1 /* $OpenBSD: ieee80211.c,v 1.40 2013/11/21 16:16:08 mpi Exp $ */ 2 /* $NetBSD: ieee80211.c,v 1.19 2004/06/06 05:45:29 dyoung Exp $ */ 3 4 /*- 5 * Copyright (c) 2001 Atsushi Onoe 6 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * IEEE 802.11 generic handler 34 */ 35 36 #include "bpfilter.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/mbuf.h> 41 #include <sys/kernel.h> 42 #include <sys/socket.h> 43 #include <sys/sockio.h> 44 #include <sys/endian.h> 45 #include <sys/errno.h> 46 #include <sys/proc.h> 47 #include <sys/sysctl.h> 48 49 #include <net/if.h> 50 #include <net/if_dl.h> 51 #include <net/if_media.h> 52 #include <net/if_arp.h> 53 54 #if NBPFILTER > 0 55 #include <net/bpf.h> 56 #endif 57 58 #ifdef INET 59 #include <netinet/in.h> 60 #include <netinet/if_ether.h> 61 #endif 62 63 #include <net80211/ieee80211_var.h> 64 #include <net80211/ieee80211_priv.h> 65 66 #ifdef IEEE80211_DEBUG 67 int ieee80211_debug = 0; 68 #endif 69 70 int ieee80211_cache_size = IEEE80211_CACHE_SIZE; 71 72 struct ieee80211com_head ieee80211com_head = 73 LIST_HEAD_INITIALIZER(ieee80211com_head); 74 75 void ieee80211_setbasicrates(struct ieee80211com *); 76 int ieee80211_findrate(struct ieee80211com *, enum ieee80211_phymode, int); 77 78 void 79 ieee80211_ifattach(struct ifnet *ifp) 80 { 81 struct ieee80211com *ic = (void *)ifp; 82 struct ieee80211_channel *c; 83 int i; 84 85 memcpy(((struct arpcom *)ifp)->ac_enaddr, ic->ic_myaddr, 86 ETHER_ADDR_LEN); 87 ether_ifattach(ifp); 88 89 ifp->if_output = ieee80211_output; 90 91 #if NBPFILTER > 0 92 bpfattach(&ic->ic_rawbpf, ifp, DLT_IEEE802_11, 93 sizeof(struct ieee80211_frame_addr4)); 94 #endif 95 ieee80211_crypto_attach(ifp); 96 97 /* 98 * Fill in 802.11 available channel set, mark 99 * all available channels as active, and pick 100 * a default channel if not already specified. 101 */ 102 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 103 ic->ic_modecaps |= 1<<IEEE80211_MODE_AUTO; 104 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { 105 c = &ic->ic_channels[i]; 106 if (c->ic_flags) { 107 /* 108 * Verify driver passed us valid data. 109 */ 110 if (i != ieee80211_chan2ieee(ic, c)) { 111 printf("%s: bad channel ignored; " 112 "freq %u flags %x number %u\n", 113 ifp->if_xname, c->ic_freq, c->ic_flags, 114 i); 115 c->ic_flags = 0; /* NB: remove */ 116 continue; 117 } 118 setbit(ic->ic_chan_avail, i); 119 /* 120 * Identify mode capabilities. 121 */ 122 if (IEEE80211_IS_CHAN_A(c)) 123 ic->ic_modecaps |= 1<<IEEE80211_MODE_11A; 124 if (IEEE80211_IS_CHAN_B(c)) 125 ic->ic_modecaps |= 1<<IEEE80211_MODE_11B; 126 if (IEEE80211_IS_CHAN_PUREG(c)) 127 ic->ic_modecaps |= 1<<IEEE80211_MODE_11G; 128 if (IEEE80211_IS_CHAN_T(c)) 129 ic->ic_modecaps |= 1<<IEEE80211_MODE_TURBO; 130 } 131 } 132 /* validate ic->ic_curmode */ 133 if ((ic->ic_modecaps & (1<<ic->ic_curmode)) == 0) 134 ic->ic_curmode = IEEE80211_MODE_AUTO; 135 ic->ic_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 136 ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; 137 138 /* IEEE 802.11 defines a MTU >= 2290 */ 139 ifp->if_capabilities |= IFCAP_VLAN_MTU; 140 141 ieee80211_setbasicrates(ic); 142 (void)ieee80211_setmode(ic, ic->ic_curmode); 143 144 if (ic->ic_lintval == 0) 145 ic->ic_lintval = 100; /* default sleep */ 146 ic->ic_bmisstimeout = 7*ic->ic_lintval; /* default 7 beacons */ 147 ic->ic_dtim_period = 1; /* all TIMs are DTIMs */ 148 149 LIST_INSERT_HEAD(&ieee80211com_head, ic, ic_list); 150 ieee80211_node_attach(ifp); 151 ieee80211_proto_attach(ifp); 152 153 if_addgroup(ifp, "wlan"); 154 ifp->if_priority = IF_WIRELESS_DEFAULT_PRIORITY; 155 } 156 157 void 158 ieee80211_ifdetach(struct ifnet *ifp) 159 { 160 struct ieee80211com *ic = (void *)ifp; 161 162 ieee80211_proto_detach(ifp); 163 ieee80211_crypto_detach(ifp); 164 ieee80211_node_detach(ifp); 165 LIST_REMOVE(ic, ic_list); 166 ifmedia_delete_instance(&ic->ic_media, IFM_INST_ANY); 167 ether_ifdetach(ifp); 168 } 169 170 /* 171 * Convert MHz frequency to IEEE channel number. 172 */ 173 u_int 174 ieee80211_mhz2ieee(u_int freq, u_int flags) 175 { 176 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 177 if (freq == 2484) 178 return 14; 179 if (freq < 2484) 180 return (freq - 2407) / 5; 181 else 182 return 15 + ((freq - 2512) / 20); 183 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5GHz band */ 184 return (freq - 5000) / 5; 185 } else { /* either, guess */ 186 if (freq == 2484) 187 return 14; 188 if (freq < 2484) 189 return (freq - 2407) / 5; 190 if (freq < 5000) 191 return 15 + ((freq - 2512) / 20); 192 return (freq - 5000) / 5; 193 } 194 } 195 196 /* 197 * Convert channel to IEEE channel number. 198 */ 199 u_int 200 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 201 { 202 struct ifnet *ifp = &ic->ic_if; 203 if (ic->ic_channels <= c && c <= &ic->ic_channels[IEEE80211_CHAN_MAX]) 204 return c - ic->ic_channels; 205 else if (c == IEEE80211_CHAN_ANYC) 206 return IEEE80211_CHAN_ANY; 207 else if (c != NULL) { 208 printf("%s: invalid channel freq %u flags %x\n", 209 ifp->if_xname, c->ic_freq, c->ic_flags); 210 return 0; /* XXX */ 211 } else { 212 printf("%s: invalid channel (NULL)\n", ifp->if_xname); 213 return 0; /* XXX */ 214 } 215 } 216 217 /* 218 * Convert IEEE channel number to MHz frequency. 219 */ 220 u_int 221 ieee80211_ieee2mhz(u_int chan, u_int flags) 222 { 223 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 224 if (chan == 14) 225 return 2484; 226 if (chan < 14) 227 return 2407 + chan*5; 228 else 229 return 2512 + ((chan-15)*20); 230 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5GHz band */ 231 return 5000 + (chan*5); 232 } else { /* either, guess */ 233 if (chan == 14) 234 return 2484; 235 if (chan < 14) /* 0-13 */ 236 return 2407 + chan*5; 237 if (chan < 27) /* 15-26 */ 238 return 2512 + ((chan-15)*20); 239 return 5000 + (chan*5); 240 } 241 } 242 243 /* 244 * Setup the media data structures according to the channel and 245 * rate tables. This must be called by the driver after 246 * ieee80211_attach and before most anything else. 247 */ 248 void 249 ieee80211_media_init(struct ifnet *ifp, 250 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 251 { 252 #define ADD(_ic, _s, _o) \ 253 ifmedia_add(&(_ic)->ic_media, \ 254 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 255 struct ieee80211com *ic = (void *)ifp; 256 struct ifmediareq imr; 257 int i, j, mode, rate, maxrate, mword, mopt, r; 258 const struct ieee80211_rateset *rs; 259 struct ieee80211_rateset allrates; 260 261 /* 262 * Do late attach work that must wait for any subclass 263 * (i.e. driver) work such as overriding methods. 264 */ 265 ieee80211_node_lateattach(ifp); 266 267 /* 268 * Fill in media characteristics. 269 */ 270 ifmedia_init(&ic->ic_media, 0, media_change, media_stat); 271 maxrate = 0; 272 memset(&allrates, 0, sizeof(allrates)); 273 for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_MAX; mode++) { 274 static const u_int mopts[] = { 275 IFM_AUTO, 276 IFM_IEEE80211_11A, 277 IFM_IEEE80211_11B, 278 IFM_IEEE80211_11G, 279 IFM_IEEE80211_11A | IFM_IEEE80211_TURBO, 280 }; 281 if ((ic->ic_modecaps & (1<<mode)) == 0) 282 continue; 283 mopt = mopts[mode]; 284 ADD(ic, IFM_AUTO, mopt); /* e.g. 11a auto */ 285 #ifndef IEEE80211_STA_ONLY 286 if (ic->ic_caps & IEEE80211_C_IBSS) 287 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); 288 if (ic->ic_caps & IEEE80211_C_HOSTAP) 289 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); 290 if (ic->ic_caps & IEEE80211_C_AHDEMO) 291 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC); 292 #endif 293 if (ic->ic_caps & IEEE80211_C_MONITOR) 294 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); 295 if (mode == IEEE80211_MODE_AUTO) 296 continue; 297 rs = &ic->ic_sup_rates[mode]; 298 for (i = 0; i < rs->rs_nrates; i++) { 299 rate = rs->rs_rates[i]; 300 mword = ieee80211_rate2media(ic, rate, mode); 301 if (mword == 0) 302 continue; 303 ADD(ic, mword, mopt); 304 #ifndef IEEE80211_STA_ONLY 305 if (ic->ic_caps & IEEE80211_C_IBSS) 306 ADD(ic, mword, mopt | IFM_IEEE80211_IBSS); 307 if (ic->ic_caps & IEEE80211_C_HOSTAP) 308 ADD(ic, mword, mopt | IFM_IEEE80211_HOSTAP); 309 if (ic->ic_caps & IEEE80211_C_AHDEMO) 310 ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC); 311 #endif 312 if (ic->ic_caps & IEEE80211_C_MONITOR) 313 ADD(ic, mword, mopt | IFM_IEEE80211_MONITOR); 314 /* 315 * Add rate to the collection of all rates. 316 */ 317 r = rate & IEEE80211_RATE_VAL; 318 for (j = 0; j < allrates.rs_nrates; j++) 319 if (allrates.rs_rates[j] == r) 320 break; 321 if (j == allrates.rs_nrates) { 322 /* unique, add to the set */ 323 allrates.rs_rates[j] = r; 324 allrates.rs_nrates++; 325 } 326 rate = (rate & IEEE80211_RATE_VAL) / 2; 327 if (rate > maxrate) 328 maxrate = rate; 329 } 330 } 331 for (i = 0; i < allrates.rs_nrates; i++) { 332 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 333 IEEE80211_MODE_AUTO); 334 if (mword == 0) 335 continue; 336 mword = IFM_SUBTYPE(mword); /* remove media options */ 337 ADD(ic, mword, 0); 338 #ifndef IEEE80211_STA_ONLY 339 if (ic->ic_caps & IEEE80211_C_IBSS) 340 ADD(ic, mword, IFM_IEEE80211_IBSS); 341 if (ic->ic_caps & IEEE80211_C_HOSTAP) 342 ADD(ic, mword, IFM_IEEE80211_HOSTAP); 343 if (ic->ic_caps & IEEE80211_C_AHDEMO) 344 ADD(ic, mword, IFM_IEEE80211_ADHOC); 345 #endif 346 if (ic->ic_caps & IEEE80211_C_MONITOR) 347 ADD(ic, mword, IFM_IEEE80211_MONITOR); 348 } 349 ieee80211_media_status(ifp, &imr); 350 ifmedia_set(&ic->ic_media, imr.ifm_active); 351 352 if (maxrate) 353 ifp->if_baudrate = IF_Mbps(maxrate); 354 355 #undef ADD 356 } 357 358 int 359 ieee80211_findrate(struct ieee80211com *ic, enum ieee80211_phymode mode, 360 int rate) 361 { 362 #define IEEERATE(_ic,_m,_i) \ 363 ((_ic)->ic_sup_rates[_m].rs_rates[_i] & IEEE80211_RATE_VAL) 364 int i, nrates = ic->ic_sup_rates[mode].rs_nrates; 365 for (i = 0; i < nrates; i++) 366 if (IEEERATE(ic, mode, i) == rate) 367 return i; 368 return -1; 369 #undef IEEERATE 370 } 371 372 /* 373 * Handle a media change request. 374 */ 375 int 376 ieee80211_media_change(struct ifnet *ifp) 377 { 378 struct ieee80211com *ic = (void *)ifp; 379 struct ifmedia_entry *ime; 380 enum ieee80211_opmode newopmode; 381 enum ieee80211_phymode newphymode; 382 int i, j, newrate, error = 0; 383 384 ime = ic->ic_media.ifm_cur; 385 /* 386 * First, identify the phy mode. 387 */ 388 switch (IFM_MODE(ime->ifm_media)) { 389 case IFM_IEEE80211_11A: 390 newphymode = IEEE80211_MODE_11A; 391 break; 392 case IFM_IEEE80211_11B: 393 newphymode = IEEE80211_MODE_11B; 394 break; 395 case IFM_IEEE80211_11G: 396 newphymode = IEEE80211_MODE_11G; 397 break; 398 case IFM_AUTO: 399 newphymode = IEEE80211_MODE_AUTO; 400 break; 401 default: 402 return EINVAL; 403 } 404 /* 405 * Turbo mode is an ``option''. Eventually it 406 * needs to be applied to 11g too. 407 */ 408 if (ime->ifm_media & IFM_IEEE80211_TURBO) { 409 if (newphymode != IEEE80211_MODE_11A) 410 return EINVAL; 411 newphymode = IEEE80211_MODE_TURBO; 412 } 413 /* 414 * Validate requested mode is available. 415 */ 416 if ((ic->ic_modecaps & (1<<newphymode)) == 0) 417 return EINVAL; 418 419 /* 420 * Next, the fixed/variable rate. 421 */ 422 i = -1; 423 if (IFM_SUBTYPE(ime->ifm_media) != IFM_AUTO) { 424 /* 425 * Convert media subtype to rate. 426 */ 427 newrate = ieee80211_media2rate(ime->ifm_media); 428 if (newrate == 0) 429 return EINVAL; 430 /* 431 * Check the rate table for the specified/current phy. 432 */ 433 if (newphymode == IEEE80211_MODE_AUTO) { 434 /* 435 * In autoselect mode search for the rate. 436 */ 437 for (j = IEEE80211_MODE_11A; 438 j < IEEE80211_MODE_MAX; j++) { 439 if ((ic->ic_modecaps & (1<<j)) == 0) 440 continue; 441 i = ieee80211_findrate(ic, j, newrate); 442 if (i != -1) { 443 /* lock mode too */ 444 newphymode = j; 445 break; 446 } 447 } 448 } else { 449 i = ieee80211_findrate(ic, newphymode, newrate); 450 } 451 if (i == -1) /* mode/rate mismatch */ 452 return EINVAL; 453 } 454 /* NB: defer rate setting to later */ 455 456 /* 457 * Deduce new operating mode but don't install it just yet. 458 */ 459 #ifndef IEEE80211_STA_ONLY 460 if (ime->ifm_media & IFM_IEEE80211_ADHOC) 461 newopmode = IEEE80211_M_AHDEMO; 462 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP) 463 newopmode = IEEE80211_M_HOSTAP; 464 else if (ime->ifm_media & IFM_IEEE80211_IBSS) 465 newopmode = IEEE80211_M_IBSS; 466 else 467 #endif 468 if (ime->ifm_media & IFM_IEEE80211_MONITOR) 469 newopmode = IEEE80211_M_MONITOR; 470 else 471 newopmode = IEEE80211_M_STA; 472 473 #ifndef IEEE80211_STA_ONLY 474 /* 475 * Autoselect doesn't make sense when operating as an AP. 476 * If no phy mode has been selected, pick one and lock it 477 * down so rate tables can be used in forming beacon frames 478 * and the like. 479 */ 480 if (newopmode == IEEE80211_M_HOSTAP && 481 newphymode == IEEE80211_MODE_AUTO) { 482 for (j = IEEE80211_MODE_11A; j < IEEE80211_MODE_MAX; j++) 483 if (ic->ic_modecaps & (1<<j)) { 484 newphymode = j; 485 break; 486 } 487 } 488 #endif 489 490 /* 491 * Handle phy mode change. 492 */ 493 if (ic->ic_curmode != newphymode) { /* change phy mode */ 494 error = ieee80211_setmode(ic, newphymode); 495 if (error != 0) 496 return error; 497 error = ENETRESET; 498 } 499 500 /* 501 * Committed to changes, install the rate setting. 502 */ 503 if (ic->ic_fixed_rate != i) { 504 ic->ic_fixed_rate = i; /* set fixed tx rate */ 505 error = ENETRESET; 506 } 507 508 /* 509 * Handle operating mode change. 510 */ 511 if (ic->ic_opmode != newopmode) { 512 ic->ic_opmode = newopmode; 513 #ifndef IEEE80211_STA_ONLY 514 switch (newopmode) { 515 case IEEE80211_M_AHDEMO: 516 case IEEE80211_M_HOSTAP: 517 case IEEE80211_M_STA: 518 case IEEE80211_M_MONITOR: 519 ic->ic_flags &= ~IEEE80211_F_IBSSON; 520 break; 521 case IEEE80211_M_IBSS: 522 ic->ic_flags |= IEEE80211_F_IBSSON; 523 break; 524 } 525 #endif 526 /* 527 * Yech, slot time may change depending on the 528 * operating mode so reset it to be sure everything 529 * is setup appropriately. 530 */ 531 ieee80211_reset_erp(ic); 532 error = ENETRESET; 533 } 534 #ifdef notdef 535 if (error == 0) 536 ifp->if_baudrate = ifmedia_baudrate(ime->ifm_media); 537 #endif 538 return error; 539 } 540 541 void 542 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 543 { 544 struct ieee80211com *ic = (void *)ifp; 545 const struct ieee80211_node *ni = NULL; 546 547 imr->ifm_status = IFM_AVALID; 548 imr->ifm_active = IFM_IEEE80211; 549 if (ic->ic_state == IEEE80211_S_RUN && 550 (ic->ic_opmode != IEEE80211_M_STA || 551 !(ic->ic_flags & IEEE80211_F_RSNON) || 552 ic->ic_bss->ni_port_valid)) 553 imr->ifm_status |= IFM_ACTIVE; 554 imr->ifm_active |= IFM_AUTO; 555 switch (ic->ic_opmode) { 556 case IEEE80211_M_STA: 557 ni = ic->ic_bss; 558 /* calculate rate subtype */ 559 imr->ifm_active |= ieee80211_rate2media(ic, 560 ni->ni_rates.rs_rates[ni->ni_txrate], ic->ic_curmode); 561 break; 562 #ifndef IEEE80211_STA_ONLY 563 case IEEE80211_M_IBSS: 564 imr->ifm_active |= IFM_IEEE80211_IBSS; 565 break; 566 case IEEE80211_M_AHDEMO: 567 imr->ifm_active |= IFM_IEEE80211_ADHOC; 568 break; 569 case IEEE80211_M_HOSTAP: 570 imr->ifm_active |= IFM_IEEE80211_HOSTAP; 571 break; 572 #endif 573 case IEEE80211_M_MONITOR: 574 imr->ifm_active |= IFM_IEEE80211_MONITOR; 575 break; 576 default: 577 break; 578 } 579 switch (ic->ic_curmode) { 580 case IEEE80211_MODE_11A: 581 imr->ifm_active |= IFM_IEEE80211_11A; 582 break; 583 case IEEE80211_MODE_11B: 584 imr->ifm_active |= IFM_IEEE80211_11B; 585 break; 586 case IEEE80211_MODE_11G: 587 imr->ifm_active |= IFM_IEEE80211_11G; 588 break; 589 case IEEE80211_MODE_TURBO: 590 imr->ifm_active |= IFM_IEEE80211_11A 591 | IFM_IEEE80211_TURBO; 592 break; 593 } 594 } 595 596 void 597 ieee80211_watchdog(struct ifnet *ifp) 598 { 599 struct ieee80211com *ic = (void *)ifp; 600 601 if (ic->ic_mgt_timer && --ic->ic_mgt_timer == 0) 602 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 603 604 if (ic->ic_mgt_timer != 0) 605 ifp->if_timer = 1; 606 } 607 608 const struct ieee80211_rateset ieee80211_std_rateset_11a = 609 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 610 611 const struct ieee80211_rateset ieee80211_std_rateset_11b = 612 { 4, { 2, 4, 11, 22 } }; 613 614 const struct ieee80211_rateset ieee80211_std_rateset_11g = 615 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 616 617 /* 618 * Mark the basic rates for the 11g rate table based on the 619 * operating mode. For real 11g we mark all the 11b rates 620 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 621 * 11b rates. There's also a pseudo 11a-mode used to mark only 622 * the basic OFDM rates. 623 */ 624 void 625 ieee80211_setbasicrates(struct ieee80211com *ic) 626 { 627 static const struct ieee80211_rateset basic[] = { 628 { 0 }, /* IEEE80211_MODE_AUTO */ 629 { 3, { 12, 24, 48 } }, /* IEEE80211_MODE_11A */ 630 { 2, { 2, 4 } }, /* IEEE80211_MODE_11B */ 631 { 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_11G */ 632 { 0 }, /* IEEE80211_MODE_TURBO */ 633 }; 634 enum ieee80211_phymode mode; 635 struct ieee80211_rateset *rs; 636 int i, j; 637 638 for (mode = 0; mode < IEEE80211_MODE_MAX; mode++) { 639 rs = &ic->ic_sup_rates[mode]; 640 for (i = 0; i < rs->rs_nrates; i++) { 641 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 642 for (j = 0; j < basic[mode].rs_nrates; j++) { 643 if (basic[mode].rs_rates[j] == 644 rs->rs_rates[i]) { 645 rs->rs_rates[i] |= 646 IEEE80211_RATE_BASIC; 647 break; 648 } 649 } 650 } 651 } 652 } 653 654 /* 655 * Set the current phy mode and recalculate the active channel 656 * set based on the available channels for this mode. Also 657 * select a new default/current channel if the current one is 658 * inappropriate for this mode. 659 */ 660 int 661 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 662 { 663 #define N(a) (sizeof(a) / sizeof(a[0])) 664 struct ifnet *ifp = &ic->ic_if; 665 static const u_int chanflags[] = { 666 0, /* IEEE80211_MODE_AUTO */ 667 IEEE80211_CHAN_A, /* IEEE80211_MODE_11A */ 668 IEEE80211_CHAN_B, /* IEEE80211_MODE_11B */ 669 IEEE80211_CHAN_PUREG, /* IEEE80211_MODE_11G */ 670 IEEE80211_CHAN_T, /* IEEE80211_MODE_TURBO */ 671 }; 672 const struct ieee80211_channel *c; 673 u_int modeflags; 674 int i; 675 676 /* validate new mode */ 677 if ((ic->ic_modecaps & (1<<mode)) == 0) { 678 DPRINTF(("mode %u not supported (caps 0x%x)\n", 679 mode, ic->ic_modecaps)); 680 return EINVAL; 681 } 682 683 /* 684 * Verify at least one channel is present in the available 685 * channel list before committing to the new mode. 686 */ 687 if (mode >= N(chanflags)) 688 panic("Unexpected mode %u", mode); 689 modeflags = chanflags[mode]; 690 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { 691 c = &ic->ic_channels[i]; 692 if (mode == IEEE80211_MODE_AUTO) { 693 /* ignore turbo channels for autoselect */ 694 if ((c->ic_flags &~ IEEE80211_CHAN_TURBO) != 0) 695 break; 696 } else { 697 if ((c->ic_flags & modeflags) == modeflags) 698 break; 699 } 700 } 701 if (i > IEEE80211_CHAN_MAX) { 702 DPRINTF(("no channels found for mode %u\n", mode)); 703 return EINVAL; 704 } 705 706 /* 707 * Calculate the active channel set. 708 */ 709 memset(ic->ic_chan_active, 0, sizeof(ic->ic_chan_active)); 710 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { 711 c = &ic->ic_channels[i]; 712 if (mode == IEEE80211_MODE_AUTO) { 713 /* take anything but pure turbo channels */ 714 if ((c->ic_flags &~ IEEE80211_CHAN_TURBO) != 0) 715 setbit(ic->ic_chan_active, i); 716 } else { 717 if ((c->ic_flags & modeflags) == modeflags) 718 setbit(ic->ic_chan_active, i); 719 } 720 } 721 /* 722 * If no current/default channel is setup or the current 723 * channel is wrong for the mode then pick the first 724 * available channel from the active list. This is likely 725 * not the right one. 726 */ 727 if (ic->ic_ibss_chan == NULL || isclr(ic->ic_chan_active, 728 ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) { 729 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) 730 if (isset(ic->ic_chan_active, i)) { 731 ic->ic_ibss_chan = &ic->ic_channels[i]; 732 break; 733 } 734 if ((ic->ic_ibss_chan == NULL) || isclr(ic->ic_chan_active, 735 ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) 736 panic("Bad IBSS channel %u", 737 ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); 738 } 739 740 /* 741 * Reset the scan state for the new mode. This avoids scanning 742 * of invalid channels, ie. 5GHz channels in 11b mode. 743 */ 744 ieee80211_reset_scan(ifp); 745 746 ic->ic_curmode = mode; 747 ieee80211_reset_erp(ic); /* reset ERP state */ 748 749 return 0; 750 #undef N 751 } 752 753 enum ieee80211_phymode 754 ieee80211_next_mode(struct ifnet *ifp) 755 { 756 struct ieee80211com *ic = (void *)ifp; 757 758 if (IFM_MODE(ic->ic_media.ifm_cur->ifm_media) != IFM_AUTO) { 759 /* 760 * Reset the scan state and indicate a wrap around 761 * if we're running in a fixed, user-specified phy mode. 762 */ 763 ieee80211_reset_scan(ifp); 764 return (IEEE80211_MODE_AUTO); 765 } 766 767 /* 768 * Get the next supported mode 769 */ 770 for (++ic->ic_curmode; 771 ic->ic_curmode <= IEEE80211_MODE_TURBO; 772 ic->ic_curmode++) { 773 /* Wrap around and ignore turbo mode */ 774 if (ic->ic_curmode >= IEEE80211_MODE_TURBO) { 775 ic->ic_curmode = IEEE80211_MODE_AUTO; 776 break; 777 } 778 779 if (ic->ic_modecaps & (1 << ic->ic_curmode)) 780 break; 781 } 782 783 ieee80211_setmode(ic, ic->ic_curmode); 784 785 return (ic->ic_curmode); 786 } 787 788 /* 789 * Return the phy mode for with the specified channel so the 790 * caller can select a rate set. This is problematic and the 791 * work here assumes how things work elsewhere in this code. 792 * 793 * XXX never returns turbo modes -dcy 794 */ 795 enum ieee80211_phymode 796 ieee80211_chan2mode(struct ieee80211com *ic, 797 const struct ieee80211_channel *chan) 798 { 799 /* 800 * NB: this assumes the channel would not be supplied to us 801 * unless it was already compatible with the current mode. 802 */ 803 if (ic->ic_curmode != IEEE80211_MODE_AUTO || 804 chan == IEEE80211_CHAN_ANYC) 805 return ic->ic_curmode; 806 /* 807 * In autoselect mode; deduce a mode based on the channel 808 * characteristics. We assume that turbo-only channels 809 * are not considered when the channel set is constructed. 810 */ 811 if (IEEE80211_IS_CHAN_T(chan)) 812 return IEEE80211_MODE_TURBO; 813 else if (IEEE80211_IS_CHAN_5GHZ(chan)) 814 return IEEE80211_MODE_11A; 815 else if (chan->ic_flags & (IEEE80211_CHAN_OFDM|IEEE80211_CHAN_DYN)) 816 return IEEE80211_MODE_11G; 817 else 818 return IEEE80211_MODE_11B; 819 } 820 821 /* 822 * convert IEEE80211 rate value to ifmedia subtype. 823 * ieee80211 rate is in unit of 0.5Mbps. 824 */ 825 int 826 ieee80211_rate2media(struct ieee80211com *ic, int rate, 827 enum ieee80211_phymode mode) 828 { 829 #define N(a) (sizeof(a) / sizeof(a[0])) 830 static const struct { 831 u_int m; /* rate + mode */ 832 u_int r; /* if_media rate */ 833 } rates[] = { 834 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 835 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 836 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 837 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 838 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 839 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 840 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 841 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 842 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 843 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 844 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 845 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 846 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 847 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 848 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 849 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 850 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 851 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 852 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 853 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 854 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 855 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 856 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 857 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 858 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 859 /* NB: OFDM72 doesn't really exist so we don't handle it */ 860 }; 861 u_int mask, i; 862 863 mask = rate & IEEE80211_RATE_VAL; 864 switch (mode) { 865 case IEEE80211_MODE_11A: 866 case IEEE80211_MODE_TURBO: 867 mask |= IFM_IEEE80211_11A; 868 break; 869 case IEEE80211_MODE_11B: 870 mask |= IFM_IEEE80211_11B; 871 break; 872 case IEEE80211_MODE_AUTO: 873 /* NB: hack, 11g matches both 11b+11a rates */ 874 /* FALLTHROUGH */ 875 case IEEE80211_MODE_11G: 876 mask |= IFM_IEEE80211_11G; 877 break; 878 } 879 for (i = 0; i < N(rates); i++) 880 if (rates[i].m == mask) 881 return rates[i].r; 882 return IFM_AUTO; 883 #undef N 884 } 885 886 int 887 ieee80211_media2rate(int mword) 888 { 889 #define N(a) (sizeof(a) / sizeof(a[0])) 890 int i; 891 static const struct { 892 int subtype; 893 int rate; 894 } ieeerates[] = { 895 { IFM_AUTO, -1 }, 896 { IFM_MANUAL, 0 }, 897 { IFM_NONE, 0 }, 898 { IFM_IEEE80211_DS1, 2 }, 899 { IFM_IEEE80211_DS2, 4 }, 900 { IFM_IEEE80211_DS5, 11 }, 901 { IFM_IEEE80211_DS11, 22 }, 902 { IFM_IEEE80211_DS22, 44 }, 903 { IFM_IEEE80211_OFDM6, 12 }, 904 { IFM_IEEE80211_OFDM9, 18 }, 905 { IFM_IEEE80211_OFDM12, 24 }, 906 { IFM_IEEE80211_OFDM18, 36 }, 907 { IFM_IEEE80211_OFDM24, 48 }, 908 { IFM_IEEE80211_OFDM36, 72 }, 909 { IFM_IEEE80211_OFDM48, 96 }, 910 { IFM_IEEE80211_OFDM54, 108 }, 911 { IFM_IEEE80211_OFDM72, 144 }, 912 }; 913 for (i = 0; i < N(ieeerates); i++) { 914 if (ieeerates[i].subtype == IFM_SUBTYPE(mword)) 915 return ieeerates[i].rate; 916 } 917 return 0; 918 #undef N 919 } 920 921 /* 922 * Convert bit rate (in 0.5Mbps units) to PLCP signal (R4-R1) and vice versa. 923 */ 924 u_int8_t 925 ieee80211_rate2plcp(u_int8_t rate, enum ieee80211_phymode mode) 926 { 927 rate &= IEEE80211_RATE_VAL; 928 929 if (mode == IEEE80211_MODE_11B) { 930 /* IEEE Std 802.11b-1999 page 15, subclause 18.2.3.3 */ 931 switch (rate) { 932 case 2: return 10; 933 case 4: return 20; 934 case 11: return 55; 935 case 22: return 110; 936 /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ 937 case 44: return 220; 938 } 939 } else if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11A) { 940 /* IEEE Std 802.11a-1999 page 14, subclause 17.3.4.1 */ 941 switch (rate) { 942 case 12: return 0x0b; 943 case 18: return 0x0f; 944 case 24: return 0x0a; 945 case 36: return 0x0e; 946 case 48: return 0x09; 947 case 72: return 0x0d; 948 case 96: return 0x08; 949 case 108: return 0x0c; 950 } 951 } else 952 panic("Unexpected mode %u", mode); 953 954 DPRINTF(("unsupported rate %u\n", rate)); 955 956 return 0; 957 } 958 959 u_int8_t 960 ieee80211_plcp2rate(u_int8_t plcp, enum ieee80211_phymode mode) 961 { 962 if (mode == IEEE80211_MODE_11B) { 963 /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ 964 switch (plcp) { 965 case 10: return 2; 966 case 20: return 4; 967 case 55: return 11; 968 case 110: return 22; 969 /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ 970 case 220: return 44; 971 } 972 } else if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11A) { 973 /* IEEE Std 802.11a-1999 page 14, subclause 17.3.4.1 */ 974 switch (plcp) { 975 case 0x0b: return 12; 976 case 0x0f: return 18; 977 case 0x0a: return 24; 978 case 0x0e: return 36; 979 case 0x09: return 48; 980 case 0x0d: return 72; 981 case 0x08: return 96; 982 case 0x0c: return 108; 983 } 984 } else 985 panic("unexpected mode %u", mode); 986 987 DPRINTF(("unsupported plcp %u\n", plcp)); 988 989 return 0; 990 } 991