1 /* $OpenBSD: rtsock.c,v 1.279 2018/07/10 20:28:34 claudio Exp $ */ 2 /* $NetBSD: rtsock.c,v 1.18 1996/03/29 00:32:10 cgd Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1988, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)rtsock.c 8.6 (Berkeley) 2/11/95 62 */ 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/proc.h> 67 #include <sys/sysctl.h> 68 #include <sys/mbuf.h> 69 #include <sys/socket.h> 70 #include <sys/socketvar.h> 71 #include <sys/domain.h> 72 #include <sys/protosw.h> 73 #include <sys/srp.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_var.h> 78 #include <net/route.h> 79 80 #include <netinet/in.h> 81 82 #ifdef MPLS 83 #include <netmpls/mpls.h> 84 #endif 85 #ifdef IPSEC 86 #include <netinet/ip_ipsp.h> 87 #include <net/if_enc.h> 88 #endif 89 #ifdef BFD 90 #include <net/bfd.h> 91 #endif 92 93 #include <sys/stdarg.h> 94 #include <sys/kernel.h> 95 #include <sys/timeout.h> 96 97 #define ROUTESNDQ 8192 98 #define ROUTERCVQ 8192 99 100 const struct sockaddr route_src = { 2, PF_ROUTE, }; 101 102 struct walkarg { 103 int w_op, w_arg, w_given, w_needed, w_tmemsize; 104 caddr_t w_where, w_tmem; 105 }; 106 107 void route_prinit(void); 108 void rcb_ref(void *, void *); 109 void rcb_unref(void *, void *); 110 int route_output(struct mbuf *, struct socket *, struct sockaddr *, 111 struct mbuf *); 112 int route_ctloutput(int, struct socket *, int, int, struct mbuf *); 113 int route_usrreq(struct socket *, int, struct mbuf *, struct mbuf *, 114 struct mbuf *, struct proc *); 115 void route_input(struct mbuf *m0, struct socket *, sa_family_t); 116 int route_arp_conflict(struct rtentry *, struct rt_addrinfo *); 117 int route_cleargateway(struct rtentry *, void *, unsigned int); 118 void rtm_senddesync_timer(void *); 119 void rtm_senddesync(struct socket *); 120 int rtm_sendup(struct socket *, struct mbuf *, int); 121 122 int rtm_getifa(struct rt_addrinfo *, unsigned int); 123 int rtm_output(struct rt_msghdr *, struct rtentry **, struct rt_addrinfo *, 124 uint8_t, unsigned int); 125 struct rt_msghdr *rtm_report(struct rtentry *, u_char, int, int); 126 struct mbuf *rtm_msg1(int, struct rt_addrinfo *); 127 int rtm_msg2(int, int, struct rt_addrinfo *, caddr_t, 128 struct walkarg *); 129 void rtm_xaddrs(caddr_t, caddr_t, struct rt_addrinfo *); 130 int rtm_validate_proposal(struct rt_addrinfo *); 131 void rtm_setmetrics(u_long, const struct rt_metrics *, 132 struct rt_kmetrics *); 133 void rtm_getmetrics(const struct rt_kmetrics *, 134 struct rt_metrics *); 135 136 int sysctl_iflist(int, struct walkarg *); 137 int sysctl_ifnames(struct walkarg *); 138 int sysctl_rtable_rtstat(void *, size_t *, void *); 139 140 struct rtpcb { 141 struct socket *rop_socket; 142 143 SRPL_ENTRY(rtpcb) rop_list; 144 struct refcnt rop_refcnt; 145 struct timeout rop_timeout; 146 unsigned int rop_msgfilter; 147 unsigned int rop_flags; 148 u_int rop_rtableid; 149 unsigned short rop_proto; 150 u_char rop_priority; 151 }; 152 #define sotortpcb(so) ((struct rtpcb *)(so)->so_pcb) 153 154 struct rtptable { 155 SRPL_HEAD(, rtpcb) rtp_list; 156 struct srpl_rc rtp_rc; 157 struct rwlock rtp_lk; 158 unsigned int rtp_count; 159 }; 160 161 struct rtptable rtptable; 162 163 /* 164 * These flags and timeout are used for indicating to userland (via a 165 * RTM_DESYNC msg) when the route socket has overflowed and messages 166 * have been lost. 167 */ 168 #define ROUTECB_FLAG_DESYNC 0x1 /* Route socket out of memory */ 169 #define ROUTECB_FLAG_FLUSH 0x2 /* Wait until socket is empty before 170 queueing more packets */ 171 172 #define ROUTE_DESYNC_RESEND_TIMEOUT (hz / 5) /* In hz */ 173 174 void 175 route_prinit(void) 176 { 177 srpl_rc_init(&rtptable.rtp_rc, rcb_ref, rcb_unref, NULL); 178 rw_init(&rtptable.rtp_lk, "rtsock"); 179 SRPL_INIT(&rtptable.rtp_list); 180 } 181 182 void 183 rcb_ref(void *null, void *v) 184 { 185 struct rtpcb *rop = v; 186 187 refcnt_take(&rop->rop_refcnt); 188 } 189 190 void 191 rcb_unref(void *null, void *v) 192 { 193 struct rtpcb *rop = v; 194 195 refcnt_rele_wake(&rop->rop_refcnt); 196 } 197 198 int 199 route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam, 200 struct mbuf *control, struct proc *p) 201 { 202 struct rtpcb *rop; 203 int error = 0; 204 205 if (req == PRU_CONTROL) 206 return (EOPNOTSUPP); 207 208 soassertlocked(so); 209 210 if (control && control->m_len) { 211 error = EOPNOTSUPP; 212 goto release; 213 } 214 215 rop = sotortpcb(so); 216 if (rop == NULL) { 217 error = EINVAL; 218 goto release; 219 } 220 221 switch (req) { 222 /* no connect, bind, accept. Socket is connected from the start */ 223 case PRU_CONNECT: 224 case PRU_BIND: 225 case PRU_CONNECT2: 226 case PRU_LISTEN: 227 case PRU_ACCEPT: 228 error = EOPNOTSUPP; 229 break; 230 231 case PRU_DISCONNECT: 232 case PRU_ABORT: 233 soisdisconnected(so); 234 break; 235 case PRU_SHUTDOWN: 236 socantsendmore(so); 237 break; 238 case PRU_SENSE: 239 /* stat: don't bother with a blocksize. */ 240 return (0); 241 242 /* minimal support, just implement a fake peer address */ 243 case PRU_SOCKADDR: 244 error = EINVAL; 245 break; 246 case PRU_PEERADDR: 247 bcopy(&route_src, mtod(nam, caddr_t), route_src.sa_len); 248 nam->m_len = route_src.sa_len; 249 break; 250 251 case PRU_RCVOOB: 252 return (EOPNOTSUPP); 253 case PRU_RCVD: 254 /* 255 * If we are in a FLUSH state, check if the buffer is 256 * empty so that we can clear the flag. 257 */ 258 if (((rop->rop_flags & ROUTECB_FLAG_FLUSH) != 0) && 259 ((sbspace(rop->rop_socket, &rop->rop_socket->so_rcv) == 260 rop->rop_socket->so_rcv.sb_hiwat))) 261 rop->rop_flags &= ~ROUTECB_FLAG_FLUSH; 262 return (0); 263 264 case PRU_SENDOOB: 265 error = EOPNOTSUPP; 266 break; 267 case PRU_SEND: 268 if (nam) { 269 error = EISCONN; 270 break; 271 } 272 error = (*so->so_proto->pr_output)(m, so, NULL, NULL); 273 m = NULL; 274 break; 275 default: 276 panic("route_usrreq"); 277 } 278 279 release: 280 m_freem(control); 281 m_freem(m); 282 return (error); 283 } 284 285 int 286 route_attach(struct socket *so, int proto) 287 { 288 struct rtpcb *rop; 289 int error; 290 291 /* 292 * use the rawcb but allocate a rtpcb, this 293 * code does not care about the additional fields 294 * and works directly on the raw socket. 295 */ 296 rop = malloc(sizeof(struct rtpcb), M_PCB, M_WAITOK|M_ZERO); 297 so->so_pcb = rop; 298 /* Init the timeout structure */ 299 timeout_set(&rop->rop_timeout, rtm_senddesync_timer, so); 300 refcnt_init(&rop->rop_refcnt); 301 302 if (curproc == NULL) 303 error = EACCES; 304 else 305 error = soreserve(so, ROUTESNDQ, ROUTERCVQ); 306 if (error) { 307 free(rop, M_PCB, sizeof(struct rtpcb)); 308 return (error); 309 } 310 311 rop->rop_socket = so; 312 rop->rop_proto = proto; 313 314 rop->rop_rtableid = curproc->p_p->ps_rtableid; 315 316 soisconnected(so); 317 so->so_options |= SO_USELOOPBACK; 318 319 rw_enter(&rtptable.rtp_lk, RW_WRITE); 320 SRPL_INSERT_HEAD_LOCKED(&rtptable.rtp_rc, &rtptable.rtp_list, rop, rop_list); 321 rtptable.rtp_count++; 322 rw_exit(&rtptable.rtp_lk); 323 324 return (0); 325 } 326 327 int 328 route_detach(struct socket *so) 329 { 330 struct rtpcb *rop; 331 332 soassertlocked(so); 333 334 rop = sotortpcb(so); 335 if (rop == NULL) 336 return (EINVAL); 337 338 rw_enter(&rtptable.rtp_lk, RW_WRITE); 339 340 timeout_del(&rop->rop_timeout); 341 rtptable.rtp_count--; 342 343 SRPL_REMOVE_LOCKED(&rtptable.rtp_rc, &rtptable.rtp_list, rop, rtpcb, 344 rop_list); 345 rw_exit(&rtptable.rtp_lk); 346 347 /* wait for all references to drop */ 348 refcnt_finalize(&rop->rop_refcnt, "rtsockrefs"); 349 350 so->so_pcb = NULL; 351 KASSERT((so->so_state & SS_NOFDREF) == 0); 352 free(rop, M_PCB, sizeof(struct rtpcb)); 353 354 return (0); 355 } 356 357 int 358 route_ctloutput(int op, struct socket *so, int level, int optname, 359 struct mbuf *m) 360 { 361 struct rtpcb *rop = sotortpcb(so); 362 int error = 0; 363 unsigned int tid, prio; 364 365 if (level != AF_ROUTE) 366 return (EINVAL); 367 368 switch (op) { 369 case PRCO_SETOPT: 370 switch (optname) { 371 case ROUTE_MSGFILTER: 372 if (m == NULL || m->m_len != sizeof(unsigned int)) 373 error = EINVAL; 374 else 375 rop->rop_msgfilter = *mtod(m, unsigned int *); 376 break; 377 case ROUTE_TABLEFILTER: 378 if (m == NULL || m->m_len != sizeof(unsigned int)) { 379 error = EINVAL; 380 break; 381 } 382 tid = *mtod(m, unsigned int *); 383 if (tid != RTABLE_ANY && !rtable_exists(tid)) 384 error = ENOENT; 385 else 386 rop->rop_rtableid = tid; 387 break; 388 case ROUTE_PRIOFILTER: 389 if (m == NULL || m->m_len != sizeof(unsigned int)) { 390 error = EINVAL; 391 break; 392 } 393 prio = *mtod(m, unsigned int *); 394 if (prio > RTP_MAX) 395 error = EINVAL; 396 else 397 rop->rop_priority = prio; 398 break; 399 default: 400 error = ENOPROTOOPT; 401 break; 402 } 403 break; 404 case PRCO_GETOPT: 405 switch (optname) { 406 case ROUTE_MSGFILTER: 407 m->m_len = sizeof(unsigned int); 408 *mtod(m, unsigned int *) = rop->rop_msgfilter; 409 break; 410 case ROUTE_TABLEFILTER: 411 m->m_len = sizeof(unsigned int); 412 *mtod(m, unsigned int *) = rop->rop_rtableid; 413 break; 414 case ROUTE_PRIOFILTER: 415 m->m_len = sizeof(unsigned int); 416 *mtod(m, unsigned int *) = rop->rop_priority; 417 break; 418 default: 419 error = ENOPROTOOPT; 420 break; 421 } 422 } 423 return (error); 424 } 425 426 void 427 rtm_senddesync_timer(void *xso) 428 { 429 struct socket *so = xso; 430 int s; 431 432 s = solock(so); 433 rtm_senddesync(so); 434 sounlock(so, s); 435 } 436 437 void 438 rtm_senddesync(struct socket *so) 439 { 440 struct rtpcb *rop = sotortpcb(so); 441 struct mbuf *desync_mbuf; 442 443 soassertlocked(so); 444 445 /* If we are in a DESYNC state, try to send a RTM_DESYNC packet */ 446 if ((rop->rop_flags & ROUTECB_FLAG_DESYNC) == 0) 447 return; 448 449 /* 450 * If we fail to alloc memory or if sbappendaddr() 451 * fails, re-add timeout and try again. 452 */ 453 desync_mbuf = rtm_msg1(RTM_DESYNC, NULL); 454 if (desync_mbuf != NULL) { 455 if (sbappendaddr(so, &so->so_rcv, &route_src, 456 desync_mbuf, NULL) != 0) { 457 rop->rop_flags &= ~ROUTECB_FLAG_DESYNC; 458 sorwakeup(rop->rop_socket); 459 return; 460 } 461 m_freem(desync_mbuf); 462 } 463 /* Re-add timeout to try sending msg again */ 464 timeout_add(&rop->rop_timeout, ROUTE_DESYNC_RESEND_TIMEOUT); 465 } 466 467 void 468 route_input(struct mbuf *m0, struct socket *so0, sa_family_t sa_family) 469 { 470 struct socket *so; 471 struct rtpcb *rop; 472 struct rt_msghdr *rtm; 473 struct mbuf *m = m0; 474 struct socket *last = NULL; 475 struct srp_ref sr; 476 int s; 477 478 /* ensure that we can access the rtm_type via mtod() */ 479 if (m->m_len < offsetof(struct rt_msghdr, rtm_type) + 1) { 480 m_freem(m); 481 return; 482 } 483 484 SRPL_FOREACH(rop, &sr, &rtptable.rtp_list, rop_list) { 485 /* 486 * If route socket is bound to an address family only send 487 * messages that match the address family. Address family 488 * agnostic messages are always sent. 489 */ 490 if (sa_family != AF_UNSPEC && rop->rop_proto != AF_UNSPEC && 491 rop->rop_proto != sa_family) 492 continue; 493 494 495 so = rop->rop_socket; 496 s = solock(so); 497 498 /* 499 * Check to see if we don't want our own messages and 500 * if we can receive anything. 501 */ 502 if ((so0 == so && !(so0->so_options & SO_USELOOPBACK)) || 503 !(so->so_state & SS_ISCONNECTED) || 504 (so->so_state & SS_CANTRCVMORE)) { 505 next: 506 sounlock(so, s); 507 continue; 508 } 509 510 /* filter messages that the process does not want */ 511 rtm = mtod(m, struct rt_msghdr *); 512 /* but RTM_DESYNC can't be filtered */ 513 if (rtm->rtm_type != RTM_DESYNC && rop->rop_msgfilter != 0 && 514 !(rop->rop_msgfilter & (1 << rtm->rtm_type))) 515 goto next; 516 switch (rtm->rtm_type) { 517 case RTM_IFANNOUNCE: 518 case RTM_DESYNC: 519 /* no tableid */ 520 break; 521 case RTM_RESOLVE: 522 case RTM_NEWADDR: 523 case RTM_DELADDR: 524 case RTM_IFINFO: 525 case RTM_BFD: 526 /* check against rdomain id */ 527 if (rop->rop_rtableid != RTABLE_ANY && 528 rtable_l2(rop->rop_rtableid) != rtm->rtm_tableid) 529 goto next; 530 break; 531 default: 532 if (rop->rop_priority != 0 && 533 rop->rop_priority < rtm->rtm_priority) 534 goto next; 535 /* check against rtable id */ 536 if (rop->rop_rtableid != RTABLE_ANY && 537 rop->rop_rtableid != rtm->rtm_tableid) 538 goto next; 539 break; 540 } 541 542 /* 543 * Check to see if the flush flag is set. If so, don't queue 544 * any more messages until the flag is cleared. 545 */ 546 if ((rop->rop_flags & ROUTECB_FLAG_FLUSH) != 0) 547 goto next; 548 sounlock(so, s); 549 550 if (last) { 551 s = solock(last); 552 rtm_sendup(last, m, 1); 553 sounlock(last, s); 554 refcnt_rele_wake(&sotortpcb(last)->rop_refcnt); 555 } 556 /* keep a reference for last */ 557 refcnt_take(&rop->rop_refcnt); 558 last = rop->rop_socket; 559 } 560 SRPL_LEAVE(&sr); 561 562 if (last) { 563 s = solock(last); 564 rtm_sendup(last, m, 0); 565 sounlock(last, s); 566 refcnt_rele_wake(&sotortpcb(last)->rop_refcnt); 567 } else 568 m_freem(m); 569 } 570 571 int 572 rtm_sendup(struct socket *so, struct mbuf *m0, int more) 573 { 574 struct rtpcb *rop = sotortpcb(so); 575 struct mbuf *m; 576 577 soassertlocked(so); 578 579 if (more) { 580 m = m_copym(m0, 0, M_COPYALL, M_NOWAIT); 581 if (m == NULL) 582 return (ENOMEM); 583 } else 584 m = m0; 585 586 if (sbspace(so, &so->so_rcv) < (2 * MSIZE) || 587 sbappendaddr(so, &so->so_rcv, &route_src, m, NULL) == 0) { 588 /* Flag socket as desync'ed and flush required */ 589 rop->rop_flags |= ROUTECB_FLAG_DESYNC | ROUTECB_FLAG_FLUSH; 590 rtm_senddesync(so); 591 m_freem(m); 592 return (ENOBUFS); 593 } 594 595 sorwakeup(so); 596 return (0); 597 } 598 599 struct rt_msghdr * 600 rtm_report(struct rtentry *rt, u_char type, int seq, int tableid) 601 { 602 struct rt_msghdr *rtm; 603 struct rt_addrinfo info; 604 struct sockaddr_rtlabel sa_rl; 605 struct sockaddr_in6 sa_mask; 606 #ifdef BFD 607 struct sockaddr_bfd sa_bfd; 608 #endif 609 struct ifnet *ifp = NULL; 610 int len; 611 612 bzero(&info, sizeof(info)); 613 info.rti_info[RTAX_DST] = rt_key(rt); 614 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 615 info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask); 616 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl); 617 #ifdef BFD 618 if (rt->rt_flags & RTF_BFD) 619 info.rti_info[RTAX_BFD] = bfd2sa(rt, &sa_bfd); 620 #endif 621 #ifdef MPLS 622 if (rt->rt_flags & RTF_MPLS) { 623 struct sockaddr_mpls sa_mpls; 624 625 bzero(&sa_mpls, sizeof(sa_mpls)); 626 sa_mpls.smpls_family = AF_MPLS; 627 sa_mpls.smpls_len = sizeof(sa_mpls); 628 sa_mpls.smpls_label = ((struct rt_mpls *) 629 rt->rt_llinfo)->mpls_label; 630 info.rti_info[RTAX_SRC] = (struct sockaddr *)&sa_mpls; 631 info.rti_mpls = ((struct rt_mpls *) 632 rt->rt_llinfo)->mpls_operation; 633 } 634 #endif 635 ifp = if_get(rt->rt_ifidx); 636 if (ifp != NULL) { 637 info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); 638 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 639 if (ifp->if_flags & IFF_POINTOPOINT) 640 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 641 } 642 if_put(ifp); 643 /* RTAX_GENMASK, RTAX_AUTHOR, RTAX_SRCMASK ignored */ 644 645 /* build new route message */ 646 len = rtm_msg2(type, RTM_VERSION, &info, NULL, NULL); 647 rtm = malloc(len, M_RTABLE, M_WAITOK | M_ZERO); 648 649 rtm_msg2(type, RTM_VERSION, &info, (caddr_t)rtm, NULL); 650 rtm->rtm_type = type; 651 rtm->rtm_index = rt->rt_ifidx; 652 rtm->rtm_tableid = tableid; 653 rtm->rtm_priority = rt->rt_priority & RTP_MASK; 654 rtm->rtm_flags = rt->rt_flags; 655 rtm->rtm_pid = curproc->p_p->ps_pid; 656 rtm->rtm_seq = seq; 657 rtm_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 658 rtm->rtm_addrs = info.rti_addrs; 659 #ifdef MPLS 660 rtm->rtm_mpls = info.rti_mpls; 661 #endif 662 return rtm; 663 } 664 665 int 666 route_output(struct mbuf *m, struct socket *so, struct sockaddr *dstaddr, 667 struct mbuf *control) 668 { 669 struct rt_msghdr *rtm = NULL; 670 struct rtentry *rt = NULL; 671 struct rt_addrinfo info; 672 int len, seq, error = 0; 673 u_int tableid; 674 u_int8_t prio; 675 u_char vers, type; 676 677 if (m == NULL || ((m->m_len < sizeof(int32_t)) && 678 (m = m_pullup(m, sizeof(int32_t))) == 0)) 679 return (ENOBUFS); 680 if ((m->m_flags & M_PKTHDR) == 0) 681 panic("route_output"); 682 len = m->m_pkthdr.len; 683 if (len < offsetof(struct rt_msghdr, rtm_type) + 1 || 684 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 685 error = EINVAL; 686 goto fail; 687 } 688 vers = mtod(m, struct rt_msghdr *)->rtm_version; 689 switch (vers) { 690 case RTM_VERSION: 691 if (len < sizeof(struct rt_msghdr)) { 692 error = EINVAL; 693 goto fail; 694 } 695 if (len > RTM_MAXSIZE) { 696 error = EMSGSIZE; 697 goto fail; 698 } 699 rtm = malloc(len, M_RTABLE, M_WAITOK); 700 m_copydata(m, 0, len, (caddr_t)rtm); 701 break; 702 default: 703 error = EPROTONOSUPPORT; 704 goto fail; 705 } 706 rtm->rtm_pid = curproc->p_p->ps_pid; 707 if (rtm->rtm_hdrlen == 0) /* old client */ 708 rtm->rtm_hdrlen = sizeof(struct rt_msghdr); 709 if (len < rtm->rtm_hdrlen) { 710 error = EINVAL; 711 goto fail; 712 } 713 714 /* Verify that the caller is sending an appropriate message early */ 715 switch (rtm->rtm_type) { 716 case RTM_ADD: 717 case RTM_DELETE: 718 case RTM_GET: 719 case RTM_CHANGE: 720 case RTM_PROPOSAL: 721 break; 722 default: 723 error = EOPNOTSUPP; 724 goto fail; 725 } 726 727 /* 728 * Verify that the caller has the appropriate privilege; RTM_GET 729 * is the only operation the non-superuser is allowed. 730 */ 731 if (rtm->rtm_type != RTM_GET && suser(curproc) != 0) { 732 error = EACCES; 733 goto fail; 734 } 735 tableid = rtm->rtm_tableid; 736 if (!rtable_exists(tableid)) { 737 if (rtm->rtm_type == RTM_ADD) { 738 if ((error = rtable_add(tableid)) != 0) 739 goto fail; 740 } else { 741 error = EINVAL; 742 goto fail; 743 } 744 } 745 746 747 /* Do not let userland play with kernel-only flags. */ 748 if ((rtm->rtm_flags & (RTF_LOCAL|RTF_BROADCAST)) != 0) { 749 error = EINVAL; 750 goto fail; 751 } 752 753 /* make sure that kernel-only bits are not set */ 754 rtm->rtm_priority &= RTP_MASK; 755 rtm->rtm_flags &= ~(RTF_DONE|RTF_CLONED|RTF_CACHED); 756 rtm->rtm_fmask &= RTF_FMASK; 757 758 if (rtm->rtm_priority != 0) { 759 if (rtm->rtm_priority > RTP_MAX || 760 rtm->rtm_priority == RTP_LOCAL) { 761 error = EINVAL; 762 goto fail; 763 } 764 prio = rtm->rtm_priority; 765 } else if (rtm->rtm_type != RTM_ADD) 766 prio = RTP_ANY; 767 else if (rtm->rtm_flags & RTF_STATIC) 768 prio = 0; 769 else 770 prio = RTP_DEFAULT; 771 772 bzero(&info, sizeof(info)); 773 info.rti_addrs = rtm->rtm_addrs; 774 rtm_xaddrs(rtm->rtm_hdrlen + (caddr_t)rtm, len + (caddr_t)rtm, &info); 775 info.rti_flags = rtm->rtm_flags; 776 if (rtm->rtm_type != RTM_PROPOSAL && 777 (info.rti_info[RTAX_DST] == NULL || 778 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 779 (info.rti_info[RTAX_GATEWAY] != NULL && 780 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX) || 781 info.rti_info[RTAX_GENMASK] != NULL)) { 782 error = EINVAL; 783 goto fail; 784 } 785 #ifdef MPLS 786 info.rti_mpls = rtm->rtm_mpls; 787 #endif 788 789 if (info.rti_info[RTAX_GATEWAY] != NULL && 790 info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 791 (info.rti_flags & RTF_CLONING) == 0) { 792 info.rti_flags |= RTF_LLINFO; 793 } 794 795 /* 796 * Validate RTM_PROPOSAL and pass it along or error out. 797 */ 798 if (rtm->rtm_type == RTM_PROPOSAL) { 799 if (rtm_validate_proposal(&info) == -1) { 800 error = EINVAL; 801 goto fail; 802 } 803 } else { 804 error = rtm_output(rtm, &rt, &info, prio, tableid); 805 if (!error) { 806 type = rtm->rtm_type; 807 seq = rtm->rtm_seq; 808 free(rtm, M_RTABLE, len); 809 rtm = rtm_report(rt, type, seq, tableid); 810 len = rtm->rtm_msglen; 811 } 812 } 813 814 rtfree(rt); 815 if (error) { 816 rtm->rtm_errno = error; 817 } else { 818 rtm->rtm_flags |= RTF_DONE; 819 } 820 821 /* 822 * Check to see if we don't want our own messages. 823 */ 824 if (!(so->so_options & SO_USELOOPBACK)) { 825 if (rtptable.rtp_count <= 1) { 826 /* no other listener and no loopback of messages */ 827 fail: 828 free(rtm, M_RTABLE, len); 829 m_freem(m); 830 return (error); 831 } 832 } 833 if (rtm) { 834 if (m_copyback(m, 0, len, rtm, M_NOWAIT)) { 835 m_freem(m); 836 m = NULL; 837 } else if (m->m_pkthdr.len > len) 838 m_adj(m, len - m->m_pkthdr.len); 839 free(rtm, M_RTABLE, len); 840 } 841 if (m) 842 route_input(m, so, info.rti_info[RTAX_DST] ? 843 info.rti_info[RTAX_DST]->sa_family : AF_UNSPEC); 844 845 return (error); 846 } 847 848 int 849 rtm_output(struct rt_msghdr *rtm, struct rtentry **prt, 850 struct rt_addrinfo *info, uint8_t prio, unsigned int tableid) 851 { 852 struct rtentry *rt = *prt; 853 struct ifnet *ifp = NULL; 854 int plen, newgate = 0, error = 0; 855 856 switch (rtm->rtm_type) { 857 case RTM_ADD: 858 if (info->rti_info[RTAX_GATEWAY] == NULL) { 859 error = EINVAL; 860 break; 861 } 862 863 rt = rtable_match(tableid, info->rti_info[RTAX_DST], NULL); 864 if ((error = route_arp_conflict(rt, info))) { 865 rtfree(rt); 866 rt = NULL; 867 break; 868 } 869 870 /* 871 * We cannot go through a delete/create/insert cycle for 872 * cached route because this can lead to races in the 873 * receive path. Instead we update the L2 cache. 874 */ 875 if ((rt != NULL) && ISSET(rt->rt_flags, RTF_CACHED)) 876 goto change; 877 878 rtfree(rt); 879 rt = NULL; 880 881 NET_LOCK(); 882 if ((error = rtm_getifa(info, tableid)) != 0) { 883 NET_UNLOCK(); 884 break; 885 } 886 error = rtrequest(RTM_ADD, info, prio, &rt, tableid); 887 NET_UNLOCK(); 888 if (error == 0) 889 rtm_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 890 &rt->rt_rmx); 891 break; 892 case RTM_DELETE: 893 rt = rtable_lookup(tableid, info->rti_info[RTAX_DST], 894 info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], 895 prio); 896 if (rt == NULL) { 897 error = ESRCH; 898 break; 899 } 900 901 /* 902 * If we got multipath routes, we require users to specify 903 * a matching gateway. 904 */ 905 if (ISSET(rt->rt_flags, RTF_MPATH) && 906 info->rti_info[RTAX_GATEWAY] == NULL) { 907 error = ESRCH; 908 break; 909 } 910 911 /* Detaching an interface requires the KERNEL_LOCK(). */ 912 ifp = if_get(rt->rt_ifidx); 913 KASSERT(ifp != NULL); 914 915 /* 916 * Invalidate the cache of automagically created and 917 * referenced L2 entries to make sure that ``rt_gwroute'' 918 * pointer stays valid for other CPUs. 919 */ 920 if ((ISSET(rt->rt_flags, RTF_CACHED))) { 921 NET_LOCK(); 922 ifp->if_rtrequest(ifp, RTM_INVALIDATE, rt); 923 /* Reset the MTU of the gateway route. */ 924 rtable_walk(tableid, rt_key(rt)->sa_family, 925 route_cleargateway, rt); 926 NET_UNLOCK(); 927 if_put(ifp); 928 break; 929 } 930 931 /* 932 * Make sure that local routes are only modified by the 933 * kernel. 934 */ 935 if (ISSET(rt->rt_flags, RTF_LOCAL|RTF_BROADCAST)) { 936 if_put(ifp); 937 error = EINVAL; 938 break; 939 } 940 941 rtfree(rt); 942 rt = NULL; 943 944 NET_LOCK(); 945 error = rtrequest_delete(info, prio, ifp, &rt, tableid); 946 NET_UNLOCK(); 947 if_put(ifp); 948 break; 949 case RTM_CHANGE: 950 rt = rtable_lookup(tableid, info->rti_info[RTAX_DST], 951 info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], 952 prio); 953 /* 954 * If we got multipath routes, we require users to specify 955 * a matching gateway. 956 */ 957 if ((rt != NULL) && ISSET(rt->rt_flags, RTF_MPATH) && 958 (info->rti_info[RTAX_GATEWAY] == NULL)) { 959 rtfree(rt); 960 rt = NULL; 961 } 962 /* 963 * If RTAX_GATEWAY is the argument we're trying to 964 * change, try to find a compatible route. 965 */ 966 if ((rt == NULL) && (info->rti_info[RTAX_GATEWAY] != NULL) && 967 (rtm->rtm_type == RTM_CHANGE)) { 968 rt = rtable_lookup(tableid, info->rti_info[RTAX_DST], 969 info->rti_info[RTAX_NETMASK], NULL, prio); 970 /* Ensure we don't pick a multipath one. */ 971 if ((rt != NULL) && ISSET(rt->rt_flags, RTF_MPATH)) { 972 rtfree(rt); 973 rt = NULL; 974 } 975 } 976 977 if (rt == NULL) { 978 error = ESRCH; 979 break; 980 } 981 982 /* 983 * Make sure that local routes are only modified by the 984 * kernel. 985 */ 986 if (ISSET(rt->rt_flags, RTF_LOCAL|RTF_BROADCAST)) { 987 error = EINVAL; 988 break; 989 } 990 991 /* 992 * RTM_CHANGE/LOCK need a perfect match. 993 */ 994 plen = rtable_satoplen(info->rti_info[RTAX_DST]->sa_family, 995 info->rti_info[RTAX_NETMASK]); 996 if (rt_plen(rt) != plen) { 997 error = ESRCH; 998 break; 999 } 1000 1001 switch (rtm->rtm_type) { 1002 case RTM_CHANGE: 1003 if (info->rti_info[RTAX_GATEWAY] != NULL) 1004 if (rt->rt_gateway == NULL || 1005 bcmp(rt->rt_gateway, 1006 info->rti_info[RTAX_GATEWAY], 1007 info->rti_info[RTAX_GATEWAY]->sa_len)) { 1008 newgate = 1; 1009 } 1010 /* 1011 * Check reachable gateway before changing the route. 1012 * New gateway could require new ifaddr, ifp; 1013 * flags may also be different; ifp may be specified 1014 * by ll sockaddr when protocol address is ambiguous. 1015 */ 1016 if (newgate || info->rti_info[RTAX_IFP] != NULL || 1017 info->rti_info[RTAX_IFA] != NULL) { 1018 struct ifaddr *ifa = NULL; 1019 1020 NET_LOCK(); 1021 if ((error = rtm_getifa(info, tableid)) != 0) { 1022 NET_UNLOCK(); 1023 break; 1024 } 1025 ifa = info->rti_ifa; 1026 if (rt->rt_ifa != ifa) { 1027 ifp = if_get(rt->rt_ifidx); 1028 KASSERT(ifp != NULL); 1029 ifp->if_rtrequest(ifp, RTM_DELETE, rt); 1030 ifafree(rt->rt_ifa); 1031 if_put(ifp); 1032 1033 ifa->ifa_refcnt++; 1034 rt->rt_ifa = ifa; 1035 rt->rt_ifidx = ifa->ifa_ifp->if_index; 1036 /* recheck link state after ifp change*/ 1037 rt_if_linkstate_change(rt, ifa->ifa_ifp, 1038 tableid); 1039 } 1040 NET_UNLOCK(); 1041 } 1042 change: 1043 if (info->rti_info[RTAX_GATEWAY] != NULL) { 1044 /* 1045 * When updating the gateway, make sure it's 1046 * valid. 1047 */ 1048 if (!newgate && rt->rt_gateway->sa_family != 1049 info->rti_info[RTAX_GATEWAY]->sa_family) { 1050 error = EINVAL; 1051 break; 1052 } 1053 1054 NET_LOCK(); 1055 error = rt_setgate(rt, 1056 info->rti_info[RTAX_GATEWAY], tableid); 1057 NET_UNLOCK(); 1058 if (error) 1059 break; 1060 } 1061 #ifdef MPLS 1062 if ((rtm->rtm_flags & RTF_MPLS) && 1063 info->rti_info[RTAX_SRC] != NULL) { 1064 NET_LOCK(); 1065 error = rt_mpls_set(rt, 1066 info->rti_info[RTAX_SRC], info->rti_mpls); 1067 NET_UNLOCK(); 1068 if (error) 1069 break; 1070 } else if (newgate || ((rtm->rtm_fmask & RTF_MPLS) && 1071 !(rtm->rtm_flags & RTF_MPLS))) { 1072 NET_LOCK(); 1073 /* if gateway changed remove MPLS information */ 1074 rt_mpls_clear(rt); 1075 NET_UNLOCK(); 1076 } 1077 #endif 1078 1079 #ifdef BFD 1080 if (ISSET(rtm->rtm_flags, RTF_BFD)) { 1081 if ((error = bfdset(rt))) 1082 break; 1083 } else if (!ISSET(rtm->rtm_flags, RTF_BFD) && 1084 ISSET(rtm->rtm_fmask, RTF_BFD)) { 1085 bfdclear(rt); 1086 } 1087 #endif 1088 1089 NET_LOCK(); 1090 /* Hack to allow some flags to be toggled */ 1091 if (rtm->rtm_fmask) 1092 rt->rt_flags = 1093 (rt->rt_flags & ~rtm->rtm_fmask) | 1094 (rtm->rtm_flags & rtm->rtm_fmask); 1095 1096 rtm_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 1097 &rt->rt_rmx); 1098 1099 ifp = if_get(rt->rt_ifidx); 1100 KASSERT(ifp != NULL); 1101 ifp->if_rtrequest(ifp, RTM_ADD, rt); 1102 if_put(ifp); 1103 1104 if (info->rti_info[RTAX_LABEL] != NULL) { 1105 char *rtlabel = ((struct sockaddr_rtlabel *) 1106 info->rti_info[RTAX_LABEL])->sr_label; 1107 rtlabel_unref(rt->rt_labelid); 1108 rt->rt_labelid = rtlabel_name2id(rtlabel); 1109 } 1110 if_group_routechange(info->rti_info[RTAX_DST], 1111 info->rti_info[RTAX_NETMASK]); 1112 rt->rt_locks &= ~(rtm->rtm_inits); 1113 rt->rt_locks |= 1114 (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); 1115 NET_UNLOCK(); 1116 break; 1117 } 1118 break; 1119 case RTM_GET: 1120 rt = rtable_lookup(tableid, info->rti_info[RTAX_DST], 1121 info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], 1122 prio); 1123 if (rt == NULL) 1124 error = ESRCH; 1125 break; 1126 } 1127 1128 *prt = rt; 1129 return (error); 1130 } 1131 1132 struct ifaddr * 1133 ifa_ifwithroute(int flags, struct sockaddr *dst, struct sockaddr *gateway, 1134 unsigned int rtableid) 1135 { 1136 struct ifaddr *ifa; 1137 1138 if ((flags & RTF_GATEWAY) == 0) { 1139 /* 1140 * If we are adding a route to an interface, 1141 * and the interface is a pt to pt link 1142 * we should search for the destination 1143 * as our clue to the interface. Otherwise 1144 * we can use the local address. 1145 */ 1146 ifa = NULL; 1147 if (flags & RTF_HOST) 1148 ifa = ifa_ifwithdstaddr(dst, rtableid); 1149 if (ifa == NULL) 1150 ifa = ifa_ifwithaddr(gateway, rtableid); 1151 } else { 1152 /* 1153 * If we are adding a route to a remote net 1154 * or host, the gateway may still be on the 1155 * other end of a pt to pt link. 1156 */ 1157 ifa = ifa_ifwithdstaddr(gateway, rtableid); 1158 } 1159 if (ifa == NULL) { 1160 if (gateway->sa_family == AF_LINK) { 1161 struct sockaddr_dl *sdl = satosdl(gateway); 1162 struct ifnet *ifp = if_get(sdl->sdl_index); 1163 1164 if (ifp != NULL) 1165 ifa = ifaof_ifpforaddr(dst, ifp); 1166 if_put(ifp); 1167 } else { 1168 struct rtentry *rt; 1169 1170 rt = rtalloc(gateway, RT_RESOLVE, rtable_l2(rtableid)); 1171 if (rt != NULL) 1172 ifa = rt->rt_ifa; 1173 rtfree(rt); 1174 } 1175 } 1176 if (ifa == NULL) 1177 return (NULL); 1178 if (ifa->ifa_addr->sa_family != dst->sa_family) { 1179 struct ifaddr *oifa = ifa; 1180 ifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp); 1181 if (ifa == NULL) 1182 ifa = oifa; 1183 } 1184 return (ifa); 1185 } 1186 1187 int 1188 rtm_getifa(struct rt_addrinfo *info, unsigned int rtid) 1189 { 1190 struct ifnet *ifp = NULL; 1191 1192 /* 1193 * The "returned" `ifa' is guaranteed to be alive only if 1194 * the NET_LOCK() is held. 1195 */ 1196 NET_ASSERT_LOCKED(); 1197 1198 /* 1199 * ifp may be specified by sockaddr_dl when protocol address 1200 * is ambiguous 1201 */ 1202 if (info->rti_info[RTAX_IFP] != NULL) { 1203 struct sockaddr_dl *sdl; 1204 1205 sdl = satosdl(info->rti_info[RTAX_IFP]); 1206 ifp = if_get(sdl->sdl_index); 1207 } 1208 1209 #ifdef IPSEC 1210 /* 1211 * If the destination is a PF_KEY address, we'll look 1212 * for the existence of a encap interface number or address 1213 * in the options list of the gateway. By default, we'll return 1214 * enc0. 1215 */ 1216 if (info->rti_info[RTAX_DST] && 1217 info->rti_info[RTAX_DST]->sa_family == PF_KEY) 1218 info->rti_ifa = enc_getifa(rtid, 0); 1219 #endif 1220 1221 if (info->rti_ifa == NULL && info->rti_info[RTAX_IFA] != NULL) 1222 info->rti_ifa = ifa_ifwithaddr(info->rti_info[RTAX_IFA], rtid); 1223 1224 if (info->rti_ifa == NULL) { 1225 struct sockaddr *sa; 1226 1227 if ((sa = info->rti_info[RTAX_IFA]) == NULL) 1228 if ((sa = info->rti_info[RTAX_GATEWAY]) == NULL) 1229 sa = info->rti_info[RTAX_DST]; 1230 1231 if (sa != NULL && ifp != NULL) 1232 info->rti_ifa = ifaof_ifpforaddr(sa, ifp); 1233 else if (info->rti_info[RTAX_DST] != NULL && 1234 info->rti_info[RTAX_GATEWAY] != NULL) 1235 info->rti_ifa = ifa_ifwithroute(info->rti_flags, 1236 info->rti_info[RTAX_DST], 1237 info->rti_info[RTAX_GATEWAY], 1238 rtid); 1239 else if (sa != NULL) 1240 info->rti_ifa = ifa_ifwithroute(info->rti_flags, 1241 sa, sa, rtid); 1242 } 1243 1244 if_put(ifp); 1245 1246 if (info->rti_ifa == NULL) 1247 return (ENETUNREACH); 1248 1249 return (0); 1250 } 1251 1252 int 1253 route_cleargateway(struct rtentry *rt, void *arg, unsigned int rtableid) 1254 { 1255 struct rtentry *nhrt = arg; 1256 1257 if (ISSET(rt->rt_flags, RTF_GATEWAY) && rt->rt_gwroute == nhrt && 1258 !ISSET(rt->rt_locks, RTV_MTU)) 1259 rt->rt_mtu = 0; 1260 1261 return (0); 1262 } 1263 1264 /* 1265 * Check if the user request to insert an ARP entry does not conflict 1266 * with existing ones. 1267 * 1268 * Only two entries are allowed for a given IP address: a private one 1269 * (priv) and a public one (pub). 1270 */ 1271 int 1272 route_arp_conflict(struct rtentry *rt, struct rt_addrinfo *info) 1273 { 1274 int proxy = (info->rti_flags & RTF_ANNOUNCE); 1275 1276 if ((info->rti_flags & RTF_LLINFO) == 0 || 1277 (info->rti_info[RTAX_DST]->sa_family != AF_INET)) 1278 return (0); 1279 1280 if (rt == NULL || !ISSET(rt->rt_flags, RTF_LLINFO)) 1281 return (0); 1282 1283 /* If the entry is cached, it can be updated. */ 1284 if (ISSET(rt->rt_flags, RTF_CACHED)) 1285 return (0); 1286 1287 /* 1288 * Same destination, not cached and both "priv" or "pub" conflict. 1289 * If a second entry exists, it always conflict. 1290 */ 1291 if ((ISSET(rt->rt_flags, RTF_ANNOUNCE) == proxy) || 1292 ISSET(rt->rt_flags, RTF_MPATH)) 1293 return (EEXIST); 1294 1295 /* No conflict but an entry exist so we need to force mpath. */ 1296 info->rti_flags |= RTF_MPATH; 1297 return (0); 1298 } 1299 1300 void 1301 rtm_setmetrics(u_long which, const struct rt_metrics *in, 1302 struct rt_kmetrics *out) 1303 { 1304 int64_t expire; 1305 1306 if (which & RTV_MTU) 1307 out->rmx_mtu = in->rmx_mtu; 1308 if (which & RTV_EXPIRE) { 1309 expire = in->rmx_expire; 1310 if (expire != 0) { 1311 expire -= time_second; 1312 expire += time_uptime; 1313 } 1314 1315 out->rmx_expire = expire; 1316 } 1317 } 1318 1319 void 1320 rtm_getmetrics(const struct rt_kmetrics *in, struct rt_metrics *out) 1321 { 1322 int64_t expire; 1323 1324 expire = in->rmx_expire; 1325 if (expire != 0) { 1326 expire -= time_uptime; 1327 expire += time_second; 1328 } 1329 1330 bzero(out, sizeof(*out)); 1331 out->rmx_locks = in->rmx_locks; 1332 out->rmx_mtu = in->rmx_mtu; 1333 out->rmx_expire = expire; 1334 out->rmx_pksent = in->rmx_pksent; 1335 } 1336 1337 #define ROUNDUP(a) \ 1338 ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) 1339 #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len)) 1340 1341 void 1342 rtm_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1343 { 1344 struct sockaddr *sa; 1345 int i; 1346 1347 bzero(rtinfo->rti_info, sizeof(rtinfo->rti_info)); 1348 for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) { 1349 if ((rtinfo->rti_addrs & (1 << i)) == 0) 1350 continue; 1351 rtinfo->rti_info[i] = sa = (struct sockaddr *)cp; 1352 ADVANCE(cp, sa); 1353 } 1354 } 1355 1356 struct mbuf * 1357 rtm_msg1(int type, struct rt_addrinfo *rtinfo) 1358 { 1359 struct rt_msghdr *rtm; 1360 struct mbuf *m; 1361 int i; 1362 struct sockaddr *sa; 1363 int len, dlen, hlen; 1364 1365 switch (type) { 1366 case RTM_DELADDR: 1367 case RTM_NEWADDR: 1368 len = sizeof(struct ifa_msghdr); 1369 break; 1370 case RTM_IFINFO: 1371 len = sizeof(struct if_msghdr); 1372 break; 1373 case RTM_IFANNOUNCE: 1374 len = sizeof(struct if_announcemsghdr); 1375 break; 1376 #ifdef BFD 1377 case RTM_BFD: 1378 len = sizeof(struct bfd_msghdr); 1379 break; 1380 #endif 1381 default: 1382 len = sizeof(struct rt_msghdr); 1383 break; 1384 } 1385 if (len > MCLBYTES) 1386 panic("rtm_msg1"); 1387 m = m_gethdr(M_DONTWAIT, MT_DATA); 1388 if (m && len > MHLEN) { 1389 MCLGET(m, M_DONTWAIT); 1390 if ((m->m_flags & M_EXT) == 0) { 1391 m_free(m); 1392 m = NULL; 1393 } 1394 } 1395 if (m == NULL) 1396 return (m); 1397 m->m_pkthdr.len = m->m_len = hlen = len; 1398 m->m_pkthdr.ph_ifidx = 0; 1399 rtm = mtod(m, struct rt_msghdr *); 1400 bzero(rtm, len); 1401 for (i = 0; i < RTAX_MAX; i++) { 1402 if (rtinfo == NULL || (sa = rtinfo->rti_info[i]) == NULL) 1403 continue; 1404 rtinfo->rti_addrs |= (1 << i); 1405 dlen = ROUNDUP(sa->sa_len); 1406 if (m_copyback(m, len, dlen, sa, M_NOWAIT)) { 1407 m_freem(m); 1408 return (NULL); 1409 } 1410 len += dlen; 1411 } 1412 rtm->rtm_msglen = len; 1413 rtm->rtm_hdrlen = hlen; 1414 rtm->rtm_version = RTM_VERSION; 1415 rtm->rtm_type = type; 1416 return (m); 1417 } 1418 1419 int 1420 rtm_msg2(int type, int vers, struct rt_addrinfo *rtinfo, caddr_t cp, 1421 struct walkarg *w) 1422 { 1423 int i; 1424 int len, dlen, hlen, second_time = 0; 1425 caddr_t cp0; 1426 1427 rtinfo->rti_addrs = 0; 1428 again: 1429 switch (type) { 1430 case RTM_DELADDR: 1431 case RTM_NEWADDR: 1432 len = sizeof(struct ifa_msghdr); 1433 break; 1434 case RTM_IFINFO: 1435 len = sizeof(struct if_msghdr); 1436 break; 1437 default: 1438 len = sizeof(struct rt_msghdr); 1439 break; 1440 } 1441 hlen = len; 1442 if ((cp0 = cp) != NULL) 1443 cp += len; 1444 for (i = 0; i < RTAX_MAX; i++) { 1445 struct sockaddr *sa; 1446 1447 if ((sa = rtinfo->rti_info[i]) == NULL) 1448 continue; 1449 rtinfo->rti_addrs |= (1 << i); 1450 dlen = ROUNDUP(sa->sa_len); 1451 if (cp) { 1452 bcopy(sa, cp, (size_t)dlen); 1453 cp += dlen; 1454 } 1455 len += dlen; 1456 } 1457 /* align message length to the next natural boundary */ 1458 len = ALIGN(len); 1459 if (cp == 0 && w != NULL && !second_time) { 1460 w->w_needed += len; 1461 if (w->w_needed <= 0 && w->w_where) { 1462 if (w->w_tmemsize < len) { 1463 free(w->w_tmem, M_RTABLE, w->w_tmemsize); 1464 w->w_tmem = malloc(len, M_RTABLE, M_NOWAIT); 1465 if (w->w_tmem) 1466 w->w_tmemsize = len; 1467 } 1468 if (w->w_tmem) { 1469 cp = w->w_tmem; 1470 second_time = 1; 1471 goto again; 1472 } else 1473 w->w_where = 0; 1474 } 1475 } 1476 if (cp && w) /* clear the message header */ 1477 bzero(cp0, hlen); 1478 1479 if (cp) { 1480 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 1481 1482 rtm->rtm_version = RTM_VERSION; 1483 rtm->rtm_type = type; 1484 rtm->rtm_msglen = len; 1485 rtm->rtm_hdrlen = hlen; 1486 } 1487 return (len); 1488 } 1489 1490 void 1491 rtm_send(struct rtentry *rt, int cmd, int error, unsigned int rtableid) 1492 { 1493 struct rt_addrinfo info; 1494 struct ifnet *ifp; 1495 struct sockaddr_rtlabel sa_rl; 1496 struct sockaddr_in6 sa_mask; 1497 1498 memset(&info, 0, sizeof(info)); 1499 info.rti_info[RTAX_DST] = rt_key(rt); 1500 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1501 if (!ISSET(rt->rt_flags, RTF_HOST)) 1502 info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask); 1503 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl); 1504 ifp = if_get(rt->rt_ifidx); 1505 if (ifp != NULL) { 1506 info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); 1507 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1508 } 1509 1510 rtm_miss(cmd, &info, rt->rt_flags, rt->rt_priority, rt->rt_ifidx, error, 1511 rtableid); 1512 if_put(ifp); 1513 } 1514 1515 /* 1516 * This routine is called to generate a message from the routing 1517 * socket indicating that a redirect has occurred, a routing lookup 1518 * has failed, or that a protocol has detected timeouts to a particular 1519 * destination. 1520 */ 1521 void 1522 rtm_miss(int type, struct rt_addrinfo *rtinfo, int flags, uint8_t prio, 1523 u_int ifidx, int error, u_int tableid) 1524 { 1525 struct rt_msghdr *rtm; 1526 struct mbuf *m; 1527 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1528 1529 if (rtptable.rtp_count == 0) 1530 return; 1531 m = rtm_msg1(type, rtinfo); 1532 if (m == NULL) 1533 return; 1534 rtm = mtod(m, struct rt_msghdr *); 1535 rtm->rtm_flags = RTF_DONE | flags; 1536 rtm->rtm_priority = prio; 1537 rtm->rtm_errno = error; 1538 rtm->rtm_tableid = tableid; 1539 rtm->rtm_addrs = rtinfo->rti_addrs; 1540 rtm->rtm_index = ifidx; 1541 route_input(m, NULL, sa ? sa->sa_family : AF_UNSPEC); 1542 } 1543 1544 /* 1545 * This routine is called to generate a message from the routing 1546 * socket indicating that the status of a network interface has changed. 1547 */ 1548 void 1549 rtm_ifchg(struct ifnet *ifp) 1550 { 1551 struct if_msghdr *ifm; 1552 struct mbuf *m; 1553 1554 if (rtptable.rtp_count == 0) 1555 return; 1556 m = rtm_msg1(RTM_IFINFO, NULL); 1557 if (m == NULL) 1558 return; 1559 ifm = mtod(m, struct if_msghdr *); 1560 ifm->ifm_index = ifp->if_index; 1561 ifm->ifm_tableid = ifp->if_rdomain; 1562 ifm->ifm_flags = ifp->if_flags; 1563 ifm->ifm_xflags = ifp->if_xflags; 1564 if_getdata(ifp, &ifm->ifm_data); 1565 ifm->ifm_addrs = 0; 1566 route_input(m, NULL, AF_UNSPEC); 1567 } 1568 1569 /* 1570 * This is called to generate messages from the routing socket 1571 * indicating a network interface has had addresses associated with it. 1572 * if we ever reverse the logic and replace messages TO the routing 1573 * socket indicate a request to configure interfaces, then it will 1574 * be unnecessary as the routing socket will automatically generate 1575 * copies of it. 1576 */ 1577 void 1578 rtm_addr(int cmd, struct ifaddr *ifa) 1579 { 1580 struct ifnet *ifp = ifa->ifa_ifp; 1581 struct mbuf *m; 1582 struct rt_addrinfo info; 1583 struct ifa_msghdr *ifam; 1584 1585 if (rtptable.rtp_count == 0) 1586 return; 1587 1588 memset(&info, 0, sizeof(info)); 1589 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1590 info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); 1591 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1592 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1593 if ((m = rtm_msg1(cmd, &info)) == NULL) 1594 return; 1595 ifam = mtod(m, struct ifa_msghdr *); 1596 ifam->ifam_index = ifp->if_index; 1597 ifam->ifam_metric = ifa->ifa_metric; 1598 ifam->ifam_flags = ifa->ifa_flags; 1599 ifam->ifam_addrs = info.rti_addrs; 1600 ifam->ifam_tableid = ifp->if_rdomain; 1601 1602 route_input(m, NULL, 1603 ifa->ifa_addr ? ifa->ifa_addr->sa_family : AF_UNSPEC); 1604 } 1605 1606 /* 1607 * This is called to generate routing socket messages indicating 1608 * network interface arrival and departure. 1609 */ 1610 void 1611 rtm_ifannounce(struct ifnet *ifp, int what) 1612 { 1613 struct if_announcemsghdr *ifan; 1614 struct mbuf *m; 1615 1616 if (rtptable.rtp_count == 0) 1617 return; 1618 m = rtm_msg1(RTM_IFANNOUNCE, NULL); 1619 if (m == NULL) 1620 return; 1621 ifan = mtod(m, struct if_announcemsghdr *); 1622 ifan->ifan_index = ifp->if_index; 1623 strlcpy(ifan->ifan_name, ifp->if_xname, sizeof(ifan->ifan_name)); 1624 ifan->ifan_what = what; 1625 route_input(m, NULL, AF_UNSPEC); 1626 } 1627 1628 #ifdef BFD 1629 /* 1630 * This is used to generate routing socket messages indicating 1631 * the state of a BFD session. 1632 */ 1633 void 1634 rtm_bfd(struct bfd_config *bfd) 1635 { 1636 struct bfd_msghdr *bfdm; 1637 struct sockaddr_bfd sa_bfd; 1638 struct mbuf *m; 1639 struct rt_addrinfo info; 1640 1641 if (rtptable.rtp_count == 0) 1642 return; 1643 memset(&info, 0, sizeof(info)); 1644 info.rti_info[RTAX_DST] = rt_key(bfd->bc_rt); 1645 info.rti_info[RTAX_IFA] = bfd->bc_rt->rt_ifa->ifa_addr; 1646 1647 m = rtm_msg1(RTM_BFD, &info); 1648 if (m == NULL) 1649 return; 1650 bfdm = mtod(m, struct bfd_msghdr *); 1651 bfdm->bm_addrs = info.rti_addrs; 1652 1653 bfd2sa(bfd->bc_rt, &sa_bfd); 1654 memcpy(&bfdm->bm_sa, &sa_bfd, sizeof(sa_bfd)); 1655 1656 route_input(m, NULL, info.rti_info[RTAX_DST]->sa_family); 1657 } 1658 #endif /* BFD */ 1659 1660 /* 1661 * This is used in dumping the kernel table via sysctl(). 1662 */ 1663 int 1664 sysctl_dumpentry(struct rtentry *rt, void *v, unsigned int id) 1665 { 1666 struct walkarg *w = v; 1667 int error = 0, size; 1668 struct rt_addrinfo info; 1669 struct ifnet *ifp; 1670 #ifdef BFD 1671 struct sockaddr_bfd sa_bfd; 1672 #endif 1673 struct sockaddr_rtlabel sa_rl; 1674 struct sockaddr_in6 sa_mask; 1675 1676 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1677 return 0; 1678 if (w->w_op == NET_RT_DUMP && w->w_arg) { 1679 u_int8_t prio = w->w_arg & RTP_MASK; 1680 if (w->w_arg < 0) { 1681 prio = (-w->w_arg) & RTP_MASK; 1682 /* Show all routes that are not this priority */ 1683 if (prio == (rt->rt_priority & RTP_MASK)) 1684 return 0; 1685 } else { 1686 if (prio != (rt->rt_priority & RTP_MASK) && 1687 prio != RTP_ANY) 1688 return 0; 1689 } 1690 } 1691 bzero(&info, sizeof(info)); 1692 info.rti_info[RTAX_DST] = rt_key(rt); 1693 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1694 info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask); 1695 ifp = if_get(rt->rt_ifidx); 1696 if (ifp != NULL) { 1697 info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); 1698 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1699 if (ifp->if_flags & IFF_POINTOPOINT) 1700 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1701 } 1702 if_put(ifp); 1703 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl); 1704 #ifdef BFD 1705 if (rt->rt_flags & RTF_BFD) 1706 info.rti_info[RTAX_BFD] = bfd2sa(rt, &sa_bfd); 1707 #endif 1708 #ifdef MPLS 1709 if (rt->rt_flags & RTF_MPLS) { 1710 struct sockaddr_mpls sa_mpls; 1711 1712 bzero(&sa_mpls, sizeof(sa_mpls)); 1713 sa_mpls.smpls_family = AF_MPLS; 1714 sa_mpls.smpls_len = sizeof(sa_mpls); 1715 sa_mpls.smpls_label = ((struct rt_mpls *) 1716 rt->rt_llinfo)->mpls_label; 1717 info.rti_info[RTAX_SRC] = (struct sockaddr *)&sa_mpls; 1718 info.rti_mpls = ((struct rt_mpls *) 1719 rt->rt_llinfo)->mpls_operation; 1720 } 1721 #endif 1722 1723 size = rtm_msg2(RTM_GET, RTM_VERSION, &info, NULL, w); 1724 if (w->w_where && w->w_tmem && w->w_needed <= 0) { 1725 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1726 1727 rtm->rtm_pid = curproc->p_p->ps_pid; 1728 rtm->rtm_flags = rt->rt_flags; 1729 rtm->rtm_priority = rt->rt_priority & RTP_MASK; 1730 rtm_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx); 1731 /* Do not account the routing table's reference. */ 1732 rtm->rtm_rmx.rmx_refcnt = rt->rt_refcnt - 1; 1733 rtm->rtm_index = rt->rt_ifidx; 1734 rtm->rtm_addrs = info.rti_addrs; 1735 rtm->rtm_tableid = id; 1736 #ifdef MPLS 1737 rtm->rtm_mpls = info.rti_mpls; 1738 #endif 1739 if ((error = copyout(rtm, w->w_where, size)) != 0) 1740 w->w_where = NULL; 1741 else 1742 w->w_where += size; 1743 } 1744 return (error); 1745 } 1746 1747 int 1748 sysctl_iflist(int af, struct walkarg *w) 1749 { 1750 struct ifnet *ifp; 1751 struct ifaddr *ifa; 1752 struct rt_addrinfo info; 1753 int len, error = 0; 1754 1755 bzero(&info, sizeof(info)); 1756 TAILQ_FOREACH(ifp, &ifnet, if_list) { 1757 if (w->w_arg && w->w_arg != ifp->if_index) 1758 continue; 1759 /* Copy the link-layer address first */ 1760 info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); 1761 len = rtm_msg2(RTM_IFINFO, RTM_VERSION, &info, 0, w); 1762 if (w->w_where && w->w_tmem && w->w_needed <= 0) { 1763 struct if_msghdr *ifm; 1764 1765 ifm = (struct if_msghdr *)w->w_tmem; 1766 ifm->ifm_index = ifp->if_index; 1767 ifm->ifm_tableid = ifp->if_rdomain; 1768 ifm->ifm_flags = ifp->if_flags; 1769 if_getdata(ifp, &ifm->ifm_data); 1770 ifm->ifm_addrs = info.rti_addrs; 1771 error = copyout(ifm, w->w_where, len); 1772 if (error) 1773 return (error); 1774 w->w_where += len; 1775 } 1776 info.rti_info[RTAX_IFP] = NULL; 1777 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 1778 KASSERT(ifa->ifa_addr->sa_family != AF_LINK); 1779 if (af && af != ifa->ifa_addr->sa_family) 1780 continue; 1781 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1782 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1783 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1784 len = rtm_msg2(RTM_NEWADDR, RTM_VERSION, &info, 0, w); 1785 if (w->w_where && w->w_tmem && w->w_needed <= 0) { 1786 struct ifa_msghdr *ifam; 1787 1788 ifam = (struct ifa_msghdr *)w->w_tmem; 1789 ifam->ifam_index = ifa->ifa_ifp->if_index; 1790 ifam->ifam_flags = ifa->ifa_flags; 1791 ifam->ifam_metric = ifa->ifa_metric; 1792 ifam->ifam_addrs = info.rti_addrs; 1793 error = copyout(w->w_tmem, w->w_where, len); 1794 if (error) 1795 return (error); 1796 w->w_where += len; 1797 } 1798 } 1799 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 1800 info.rti_info[RTAX_BRD] = NULL; 1801 } 1802 return (0); 1803 } 1804 1805 int 1806 sysctl_ifnames(struct walkarg *w) 1807 { 1808 struct if_nameindex_msg ifn; 1809 struct ifnet *ifp; 1810 int error = 0; 1811 1812 /* XXX ignore tableid for now */ 1813 TAILQ_FOREACH(ifp, &ifnet, if_list) { 1814 if (w->w_arg && w->w_arg != ifp->if_index) 1815 continue; 1816 w->w_needed += sizeof(ifn); 1817 if (w->w_where && w->w_needed <= 0) { 1818 1819 memset(&ifn, 0, sizeof(ifn)); 1820 ifn.if_index = ifp->if_index; 1821 strlcpy(ifn.if_name, ifp->if_xname, 1822 sizeof(ifn.if_name)); 1823 error = copyout(&ifn, w->w_where, sizeof(ifn)); 1824 if (error) 1825 return (error); 1826 w->w_where += sizeof(ifn); 1827 } 1828 } 1829 1830 return (0); 1831 } 1832 1833 int 1834 sysctl_rtable(int *name, u_int namelen, void *where, size_t *given, void *new, 1835 size_t newlen) 1836 { 1837 int i, error = EINVAL; 1838 u_char af; 1839 struct walkarg w; 1840 struct rt_tableinfo tableinfo; 1841 u_int tableid = 0; 1842 1843 if (new) 1844 return (EPERM); 1845 if (namelen < 3 || namelen > 4) 1846 return (EINVAL); 1847 af = name[0]; 1848 bzero(&w, sizeof(w)); 1849 w.w_where = where; 1850 w.w_given = *given; 1851 w.w_needed = 0 - w.w_given; 1852 w.w_op = name[1]; 1853 w.w_arg = name[2]; 1854 1855 if (namelen == 4) { 1856 tableid = name[3]; 1857 if (!rtable_exists(tableid)) 1858 return (ENOENT); 1859 } else 1860 tableid = curproc->p_p->ps_rtableid; 1861 1862 switch (w.w_op) { 1863 case NET_RT_DUMP: 1864 case NET_RT_FLAGS: 1865 NET_LOCK(); 1866 for (i = 1; i <= AF_MAX; i++) { 1867 if (af != 0 && af != i) 1868 continue; 1869 1870 error = rtable_walk(tableid, i, sysctl_dumpentry, &w); 1871 if (error == EAFNOSUPPORT) 1872 error = 0; 1873 if (error) 1874 break; 1875 } 1876 NET_UNLOCK(); 1877 break; 1878 1879 case NET_RT_IFLIST: 1880 NET_LOCK(); 1881 error = sysctl_iflist(af, &w); 1882 NET_UNLOCK(); 1883 break; 1884 1885 case NET_RT_STATS: 1886 return (sysctl_rtable_rtstat(where, given, new)); 1887 case NET_RT_TABLE: 1888 tableid = w.w_arg; 1889 if (!rtable_exists(tableid)) 1890 return (ENOENT); 1891 memset(&tableinfo, 0, sizeof tableinfo); 1892 tableinfo.rti_tableid = tableid; 1893 tableinfo.rti_domainid = rtable_l2(tableid); 1894 error = sysctl_rdstruct(where, given, new, 1895 &tableinfo, sizeof(tableinfo)); 1896 return (error); 1897 case NET_RT_IFNAMES: 1898 NET_LOCK(); 1899 error = sysctl_ifnames(&w); 1900 NET_UNLOCK(); 1901 break; 1902 } 1903 free(w.w_tmem, M_RTABLE, w.w_tmemsize); 1904 w.w_needed += w.w_given; 1905 if (where) { 1906 *given = w.w_where - (caddr_t)where; 1907 if (*given < w.w_needed) 1908 return (ENOMEM); 1909 } else 1910 *given = (11 * w.w_needed) / 10; 1911 1912 return (error); 1913 } 1914 1915 int 1916 sysctl_rtable_rtstat(void *oldp, size_t *oldlenp, void *newp) 1917 { 1918 extern struct cpumem *rtcounters; 1919 uint64_t counters[rts_ncounters]; 1920 struct rtstat rtstat; 1921 uint32_t *words = (uint32_t *)&rtstat; 1922 int i; 1923 1924 CTASSERT(sizeof(rtstat) == (nitems(counters) * sizeof(uint32_t))); 1925 memset(&rtstat, 0, sizeof rtstat); 1926 counters_read(rtcounters, counters, nitems(counters)); 1927 1928 for (i = 0; i < nitems(counters); i++) 1929 words[i] = (uint32_t)counters[i]; 1930 1931 return (sysctl_rdstruct(oldp, oldlenp, newp, &rtstat, sizeof(rtstat))); 1932 } 1933 1934 int 1935 rtm_validate_proposal(struct rt_addrinfo *info) 1936 { 1937 if (info->rti_addrs & ~(RTA_NETMASK | RTA_IFA | RTA_DNS | RTA_STATIC | 1938 RTA_SEARCH)) { 1939 return -1; 1940 } 1941 1942 if (ISSET(info->rti_addrs, RTA_NETMASK)) { 1943 struct sockaddr *sa = info->rti_info[RTAX_NETMASK]; 1944 if (sa == NULL) 1945 return -1; 1946 switch (sa->sa_family) { 1947 case AF_INET: 1948 if (sa->sa_len != sizeof(struct sockaddr_in)) 1949 return -1; 1950 break; 1951 case AF_INET6: 1952 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1953 return -1; 1954 break; 1955 default: 1956 return -1; 1957 } 1958 } 1959 1960 if (ISSET(info->rti_addrs, RTA_IFA)) { 1961 struct sockaddr *sa = info->rti_info[RTAX_IFA]; 1962 if (sa == NULL) 1963 return -1; 1964 switch (sa->sa_family) { 1965 case AF_INET: 1966 if (sa->sa_len != sizeof(struct sockaddr_in)) 1967 return -1; 1968 break; 1969 case AF_INET6: 1970 if (sa->sa_len != sizeof(struct sockaddr_in6)) 1971 return -1; 1972 break; 1973 default: 1974 return -1; 1975 } 1976 } 1977 1978 if (ISSET(info->rti_addrs, RTA_DNS)) { 1979 struct sockaddr_rtdns *rtdns = 1980 (struct sockaddr_rtdns *)info->rti_info[RTAX_DNS]; 1981 if (rtdns == NULL) 1982 return -1; 1983 if (rtdns->sr_len > sizeof(*rtdns)) 1984 return -1; 1985 if (rtdns->sr_len <= 1986 offsetof(struct sockaddr_rtdns, sr_dns)) 1987 return -1; 1988 } 1989 1990 if (ISSET(info->rti_addrs, RTA_STATIC)) { 1991 struct sockaddr_rtstatic *rtstatic = 1992 (struct sockaddr_rtstatic *)info->rti_info[RTAX_STATIC]; 1993 if (rtstatic == NULL) 1994 return -1; 1995 if (rtstatic->sr_len > sizeof(*rtstatic)) 1996 return -1; 1997 if (rtstatic->sr_len <= 1998 offsetof(struct sockaddr_rtstatic, sr_static)) 1999 return -1; 2000 } 2001 2002 if (ISSET(info->rti_addrs, RTA_SEARCH)) { 2003 struct sockaddr_rtsearch *rtsearch = 2004 (struct sockaddr_rtsearch *)info->rti_info[RTAX_SEARCH]; 2005 if (rtsearch == NULL) 2006 return -1; 2007 if (rtsearch->sr_len > sizeof(*rtsearch)) 2008 return -1; 2009 if (rtsearch->sr_len <= 2010 offsetof(struct sockaddr_rtsearch, sr_search)) 2011 return -1; 2012 } 2013 2014 return 0; 2015 } 2016 2017 /* 2018 * Definitions of protocols supported in the ROUTE domain. 2019 */ 2020 2021 extern struct domain routedomain; /* or at least forward */ 2022 2023 struct protosw routesw[] = { 2024 { 2025 .pr_type = SOCK_RAW, 2026 .pr_domain = &routedomain, 2027 .pr_flags = PR_ATOMIC|PR_ADDR|PR_WANTRCVD, 2028 .pr_output = route_output, 2029 .pr_ctloutput = route_ctloutput, 2030 .pr_usrreq = route_usrreq, 2031 .pr_attach = route_attach, 2032 .pr_detach = route_detach, 2033 .pr_init = route_prinit, 2034 .pr_sysctl = sysctl_rtable 2035 } 2036 }; 2037 2038 struct domain routedomain = { 2039 .dom_family = PF_ROUTE, 2040 .dom_name = "route", 2041 .dom_init = route_init, 2042 .dom_protosw = routesw, 2043 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 2044 }; 2045