0b: return 12; 1317 case 0x0f: return 18; 1318 case 0x0a: return 24; 1319 case 0x0e: return 36; 1320 case 0x09: return 48; 1321 case 0x0d: return 72; 1322 case 0x08: return 96; 1323 case 0x0c: return 108; 1324 } 1325 } else 1326 panic("%s: unexpected mode %u", __func__, mode); 1327 1328 DPRINTF(("unsupported plcp %u\n", plcp)); 1329 1330 return 0; 1331 } 1332