1 /* $OpenBSD: ieee80211.c,v 1.85 2021/10/11 09:01:06 stsp Exp $ */ 2 /* $NetBSD: ieee80211.c,v 1.19 2004/06/06 05:45:29 dyoung Exp $ */ 3 4 /*- 5 * Copyright (c) 2001 Atsushi Onoe 6 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of the author may not be used to endorse or promote products 18 * derived from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 21 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 22 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 25 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 29 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * IEEE 802.11 generic handler 34 */ 35 36 #include "bpfilter.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/mbuf.h> 41 #include <sys/kernel.h> 42 #include <sys/socket.h> 43 #include <sys/sockio.h> 44 #include <sys/endian.h> 45 #include <sys/errno.h> 46 #include <sys/sysctl.h> 47 48 #include <net/if.h> 49 #include <net/if_dl.h> 50 #include <net/if_media.h> 51 52 #if NBPFILTER > 0 53 #include <net/bpf.h> 54 #endif 55 56 #include <netinet/in.h> 57 #include <netinet/if_ether.h> 58 59 #include <net80211/ieee80211_var.h> 60 #include <net80211/ieee80211_priv.h> 61 62 #ifdef IEEE80211_DEBUG 63 int ieee80211_debug = 0; 64 #endif 65 66 int ieee80211_cache_size = IEEE80211_CACHE_SIZE; 67 68 void ieee80211_setbasicrates(struct ieee80211com *); 69 int ieee80211_findrate(struct ieee80211com *, enum ieee80211_phymode, int); 70 void ieee80211_configure_ampdu_tx(struct ieee80211com *, int); 71 72 void 73 ieee80211_begin_bgscan(struct ifnet *ifp) 74 { 75 struct ieee80211com *ic = (void *)ifp; 76 77 if ((ic->ic_flags & IEEE80211_F_BGSCAN) || 78 ic->ic_state != IEEE80211_S_RUN || ic->ic_mgt_timer != 0) 79 return; 80 81 if ((ic->ic_flags & IEEE80211_F_RSNON) && !ic->ic_bss->ni_port_valid) 82 return; 83 84 if (ic->ic_bgscan_start != NULL && ic->ic_bgscan_start(ic) == 0) { 85 /* 86 * Free the nodes table to ensure we get an up-to-date view 87 * of APs around us. In particular, we need to kick out the 88 * AP we are associated to. Otherwise, our current AP might 89 * stay cached if it is turned off while we are scanning, and 90 * we could end up picking a now non-existent AP over and over. 91 */ 92 ieee80211_free_allnodes(ic, 0 /* keep ic->ic_bss */); 93 94 ic->ic_flags |= IEEE80211_F_BGSCAN; 95 if (ifp->if_flags & IFF_DEBUG) 96 printf("%s: begin background scan\n", ifp->if_xname); 97 98 /* Driver calls ieee80211_end_scan() when done. */ 99 } 100 } 101 102 void 103 ieee80211_bgscan_timeout(void *arg) 104 { 105 struct ifnet *ifp = arg; 106 107 ieee80211_begin_bgscan(ifp); 108 } 109 110 void 111 ieee80211_channel_init(struct ifnet *ifp) 112 { 113 struct ieee80211com *ic = (void *)ifp; 114 struct ieee80211_channel *c; 115 int i; 116 117 /* 118 * Fill in 802.11 available channel set, mark 119 * all available channels as active, and pick 120 * a default channel if not already specified. 121 */ 122 memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); 123 ic->ic_modecaps |= 1<<IEEE80211_MODE_AUTO; 124 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { 125 c = &ic->ic_channels[i]; 126 if (c->ic_flags) { 127 /* 128 * Verify driver passed us valid data. 129 */ 130 if (i != ieee80211_chan2ieee(ic, c)) { 131 printf("%s: bad channel ignored; " 132 "freq %u flags %x number %u\n", 133 ifp->if_xname, c->ic_freq, c->ic_flags, 134 i); 135 c->ic_flags = 0; /* NB: remove */ 136 continue; 137 } 138 setbit(ic->ic_chan_avail, i); 139 /* 140 * Identify mode capabilities. 141 */ 142 if (IEEE80211_IS_CHAN_A(c)) 143 ic->ic_modecaps |= 1<<IEEE80211_MODE_11A; 144 if (IEEE80211_IS_CHAN_B(c)) 145 ic->ic_modecaps |= 1<<IEEE80211_MODE_11B; 146 if (IEEE80211_IS_CHAN_PUREG(c)) 147 ic->ic_modecaps |= 1<<IEEE80211_MODE_11G; 148 if (IEEE80211_IS_CHAN_N(c)) 149 ic->ic_modecaps |= 1<<IEEE80211_MODE_11N; 150 if (IEEE80211_IS_CHAN_AC(c)) 151 ic->ic_modecaps |= 1<<IEEE80211_MODE_11AC; 152 } 153 } 154 /* validate ic->ic_curmode */ 155 if ((ic->ic_modecaps & (1<<ic->ic_curmode)) == 0) 156 ic->ic_curmode = IEEE80211_MODE_AUTO; 157 ic->ic_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ 158 } 159 160 void 161 ieee80211_ifattach(struct ifnet *ifp) 162 { 163 struct ieee80211com *ic = (void *)ifp; 164 165 memcpy(((struct arpcom *)ifp)->ac_enaddr, ic->ic_myaddr, 166 ETHER_ADDR_LEN); 167 ether_ifattach(ifp); 168 169 ifp->if_output = ieee80211_output; 170 171 #if NBPFILTER > 0 172 bpfattach(&ic->ic_rawbpf, ifp, DLT_IEEE802_11, 173 sizeof(struct ieee80211_frame_addr4)); 174 #endif 175 ieee80211_crypto_attach(ifp); 176 177 ieee80211_channel_init(ifp); 178 179 /* IEEE 802.11 defines a MTU >= 2290 */ 180 ifp->if_capabilities |= IFCAP_VLAN_MTU; 181 182 ieee80211_setbasicrates(ic); 183 (void)ieee80211_setmode(ic, ic->ic_curmode); 184 185 if (ic->ic_lintval == 0) 186 ic->ic_lintval = 100; /* default sleep */ 187 ic->ic_bmissthres = IEEE80211_BEACON_MISS_THRES; 188 ic->ic_dtim_period = 1; /* all TIMs are DTIMs */ 189 190 ieee80211_node_attach(ifp); 191 ieee80211_proto_attach(ifp); 192 193 if_addgroup(ifp, "wlan"); 194 ifp->if_priority = IF_WIRELESS_DEFAULT_PRIORITY; 195 196 ieee80211_set_link_state(ic, LINK_STATE_DOWN); 197 198 timeout_set(&ic->ic_bgscan_timeout, ieee80211_bgscan_timeout, ifp); 199 } 200 201 void 202 ieee80211_ifdetach(struct ifnet *ifp) 203 { 204 struct ieee80211com *ic = (void *)ifp; 205 206 timeout_del(&ic->ic_bgscan_timeout); 207 208 /* 209 * Undo pseudo-driver changes. Pseudo-driver detach hooks could 210 * call back into the driver, e.g. via ioctl. So deactivate the 211 * interface before freeing net80211-specific data structures. 212 */ 213 if_deactivate(ifp); 214 215 ieee80211_proto_detach(ifp); 216 ieee80211_crypto_detach(ifp); 217 ieee80211_node_detach(ifp); 218 ifmedia_delete_instance(&ic->ic_media, IFM_INST_ANY); 219 ether_ifdetach(ifp); 220 } 221 222 /* 223 * Convert MHz frequency to IEEE channel number. 224 */ 225 u_int 226 ieee80211_mhz2ieee(u_int freq, u_int flags) 227 { 228 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 229 if (freq == 2484) 230 return 14; 231 if (freq < 2484) 232 return (freq - 2407) / 5; 233 else 234 return 15 + ((freq - 2512) / 20); 235 } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5GHz band */ 236 return (freq - 5000) / 5; 237 } else { /* either, guess */ 238 if (freq == 2484) 239 return 14; 240 if (freq < 2484) 241 return (freq - 2407) / 5; 242 if (freq < 5000) 243 return 15 + ((freq - 2512) / 20); 244 return (freq - 5000) / 5; 245 } 246 } 247 248 /* 249 * Convert channel to IEEE channel number. 250 */ 251 u_int 252 ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) 253 { 254 struct ifnet *ifp = &ic->ic_if; 255 if (ic->ic_channels <= c && c <= &ic->ic_channels[IEEE80211_CHAN_MAX]) 256 return c - ic->ic_channels; 257 else if (c == IEEE80211_CHAN_ANYC) 258 return IEEE80211_CHAN_ANY; 259 260 panic("%s: bogus channel pointer", ifp->if_xname); 261 } 262 263 /* 264 * Convert IEEE channel number to MHz frequency. 265 */ 266 u_int 267 ieee80211_ieee2mhz(u_int chan, u_int flags) 268 { 269 if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ 270 if (chan == 14) 271 return 2484; 272 if (chan < 14) 273 return 2407 + chan*5; 274 else 275 return 2512 + ((chan-15)*20); 276 } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5GHz band */ 277 return 5000 + (chan*5); 278 } else { /* either, guess */ 279 if (chan == 14) 280 return 2484; 281 if (chan < 14) /* 0-13 */ 282 return 2407 + chan*5; 283 if (chan < 27) /* 15-26 */ 284 return 2512 + ((chan-15)*20); 285 return 5000 + (chan*5); 286 } 287 } 288 289 void 290 ieee80211_configure_ampdu_tx(struct ieee80211com *ic, int enable) 291 { 292 if ((ic->ic_caps & IEEE80211_C_TX_AMPDU) == 0) 293 return; 294 295 /* Sending AMPDUs requires QoS support. */ 296 if ((ic->ic_caps & IEEE80211_C_QOS) == 0) 297 return; 298 299 if (enable) 300 ic->ic_flags |= IEEE80211_F_QOS; 301 else 302 ic->ic_flags &= ~IEEE80211_F_QOS; 303 } 304 305 /* 306 * Setup the media data structures according to the channel and 307 * rate tables. This must be called by the driver after 308 * ieee80211_attach and before most anything else. 309 */ 310 void 311 ieee80211_media_init(struct ifnet *ifp, 312 ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) 313 { 314 #define ADD(_ic, _s, _o) \ 315 ifmedia_add(&(_ic)->ic_media, \ 316 IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) 317 struct ieee80211com *ic = (void *)ifp; 318 struct ifmediareq imr; 319 int i, j, mode, rate, maxrate, r; 320 uint64_t mword, mopt; 321 const struct ieee80211_rateset *rs; 322 struct ieee80211_rateset allrates; 323 324 /* 325 * Do late attach work that must wait for any subclass 326 * (i.e. driver) work such as overriding methods. 327 */ 328 ieee80211_node_lateattach(ifp); 329 330 /* 331 * Fill in media characteristics. 332 */ 333 ifmedia_init(&ic->ic_media, 0, media_change, media_stat); 334 maxrate = 0; 335 memset(&allrates, 0, sizeof(allrates)); 336 for (mode = IEEE80211_MODE_AUTO; mode <= IEEE80211_MODE_11G; mode++) { 337 static const uint64_t mopts[] = { 338 IFM_AUTO, 339 IFM_IEEE80211_11A, 340 IFM_IEEE80211_11B, 341 IFM_IEEE80211_11G, 342 }; 343 if ((ic->ic_modecaps & (1<<mode)) == 0) 344 continue; 345 mopt = mopts[mode]; 346 ADD(ic, IFM_AUTO, mopt); /* e.g. 11a auto */ 347 #ifndef IEEE80211_STA_ONLY 348 if (ic->ic_caps & IEEE80211_C_IBSS) 349 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); 350 if (ic->ic_caps & IEEE80211_C_HOSTAP) 351 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); 352 if (ic->ic_caps & IEEE80211_C_AHDEMO) 353 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_ADHOC); 354 #endif 355 if (ic->ic_caps & IEEE80211_C_MONITOR) 356 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); 357 if (mode == IEEE80211_MODE_AUTO) 358 continue; 359 rs = &ic->ic_sup_rates[mode]; 360 for (i = 0; i < rs->rs_nrates; i++) { 361 rate = rs->rs_rates[i]; 362 mword = ieee80211_rate2media(ic, rate, mode); 363 if (mword == 0) 364 continue; 365 ADD(ic, mword, mopt); 366 #ifndef IEEE80211_STA_ONLY 367 if (ic->ic_caps & IEEE80211_C_IBSS) 368 ADD(ic, mword, mopt | IFM_IEEE80211_IBSS); 369 if (ic->ic_caps & IEEE80211_C_HOSTAP) 370 ADD(ic, mword, mopt | IFM_IEEE80211_HOSTAP); 371 if (ic->ic_caps & IEEE80211_C_AHDEMO) 372 ADD(ic, mword, mopt | IFM_IEEE80211_ADHOC); 373 #endif 374 if (ic->ic_caps & IEEE80211_C_MONITOR) 375 ADD(ic, mword, mopt | IFM_IEEE80211_MONITOR); 376 /* 377 * Add rate to the collection of all rates. 378 */ 379 r = rate & IEEE80211_RATE_VAL; 380 for (j = 0; j < allrates.rs_nrates; j++) 381 if (allrates.rs_rates[j] == r) 382 break; 383 if (j == allrates.rs_nrates) { 384 /* unique, add to the set */ 385 allrates.rs_rates[j] = r; 386 allrates.rs_nrates++; 387 } 388 rate = (rate & IEEE80211_RATE_VAL) / 2; 389 if (rate > maxrate) 390 maxrate = rate; 391 } 392 } 393 for (i = 0; i < allrates.rs_nrates; i++) { 394 mword = ieee80211_rate2media(ic, allrates.rs_rates[i], 395 IEEE80211_MODE_AUTO); 396 if (mword == 0) 397 continue; 398 mword = IFM_SUBTYPE(mword); /* remove media options */ 399 ADD(ic, mword, 0); 400 #ifndef IEEE80211_STA_ONLY 401 if (ic->ic_caps & IEEE80211_C_IBSS) 402 ADD(ic, mword, IFM_IEEE80211_IBSS); 403 if (ic->ic_caps & IEEE80211_C_HOSTAP) 404 ADD(ic, mword, IFM_IEEE80211_HOSTAP); 405 if (ic->ic_caps & IEEE80211_C_AHDEMO) 406 ADD(ic, mword, IFM_IEEE80211_ADHOC); 407 #endif 408 if (ic->ic_caps & IEEE80211_C_MONITOR) 409 ADD(ic, mword, IFM_IEEE80211_MONITOR); 410 } 411 412 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) { 413 mopt = IFM_IEEE80211_11N; 414 ADD(ic, IFM_AUTO, mopt); 415 #ifndef IEEE80211_STA_ONLY 416 if (ic->ic_caps & IEEE80211_C_IBSS) 417 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); 418 if (ic->ic_caps & IEEE80211_C_HOSTAP) 419 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); 420 #endif 421 if (ic->ic_caps & IEEE80211_C_MONITOR) 422 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); 423 for (i = 0; i < IEEE80211_HT_NUM_MCS; i++) { 424 if (!isset(ic->ic_sup_mcs, i)) 425 continue; 426 ADD(ic, IFM_IEEE80211_HT_MCS0 + i, mopt); 427 #ifndef IEEE80211_STA_ONLY 428 if (ic->ic_caps & IEEE80211_C_IBSS) 429 ADD(ic, IFM_IEEE80211_HT_MCS0 + i, 430 mopt | IFM_IEEE80211_IBSS); 431 if (ic->ic_caps & IEEE80211_C_HOSTAP) 432 ADD(ic, IFM_IEEE80211_HT_MCS0 + i, 433 mopt | IFM_IEEE80211_HOSTAP); 434 #endif 435 if (ic->ic_caps & IEEE80211_C_MONITOR) 436 ADD(ic, IFM_IEEE80211_HT_MCS0 + i, 437 mopt | IFM_IEEE80211_MONITOR); 438 } 439 ic->ic_flags |= IEEE80211_F_HTON; /* enable 11n by default */ 440 ieee80211_configure_ampdu_tx(ic, 1); 441 } 442 443 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) { 444 mopt = IFM_IEEE80211_11AC; 445 ADD(ic, IFM_AUTO, mopt); 446 #ifndef IEEE80211_STA_ONLY 447 if (ic->ic_caps & IEEE80211_C_IBSS) 448 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_IBSS); 449 if (ic->ic_caps & IEEE80211_C_HOSTAP) 450 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_HOSTAP); 451 #endif 452 if (ic->ic_caps & IEEE80211_C_MONITOR) 453 ADD(ic, IFM_AUTO, mopt | IFM_IEEE80211_MONITOR); 454 for (i = 0; i < IEEE80211_VHT_NUM_MCS; i++) { 455 #if 0 456 /* TODO: Obtain VHT MCS information from VHT CAP IE. */ 457 if (!vht_mcs_supported) 458 continue; 459 #endif 460 ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, mopt); 461 #ifndef IEEE80211_STA_ONLY 462 if (ic->ic_caps & IEEE80211_C_IBSS) 463 ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, 464 mopt | IFM_IEEE80211_IBSS); 465 if (ic->ic_caps & IEEE80211_C_HOSTAP) 466 ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, 467 mopt | IFM_IEEE80211_HOSTAP); 468 #endif 469 if (ic->ic_caps & IEEE80211_C_MONITOR) 470 ADD(ic, IFM_IEEE80211_VHT_MCS0 + i, 471 mopt | IFM_IEEE80211_MONITOR); 472 } 473 #if 0 474 ic->ic_flags |= IEEE80211_F_VHTON; /* enable 11ac by default */ 475 if (ic->ic_caps & IEEE80211_C_QOS) 476 ic->ic_flags |= IEEE80211_F_QOS; 477 #endif 478 } 479 480 ieee80211_media_status(ifp, &imr); 481 ifmedia_set(&ic->ic_media, imr.ifm_active); 482 483 if (maxrate) 484 ifp->if_baudrate = IF_Mbps(maxrate); 485 486 #undef ADD 487 } 488 489 int 490 ieee80211_findrate(struct ieee80211com *ic, enum ieee80211_phymode mode, 491 int rate) 492 { 493 #define IEEERATE(_ic,_m,_i) \ 494 ((_ic)->ic_sup_rates[_m].rs_rates[_i] & IEEE80211_RATE_VAL) 495 int i, nrates = ic->ic_sup_rates[mode].rs_nrates; 496 for (i = 0; i < nrates; i++) 497 if (IEEERATE(ic, mode, i) == rate) 498 return i; 499 return -1; 500 #undef IEEERATE 501 } 502 503 /* 504 * Handle a media change request. 505 */ 506 int 507 ieee80211_media_change(struct ifnet *ifp) 508 { 509 struct ieee80211com *ic = (void *)ifp; 510 struct ifmedia_entry *ime; 511 enum ieee80211_opmode newopmode; 512 enum ieee80211_phymode newphymode; 513 int i, j, newrate, error = 0; 514 515 ime = ic->ic_media.ifm_cur; 516 /* 517 * First, identify the phy mode. 518 */ 519 switch (IFM_MODE(ime->ifm_media)) { 520 case IFM_IEEE80211_11A: 521 newphymode = IEEE80211_MODE_11A; 522 break; 523 case IFM_IEEE80211_11B: 524 newphymode = IEEE80211_MODE_11B; 525 break; 526 case IFM_IEEE80211_11G: 527 newphymode = IEEE80211_MODE_11G; 528 break; 529 case IFM_IEEE80211_11N: 530 newphymode = IEEE80211_MODE_11N; 531 break; 532 case IFM_IEEE80211_11AC: 533 newphymode = IEEE80211_MODE_11AC; 534 break; 535 case IFM_AUTO: 536 newphymode = IEEE80211_MODE_AUTO; 537 break; 538 default: 539 return EINVAL; 540 } 541 542 /* 543 * Validate requested mode is available. 544 */ 545 if ((ic->ic_modecaps & (1<<newphymode)) == 0) 546 return EINVAL; 547 548 /* 549 * Next, the fixed/variable rate. 550 */ 551 i = -1; 552 if (IFM_SUBTYPE(ime->ifm_media) >= IFM_IEEE80211_VHT_MCS0 && 553 IFM_SUBTYPE(ime->ifm_media) <= IFM_IEEE80211_VHT_MCS9) { 554 if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) == 0) 555 return EINVAL; 556 if (newphymode != IEEE80211_MODE_AUTO && 557 newphymode != IEEE80211_MODE_11AC) 558 return EINVAL; 559 i = ieee80211_media2mcs(ime->ifm_media); 560 /* TODO: Obtain VHT MCS information from VHT CAP IE. */ 561 if (i == -1 /* || !vht_mcs_supported */) 562 return EINVAL; 563 } else if (IFM_SUBTYPE(ime->ifm_media) >= IFM_IEEE80211_HT_MCS0 && 564 IFM_SUBTYPE(ime->ifm_media) <= IFM_IEEE80211_HT_MCS76) { 565 if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) == 0) 566 return EINVAL; 567 if (newphymode != IEEE80211_MODE_AUTO && 568 newphymode != IEEE80211_MODE_11N) 569 return EINVAL; 570 i = ieee80211_media2mcs(ime->ifm_media); 571 if (i == -1 || isclr(ic->ic_sup_mcs, i)) 572 return EINVAL; 573 } else if (IFM_SUBTYPE(ime->ifm_media) != IFM_AUTO) { 574 /* 575 * Convert media subtype to rate. 576 */ 577 newrate = ieee80211_media2rate(ime->ifm_media); 578 if (newrate == 0) 579 return EINVAL; 580 /* 581 * Check the rate table for the specified/current phy. 582 */ 583 if (newphymode == IEEE80211_MODE_AUTO) { 584 /* 585 * In autoselect mode search for the rate. 586 */ 587 for (j = IEEE80211_MODE_11A; 588 j < IEEE80211_MODE_MAX; j++) { 589 if ((ic->ic_modecaps & (1<<j)) == 0) 590 continue; 591 i = ieee80211_findrate(ic, j, newrate); 592 if (i != -1) { 593 /* lock mode too */ 594 newphymode = j; 595 break; 596 } 597 } 598 } else { 599 i = ieee80211_findrate(ic, newphymode, newrate); 600 } 601 if (i == -1) /* mode/rate mismatch */ 602 return EINVAL; 603 } 604 /* NB: defer rate setting to later */ 605 606 /* 607 * Deduce new operating mode but don't install it just yet. 608 */ 609 #ifndef IEEE80211_STA_ONLY 610 if (ime->ifm_media & IFM_IEEE80211_ADHOC) 611 newopmode = IEEE80211_M_AHDEMO; 612 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP) 613 newopmode = IEEE80211_M_HOSTAP; 614 else if (ime->ifm_media & IFM_IEEE80211_IBSS) 615 newopmode = IEEE80211_M_IBSS; 616 else 617 #endif 618 if (ime->ifm_media & IFM_IEEE80211_MONITOR) 619 newopmode = IEEE80211_M_MONITOR; 620 else 621 newopmode = IEEE80211_M_STA; 622 623 #ifndef IEEE80211_STA_ONLY 624 /* 625 * Autoselect doesn't make sense when operating as an AP. 626 * If no phy mode has been selected, pick one and lock it 627 * down so rate tables can be used in forming beacon frames 628 * and the like. 629 */ 630 if (newopmode == IEEE80211_M_HOSTAP && 631 newphymode == IEEE80211_MODE_AUTO) { 632 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) 633 newphymode = IEEE80211_MODE_11AC; 634 else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) 635 newphymode = IEEE80211_MODE_11N; 636 else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11A)) 637 newphymode = IEEE80211_MODE_11A; 638 else if (ic->ic_modecaps & (1 << IEEE80211_MODE_11G)) 639 newphymode = IEEE80211_MODE_11G; 640 else 641 newphymode = IEEE80211_MODE_11B; 642 } 643 #endif 644 645 /* 646 * Handle phy mode change. 647 */ 648 if (ic->ic_curmode != newphymode) { /* change phy mode */ 649 error = ieee80211_setmode(ic, newphymode); 650 if (error != 0) 651 return error; 652 error = ENETRESET; 653 } 654 655 /* 656 * Committed to changes, install the MCS/rate setting. 657 */ 658 ic->ic_flags &= ~(IEEE80211_F_HTON | IEEE80211_F_VHTON); 659 ieee80211_configure_ampdu_tx(ic, 0); 660 if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11AC)) && 661 (newphymode == IEEE80211_MODE_AUTO || 662 newphymode == IEEE80211_MODE_11AC)) { 663 ic->ic_flags |= IEEE80211_F_VHTON; 664 ieee80211_configure_ampdu_tx(ic, 1); 665 } else if ((ic->ic_modecaps & (1 << IEEE80211_MODE_11N)) && 666 (newphymode == IEEE80211_MODE_AUTO || 667 newphymode == IEEE80211_MODE_11N)) { 668 ic->ic_flags |= IEEE80211_F_HTON; 669 ieee80211_configure_ampdu_tx(ic, 1); 670 } 671 if ((ic->ic_flags & (IEEE80211_F_HTON | IEEE80211_F_VHTON)) == 0) { 672 ic->ic_fixed_mcs = -1; 673 if (ic->ic_fixed_rate != i) { 674 ic->ic_fixed_rate = i; /* set fixed tx rate */ 675 error = ENETRESET; 676 } 677 } else { 678 ic->ic_fixed_rate = -1; 679 if (ic->ic_fixed_mcs != i) { 680 ic->ic_fixed_mcs = i; /* set fixed mcs */ 681 error = ENETRESET; 682 } 683 } 684 685 /* 686 * Handle operating mode change. 687 */ 688 if (ic->ic_opmode != newopmode) { 689 ic->ic_opmode = newopmode; 690 #ifndef IEEE80211_STA_ONLY 691 switch (newopmode) { 692 case IEEE80211_M_AHDEMO: 693 case IEEE80211_M_HOSTAP: 694 case IEEE80211_M_STA: 695 case IEEE80211_M_MONITOR: 696 ic->ic_flags &= ~IEEE80211_F_IBSSON; 697 break; 698 case IEEE80211_M_IBSS: 699 ic->ic_flags |= IEEE80211_F_IBSSON; 700 break; 701 } 702 #endif 703 /* 704 * Yech, slot time may change depending on the 705 * operating mode so reset it to be sure everything 706 * is setup appropriately. 707 */ 708 ieee80211_reset_erp(ic); 709 error = ENETRESET; 710 } 711 #ifdef notdef 712 if (error == 0) 713 ifp->if_baudrate = ifmedia_baudrate(ime->ifm_media); 714 #endif 715 return error; 716 } 717 718 void 719 ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) 720 { 721 struct ieee80211com *ic = (void *)ifp; 722 const struct ieee80211_node *ni = NULL; 723 724 imr->ifm_status = IFM_AVALID; 725 imr->ifm_active = IFM_IEEE80211; 726 if (ic->ic_state == IEEE80211_S_RUN && 727 (ic->ic_opmode != IEEE80211_M_STA || 728 !(ic->ic_flags & IEEE80211_F_RSNON) || 729 ic->ic_bss->ni_port_valid)) 730 imr->ifm_status |= IFM_ACTIVE; 731 imr->ifm_active |= IFM_AUTO; 732 switch (ic->ic_opmode) { 733 case IEEE80211_M_STA: 734 ni = ic->ic_bss; 735 if (ic->ic_curmode == IEEE80211_MODE_11N || 736 ic->ic_curmode == IEEE80211_MODE_11AC) 737 imr->ifm_active |= ieee80211_mcs2media(ic, 738 ni->ni_txmcs, ic->ic_curmode); 739 else if (ni->ni_flags & IEEE80211_NODE_VHT) /* in MODE_AUTO */ 740 imr->ifm_active |= ieee80211_mcs2media(ic, 741 ni->ni_txmcs, IEEE80211_MODE_11AC); 742 else if (ni->ni_flags & IEEE80211_NODE_HT) /* in MODE_AUTO */ 743 imr->ifm_active |= ieee80211_mcs2media(ic, 744 ni->ni_txmcs, IEEE80211_MODE_11N); 745 else 746 /* calculate rate subtype */ 747 imr->ifm_active |= ieee80211_rate2media(ic, 748 ni->ni_rates.rs_rates[ni->ni_txrate], 749 ic->ic_curmode); 750 break; 751 #ifndef IEEE80211_STA_ONLY 752 case IEEE80211_M_IBSS: 753 imr->ifm_active |= IFM_IEEE80211_IBSS; 754 break; 755 case IEEE80211_M_AHDEMO: 756 imr->ifm_active |= IFM_IEEE80211_ADHOC; 757 break; 758 case IEEE80211_M_HOSTAP: 759 imr->ifm_active |= IFM_IEEE80211_HOSTAP; 760 break; 761 #endif 762 case IEEE80211_M_MONITOR: 763 imr->ifm_active |= IFM_IEEE80211_MONITOR; 764 break; 765 default: 766 break; 767 } 768 switch (ic->ic_curmode) { 769 case IEEE80211_MODE_11A: 770 imr->ifm_active |= IFM_IEEE80211_11A; 771 break; 772 case IEEE80211_MODE_11B: 773 imr->ifm_active |= IFM_IEEE80211_11B; 774 break; 775 case IEEE80211_MODE_11G: 776 imr->ifm_active |= IFM_IEEE80211_11G; 777 break; 778 case IEEE80211_MODE_11N: 779 imr->ifm_active |= IFM_IEEE80211_11N; 780 break; 781 case IEEE80211_MODE_11AC: 782 imr->ifm_active |= IFM_IEEE80211_11AC; 783 break; 784 } 785 } 786 787 void 788 ieee80211_watchdog(struct ifnet *ifp) 789 { 790 struct ieee80211com *ic = (void *)ifp; 791 792 if (ic->ic_mgt_timer && --ic->ic_mgt_timer == 0) { 793 if (ic->ic_opmode == IEEE80211_M_STA && 794 (ic->ic_state == IEEE80211_S_AUTH || 795 ic->ic_state == IEEE80211_S_ASSOC)) { 796 struct ieee80211_node *ni; 797 if (ifp->if_flags & IFF_DEBUG) 798 printf("%s: %s timed out for %s\n", 799 ifp->if_xname, 800 ic->ic_state == IEEE80211_S_ASSOC ? 801 "association" : "authentication", 802 ether_sprintf(ic->ic_bss->ni_macaddr)); 803 ni = ieee80211_find_node(ic, ic->ic_bss->ni_macaddr); 804 if (ni) 805 ni->ni_fails++; 806 if (ISSET(ic->ic_flags, IEEE80211_F_AUTO_JOIN)) 807 ieee80211_deselect_ess(ic); 808 } 809 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 810 } 811 812 if (ic->ic_mgt_timer != 0) 813 ifp->if_timer = 1; 814 } 815 816 const struct ieee80211_rateset ieee80211_std_rateset_11a = 817 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 818 819 const struct ieee80211_rateset ieee80211_std_rateset_11b = 820 { 4, { 2, 4, 11, 22 } }; 821 822 const struct ieee80211_rateset ieee80211_std_rateset_11g = 823 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 824 825 const struct ieee80211_ht_rateset ieee80211_std_ratesets_11n[] = { 826 /* MCS 0-7, 20MHz channel, no SGI */ 827 { 8, { 13, 26, 39, 52, 78, 104, 117, 130 }, 828 0x000000ff, 0, 7, 0, 0}, 829 830 /* MCS 0-7, 20MHz channel, SGI */ 831 { 8, { 14, 29, 43, 58, 87, 116, 130, 144 }, 832 0x000000ff, 0, 7, 0, 1 }, 833 834 /* MCS 8-15, 20MHz channel, no SGI */ 835 { 8, { 26, 52, 78, 104, 156, 208, 234, 260 }, 836 0x0000ff00, 8, 15, 0, 0 }, 837 838 /* MCS 8-15, 20MHz channel, SGI */ 839 { 8, { 29, 58, 87, 116, 173, 231, 261, 289 }, 840 0x0000ff00, 8, 15, 0, 1 }, 841 842 /* MCS 16-23, 20MHz channel, no SGI */ 843 { 8, { 39, 78, 117, 156, 234, 312, 351, 390 }, 844 0x00ff0000, 16, 23, 0, 0 }, 845 846 /* MCS 16-23, 20MHz channel, SGI */ 847 { 8, { 43, 87, 130, 173, 260, 347, 390, 433 }, 848 0x00ff0000, 16, 23, 0, 1 }, 849 850 /* MCS 24-31, 20MHz channel, no SGI */ 851 { 8, { 52, 104, 156, 208, 312, 416, 468, 520 }, 852 0xff000000, 24, 31, 0, 0 }, 853 854 /* MCS 24-31, 20MHz channel, SGI */ 855 { 8, { 58, 116, 173, 231, 347, 462, 520, 578 }, 856 0xff000000, 24, 31, 0, 1 }, 857 858 /* MCS 0-7, 40MHz channel, no SGI */ 859 { 8, { 27, 54, 81, 108, 162, 216, 243, 270 }, 860 0x000000ff, 0, 7, 1, 0 }, 861 862 /* MCS 0-7, 40MHz channel, SGI */ 863 { 8, { 30, 60, 90, 120, 180, 240, 270, 300 }, 864 0x000000ff, 0, 7, 1, 1 }, 865 866 /* MCS 8-15, 40MHz channel, no SGI */ 867 { 8, { 54, 108, 192, 216, 324, 432, 486, 540 }, 868 0x0000ff00, 8, 15, 1, 0 }, 869 870 /* MCS 8-15, 40MHz channel, SGI */ 871 { 8, { 60, 120, 180, 240, 360, 480, 540, 600 }, 872 0x0000ff00, 8, 15, 1, 1 }, 873 874 /* MCS 16-23, 40MHz channel, no SGI */ 875 { 8, { 81, 162, 243, 324, 486, 648, 729, 810 }, 876 0x00ff0000, 16, 23, 1, 0 }, 877 878 /* MCS 16-23, 40MHz channel, SGI */ 879 { 8, { 90, 180, 270, 360, 540, 720, 810, 900 }, 880 0x00ff0000, 16, 23, 1, 1 }, 881 882 /* MCS 24-31, 40MHz channel, no SGI */ 883 { 8, { 108, 216, 324, 432, 324, 864, 972, 1080 }, 884 0xff000000, 24, 31, 1, 0 }, 885 886 /* MCS 24-31, 40MHz channel, SGI */ 887 { 8, { 120, 240, 360, 480, 520, 960, 1080, 1200 }, 888 0xff000000, 24, 31, 1, 1 }, 889 }; 890 891 const struct ieee80211_vht_rateset ieee80211_std_ratesets_11ac[] = { 892 /* MCS 0-8 (MCS 9 N/A), 1 SS, 20MHz channel, no SGI */ 893 { 9, { 13, 26, 39, 52, 78, 104, 117, 130, 156 }, 1, 0 }, 894 895 /* MCS 0-8 (MCS 9 N/A), 1 SS, 20MHz channel, SGI */ 896 { 9, { 14, 29, 43, 58, 87, 116, 130, 144, 174 }, 1, 1 }, 897 898 /* MCS 0-8 (MCS 9 N/A), 2 SS, 20MHz channel, no SGI */ 899 { 9, { 26, 52, 78, 104, 156, 208, 234, 260, 312 }, 2, 0 }, 900 901 /* MCS 0-8 (MCS 9 N/A), 2 SS, 20MHz channel, SGI */ 902 { 9, { 29, 58, 87, 116, 173, 231, 261, 289, 347 }, 2, 1 }, 903 904 /* MCS 0-9, 1 SS, 40MHz channel, no SGI */ 905 { 10, { 27, 54, 81, 108, 162, 216, 243, 270, 324, 360 }, 1, 0 }, 906 907 /* MCS 0-9, 1 SS, 40MHz channel, SGI */ 908 { 10, { 30, 60, 90, 120, 180, 240, 270, 300, 360, 400 }, 1, 1 }, 909 910 /* MCS 0-9, 2 SS, 40MHz channel, no SGI */ 911 { 10, { 54, 108, 162, 216, 324, 432, 486, 540, 648, 720 }, 2, 0 }, 912 913 /* MCS 0-9, 2 SS, 40MHz channel, SGI */ 914 { 10, { 60, 120, 180, 240, 360, 480, 540, 600, 720, 800 }, 2, 1 }, 915 916 /* MCS 0-9, 1 SS, 80MHz channel, no SGI */ 917 { 10, { 59, 117, 176, 234, 351, 468, 527, 585, 702, 780 }, 1, 0 }, 918 919 /* MCS 0-9, 1 SS, 80MHz channel, SGI */ 920 { 10, { 65, 130, 195, 260, 390, 520, 585, 650, 780, 867 }, 1, 1 }, 921 922 /* MCS 0-9, 2 SS, 80MHz channel, no SGI */ 923 { 10, { 117, 234, 351, 468, 702, 936, 1053, 1404, 1560 }, 2, 0 }, 924 925 /* MCS 0-9, 2 SS, 80MHz channel, SGI */ 926 { 10, { 130, 260, 390, 520, 780, 1040, 1170, 1300, 1560, 1734 }, 2, 1 }, 927 }; 928 929 /* 930 * Mark the basic rates for the 11g rate table based on the 931 * operating mode. For real 11g we mark all the 11b rates 932 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 933 * 11b rates. There's also a pseudo 11a-mode used to mark only 934 * the basic OFDM rates. 935 */ 936 void 937 ieee80211_setbasicrates(struct ieee80211com *ic) 938 { 939 static const struct ieee80211_rateset basic[] = { 940 { 0 }, /* IEEE80211_MODE_AUTO */ 941 { 3, { 12, 24, 48 } }, /* IEEE80211_MODE_11A */ 942 { 2, { 2, 4 } }, /* IEEE80211_MODE_11B */ 943 { 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_11G */ 944 { 0 }, /* IEEE80211_MODE_11N */ 945 { 0 }, /* IEEE80211_MODE_11AC */ 946 }; 947 enum ieee80211_phymode mode; 948 struct ieee80211_rateset *rs; 949 int i, j; 950 951 for (mode = 0; mode < IEEE80211_MODE_MAX; mode++) { 952 rs = &ic->ic_sup_rates[mode]; 953 for (i = 0; i < rs->rs_nrates; i++) { 954 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 955 for (j = 0; j < basic[mode].rs_nrates; j++) { 956 if (basic[mode].rs_rates[j] == 957 rs->rs_rates[i]) { 958 rs->rs_rates[i] |= 959 IEEE80211_RATE_BASIC; 960 break; 961 } 962 } 963 } 964 } 965 } 966 967 int 968 ieee80211_min_basic_rate(struct ieee80211com *ic) 969 { 970 struct ieee80211_rateset *rs = &ic->ic_bss->ni_rates; 971 int i, min, rval; 972 973 min = -1; 974 975 for (i = 0; i < rs->rs_nrates; i++) { 976 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) == 0) 977 continue; 978 rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL); 979 if (min == -1) 980 min = rval; 981 else if (rval < min) 982 min = rval; 983 } 984 985 /* Default to 1 Mbit/s on 2GHz and 6 Mbit/s on 5GHz. */ 986 if (min == -1) 987 min = IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ? 2 : 12; 988 989 return min; 990 } 991 992 int 993 ieee80211_max_basic_rate(struct ieee80211com *ic) 994 { 995 struct ieee80211_rateset *rs = &ic->ic_bss->ni_rates; 996 int i, max, rval; 997 998 /* Default to 1 Mbit/s on 2GHz and 6 Mbit/s on 5GHz. */ 999 max = IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ? 2 : 12; 1000 1001 for (i = 0; i < rs->rs_nrates; i++) { 1002 if ((rs->rs_rates[i] & IEEE80211_RATE_BASIC) == 0) 1003 continue; 1004 rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL); 1005 if (rval > max) 1006 max = rval; 1007 } 1008 1009 return max; 1010 } 1011 1012 /* 1013 * Set the current phy mode and recalculate the active channel 1014 * set based on the available channels for this mode. Also 1015 * select a new default/current channel if the current one is 1016 * inappropriate for this mode. 1017 */ 1018 int 1019 ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) 1020 { 1021 struct ifnet *ifp = &ic->ic_if; 1022 static const u_int chanflags[] = { 1023 0, /* IEEE80211_MODE_AUTO */ 1024 IEEE80211_CHAN_A, /* IEEE80211_MODE_11A */ 1025 IEEE80211_CHAN_B, /* IEEE80211_MODE_11B */ 1026 IEEE80211_CHAN_PUREG, /* IEEE80211_MODE_11G */ 1027 IEEE80211_CHAN_HT, /* IEEE80211_MODE_11N */ 1028 IEEE80211_CHAN_VHT, /* IEEE80211_MODE_11AC */ 1029 }; 1030 const struct ieee80211_channel *c; 1031 u_int modeflags; 1032 int i; 1033 1034 /* validate new mode */ 1035 if ((ic->ic_modecaps & (1<<mode)) == 0) { 1036 DPRINTF(("mode %u not supported (caps 0x%x)\n", 1037 mode, ic->ic_modecaps)); 1038 return EINVAL; 1039 } 1040 1041 /* 1042 * Verify at least one channel is present in the available 1043 * channel list before committing to the new mode. 1044 */ 1045 if (mode >= nitems(chanflags)) 1046 panic("%s: unexpected mode %u", __func__, mode); 1047 modeflags = chanflags[mode]; 1048 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { 1049 c = &ic->ic_channels[i]; 1050 if (mode == IEEE80211_MODE_AUTO) { 1051 if (c->ic_flags != 0) 1052 break; 1053 } else if ((c->ic_flags & modeflags) == modeflags) 1054 break; 1055 } 1056 if (i > IEEE80211_CHAN_MAX) { 1057 DPRINTF(("no channels found for mode %u\n", mode)); 1058 return EINVAL; 1059 } 1060 1061 /* 1062 * Calculate the active channel set. 1063 */ 1064 memset(ic->ic_chan_active, 0, sizeof(ic->ic_chan_active)); 1065 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { 1066 c = &ic->ic_channels[i]; 1067 if (mode == IEEE80211_MODE_AUTO) { 1068 if (c->ic_flags != 0) 1069 setbit(ic->ic_chan_active, i); 1070 } else if ((c->ic_flags & modeflags) == modeflags) 1071 setbit(ic->ic_chan_active, i); 1072 } 1073 /* 1074 * If no current/default channel is setup or the current 1075 * channel is wrong for the mode then pick the first 1076 * available channel from the active list. This is likely 1077 * not the right one. 1078 */ 1079 if (ic->ic_ibss_chan == NULL || isclr(ic->ic_chan_active, 1080 ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) { 1081 for (i = 0; i <= IEEE80211_CHAN_MAX; i++) 1082 if (isset(ic->ic_chan_active, i)) { 1083 ic->ic_ibss_chan = &ic->ic_channels[i]; 1084 break; 1085 } 1086 if ((ic->ic_ibss_chan == NULL) || isclr(ic->ic_chan_active, 1087 ieee80211_chan2ieee(ic, ic->ic_ibss_chan))) 1088 panic("Bad IBSS channel %u", 1089 ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); 1090 } 1091 1092 /* 1093 * Reset the scan state for the new mode. This avoids scanning 1094 * of invalid channels, ie. 5GHz channels in 11b mode. 1095 */ 1096 ieee80211_reset_scan(ifp); 1097 1098 ic->ic_curmode = mode; 1099 ieee80211_reset_erp(ic); /* reset ERP state */ 1100 1101 return 0; 1102 } 1103 1104 enum ieee80211_phymode 1105 ieee80211_next_mode(struct ifnet *ifp) 1106 { 1107 struct ieee80211com *ic = (void *)ifp; 1108 uint16_t mode; 1109 1110 /* 1111 * Indicate a wrap-around if we're running in a fixed, user-specified 1112 * phy mode. 1113 */ 1114 if (IFM_MODE(ic->ic_media.ifm_cur->ifm_media) != IFM_AUTO) 1115 return (IEEE80211_MODE_AUTO); 1116 1117 /* 1118 * Always scan in AUTO mode if the driver scans all bands. 1119 * The current mode might have changed during association 1120 * so we must reset it here. 1121 */ 1122 if (ic->ic_caps & IEEE80211_C_SCANALLBAND) { 1123 ieee80211_setmode(ic, IEEE80211_MODE_AUTO); 1124 return (ic->ic_curmode); 1125 } 1126 1127 /* 1128 * Get the next supported mode; effectively, this alternates between 1129 * the 11a (5GHz) and 11b/g (2GHz) modes. What matters is that each 1130 * supported channel gets scanned. 1131 */ 1132 for (mode = ic->ic_curmode + 1; mode <= IEEE80211_MODE_MAX; mode++) { 1133 /* 1134 * Skip over 11n mode. Its set of channels is the superset 1135 * of all channels supported by the other modes. 1136 */ 1137 if (mode == IEEE80211_MODE_11N) 1138 continue; 1139 /* 1140 * Skip over 11ac mode. Its set of channels is the set 1141 * of all channels supported by 11a. 1142 */ 1143 if (mode == IEEE80211_MODE_11AC) 1144 continue; 1145 1146 /* Start over if we have already tried all modes. */ 1147 if (mode == IEEE80211_MODE_MAX) { 1148 mode = IEEE80211_MODE_AUTO; 1149 break; 1150 } 1151 1152 if (ic->ic_modecaps & (1 << mode)) 1153 break; 1154 } 1155 1156 if (mode != ic->ic_curmode) 1157 ieee80211_setmode(ic, mode); 1158 1159 return (ic->ic_curmode); 1160 } 1161 1162 /* 1163 * Return the phy mode for with the specified channel so the 1164 * caller can select a rate set. This is problematic and the 1165 * work here assumes how things work elsewhere in this code. 1166 * 1167 * Because the result of this function is ultimately used to select a 1168 * rate from the rate set of the returned mode, it must return one of the 1169 * legacy 11a/b/g modes; 11n and 11ac modes use MCS instead of rate sets. 1170 */ 1171 enum ieee80211_phymode 1172 ieee80211_chan2mode(struct ieee80211com *ic, 1173 const struct ieee80211_channel *chan) 1174 { 1175 /* 1176 * Are we fixed in 11a/b/g mode? 1177 * NB: this assumes the channel would not be supplied to us 1178 * unless it was already compatible with the current mode. 1179 */ 1180 if (ic->ic_curmode == IEEE80211_MODE_11A || 1181 ic->ic_curmode == IEEE80211_MODE_11B || 1182 ic->ic_curmode == IEEE80211_MODE_11G) 1183 return ic->ic_curmode; 1184 1185 /* If no channel was provided, return the most suitable legacy mode. */ 1186 if (chan == IEEE80211_CHAN_ANYC) { 1187 switch (ic->ic_curmode) { 1188 case IEEE80211_MODE_AUTO: 1189 case IEEE80211_MODE_11N: 1190 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11A)) 1191 return IEEE80211_MODE_11A; 1192 if (ic->ic_modecaps & (1 << IEEE80211_MODE_11G)) 1193 return IEEE80211_MODE_11G; 1194 return IEEE80211_MODE_11B; 1195 case IEEE80211_MODE_11AC: 1196 return IEEE80211_MODE_11A; 1197 default: 1198 return ic->ic_curmode; 1199 } 1200 } 1201 1202 /* Deduce a legacy mode based on the channel characteristics. */ 1203 if (IEEE80211_IS_CHAN_5GHZ(chan)) 1204 return IEEE80211_MODE_11A; 1205 else if (chan->ic_flags & (IEEE80211_CHAN_OFDM|IEEE80211_CHAN_DYN)) 1206 return IEEE80211_MODE_11G; 1207 else 1208 return IEEE80211_MODE_11B; 1209 } 1210 1211 /* 1212 * Convert IEEE80211 MCS index to ifmedia subtype. 1213 */ 1214 uint64_t 1215 ieee80211_mcs2media(struct ieee80211com *ic, int mcs, 1216 enum ieee80211_phymode mode) 1217 { 1218 switch (mode) { 1219 case IEEE80211_MODE_11A: 1220 case IEEE80211_MODE_11B: 1221 case IEEE80211_MODE_11G: 1222 /* these modes use rates, not MCS */ 1223 panic("%s: unexpected mode %d", __func__, mode); 1224 break; 1225 case IEEE80211_MODE_11N: 1226 if (mcs >= 0 && mcs < IEEE80211_HT_NUM_MCS) 1227 return (IFM_IEEE80211_11N | 1228 (IFM_IEEE80211_HT_MCS0 + mcs)); 1229 break; 1230 case IEEE80211_MODE_11AC: 1231 if (mcs >= 0 && mcs < IEEE80211_VHT_NUM_MCS) 1232 return (IFM_IEEE80211_11AC | 1233 (IFM_IEEE80211_VHT_MCS0 + mcs)); 1234 break; 1235 case IEEE80211_MODE_AUTO: 1236 break; 1237 } 1238 1239 return IFM_AUTO; 1240 } 1241 1242 /* 1243 * Convert ifmedia subtype to IEEE80211 MCS index. 1244 */ 1245 int 1246 ieee80211_media2mcs(uint64_t mword) 1247 { 1248 uint64_t subtype; 1249 1250 subtype = IFM_SUBTYPE(mword); 1251 1252 if (subtype == IFM_AUTO) 1253 return -1; 1254 else if (subtype == IFM_MANUAL || subtype == IFM_NONE) 1255 return 0; 1256 1257 if (subtype >= IFM_IEEE80211_HT_MCS0 && 1258 subtype <= IFM_IEEE80211_HT_MCS76) 1259 return (int)(subtype - IFM_IEEE80211_HT_MCS0); 1260 1261 if (subtype >= IFM_IEEE80211_VHT_MCS0 && 1262 subtype <= IFM_IEEE80211_VHT_MCS9) 1263 return (int)(subtype - IFM_IEEE80211_VHT_MCS0); 1264 1265 return -1; 1266 } 1267 1268 /* 1269 * convert IEEE80211 rate value to ifmedia subtype. 1270 * ieee80211 rate is in unit of 0.5Mbps. 1271 */ 1272 uint64_t 1273 ieee80211_rate2media(struct ieee80211com *ic, int rate, 1274 enum ieee80211_phymode mode) 1275 { 1276 static const struct { 1277 uint64_t m; /* rate + mode */ 1278 uint64_t r; /* if_media rate */ 1279 } rates[] = { 1280 { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, 1281 { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, 1282 { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, 1283 { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, 1284 { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, 1285 { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, 1286 { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, 1287 { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, 1288 { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, 1289 { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, 1290 { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, 1291 { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, 1292 { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, 1293 { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, 1294 { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, 1295 { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, 1296 { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, 1297 { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, 1298 { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, 1299 { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, 1300 { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, 1301 { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, 1302 { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, 1303 { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, 1304 { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, 1305 /* NB: OFDM72 doesn't really exist so we don't handle it */ 1306 }; 1307 uint64_t mask; 1308 int i; 1309 1310 mask = rate & IEEE80211_RATE_VAL; 1311 switch (mode) { 1312 case IEEE80211_MODE_11A: 1313 mask |= IFM_IEEE80211_11A; 1314 break; 1315 case IEEE80211_MODE_11B: 1316 mask |= IFM_IEEE80211_11B; 1317 break; 1318 case IEEE80211_MODE_AUTO: 1319 /* NB: hack, 11g matches both 11b+11a rates */ 1320 /* FALLTHROUGH */ 1321 case IEEE80211_MODE_11G: 1322 mask |= IFM_IEEE80211_11G; 1323 break; 1324 case IEEE80211_MODE_11N: 1325 case IEEE80211_MODE_11AC: 1326 /* 11n/11ac uses MCS, not rates. */ 1327 panic("%s: unexpected mode %d", __func__, mode); 1328 break; 1329 } 1330 for (i = 0; i < nitems(rates); i++) 1331 if (rates[i].m == mask) 1332 return rates[i].r; 1333 return IFM_AUTO; 1334 } 1335 1336 int 1337 ieee80211_media2rate(uint64_t mword) 1338 { 1339 int i; 1340 static const struct { 1341 uint64_t subtype; 1342 int rate; 1343 } ieeerates[] = { 1344 { IFM_AUTO, -1 }, 1345 { IFM_MANUAL, 0 }, 1346 { IFM_NONE, 0 }, 1347 { IFM_IEEE80211_DS1, 2 }, 1348 { IFM_IEEE80211_DS2, 4 }, 1349 { IFM_IEEE80211_DS5, 11 }, 1350 { IFM_IEEE80211_DS11, 22 }, 1351 { IFM_IEEE80211_DS22, 44 }, 1352 { IFM_IEEE80211_OFDM6, 12 }, 1353 { IFM_IEEE80211_OFDM9, 18 }, 1354 { IFM_IEEE80211_OFDM12, 24 }, 1355 { IFM_IEEE80211_OFDM18, 36 }, 1356 { IFM_IEEE80211_OFDM24, 48 }, 1357 { IFM_IEEE80211_OFDM36, 72 }, 1358 { IFM_IEEE80211_OFDM48, 96 }, 1359 { IFM_IEEE80211_OFDM54, 108 }, 1360 { IFM_IEEE80211_OFDM72, 144 }, 1361 }; 1362 for (i = 0; i < nitems(ieeerates); i++) { 1363 if (ieeerates[i].subtype == IFM_SUBTYPE(mword)) 1364 return ieeerates[i].rate; 1365 } 1366 return 0; 1367 } 1368 1369 /* 1370 * Convert bit rate (in 0.5Mbps units) to PLCP signal (R4-R1) and vice versa. 1371 */ 1372 u_int8_t 1373 ieee80211_rate2plcp(u_int8_t rate, enum ieee80211_phymode mode) 1374 { 1375 rate &= IEEE80211_RATE_VAL; 1376 1377 if (mode == IEEE80211_MODE_11B) { 1378 /* IEEE Std 802.11b-1999 page 15, subclause 18.2.3.3 */ 1379 switch (rate) { 1380 case 2: return 10; 1381 case 4: return 20; 1382 case 11: return 55; 1383 case 22: return 110; 1384 /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ 1385 case 44: return 220; 1386 } 1387 } else if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11A) { 1388 /* IEEE Std 802.11a-1999 page 14, subclause 17.3.4.1 */ 1389 switch (rate) { 1390 case 12: return 0x0b; 1391 case 18: return 0x0f; 1392 case 24: return 0x0a; 1393 case 36: return 0x0e; 1394 case 48: return 0x09; 1395 case 72: return 0x0d; 1396 case 96: return 0x08; 1397 case 108: return 0x0c; 1398 } 1399 } else 1400 panic("%s: unexpected mode %u", __func__, mode); 1401 1402 DPRINTF(("unsupported rate %u\n", rate)); 1403 1404 return 0; 1405 } 1406 1407 u_int8_t 1408 ieee80211_plcp2rate(u_int8_t plcp, enum ieee80211_phymode mode) 1409 { 1410 if (mode == IEEE80211_MODE_11B) { 1411 /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ 1412 switch (plcp) { 1413 case 10: return 2; 1414 case 20: return 4; 1415 case 55: return 11; 1416 case 110: return 22; 1417 /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ 1418 case 220: return 44; 1419 } 1420 } else if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11A) { 1421 /* IEEE Std 802.11a-1999 page 14, subclause 17.3.4.1 */ 1422 switch (plcp) { 1423 case 0x0b: return 12; 1424 case 0x0f: return 18; 1425 case 0x0a: return 24; 1426 case 0x0e: return 36; 1427 case 0x09: return 48; 1428 case 0x0d: return 72; 1429 case 0x08: return 96; 1430 case 0x0c: return 108; 1431 } 1432 } else 1433 panic("%s: unexpected mode %u", __func__, mode); 1434 1435 DPRINTF(("unsupported plcp %u\n", plcp)); 1436 1437 return 0; 1438 } 1439