1 /* $OpenBSD: rtsock.c,v 1.358 2022/10/17 14:49:02 mvs Exp $ */ 2 /* $NetBSD: rtsock.c,v 1.18 1996/03/29 00:32:10 cgd Exp $ */ 3 4 /* 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1988, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)rtsock.c 8.6 (Berkeley) 2/11/95 62 */ 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/proc.h> 67 #include <sys/sysctl.h> 68 #include <sys/mbuf.h> 69 #include <sys/socket.h> 70 #include <sys/socketvar.h> 71 #include <sys/domain.h> 72 #include <sys/pool.h> 73 #include <sys/protosw.h> 74 #include <sys/srp.h> 75 76 #include <net/if.h> 77 #include <net/if_dl.h> 78 #include <net/if_var.h> 79 #include <net/route.h> 80 81 #include <netinet/in.h> 82 83 #ifdef MPLS 84 #include <netmpls/mpls.h> 85 #endif 86 #ifdef IPSEC 87 #include <netinet/ip_ipsp.h> 88 #include <net/if_enc.h> 89 #endif 90 #ifdef BFD 91 #include <net/bfd.h> 92 #endif 93 94 #include <sys/stdarg.h> 95 #include <sys/kernel.h> 96 #include <sys/timeout.h> 97 98 #define ROUTESNDQ 8192 99 #define ROUTERCVQ 8192 100 101 const struct sockaddr route_src = { 2, PF_ROUTE, }; 102 103 struct walkarg { 104 int w_op, w_arg, w_tmemsize; 105 size_t w_given, w_needed; 106 caddr_t w_where, w_tmem; 107 }; 108 109 void route_prinit(void); 110 void rcb_ref(void *, void *); 111 void rcb_unref(void *, void *); 112 int route_output(struct mbuf *, struct socket *); 113 int route_ctloutput(int, struct socket *, int, int, struct mbuf *); 114 int route_attach(struct socket *, int, int); 115 int route_detach(struct socket *); 116 int route_disconnect(struct socket *); 117 int route_shutdown(struct socket *); 118 void route_rcvd(struct socket *); 119 int route_send(struct socket *, struct mbuf *, struct mbuf *, 120 struct mbuf *); 121 int route_sockaddr(struct socket *, struct mbuf *); 122 int route_peeraddr(struct socket *, struct mbuf *); 123 void route_input(struct mbuf *m0, struct socket *, sa_family_t); 124 int route_arp_conflict(struct rtentry *, struct rt_addrinfo *); 125 int route_cleargateway(struct rtentry *, void *, unsigned int); 126 void rtm_senddesync_timer(void *); 127 void rtm_senddesync(struct socket *); 128 int rtm_sendup(struct socket *, struct mbuf *); 129 130 int rtm_getifa(struct rt_addrinfo *, unsigned int); 131 int rtm_output(struct rt_msghdr *, struct rtentry **, struct rt_addrinfo *, 132 uint8_t, unsigned int); 133 struct rt_msghdr *rtm_report(struct rtentry *, u_char, int, int); 134 struct mbuf *rtm_msg1(int, struct rt_addrinfo *); 135 int rtm_msg2(int, int, struct rt_addrinfo *, caddr_t, 136 struct walkarg *); 137 int rtm_xaddrs(caddr_t, caddr_t, struct rt_addrinfo *); 138 int rtm_validate_proposal(struct rt_addrinfo *); 139 void rtm_setmetrics(u_long, const struct rt_metrics *, 140 struct rt_kmetrics *); 141 void rtm_getmetrics(const struct rtentry *, 142 struct rt_metrics *); 143 144 int sysctl_iflist(int, struct walkarg *); 145 int sysctl_ifnames(struct walkarg *); 146 int sysctl_rtable_rtstat(void *, size_t *, void *); 147 148 int rt_setsource(unsigned int, struct sockaddr *); 149 150 /* 151 * Locks used to protect struct members 152 * I immutable after creation 153 * s solock 154 */ 155 struct rtpcb { 156 struct socket *rop_socket; /* [I] */ 157 158 SRPL_ENTRY(rtpcb) rop_list; 159 struct refcnt rop_refcnt; 160 struct timeout rop_timeout; 161 unsigned int rop_msgfilter; /* [s] */ 162 unsigned int rop_flagfilter; /* [s] */ 163 unsigned int rop_flags; /* [s] */ 164 u_int rop_rtableid; /* [s] */ 165 unsigned short rop_proto; /* [I] */ 166 u_char rop_priority; /* [s] */ 167 }; 168 #define sotortpcb(so) ((struct rtpcb *)(so)->so_pcb) 169 170 struct rtptable { 171 SRPL_HEAD(, rtpcb) rtp_list; 172 struct srpl_rc rtp_rc; 173 struct rwlock rtp_lk; 174 unsigned int rtp_count; 175 }; 176 177 struct pool rtpcb_pool; 178 struct rtptable rtptable; 179 180 /* 181 * These flags and timeout are used for indicating to userland (via a 182 * RTM_DESYNC msg) when the route socket has overflowed and messages 183 * have been lost. 184 */ 185 #define ROUTECB_FLAG_DESYNC 0x1 /* Route socket out of memory */ 186 #define ROUTECB_FLAG_FLUSH 0x2 /* Wait until socket is empty before 187 queueing more packets */ 188 189 #define ROUTE_DESYNC_RESEND_TIMEOUT 200 /* In ms */ 190 191 void 192 route_prinit(void) 193 { 194 srpl_rc_init(&rtptable.rtp_rc, rcb_ref, rcb_unref, NULL); 195 rw_init(&rtptable.rtp_lk, "rtsock"); 196 SRPL_INIT(&rtptable.rtp_list); 197 pool_init(&rtpcb_pool, sizeof(struct rtpcb), 0, 198 IPL_SOFTNET, PR_WAITOK, "rtpcb", NULL); 199 } 200 201 void 202 rcb_ref(void *null, void *v) 203 { 204 struct rtpcb *rop = v; 205 206 refcnt_take(&rop->rop_refcnt); 207 } 208 209 void 210 rcb_unref(void *null, void *v) 211 { 212 struct rtpcb *rop = v; 213 214 refcnt_rele_wake(&rop->rop_refcnt); 215 } 216 217 int 218 route_attach(struct socket *so, int proto, int wait) 219 { 220 struct rtpcb *rop; 221 int error; 222 223 error = soreserve(so, ROUTESNDQ, ROUTERCVQ); 224 if (error) 225 return (error); 226 /* 227 * use the rawcb but allocate a rtpcb, this 228 * code does not care about the additional fields 229 * and works directly on the raw socket. 230 */ 231 rop = pool_get(&rtpcb_pool, (wait == M_WAIT ? PR_WAITOK : PR_NOWAIT) | 232 PR_ZERO); 233 if (rop == NULL) 234 return (ENOBUFS); 235 so->so_pcb = rop; 236 /* Init the timeout structure */ 237 timeout_set_proc(&rop->rop_timeout, rtm_senddesync_timer, so); 238 refcnt_init(&rop->rop_refcnt); 239 240 rop->rop_socket = so; 241 rop->rop_proto = proto; 242 243 rop->rop_rtableid = curproc->p_p->ps_rtableid; 244 245 soisconnected(so); 246 so->so_options |= SO_USELOOPBACK; 247 248 rw_enter(&rtptable.rtp_lk, RW_WRITE); 249 SRPL_INSERT_HEAD_LOCKED(&rtptable.rtp_rc, &rtptable.rtp_list, rop, 250 rop_list); 251 rtptable.rtp_count++; 252 rw_exit(&rtptable.rtp_lk); 253 254 return (0); 255 } 256 257 int 258 route_detach(struct socket *so) 259 { 260 struct rtpcb *rop; 261 262 soassertlocked(so); 263 264 rop = sotortpcb(so); 265 if (rop == NULL) 266 return (EINVAL); 267 268 rw_enter(&rtptable.rtp_lk, RW_WRITE); 269 270 rtptable.rtp_count--; 271 SRPL_REMOVE_LOCKED(&rtptable.rtp_rc, &rtptable.rtp_list, rop, rtpcb, 272 rop_list); 273 rw_exit(&rtptable.rtp_lk); 274 275 sounlock(so); 276 277 /* wait for all references to drop */ 278 refcnt_finalize(&rop->rop_refcnt, "rtsockrefs"); 279 timeout_del_barrier(&rop->rop_timeout); 280 281 solock(so); 282 283 so->so_pcb = NULL; 284 KASSERT((so->so_state & SS_NOFDREF) == 0); 285 pool_put(&rtpcb_pool, rop); 286 287 return (0); 288 } 289 290 int 291 route_disconnect(struct socket *so) 292 { 293 soisdisconnected(so); 294 return (0); 295 } 296 297 int 298 route_shutdown(struct socket *so) 299 { 300 socantsendmore(so); 301 return (0); 302 } 303 304 void 305 route_rcvd(struct socket *so) 306 { 307 struct rtpcb *rop = sotortpcb(so); 308 309 soassertlocked(so); 310 311 /* 312 * If we are in a FLUSH state, check if the buffer is 313 * empty so that we can clear the flag. 314 */ 315 if (((rop->rop_flags & ROUTECB_FLAG_FLUSH) != 0) && 316 ((sbspace(rop->rop_socket, &rop->rop_socket->so_rcv) == 317 rop->rop_socket->so_rcv.sb_hiwat))) 318 rop->rop_flags &= ~ROUTECB_FLAG_FLUSH; 319 } 320 321 int 322 route_send(struct socket *so, struct mbuf *m, struct mbuf *nam, 323 struct mbuf *control) 324 { 325 int error; 326 327 soassertlocked(so); 328 329 if (control && control->m_len) { 330 error = EOPNOTSUPP; 331 goto out; 332 } 333 334 if (nam) { 335 error = EISCONN; 336 goto out; 337 } 338 339 error = route_output(m, so); 340 m = NULL; 341 342 out: 343 m_freem(control); 344 m_freem(m); 345 346 return (error); 347 } 348 349 int 350 route_sockaddr(struct socket *so, struct mbuf *nam) 351 { 352 return (EINVAL); 353 } 354 355 int 356 route_peeraddr(struct socket *so, struct mbuf *nam) 357 { 358 /* minimal support, just implement a fake peer address */ 359 bcopy(&route_src, mtod(nam, caddr_t), route_src.sa_len); 360 nam->m_len = route_src.sa_len; 361 return (0); 362 } 363 364 int 365 route_ctloutput(int op, struct socket *so, int level, int optname, 366 struct mbuf *m) 367 { 368 struct rtpcb *rop = sotortpcb(so); 369 int error = 0; 370 unsigned int tid, prio; 371 372 if (level != AF_ROUTE) 373 return (EINVAL); 374 375 switch (op) { 376 case PRCO_SETOPT: 377 switch (optname) { 378 case ROUTE_MSGFILTER: 379 if (m == NULL || m->m_len != sizeof(unsigned int)) 380 error = EINVAL; 381 else 382 rop->rop_msgfilter = *mtod(m, unsigned int *); 383 break; 384 case ROUTE_TABLEFILTER: 385 if (m == NULL || m->m_len != sizeof(unsigned int)) { 386 error = EINVAL; 387 break; 388 } 389 tid = *mtod(m, unsigned int *); 390 if (tid != RTABLE_ANY && !rtable_exists(tid)) 391 error = ENOENT; 392 else 393 rop->rop_rtableid = tid; 394 break; 395 case ROUTE_PRIOFILTER: 396 if (m == NULL || m->m_len != sizeof(unsigned int)) { 397 error = EINVAL; 398 break; 399 } 400 prio = *mtod(m, unsigned int *); 401 if (prio > RTP_MAX) 402 error = EINVAL; 403 else 404 rop->rop_priority = prio; 405 break; 406 case ROUTE_FLAGFILTER: 407 if (m == NULL || m->m_len != sizeof(unsigned int)) 408 error = EINVAL; 409 else 410 rop->rop_flagfilter = *mtod(m, unsigned int *); 411 break; 412 default: 413 error = ENOPROTOOPT; 414 break; 415 } 416 break; 417 case PRCO_GETOPT: 418 switch (optname) { 419 case ROUTE_MSGFILTER: 420 m->m_len = sizeof(unsigned int); 421 *mtod(m, unsigned int *) = rop->rop_msgfilter; 422 break; 423 case ROUTE_TABLEFILTER: 424 m->m_len = sizeof(unsigned int); 425 *mtod(m, unsigned int *) = rop->rop_rtableid; 426 break; 427 case ROUTE_PRIOFILTER: 428 m->m_len = sizeof(unsigned int); 429 *mtod(m, unsigned int *) = rop->rop_priority; 430 break; 431 case ROUTE_FLAGFILTER: 432 m->m_len = sizeof(unsigned int); 433 *mtod(m, unsigned int *) = rop->rop_flagfilter; 434 break; 435 default: 436 error = ENOPROTOOPT; 437 break; 438 } 439 } 440 return (error); 441 } 442 443 void 444 rtm_senddesync_timer(void *xso) 445 { 446 struct socket *so = xso; 447 448 solock(so); 449 rtm_senddesync(so); 450 sounlock(so); 451 } 452 453 void 454 rtm_senddesync(struct socket *so) 455 { 456 struct rtpcb *rop = sotortpcb(so); 457 struct mbuf *desync_mbuf; 458 459 soassertlocked(so); 460 461 /* 462 * Dying socket is disconnected by upper layer and there is 463 * no reason to send packet. Also we shouldn't reschedule 464 * timeout(9), otherwise timeout_del_barrier(9) can't help us. 465 */ 466 if ((so->so_state & SS_ISCONNECTED) == 0 || 467 (so->so_state & SS_CANTRCVMORE)) 468 return; 469 470 /* If we are in a DESYNC state, try to send a RTM_DESYNC packet */ 471 if ((rop->rop_flags & ROUTECB_FLAG_DESYNC) == 0) 472 return; 473 474 /* 475 * If we fail to alloc memory or if sbappendaddr() 476 * fails, re-add timeout and try again. 477 */ 478 desync_mbuf = rtm_msg1(RTM_DESYNC, NULL); 479 if (desync_mbuf != NULL) { 480 if (sbappendaddr(so, &so->so_rcv, &route_src, 481 desync_mbuf, NULL) != 0) { 482 rop->rop_flags &= ~ROUTECB_FLAG_DESYNC; 483 sorwakeup(rop->rop_socket); 484 return; 485 } 486 m_freem(desync_mbuf); 487 } 488 /* Re-add timeout to try sending msg again */ 489 timeout_add_msec(&rop->rop_timeout, ROUTE_DESYNC_RESEND_TIMEOUT); 490 } 491 492 void 493 route_input(struct mbuf *m0, struct socket *so0, sa_family_t sa_family) 494 { 495 struct socket *so; 496 struct rtpcb *rop; 497 struct rt_msghdr *rtm; 498 struct mbuf *m = m0; 499 struct srp_ref sr; 500 501 /* ensure that we can access the rtm_type via mtod() */ 502 if (m->m_len < offsetof(struct rt_msghdr, rtm_type) + 1) { 503 m_freem(m); 504 return; 505 } 506 507 SRPL_FOREACH(rop, &sr, &rtptable.rtp_list, rop_list) { 508 /* 509 * If route socket is bound to an address family only send 510 * messages that match the address family. Address family 511 * agnostic messages are always sent. 512 */ 513 if (sa_family != AF_UNSPEC && rop->rop_proto != AF_UNSPEC && 514 rop->rop_proto != sa_family) 515 continue; 516 517 518 so = rop->rop_socket; 519 solock(so); 520 521 /* 522 * Check to see if we don't want our own messages and 523 * if we can receive anything. 524 */ 525 if ((so0 == so && !(so0->so_options & SO_USELOOPBACK)) || 526 !(so->so_state & SS_ISCONNECTED) || 527 (so->so_state & SS_CANTRCVMORE)) 528 goto next; 529 530 /* filter messages that the process does not want */ 531 rtm = mtod(m, struct rt_msghdr *); 532 /* but RTM_DESYNC can't be filtered */ 533 if (rtm->rtm_type != RTM_DESYNC) { 534 if (rop->rop_msgfilter != 0 && 535 !(rop->rop_msgfilter & (1U << rtm->rtm_type))) 536 goto next; 537 if (ISSET(rop->rop_flagfilter, rtm->rtm_flags)) 538 goto next; 539 } 540 switch (rtm->rtm_type) { 541 case RTM_IFANNOUNCE: 542 case RTM_DESYNC: 543 /* no tableid */ 544 break; 545 case RTM_RESOLVE: 546 case RTM_NEWADDR: 547 case RTM_DELADDR: 548 case RTM_IFINFO: 549 case RTM_80211INFO: 550 case RTM_BFD: 551 /* check against rdomain id */ 552 if (rop->rop_rtableid != RTABLE_ANY && 553 rtable_l2(rop->rop_rtableid) != rtm->rtm_tableid) 554 goto next; 555 break; 556 default: 557 if (rop->rop_priority != 0 && 558 rop->rop_priority < rtm->rtm_priority) 559 goto next; 560 /* check against rtable id */ 561 if (rop->rop_rtableid != RTABLE_ANY && 562 rop->rop_rtableid != rtm->rtm_tableid) 563 goto next; 564 break; 565 } 566 567 /* 568 * Check to see if the flush flag is set. If so, don't queue 569 * any more messages until the flag is cleared. 570 */ 571 if ((rop->rop_flags & ROUTECB_FLAG_FLUSH) != 0) 572 goto next; 573 574 rtm_sendup(so, m); 575 next: 576 sounlock(so); 577 } 578 SRPL_LEAVE(&sr); 579 580 m_freem(m); 581 } 582 583 int 584 rtm_sendup(struct socket *so, struct mbuf *m0) 585 { 586 struct rtpcb *rop = sotortpcb(so); 587 struct mbuf *m; 588 589 soassertlocked(so); 590 591 m = m_copym(m0, 0, M_COPYALL, M_NOWAIT); 592 if (m == NULL) 593 return (ENOMEM); 594 595 if (sbspace(so, &so->so_rcv) < (2 * MSIZE) || 596 sbappendaddr(so, &so->so_rcv, &route_src, m, NULL) == 0) { 597 /* Flag socket as desync'ed and flush required */ 598 rop->rop_flags |= ROUTECB_FLAG_DESYNC | ROUTECB_FLAG_FLUSH; 599 rtm_senddesync(so); 600 m_freem(m); 601 return (ENOBUFS); 602 } 603 604 sorwakeup(so); 605 return (0); 606 } 607 608 struct rt_msghdr * 609 rtm_report(struct rtentry *rt, u_char type, int seq, int tableid) 610 { 611 struct rt_msghdr *rtm; 612 struct rt_addrinfo info; 613 struct sockaddr_rtlabel sa_rl; 614 struct sockaddr_in6 sa_mask; 615 #ifdef BFD 616 struct sockaddr_bfd sa_bfd; 617 #endif 618 struct ifnet *ifp = NULL; 619 int len; 620 621 bzero(&info, sizeof(info)); 622 info.rti_info[RTAX_DST] = rt_key(rt); 623 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 624 info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask); 625 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl); 626 #ifdef BFD 627 if (rt->rt_flags & RTF_BFD) { 628 KERNEL_LOCK(); 629 info.rti_info[RTAX_BFD] = bfd2sa(rt, &sa_bfd); 630 KERNEL_UNLOCK(); 631 } 632 #endif 633 #ifdef MPLS 634 if (rt->rt_flags & RTF_MPLS) { 635 struct sockaddr_mpls sa_mpls; 636 637 bzero(&sa_mpls, sizeof(sa_mpls)); 638 sa_mpls.smpls_family = AF_MPLS; 639 sa_mpls.smpls_len = sizeof(sa_mpls); 640 sa_mpls.smpls_label = ((struct rt_mpls *) 641 rt->rt_llinfo)->mpls_label; 642 info.rti_info[RTAX_SRC] = (struct sockaddr *)&sa_mpls; 643 info.rti_mpls = ((struct rt_mpls *) 644 rt->rt_llinfo)->mpls_operation; 645 } 646 #endif 647 ifp = if_get(rt->rt_ifidx); 648 if (ifp != NULL) { 649 info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); 650 info.rti_info[RTAX_IFA] = rtable_getsource(tableid, 651 info.rti_info[RTAX_DST]->sa_family); 652 if (info.rti_info[RTAX_IFA] == NULL) 653 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 654 if (ifp->if_flags & IFF_POINTOPOINT) 655 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 656 } 657 if_put(ifp); 658 /* RTAX_GENMASK, RTAX_AUTHOR, RTAX_SRCMASK ignored */ 659 660 /* build new route message */ 661 len = rtm_msg2(type, RTM_VERSION, &info, NULL, NULL); 662 rtm = malloc(len, M_RTABLE, M_WAITOK | M_ZERO); 663 664 rtm_msg2(type, RTM_VERSION, &info, (caddr_t)rtm, NULL); 665 rtm->rtm_type = type; 666 rtm->rtm_index = rt->rt_ifidx; 667 rtm->rtm_tableid = tableid; 668 rtm->rtm_priority = rt->rt_priority & RTP_MASK; 669 rtm->rtm_flags = rt->rt_flags; 670 rtm->rtm_pid = curproc->p_p->ps_pid; 671 rtm->rtm_seq = seq; 672 rtm_getmetrics(rt, &rtm->rtm_rmx); 673 rtm->rtm_addrs = info.rti_addrs; 674 #ifdef MPLS 675 rtm->rtm_mpls = info.rti_mpls; 676 #endif 677 return rtm; 678 } 679 680 int 681 route_output(struct mbuf *m, struct socket *so) 682 { 683 struct rt_msghdr *rtm = NULL; 684 struct rtentry *rt = NULL; 685 struct rt_addrinfo info; 686 struct ifnet *ifp; 687 int len, seq, useloopback, error = 0; 688 u_int tableid; 689 u_int8_t prio; 690 u_char vers, type; 691 692 if (m == NULL || ((m->m_len < sizeof(int32_t)) && 693 (m = m_pullup(m, sizeof(int32_t))) == 0)) 694 return (ENOBUFS); 695 if ((m->m_flags & M_PKTHDR) == 0) 696 panic("route_output"); 697 698 useloopback = so->so_options & SO_USELOOPBACK; 699 700 /* 701 * The socket can't be closed concurrently because the file 702 * descriptor reference is still held. 703 */ 704 705 sounlock(so); 706 707 len = m->m_pkthdr.len; 708 if (len < offsetof(struct rt_msghdr, rtm_hdrlen) + 1 || 709 len != mtod(m, struct rt_msghdr *)->rtm_msglen) { 710 error = EINVAL; 711 goto fail; 712 } 713 vers = mtod(m, struct rt_msghdr *)->rtm_version; 714 switch (vers) { 715 case RTM_VERSION: 716 if (len < sizeof(struct rt_msghdr)) { 717 error = EINVAL; 718 goto fail; 719 } 720 if (len > RTM_MAXSIZE) { 721 error = EMSGSIZE; 722 goto fail; 723 } 724 rtm = malloc(len, M_RTABLE, M_WAITOK); 725 m_copydata(m, 0, len, rtm); 726 break; 727 default: 728 error = EPROTONOSUPPORT; 729 goto fail; 730 } 731 732 /* Verify that the caller is sending an appropriate message early */ 733 switch (rtm->rtm_type) { 734 case RTM_ADD: 735 case RTM_DELETE: 736 case RTM_GET: 737 case RTM_CHANGE: 738 case RTM_PROPOSAL: 739 case RTM_SOURCE: 740 break; 741 default: 742 error = EOPNOTSUPP; 743 goto fail; 744 } 745 /* 746 * Verify that the header length is valid. 747 * All messages from userland start with a struct rt_msghdr. 748 */ 749 if (rtm->rtm_hdrlen == 0) /* old client */ 750 rtm->rtm_hdrlen = sizeof(struct rt_msghdr); 751 if (rtm->rtm_hdrlen < sizeof(struct rt_msghdr) || 752 len < rtm->rtm_hdrlen) { 753 error = EINVAL; 754 goto fail; 755 } 756 757 rtm->rtm_pid = curproc->p_p->ps_pid; 758 759 /* 760 * Verify that the caller has the appropriate privilege; RTM_GET 761 * is the only operation the non-superuser is allowed. 762 */ 763 if (rtm->rtm_type != RTM_GET && suser(curproc) != 0) { 764 error = EACCES; 765 goto fail; 766 } 767 tableid = rtm->rtm_tableid; 768 if (!rtable_exists(tableid)) { 769 if (rtm->rtm_type == RTM_ADD) { 770 if ((error = rtable_add(tableid)) != 0) 771 goto fail; 772 } else { 773 error = EINVAL; 774 goto fail; 775 } 776 } 777 778 /* Do not let userland play with kernel-only flags. */ 779 if ((rtm->rtm_flags & (RTF_LOCAL|RTF_BROADCAST)) != 0) { 780 error = EINVAL; 781 goto fail; 782 } 783 784 /* make sure that kernel-only bits are not set */ 785 rtm->rtm_priority &= RTP_MASK; 786 rtm->rtm_flags &= ~(RTF_DONE|RTF_CLONED|RTF_CACHED); 787 rtm->rtm_fmask &= RTF_FMASK; 788 789 if (rtm->rtm_priority != 0) { 790 if (rtm->rtm_priority > RTP_MAX || 791 rtm->rtm_priority == RTP_LOCAL) { 792 error = EINVAL; 793 goto fail; 794 } 795 prio = rtm->rtm_priority; 796 } else if (rtm->rtm_type != RTM_ADD) 797 prio = RTP_ANY; 798 else if (rtm->rtm_flags & RTF_STATIC) 799 prio = 0; 800 else 801 prio = RTP_DEFAULT; 802 803 bzero(&info, sizeof(info)); 804 info.rti_addrs = rtm->rtm_addrs; 805 if ((error = rtm_xaddrs(rtm->rtm_hdrlen + (caddr_t)rtm, 806 len + (caddr_t)rtm, &info)) != 0) 807 goto fail; 808 809 info.rti_flags = rtm->rtm_flags; 810 811 if (rtm->rtm_type != RTM_SOURCE && 812 rtm->rtm_type != RTM_PROPOSAL && 813 (info.rti_info[RTAX_DST] == NULL || 814 info.rti_info[RTAX_DST]->sa_family >= AF_MAX || 815 (info.rti_info[RTAX_GATEWAY] != NULL && 816 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX) || 817 info.rti_info[RTAX_GENMASK] != NULL)) { 818 error = EINVAL; 819 goto fail; 820 } 821 #ifdef MPLS 822 info.rti_mpls = rtm->rtm_mpls; 823 #endif 824 825 if (info.rti_info[RTAX_GATEWAY] != NULL && 826 info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK && 827 (info.rti_flags & RTF_CLONING) == 0) { 828 info.rti_flags |= RTF_LLINFO; 829 } 830 831 /* 832 * Validate RTM_PROPOSAL and pass it along or error out. 833 */ 834 if (rtm->rtm_type == RTM_PROPOSAL) { 835 if (rtm_validate_proposal(&info) == -1) { 836 error = EINVAL; 837 goto fail; 838 } 839 /* 840 * If this is a solicitation proposal forward request to 841 * all interfaces. Most handlers will ignore it but at least 842 * umb(4) will send a response to this event. 843 */ 844 if (rtm->rtm_priority == RTP_PROPOSAL_SOLICIT) { 845 NET_LOCK(); 846 TAILQ_FOREACH(ifp, &ifnetlist, if_list) { 847 ifp->if_rtrequest(ifp, RTM_PROPOSAL, NULL); 848 } 849 NET_UNLOCK(); 850 } 851 } else if (rtm->rtm_type == RTM_SOURCE) { 852 if (info.rti_info[RTAX_IFA] == NULL) { 853 error = EINVAL; 854 goto fail; 855 } 856 if ((error = 857 rt_setsource(tableid, info.rti_info[RTAX_IFA])) != 0) 858 goto fail; 859 } else { 860 error = rtm_output(rtm, &rt, &info, prio, tableid); 861 if (!error) { 862 type = rtm->rtm_type; 863 seq = rtm->rtm_seq; 864 free(rtm, M_RTABLE, len); 865 rtm = rtm_report(rt, type, seq, tableid); 866 len = rtm->rtm_msglen; 867 } 868 } 869 870 rtfree(rt); 871 if (error) { 872 rtm->rtm_errno = error; 873 } else { 874 rtm->rtm_flags |= RTF_DONE; 875 } 876 877 /* 878 * Check to see if we don't want our own messages. 879 */ 880 if (!useloopback) { 881 if (rtptable.rtp_count == 0) { 882 /* no other listener and no loopback of messages */ 883 goto fail; 884 } 885 } 886 if (m_copyback(m, 0, len, rtm, M_NOWAIT)) { 887 m_freem(m); 888 m = NULL; 889 } else if (m->m_pkthdr.len > len) 890 m_adj(m, len - m->m_pkthdr.len); 891 free(rtm, M_RTABLE, len); 892 if (m) 893 route_input(m, so, info.rti_info[RTAX_DST] ? 894 info.rti_info[RTAX_DST]->sa_family : AF_UNSPEC); 895 solock(so); 896 897 return (error); 898 fail: 899 free(rtm, M_RTABLE, len); 900 m_freem(m); 901 solock(so); 902 903 return (error); 904 } 905 906 int 907 rtm_output(struct rt_msghdr *rtm, struct rtentry **prt, 908 struct rt_addrinfo *info, uint8_t prio, unsigned int tableid) 909 { 910 struct rtentry *rt = *prt; 911 struct ifnet *ifp = NULL; 912 int plen, newgate = 0, error = 0; 913 914 switch (rtm->rtm_type) { 915 case RTM_ADD: 916 if (info->rti_info[RTAX_GATEWAY] == NULL) { 917 error = EINVAL; 918 break; 919 } 920 921 rt = rtable_match(tableid, info->rti_info[RTAX_DST], NULL); 922 if ((error = route_arp_conflict(rt, info))) { 923 rtfree(rt); 924 rt = NULL; 925 break; 926 } 927 928 /* 929 * We cannot go through a delete/create/insert cycle for 930 * cached route because this can lead to races in the 931 * receive path. Instead we update the L2 cache. 932 */ 933 if ((rt != NULL) && ISSET(rt->rt_flags, RTF_CACHED)) { 934 ifp = if_get(rt->rt_ifidx); 935 if (ifp == NULL) { 936 rtfree(rt); 937 rt = NULL; 938 error = ESRCH; 939 break; 940 } 941 942 goto change; 943 } 944 945 rtfree(rt); 946 rt = NULL; 947 948 NET_LOCK(); 949 if ((error = rtm_getifa(info, tableid)) != 0) { 950 NET_UNLOCK(); 951 break; 952 } 953 error = rtrequest(RTM_ADD, info, prio, &rt, tableid); 954 NET_UNLOCK(); 955 if (error == 0) 956 rtm_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, 957 &rt->rt_rmx); 958 break; 959 case RTM_DELETE: 960 rt = rtable_lookup(tableid, info->rti_info[RTAX_DST], 961 info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], 962 prio); 963 if (rt == NULL) { 964 error = ESRCH; 965 break; 966 } 967 968 /* 969 * If we got multipath routes, we require users to specify 970 * a matching gateway. 971 */ 972 if (ISSET(rt->rt_flags, RTF_MPATH) && 973 info->rti_info[RTAX_GATEWAY] == NULL) { 974 error = ESRCH; 975 break; 976 } 977 978 ifp = if_get(rt->rt_ifidx); 979 if (ifp == NULL) { 980 rtfree(rt); 981 rt = NULL; 982 error = ESRCH; 983 break; 984 } 985 986 /* 987 * Invalidate the cache of automagically created and 988 * referenced L2 entries to make sure that ``rt_gwroute'' 989 * pointer stays valid for other CPUs. 990 */ 991 if ((ISSET(rt->rt_flags, RTF_CACHED))) { 992 NET_LOCK(); 993 ifp->if_rtrequest(ifp, RTM_INVALIDATE, rt); 994 /* Reset the MTU of the gateway route. */ 995 rtable_walk(tableid, rt_key(rt)->sa_family, NULL, 996 route_cleargateway, rt); 997 NET_UNLOCK(); 998 break; 999 } 1000 1001 /* 1002 * Make sure that local routes are only modified by the 1003 * kernel. 1004 */ 1005 if (ISSET(rt->rt_flags, RTF_LOCAL|RTF_BROADCAST)) { 1006 error = EINVAL; 1007 break; 1008 } 1009 1010 rtfree(rt); 1011 rt = NULL; 1012 1013 NET_LOCK(); 1014 error = rtrequest_delete(info, prio, ifp, &rt, tableid); 1015 NET_UNLOCK(); 1016 break; 1017 case RTM_CHANGE: 1018 rt = rtable_lookup(tableid, info->rti_info[RTAX_DST], 1019 info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], 1020 prio); 1021 /* 1022 * If we got multipath routes, we require users to specify 1023 * a matching gateway. 1024 */ 1025 if ((rt != NULL) && ISSET(rt->rt_flags, RTF_MPATH) && 1026 (info->rti_info[RTAX_GATEWAY] == NULL)) { 1027 rtfree(rt); 1028 rt = NULL; 1029 } 1030 1031 /* 1032 * If RTAX_GATEWAY is the argument we're trying to 1033 * change, try to find a compatible route. 1034 */ 1035 if ((rt == NULL) && (info->rti_info[RTAX_GATEWAY] != NULL)) { 1036 rt = rtable_lookup(tableid, info->rti_info[RTAX_DST], 1037 info->rti_info[RTAX_NETMASK], NULL, prio); 1038 /* Ensure we don't pick a multipath one. */ 1039 if ((rt != NULL) && ISSET(rt->rt_flags, RTF_MPATH)) { 1040 rtfree(rt); 1041 rt = NULL; 1042 } 1043 } 1044 1045 if (rt == NULL) { 1046 error = ESRCH; 1047 break; 1048 } 1049 1050 /* 1051 * Make sure that local routes are only modified by the 1052 * kernel. 1053 */ 1054 if (ISSET(rt->rt_flags, RTF_LOCAL|RTF_BROADCAST)) { 1055 error = EINVAL; 1056 break; 1057 } 1058 1059 ifp = if_get(rt->rt_ifidx); 1060 if (ifp == NULL) { 1061 rtfree(rt); 1062 rt = NULL; 1063 error = ESRCH; 1064 break; 1065 } 1066 1067 /* 1068 * RTM_CHANGE needs a perfect match. 1069 */ 1070 plen = rtable_satoplen(info->rti_info[RTAX_DST]->sa_family, 1071 info->rti_info[RTAX_NETMASK]); 1072 if (rt_plen(rt) != plen) { 1073 error = ESRCH; 1074 break; 1075 } 1076 1077 if (info->rti_info[RTAX_GATEWAY] != NULL) 1078 if (rt->rt_gateway == NULL || 1079 bcmp(rt->rt_gateway, 1080 info->rti_info[RTAX_GATEWAY], 1081 info->rti_info[RTAX_GATEWAY]->sa_len)) { 1082 newgate = 1; 1083 } 1084 /* 1085 * Check reachable gateway before changing the route. 1086 * New gateway could require new ifaddr, ifp; 1087 * flags may also be different; ifp may be specified 1088 * by ll sockaddr when protocol address is ambiguous. 1089 */ 1090 if (newgate || info->rti_info[RTAX_IFP] != NULL || 1091 info->rti_info[RTAX_IFA] != NULL) { 1092 struct ifaddr *ifa = NULL; 1093 1094 NET_LOCK(); 1095 if ((error = rtm_getifa(info, tableid)) != 0) { 1096 NET_UNLOCK(); 1097 break; 1098 } 1099 ifa = info->rti_ifa; 1100 if (rt->rt_ifa != ifa) { 1101 ifp->if_rtrequest(ifp, RTM_DELETE, rt); 1102 ifafree(rt->rt_ifa); 1103 1104 rt->rt_ifa = ifaref(ifa); 1105 rt->rt_ifidx = ifa->ifa_ifp->if_index; 1106 /* recheck link state after ifp change */ 1107 rt_if_linkstate_change(rt, ifa->ifa_ifp, 1108 tableid); 1109 } 1110 NET_UNLOCK(); 1111 } 1112 change: 1113 if (info->rti_info[RTAX_GATEWAY] != NULL) { 1114 /* When updating the gateway, make sure it is valid. */ 1115 if (!newgate && rt->rt_gateway->sa_family != 1116 info->rti_info[RTAX_GATEWAY]->sa_family) { 1117 error = EINVAL; 1118 break; 1119 } 1120 1121 NET_LOCK(); 1122 error = rt_setgate(rt, 1123 info->rti_info[RTAX_GATEWAY], tableid); 1124 NET_UNLOCK(); 1125 if (error) 1126 break; 1127 } 1128 #ifdef MPLS 1129 if (rtm->rtm_flags & RTF_MPLS) { 1130 NET_LOCK(); 1131 error = rt_mpls_set(rt, 1132 info->rti_info[RTAX_SRC], info->rti_mpls); 1133 NET_UNLOCK(); 1134 if (error) 1135 break; 1136 } else if (newgate || (rtm->rtm_fmask & RTF_MPLS)) { 1137 NET_LOCK(); 1138 /* if gateway changed remove MPLS information */ 1139 rt_mpls_clear(rt); 1140 NET_UNLOCK(); 1141 } 1142 #endif 1143 1144 #ifdef BFD 1145 if (ISSET(rtm->rtm_flags, RTF_BFD)) { 1146 KERNEL_LOCK(); 1147 error = bfdset(rt); 1148 KERNEL_UNLOCK(); 1149 if (error) 1150 break; 1151 } else if (!ISSET(rtm->rtm_flags, RTF_BFD) && 1152 ISSET(rtm->rtm_fmask, RTF_BFD)) { 1153 KERNEL_LOCK(); 1154 bfdclear(rt); 1155 KERNEL_UNLOCK(); 1156 } 1157 #endif 1158 1159 NET_LOCK(); 1160 /* Hack to allow some flags to be toggled */ 1161 if (rtm->rtm_fmask) { 1162 /* MPLS flag it is set by rt_mpls_set() */ 1163 rtm->rtm_fmask &= ~RTF_MPLS; 1164 rtm->rtm_flags &= ~RTF_MPLS; 1165 rt->rt_flags = 1166 (rt->rt_flags & ~rtm->rtm_fmask) | 1167 (rtm->rtm_flags & rtm->rtm_fmask); 1168 } 1169 rtm_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx, &rt->rt_rmx); 1170 1171 ifp->if_rtrequest(ifp, RTM_ADD, rt); 1172 1173 if (info->rti_info[RTAX_LABEL] != NULL) { 1174 char *rtlabel = ((struct sockaddr_rtlabel *) 1175 info->rti_info[RTAX_LABEL])->sr_label; 1176 rtlabel_unref(rt->rt_labelid); 1177 rt->rt_labelid = rtlabel_name2id(rtlabel); 1178 } 1179 if_group_routechange(info->rti_info[RTAX_DST], 1180 info->rti_info[RTAX_NETMASK]); 1181 rt->rt_locks &= ~(rtm->rtm_inits); 1182 rt->rt_locks |= (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks); 1183 NET_UNLOCK(); 1184 break; 1185 case RTM_GET: 1186 rt = rtable_lookup(tableid, info->rti_info[RTAX_DST], 1187 info->rti_info[RTAX_NETMASK], info->rti_info[RTAX_GATEWAY], 1188 prio); 1189 if (rt == NULL) 1190 error = ESRCH; 1191 break; 1192 } 1193 1194 if_put(ifp); 1195 *prt = rt; 1196 return (error); 1197 } 1198 1199 struct ifaddr * 1200 ifa_ifwithroute(int flags, struct sockaddr *dst, struct sockaddr *gateway, 1201 unsigned int rtableid) 1202 { 1203 struct ifaddr *ifa; 1204 1205 if ((flags & RTF_GATEWAY) == 0) { 1206 /* 1207 * If we are adding a route to an interface, 1208 * and the interface is a pt to pt link 1209 * we should search for the destination 1210 * as our clue to the interface. Otherwise 1211 * we can use the local address. 1212 */ 1213 ifa = NULL; 1214 if (flags & RTF_HOST) 1215 ifa = ifa_ifwithdstaddr(dst, rtableid); 1216 if (ifa == NULL) 1217 ifa = ifa_ifwithaddr(gateway, rtableid); 1218 } else { 1219 /* 1220 * If we are adding a route to a remote net 1221 * or host, the gateway may still be on the 1222 * other end of a pt to pt link. 1223 */ 1224 ifa = ifa_ifwithdstaddr(gateway, rtableid); 1225 } 1226 if (ifa == NULL) { 1227 if (gateway->sa_family == AF_LINK) { 1228 struct sockaddr_dl *sdl = satosdl(gateway); 1229 struct ifnet *ifp = if_get(sdl->sdl_index); 1230 1231 if (ifp != NULL) 1232 ifa = ifaof_ifpforaddr(dst, ifp); 1233 if_put(ifp); 1234 } else { 1235 struct rtentry *rt; 1236 1237 rt = rtalloc(gateway, RT_RESOLVE, rtable_l2(rtableid)); 1238 if (rt != NULL) 1239 ifa = rt->rt_ifa; 1240 rtfree(rt); 1241 } 1242 } 1243 if (ifa == NULL) 1244 return (NULL); 1245 if (ifa->ifa_addr->sa_family != dst->sa_family) { 1246 struct ifaddr *oifa = ifa; 1247 ifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp); 1248 if (ifa == NULL) 1249 ifa = oifa; 1250 } 1251 return (ifa); 1252 } 1253 1254 int 1255 rtm_getifa(struct rt_addrinfo *info, unsigned int rtid) 1256 { 1257 struct ifnet *ifp = NULL; 1258 1259 /* 1260 * The "returned" `ifa' is guaranteed to be alive only if 1261 * the NET_LOCK() is held. 1262 */ 1263 NET_ASSERT_LOCKED(); 1264 1265 /* 1266 * ifp may be specified by sockaddr_dl when protocol address 1267 * is ambiguous 1268 */ 1269 if (info->rti_info[RTAX_IFP] != NULL) { 1270 struct sockaddr_dl *sdl; 1271 1272 sdl = satosdl(info->rti_info[RTAX_IFP]); 1273 ifp = if_get(sdl->sdl_index); 1274 } 1275 1276 #ifdef IPSEC 1277 /* 1278 * If the destination is a PF_KEY address, we'll look 1279 * for the existence of a encap interface number or address 1280 * in the options list of the gateway. By default, we'll return 1281 * enc0. 1282 */ 1283 if (info->rti_info[RTAX_DST] && 1284 info->rti_info[RTAX_DST]->sa_family == PF_KEY) 1285 info->rti_ifa = enc_getifa(rtid, 0); 1286 #endif 1287 1288 if (info->rti_ifa == NULL && info->rti_info[RTAX_IFA] != NULL) 1289 info->rti_ifa = ifa_ifwithaddr(info->rti_info[RTAX_IFA], rtid); 1290 1291 if (info->rti_ifa == NULL) { 1292 struct sockaddr *sa; 1293 1294 if ((sa = info->rti_info[RTAX_IFA]) == NULL) 1295 if ((sa = info->rti_info[RTAX_GATEWAY]) == NULL) 1296 sa = info->rti_info[RTAX_DST]; 1297 1298 if (sa != NULL && ifp != NULL) 1299 info->rti_ifa = ifaof_ifpforaddr(sa, ifp); 1300 else if (info->rti_info[RTAX_DST] != NULL && 1301 info->rti_info[RTAX_GATEWAY] != NULL) 1302 info->rti_ifa = ifa_ifwithroute(info->rti_flags, 1303 info->rti_info[RTAX_DST], 1304 info->rti_info[RTAX_GATEWAY], 1305 rtid); 1306 else if (sa != NULL) 1307 info->rti_ifa = ifa_ifwithroute(info->rti_flags, 1308 sa, sa, rtid); 1309 } 1310 1311 if_put(ifp); 1312 1313 if (info->rti_ifa == NULL) 1314 return (ENETUNREACH); 1315 1316 return (0); 1317 } 1318 1319 int 1320 route_cleargateway(struct rtentry *rt, void *arg, unsigned int rtableid) 1321 { 1322 struct rtentry *nhrt = arg; 1323 1324 if (ISSET(rt->rt_flags, RTF_GATEWAY) && rt->rt_gwroute == nhrt && 1325 !ISSET(rt->rt_locks, RTV_MTU)) 1326 rt->rt_mtu = 0; 1327 1328 return (0); 1329 } 1330 1331 /* 1332 * Check if the user request to insert an ARP entry does not conflict 1333 * with existing ones. 1334 * 1335 * Only two entries are allowed for a given IP address: a private one 1336 * (priv) and a public one (pub). 1337 */ 1338 int 1339 route_arp_conflict(struct rtentry *rt, struct rt_addrinfo *info) 1340 { 1341 int proxy = (info->rti_flags & RTF_ANNOUNCE); 1342 1343 if ((info->rti_flags & RTF_LLINFO) == 0 || 1344 (info->rti_info[RTAX_DST]->sa_family != AF_INET)) 1345 return (0); 1346 1347 if (rt == NULL || !ISSET(rt->rt_flags, RTF_LLINFO)) 1348 return (0); 1349 1350 /* If the entry is cached, it can be updated. */ 1351 if (ISSET(rt->rt_flags, RTF_CACHED)) 1352 return (0); 1353 1354 /* 1355 * Same destination, not cached and both "priv" or "pub" conflict. 1356 * If a second entry exists, it always conflict. 1357 */ 1358 if ((ISSET(rt->rt_flags, RTF_ANNOUNCE) == proxy) || 1359 ISSET(rt->rt_flags, RTF_MPATH)) 1360 return (EEXIST); 1361 1362 /* No conflict but an entry exist so we need to force mpath. */ 1363 info->rti_flags |= RTF_MPATH; 1364 return (0); 1365 } 1366 1367 void 1368 rtm_setmetrics(u_long which, const struct rt_metrics *in, 1369 struct rt_kmetrics *out) 1370 { 1371 int64_t expire; 1372 1373 if (which & RTV_MTU) 1374 out->rmx_mtu = in->rmx_mtu; 1375 if (which & RTV_EXPIRE) { 1376 expire = in->rmx_expire; 1377 if (expire != 0) { 1378 expire -= gettime(); 1379 expire += getuptime(); 1380 } 1381 1382 out->rmx_expire = expire; 1383 } 1384 } 1385 1386 void 1387 rtm_getmetrics(const struct rtentry *rt, struct rt_metrics *out) 1388 { 1389 const struct rt_kmetrics *in = &rt->rt_rmx; 1390 int64_t expire; 1391 1392 expire = in->rmx_expire; 1393 if (expire == 0) 1394 expire = rt_timer_get_expire(rt); 1395 if (expire != 0) { 1396 expire -= getuptime(); 1397 expire += gettime(); 1398 } 1399 1400 bzero(out, sizeof(*out)); 1401 out->rmx_locks = in->rmx_locks; 1402 out->rmx_mtu = in->rmx_mtu; 1403 out->rmx_expire = expire; 1404 out->rmx_pksent = in->rmx_pksent; 1405 } 1406 1407 #define ROUNDUP(a) \ 1408 ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long)) 1409 #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len)) 1410 1411 int 1412 rtm_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) 1413 { 1414 struct sockaddr *sa; 1415 int i; 1416 1417 /* 1418 * Parse address bits, split address storage in chunks, and 1419 * set info pointers. Use sa_len for traversing the memory 1420 * and check that we stay within in the limit. 1421 */ 1422 bzero(rtinfo->rti_info, sizeof(rtinfo->rti_info)); 1423 for (i = 0; i < sizeof(rtinfo->rti_addrs) * 8; i++) { 1424 if ((rtinfo->rti_addrs & (1U << i)) == 0) 1425 continue; 1426 if (i >= RTAX_MAX || cp + sizeof(socklen_t) > cplim) 1427 return (EINVAL); 1428 sa = (struct sockaddr *)cp; 1429 if (cp + sa->sa_len > cplim) 1430 return (EINVAL); 1431 rtinfo->rti_info[i] = sa; 1432 ADVANCE(cp, sa); 1433 } 1434 /* 1435 * Check that the address family is suitable for the route address 1436 * type. Check that each address has a size that fits its family 1437 * and its length is within the size. Strings within addresses must 1438 * be NUL terminated. 1439 */ 1440 for (i = 0; i < RTAX_MAX; i++) { 1441 size_t len, maxlen, size; 1442 1443 sa = rtinfo->rti_info[i]; 1444 if (sa == NULL) 1445 continue; 1446 maxlen = size = 0; 1447 switch (i) { 1448 case RTAX_DST: 1449 case RTAX_GATEWAY: 1450 case RTAX_SRC: 1451 switch (sa->sa_family) { 1452 case AF_INET: 1453 size = sizeof(struct sockaddr_in); 1454 break; 1455 case AF_LINK: 1456 size = sizeof(struct sockaddr_dl); 1457 break; 1458 #ifdef INET6 1459 case AF_INET6: 1460 size = sizeof(struct sockaddr_in6); 1461 break; 1462 #endif 1463 #ifdef MPLS 1464 case AF_MPLS: 1465 size = sizeof(struct sockaddr_mpls); 1466 break; 1467 #endif 1468 } 1469 break; 1470 case RTAX_IFP: 1471 if (sa->sa_family != AF_LINK) 1472 return (EAFNOSUPPORT); 1473 /* 1474 * XXX Should be sizeof(struct sockaddr_dl), but 1475 * route(8) has a bug and provides less memory. 1476 * arp(8) has another bug and uses sizeof pointer. 1477 */ 1478 size = 4; 1479 break; 1480 case RTAX_IFA: 1481 switch (sa->sa_family) { 1482 case AF_INET: 1483 size = sizeof(struct sockaddr_in); 1484 break; 1485 #ifdef INET6 1486 case AF_INET6: 1487 size = sizeof(struct sockaddr_in6); 1488 break; 1489 #endif 1490 default: 1491 return (EAFNOSUPPORT); 1492 } 1493 break; 1494 case RTAX_LABEL: 1495 sa->sa_family = AF_UNSPEC; 1496 maxlen = RTLABEL_LEN; 1497 size = sizeof(struct sockaddr_rtlabel); 1498 break; 1499 #ifdef BFD 1500 case RTAX_BFD: 1501 sa->sa_family = AF_UNSPEC; 1502 size = sizeof(struct sockaddr_bfd); 1503 break; 1504 #endif 1505 case RTAX_DNS: 1506 /* more validation in rtm_validate_proposal */ 1507 if (sa->sa_len > sizeof(struct sockaddr_rtdns)) 1508 return (EINVAL); 1509 if (sa->sa_len < offsetof(struct sockaddr_rtdns, 1510 sr_dns)) 1511 return (EINVAL); 1512 switch (sa->sa_family) { 1513 case AF_INET: 1514 #ifdef INET6 1515 case AF_INET6: 1516 #endif 1517 break; 1518 default: 1519 return (EAFNOSUPPORT); 1520 } 1521 break; 1522 case RTAX_STATIC: 1523 sa->sa_family = AF_UNSPEC; 1524 maxlen = RTSTATIC_LEN; 1525 size = sizeof(struct sockaddr_rtstatic); 1526 break; 1527 case RTAX_SEARCH: 1528 sa->sa_family = AF_UNSPEC; 1529 maxlen = RTSEARCH_LEN; 1530 size = sizeof(struct sockaddr_rtsearch); 1531 break; 1532 } 1533 if (size) { 1534 /* memory for the full struct must be provided */ 1535 if (sa->sa_len < size) 1536 return (EINVAL); 1537 } 1538 if (maxlen) { 1539 /* this should not happen */ 1540 if (2 + maxlen > size) 1541 return (EINVAL); 1542 /* strings must be NUL terminated within the struct */ 1543 len = strnlen(sa->sa_data, maxlen); 1544 if (len >= maxlen || 2 + len >= sa->sa_len) 1545 return (EINVAL); 1546 break; 1547 } 1548 } 1549 return (0); 1550 } 1551 1552 struct mbuf * 1553 rtm_msg1(int type, struct rt_addrinfo *rtinfo) 1554 { 1555 struct rt_msghdr *rtm; 1556 struct mbuf *m; 1557 int i; 1558 struct sockaddr *sa; 1559 int len, dlen, hlen; 1560 1561 switch (type) { 1562 case RTM_DELADDR: 1563 case RTM_NEWADDR: 1564 hlen = sizeof(struct ifa_msghdr); 1565 break; 1566 case RTM_IFINFO: 1567 hlen = sizeof(struct if_msghdr); 1568 break; 1569 case RTM_IFANNOUNCE: 1570 hlen = sizeof(struct if_announcemsghdr); 1571 break; 1572 #ifdef BFD 1573 case RTM_BFD: 1574 hlen = sizeof(struct bfd_msghdr); 1575 break; 1576 #endif 1577 case RTM_80211INFO: 1578 hlen = sizeof(struct if_ieee80211_msghdr); 1579 break; 1580 default: 1581 hlen = sizeof(struct rt_msghdr); 1582 break; 1583 } 1584 len = hlen; 1585 for (i = 0; i < RTAX_MAX; i++) { 1586 if (rtinfo == NULL || (sa = rtinfo->rti_info[i]) == NULL) 1587 continue; 1588 len += ROUNDUP(sa->sa_len); 1589 } 1590 if (len > MCLBYTES) 1591 panic("rtm_msg1"); 1592 m = m_gethdr(M_DONTWAIT, MT_DATA); 1593 if (m && len > MHLEN) { 1594 MCLGET(m, M_DONTWAIT); 1595 if ((m->m_flags & M_EXT) == 0) { 1596 m_free(m); 1597 m = NULL; 1598 } 1599 } 1600 if (m == NULL) 1601 return (m); 1602 m->m_pkthdr.len = m->m_len = len; 1603 m->m_pkthdr.ph_ifidx = 0; 1604 rtm = mtod(m, struct rt_msghdr *); 1605 bzero(rtm, len); 1606 len = hlen; 1607 for (i = 0; i < RTAX_MAX; i++) { 1608 if (rtinfo == NULL || (sa = rtinfo->rti_info[i]) == NULL) 1609 continue; 1610 rtinfo->rti_addrs |= (1U << i); 1611 dlen = ROUNDUP(sa->sa_len); 1612 if (m_copyback(m, len, sa->sa_len, sa, M_NOWAIT)) { 1613 m_freem(m); 1614 return (NULL); 1615 } 1616 len += dlen; 1617 } 1618 rtm->rtm_msglen = len; 1619 rtm->rtm_hdrlen = hlen; 1620 rtm->rtm_version = RTM_VERSION; 1621 rtm->rtm_type = type; 1622 return (m); 1623 } 1624 1625 int 1626 rtm_msg2(int type, int vers, struct rt_addrinfo *rtinfo, caddr_t cp, 1627 struct walkarg *w) 1628 { 1629 int i; 1630 int len, dlen, hlen, second_time = 0; 1631 caddr_t cp0; 1632 1633 rtinfo->rti_addrs = 0; 1634 again: 1635 switch (type) { 1636 case RTM_DELADDR: 1637 case RTM_NEWADDR: 1638 len = sizeof(struct ifa_msghdr); 1639 break; 1640 case RTM_IFINFO: 1641 len = sizeof(struct if_msghdr); 1642 break; 1643 default: 1644 len = sizeof(struct rt_msghdr); 1645 break; 1646 } 1647 hlen = len; 1648 if ((cp0 = cp) != NULL) 1649 cp += len; 1650 for (i = 0; i < RTAX_MAX; i++) { 1651 struct sockaddr *sa; 1652 1653 if ((sa = rtinfo->rti_info[i]) == NULL) 1654 continue; 1655 rtinfo->rti_addrs |= (1U << i); 1656 dlen = ROUNDUP(sa->sa_len); 1657 if (cp) { 1658 bcopy(sa, cp, sa->sa_len); 1659 bzero(cp + sa->sa_len, dlen - sa->sa_len); 1660 cp += dlen; 1661 } 1662 len += dlen; 1663 } 1664 /* align message length to the next natural boundary */ 1665 len = ALIGN(len); 1666 if (cp == 0 && w != NULL && !second_time) { 1667 w->w_needed += len; 1668 if (w->w_needed <= w->w_given && w->w_where) { 1669 if (w->w_tmemsize < len) { 1670 free(w->w_tmem, M_RTABLE, w->w_tmemsize); 1671 w->w_tmem = malloc(len, M_RTABLE, 1672 M_NOWAIT | M_ZERO); 1673 if (w->w_tmem) 1674 w->w_tmemsize = len; 1675 } 1676 if (w->w_tmem) { 1677 cp = w->w_tmem; 1678 second_time = 1; 1679 goto again; 1680 } else 1681 w->w_where = 0; 1682 } 1683 } 1684 if (cp && w) /* clear the message header */ 1685 bzero(cp0, hlen); 1686 1687 if (cp) { 1688 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0; 1689 1690 rtm->rtm_version = RTM_VERSION; 1691 rtm->rtm_type = type; 1692 rtm->rtm_msglen = len; 1693 rtm->rtm_hdrlen = hlen; 1694 } 1695 return (len); 1696 } 1697 1698 void 1699 rtm_send(struct rtentry *rt, int cmd, int error, unsigned int rtableid) 1700 { 1701 struct rt_addrinfo info; 1702 struct ifnet *ifp; 1703 struct sockaddr_rtlabel sa_rl; 1704 struct sockaddr_in6 sa_mask; 1705 1706 memset(&info, 0, sizeof(info)); 1707 info.rti_info[RTAX_DST] = rt_key(rt); 1708 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1709 if (!ISSET(rt->rt_flags, RTF_HOST)) 1710 info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask); 1711 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl); 1712 ifp = if_get(rt->rt_ifidx); 1713 if (ifp != NULL) { 1714 info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); 1715 info.rti_info[RTAX_IFA] = rtable_getsource(rtableid, 1716 info.rti_info[RTAX_DST]->sa_family); 1717 if (info.rti_info[RTAX_IFA] == NULL) 1718 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1719 } 1720 1721 rtm_miss(cmd, &info, rt->rt_flags, rt->rt_priority, rt->rt_ifidx, error, 1722 rtableid); 1723 if_put(ifp); 1724 } 1725 1726 /* 1727 * This routine is called to generate a message from the routing 1728 * socket indicating that a redirect has occurred, a routing lookup 1729 * has failed, or that a protocol has detected timeouts to a particular 1730 * destination. 1731 */ 1732 void 1733 rtm_miss(int type, struct rt_addrinfo *rtinfo, int flags, uint8_t prio, 1734 u_int ifidx, int error, u_int tableid) 1735 { 1736 struct rt_msghdr *rtm; 1737 struct mbuf *m; 1738 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; 1739 1740 if (rtptable.rtp_count == 0) 1741 return; 1742 m = rtm_msg1(type, rtinfo); 1743 if (m == NULL) 1744 return; 1745 rtm = mtod(m, struct rt_msghdr *); 1746 rtm->rtm_flags = RTF_DONE | flags; 1747 rtm->rtm_priority = prio; 1748 rtm->rtm_errno = error; 1749 rtm->rtm_tableid = tableid; 1750 rtm->rtm_addrs = rtinfo->rti_addrs; 1751 rtm->rtm_index = ifidx; 1752 route_input(m, NULL, sa ? sa->sa_family : AF_UNSPEC); 1753 } 1754 1755 /* 1756 * This routine is called to generate a message from the routing 1757 * socket indicating that the status of a network interface has changed. 1758 */ 1759 void 1760 rtm_ifchg(struct ifnet *ifp) 1761 { 1762 struct rt_addrinfo info; 1763 struct if_msghdr *ifm; 1764 struct mbuf *m; 1765 1766 if (rtptable.rtp_count == 0) 1767 return; 1768 memset(&info, 0, sizeof(info)); 1769 info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); 1770 m = rtm_msg1(RTM_IFINFO, &info); 1771 if (m == NULL) 1772 return; 1773 ifm = mtod(m, struct if_msghdr *); 1774 ifm->ifm_index = ifp->if_index; 1775 ifm->ifm_tableid = ifp->if_rdomain; 1776 ifm->ifm_flags = ifp->if_flags; 1777 ifm->ifm_xflags = ifp->if_xflags; 1778 if_getdata(ifp, &ifm->ifm_data); 1779 ifm->ifm_addrs = info.rti_addrs; 1780 route_input(m, NULL, AF_UNSPEC); 1781 } 1782 1783 /* 1784 * This is called to generate messages from the routing socket 1785 * indicating a network interface has had addresses associated with it. 1786 * if we ever reverse the logic and replace messages TO the routing 1787 * socket indicate a request to configure interfaces, then it will 1788 * be unnecessary as the routing socket will automatically generate 1789 * copies of it. 1790 */ 1791 void 1792 rtm_addr(int cmd, struct ifaddr *ifa) 1793 { 1794 struct ifnet *ifp = ifa->ifa_ifp; 1795 struct mbuf *m; 1796 struct rt_addrinfo info; 1797 struct ifa_msghdr *ifam; 1798 1799 if (rtptable.rtp_count == 0) 1800 return; 1801 1802 memset(&info, 0, sizeof(info)); 1803 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 1804 info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); 1805 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 1806 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 1807 if ((m = rtm_msg1(cmd, &info)) == NULL) 1808 return; 1809 ifam = mtod(m, struct ifa_msghdr *); 1810 ifam->ifam_index = ifp->if_index; 1811 ifam->ifam_metric = ifa->ifa_metric; 1812 ifam->ifam_flags = ifa->ifa_flags; 1813 ifam->ifam_addrs = info.rti_addrs; 1814 ifam->ifam_tableid = ifp->if_rdomain; 1815 1816 route_input(m, NULL, 1817 ifa->ifa_addr ? ifa->ifa_addr->sa_family : AF_UNSPEC); 1818 } 1819 1820 /* 1821 * This is called to generate routing socket messages indicating 1822 * network interface arrival and departure. 1823 */ 1824 void 1825 rtm_ifannounce(struct ifnet *ifp, int what) 1826 { 1827 struct if_announcemsghdr *ifan; 1828 struct mbuf *m; 1829 1830 if (rtptable.rtp_count == 0) 1831 return; 1832 m = rtm_msg1(RTM_IFANNOUNCE, NULL); 1833 if (m == NULL) 1834 return; 1835 ifan = mtod(m, struct if_announcemsghdr *); 1836 ifan->ifan_index = ifp->if_index; 1837 strlcpy(ifan->ifan_name, ifp->if_xname, sizeof(ifan->ifan_name)); 1838 ifan->ifan_what = what; 1839 route_input(m, NULL, AF_UNSPEC); 1840 } 1841 1842 #ifdef BFD 1843 /* 1844 * This is used to generate routing socket messages indicating 1845 * the state of a BFD session. 1846 */ 1847 void 1848 rtm_bfd(struct bfd_config *bfd) 1849 { 1850 struct bfd_msghdr *bfdm; 1851 struct sockaddr_bfd sa_bfd; 1852 struct mbuf *m; 1853 struct rt_addrinfo info; 1854 1855 if (rtptable.rtp_count == 0) 1856 return; 1857 memset(&info, 0, sizeof(info)); 1858 info.rti_info[RTAX_DST] = rt_key(bfd->bc_rt); 1859 info.rti_info[RTAX_IFA] = bfd->bc_rt->rt_ifa->ifa_addr; 1860 1861 m = rtm_msg1(RTM_BFD, &info); 1862 if (m == NULL) 1863 return; 1864 bfdm = mtod(m, struct bfd_msghdr *); 1865 bfdm->bm_addrs = info.rti_addrs; 1866 1867 KERNEL_ASSERT_LOCKED(); 1868 bfd2sa(bfd->bc_rt, &sa_bfd); 1869 memcpy(&bfdm->bm_sa, &sa_bfd, sizeof(sa_bfd)); 1870 1871 route_input(m, NULL, info.rti_info[RTAX_DST]->sa_family); 1872 } 1873 #endif /* BFD */ 1874 1875 /* 1876 * This is used to generate routing socket messages indicating 1877 * the state of an ieee80211 interface. 1878 */ 1879 void 1880 rtm_80211info(struct ifnet *ifp, struct if_ieee80211_data *ifie) 1881 { 1882 struct if_ieee80211_msghdr *ifim; 1883 struct mbuf *m; 1884 1885 if (rtptable.rtp_count == 0) 1886 return; 1887 m = rtm_msg1(RTM_80211INFO, NULL); 1888 if (m == NULL) 1889 return; 1890 ifim = mtod(m, struct if_ieee80211_msghdr *); 1891 ifim->ifim_index = ifp->if_index; 1892 ifim->ifim_tableid = ifp->if_rdomain; 1893 1894 memcpy(&ifim->ifim_ifie, ifie, sizeof(ifim->ifim_ifie)); 1895 route_input(m, NULL, AF_UNSPEC); 1896 } 1897 1898 /* 1899 * This is used to generate routing socket messages indicating 1900 * the address selection proposal from an interface. 1901 */ 1902 void 1903 rtm_proposal(struct ifnet *ifp, struct rt_addrinfo *rtinfo, int flags, 1904 uint8_t prio) 1905 { 1906 struct rt_msghdr *rtm; 1907 struct mbuf *m; 1908 1909 m = rtm_msg1(RTM_PROPOSAL, rtinfo); 1910 if (m == NULL) 1911 return; 1912 rtm = mtod(m, struct rt_msghdr *); 1913 rtm->rtm_flags = RTF_DONE | flags; 1914 rtm->rtm_priority = prio; 1915 rtm->rtm_tableid = ifp->if_rdomain; 1916 rtm->rtm_index = ifp->if_index; 1917 rtm->rtm_addrs = rtinfo->rti_addrs; 1918 1919 route_input(m, NULL, rtinfo->rti_info[RTAX_DNS]->sa_family); 1920 } 1921 1922 /* 1923 * This is used in dumping the kernel table via sysctl(). 1924 */ 1925 int 1926 sysctl_dumpentry(struct rtentry *rt, void *v, unsigned int id) 1927 { 1928 struct walkarg *w = v; 1929 int error = 0, size; 1930 struct rt_addrinfo info; 1931 struct ifnet *ifp; 1932 #ifdef BFD 1933 struct sockaddr_bfd sa_bfd; 1934 #endif 1935 struct sockaddr_rtlabel sa_rl; 1936 struct sockaddr_in6 sa_mask; 1937 1938 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg)) 1939 return 0; 1940 if (w->w_op == NET_RT_DUMP && w->w_arg) { 1941 u_int8_t prio = w->w_arg & RTP_MASK; 1942 if (w->w_arg < 0) { 1943 prio = (-w->w_arg) & RTP_MASK; 1944 /* Show all routes that are not this priority */ 1945 if (prio == (rt->rt_priority & RTP_MASK)) 1946 return 0; 1947 } else { 1948 if (prio != (rt->rt_priority & RTP_MASK) && 1949 prio != RTP_ANY) 1950 return 0; 1951 } 1952 } 1953 bzero(&info, sizeof(info)); 1954 info.rti_info[RTAX_DST] = rt_key(rt); 1955 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; 1956 info.rti_info[RTAX_NETMASK] = rt_plen2mask(rt, &sa_mask); 1957 ifp = if_get(rt->rt_ifidx); 1958 if (ifp != NULL) { 1959 info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); 1960 info.rti_info[RTAX_IFA] = 1961 rtable_getsource(id, info.rti_info[RTAX_DST]->sa_family); 1962 if (info.rti_info[RTAX_IFA] == NULL) 1963 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr; 1964 if (ifp->if_flags & IFF_POINTOPOINT) 1965 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr; 1966 } 1967 if_put(ifp); 1968 info.rti_info[RTAX_LABEL] = rtlabel_id2sa(rt->rt_labelid, &sa_rl); 1969 #ifdef BFD 1970 if (rt->rt_flags & RTF_BFD) { 1971 KERNEL_ASSERT_LOCKED(); 1972 info.rti_info[RTAX_BFD] = bfd2sa(rt, &sa_bfd); 1973 } 1974 #endif 1975 #ifdef MPLS 1976 if (rt->rt_flags & RTF_MPLS) { 1977 struct sockaddr_mpls sa_mpls; 1978 1979 bzero(&sa_mpls, sizeof(sa_mpls)); 1980 sa_mpls.smpls_family = AF_MPLS; 1981 sa_mpls.smpls_len = sizeof(sa_mpls); 1982 sa_mpls.smpls_label = ((struct rt_mpls *) 1983 rt->rt_llinfo)->mpls_label; 1984 info.rti_info[RTAX_SRC] = (struct sockaddr *)&sa_mpls; 1985 info.rti_mpls = ((struct rt_mpls *) 1986 rt->rt_llinfo)->mpls_operation; 1987 } 1988 #endif 1989 1990 size = rtm_msg2(RTM_GET, RTM_VERSION, &info, NULL, w); 1991 if (w->w_where && w->w_tmem && w->w_needed <= w->w_given) { 1992 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; 1993 1994 rtm->rtm_pid = curproc->p_p->ps_pid; 1995 rtm->rtm_flags = RTF_DONE | rt->rt_flags; 1996 rtm->rtm_priority = rt->rt_priority & RTP_MASK; 1997 rtm_getmetrics(rt, &rtm->rtm_rmx); 1998 /* Do not account the routing table's reference. */ 1999 rtm->rtm_rmx.rmx_refcnt = refcnt_read(&rt->rt_refcnt) - 1; 2000 rtm->rtm_index = rt->rt_ifidx; 2001 rtm->rtm_addrs = info.rti_addrs; 2002 rtm->rtm_tableid = id; 2003 #ifdef MPLS 2004 rtm->rtm_mpls = info.rti_mpls; 2005 #endif 2006 if ((error = copyout(rtm, w->w_where, size)) != 0) 2007 w->w_where = NULL; 2008 else 2009 w->w_where += size; 2010 } 2011 return (error); 2012 } 2013 2014 int 2015 sysctl_iflist(int af, struct walkarg *w) 2016 { 2017 struct ifnet *ifp; 2018 struct ifaddr *ifa; 2019 struct rt_addrinfo info; 2020 int len, error = 0; 2021 2022 bzero(&info, sizeof(info)); 2023 TAILQ_FOREACH(ifp, &ifnetlist, if_list) { 2024 if (w->w_arg && w->w_arg != ifp->if_index) 2025 continue; 2026 /* Copy the link-layer address first */ 2027 info.rti_info[RTAX_IFP] = sdltosa(ifp->if_sadl); 2028 len = rtm_msg2(RTM_IFINFO, RTM_VERSION, &info, 0, w); 2029 if (w->w_where && w->w_tmem && w->w_needed <= w->w_given) { 2030 struct if_msghdr *ifm; 2031 2032 ifm = (struct if_msghdr *)w->w_tmem; 2033 ifm->ifm_index = ifp->if_index; 2034 ifm->ifm_tableid = ifp->if_rdomain; 2035 ifm->ifm_flags = ifp->if_flags; 2036 if_getdata(ifp, &ifm->ifm_data); 2037 ifm->ifm_addrs = info.rti_addrs; 2038 error = copyout(ifm, w->w_where, len); 2039 if (error) 2040 return (error); 2041 w->w_where += len; 2042 } 2043 info.rti_info[RTAX_IFP] = NULL; 2044 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) { 2045 KASSERT(ifa->ifa_addr->sa_family != AF_LINK); 2046 if (af && af != ifa->ifa_addr->sa_family) 2047 continue; 2048 info.rti_info[RTAX_IFA] = ifa->ifa_addr; 2049 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask; 2050 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; 2051 len = rtm_msg2(RTM_NEWADDR, RTM_VERSION, &info, 0, w); 2052 if (w->w_where && w->w_tmem && 2053 w->w_needed <= w->w_given) { 2054 struct ifa_msghdr *ifam; 2055 2056 ifam = (struct ifa_msghdr *)w->w_tmem; 2057 ifam->ifam_index = ifa->ifa_ifp->if_index; 2058 ifam->ifam_flags = ifa->ifa_flags; 2059 ifam->ifam_metric = ifa->ifa_metric; 2060 ifam->ifam_addrs = info.rti_addrs; 2061 error = copyout(w->w_tmem, w->w_where, len); 2062 if (error) 2063 return (error); 2064 w->w_where += len; 2065 } 2066 } 2067 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] = 2068 info.rti_info[RTAX_BRD] = NULL; 2069 } 2070 return (0); 2071 } 2072 2073 int 2074 sysctl_ifnames(struct walkarg *w) 2075 { 2076 struct if_nameindex_msg ifn; 2077 struct ifnet *ifp; 2078 int error = 0; 2079 2080 /* XXX ignore tableid for now */ 2081 TAILQ_FOREACH(ifp, &ifnetlist, if_list) { 2082 if (w->w_arg && w->w_arg != ifp->if_index) 2083 continue; 2084 w->w_needed += sizeof(ifn); 2085 if (w->w_where && w->w_needed <= w->w_given) { 2086 2087 memset(&ifn, 0, sizeof(ifn)); 2088 ifn.if_index = ifp->if_index; 2089 strlcpy(ifn.if_name, ifp->if_xname, 2090 sizeof(ifn.if_name)); 2091 error = copyout(&ifn, w->w_where, sizeof(ifn)); 2092 if (error) 2093 return (error); 2094 w->w_where += sizeof(ifn); 2095 } 2096 } 2097 2098 return (0); 2099 } 2100 2101 int 2102 sysctl_source(int af, u_int tableid, struct walkarg *w) 2103 { 2104 struct sockaddr *sa; 2105 int size, error = 0; 2106 2107 sa = rtable_getsource(tableid, af); 2108 if (sa) { 2109 switch (sa->sa_family) { 2110 case AF_INET: 2111 size = sizeof(struct sockaddr_in); 2112 break; 2113 #ifdef INET6 2114 case AF_INET6: 2115 size = sizeof(struct sockaddr_in6); 2116 break; 2117 #endif 2118 default: 2119 return (0); 2120 } 2121 w->w_needed += size; 2122 if (w->w_where && w->w_needed <= w->w_given) { 2123 if ((error = copyout(sa, w->w_where, size))) 2124 return (error); 2125 w->w_where += size; 2126 } 2127 } 2128 return (0); 2129 } 2130 2131 int 2132 sysctl_rtable(int *name, u_int namelen, void *where, size_t *given, void *new, 2133 size_t newlen) 2134 { 2135 int i, error = EINVAL; 2136 u_char af; 2137 struct walkarg w; 2138 struct rt_tableinfo tableinfo; 2139 u_int tableid = 0; 2140 2141 if (new) 2142 return (EPERM); 2143 if (namelen < 3 || namelen > 4) 2144 return (EINVAL); 2145 af = name[0]; 2146 bzero(&w, sizeof(w)); 2147 w.w_where = where; 2148 w.w_given = *given; 2149 w.w_op = name[1]; 2150 w.w_arg = name[2]; 2151 2152 if (namelen == 4) { 2153 tableid = name[3]; 2154 if (!rtable_exists(tableid)) 2155 return (ENOENT); 2156 } else 2157 tableid = curproc->p_p->ps_rtableid; 2158 2159 switch (w.w_op) { 2160 case NET_RT_DUMP: 2161 case NET_RT_FLAGS: 2162 NET_LOCK(); 2163 for (i = 1; i <= AF_MAX; i++) { 2164 if (af != 0 && af != i) 2165 continue; 2166 2167 error = rtable_walk(tableid, i, NULL, sysctl_dumpentry, 2168 &w); 2169 if (error == EAFNOSUPPORT) 2170 error = 0; 2171 if (error) 2172 break; 2173 } 2174 NET_UNLOCK(); 2175 break; 2176 2177 case NET_RT_IFLIST: 2178 NET_LOCK(); 2179 error = sysctl_iflist(af, &w); 2180 NET_UNLOCK(); 2181 break; 2182 2183 case NET_RT_STATS: 2184 return (sysctl_rtable_rtstat(where, given, new)); 2185 case NET_RT_TABLE: 2186 tableid = w.w_arg; 2187 if (!rtable_exists(tableid)) 2188 return (ENOENT); 2189 memset(&tableinfo, 0, sizeof tableinfo); 2190 tableinfo.rti_tableid = tableid; 2191 tableinfo.rti_domainid = rtable_l2(tableid); 2192 error = sysctl_rdstruct(where, given, new, 2193 &tableinfo, sizeof(tableinfo)); 2194 return (error); 2195 case NET_RT_IFNAMES: 2196 NET_LOCK(); 2197 error = sysctl_ifnames(&w); 2198 NET_UNLOCK(); 2199 break; 2200 case NET_RT_SOURCE: 2201 tableid = w.w_arg; 2202 if (!rtable_exists(tableid)) 2203 return (ENOENT); 2204 NET_LOCK(); 2205 for (i = 1; i <= AF_MAX; i++) { 2206 if (af != 0 && af != i) 2207 continue; 2208 2209 error = sysctl_source(i, tableid, &w); 2210 if (error == EAFNOSUPPORT) 2211 error = 0; 2212 if (error) 2213 break; 2214 } 2215 NET_UNLOCK(); 2216 break; 2217 } 2218 free(w.w_tmem, M_RTABLE, w.w_tmemsize); 2219 if (where) { 2220 *given = w.w_where - (caddr_t)where; 2221 if (w.w_needed > w.w_given) 2222 return (ENOMEM); 2223 } else if (w.w_needed == 0) { 2224 *given = 0; 2225 } else { 2226 *given = roundup(w.w_needed + MAX(w.w_needed / 10, 1024), 2227 PAGE_SIZE); 2228 } 2229 return (error); 2230 } 2231 2232 int 2233 sysctl_rtable_rtstat(void *oldp, size_t *oldlenp, void *newp) 2234 { 2235 extern struct cpumem *rtcounters; 2236 uint64_t counters[rts_ncounters]; 2237 struct rtstat rtstat; 2238 uint32_t *words = (uint32_t *)&rtstat; 2239 int i; 2240 2241 CTASSERT(sizeof(rtstat) == (nitems(counters) * sizeof(uint32_t))); 2242 memset(&rtstat, 0, sizeof rtstat); 2243 counters_read(rtcounters, counters, nitems(counters)); 2244 2245 for (i = 0; i < nitems(counters); i++) 2246 words[i] = (uint32_t)counters[i]; 2247 2248 return (sysctl_rdstruct(oldp, oldlenp, newp, &rtstat, sizeof(rtstat))); 2249 } 2250 2251 int 2252 rtm_validate_proposal(struct rt_addrinfo *info) 2253 { 2254 if (info->rti_addrs & ~(RTA_NETMASK | RTA_IFA | RTA_DNS | RTA_STATIC | 2255 RTA_SEARCH)) { 2256 return -1; 2257 } 2258 2259 if (ISSET(info->rti_addrs, RTA_NETMASK)) { 2260 struct sockaddr *sa = info->rti_info[RTAX_NETMASK]; 2261 if (sa == NULL) 2262 return -1; 2263 switch (sa->sa_family) { 2264 case AF_INET: 2265 if (sa->sa_len != sizeof(struct sockaddr_in)) 2266 return -1; 2267 break; 2268 case AF_INET6: 2269 if (sa->sa_len != sizeof(struct sockaddr_in6)) 2270 return -1; 2271 break; 2272 default: 2273 return -1; 2274 } 2275 } 2276 2277 if (ISSET(info->rti_addrs, RTA_IFA)) { 2278 struct sockaddr *sa = info->rti_info[RTAX_IFA]; 2279 if (sa == NULL) 2280 return -1; 2281 switch (sa->sa_family) { 2282 case AF_INET: 2283 if (sa->sa_len != sizeof(struct sockaddr_in)) 2284 return -1; 2285 break; 2286 case AF_INET6: 2287 if (sa->sa_len != sizeof(struct sockaddr_in6)) 2288 return -1; 2289 break; 2290 default: 2291 return -1; 2292 } 2293 } 2294 2295 if (ISSET(info->rti_addrs, RTA_DNS)) { 2296 struct sockaddr_rtdns *rtdns = 2297 (struct sockaddr_rtdns *)info->rti_info[RTAX_DNS]; 2298 if (rtdns == NULL) 2299 return -1; 2300 if (rtdns->sr_len > sizeof(*rtdns)) 2301 return -1; 2302 if (rtdns->sr_len < offsetof(struct sockaddr_rtdns, sr_dns)) 2303 return -1; 2304 switch (rtdns->sr_family) { 2305 case AF_INET: 2306 if ((rtdns->sr_len - offsetof(struct sockaddr_rtdns, 2307 sr_dns)) % sizeof(struct in_addr) != 0) 2308 return -1; 2309 break; 2310 #ifdef INET6 2311 case AF_INET6: 2312 if ((rtdns->sr_len - offsetof(struct sockaddr_rtdns, 2313 sr_dns)) % sizeof(struct in6_addr) != 0) 2314 return -1; 2315 break; 2316 #endif 2317 default: 2318 return -1; 2319 } 2320 } 2321 2322 if (ISSET(info->rti_addrs, RTA_STATIC)) { 2323 struct sockaddr_rtstatic *rtstatic = 2324 (struct sockaddr_rtstatic *)info->rti_info[RTAX_STATIC]; 2325 if (rtstatic == NULL) 2326 return -1; 2327 if (rtstatic->sr_len > sizeof(*rtstatic)) 2328 return -1; 2329 if (rtstatic->sr_len <= 2330 offsetof(struct sockaddr_rtstatic, sr_static)) 2331 return -1; 2332 } 2333 2334 if (ISSET(info->rti_addrs, RTA_SEARCH)) { 2335 struct sockaddr_rtsearch *rtsearch = 2336 (struct sockaddr_rtsearch *)info->rti_info[RTAX_SEARCH]; 2337 if (rtsearch == NULL) 2338 return -1; 2339 if (rtsearch->sr_len > sizeof(*rtsearch)) 2340 return -1; 2341 if (rtsearch->sr_len <= 2342 offsetof(struct sockaddr_rtsearch, sr_search)) 2343 return -1; 2344 } 2345 2346 return 0; 2347 } 2348 2349 int 2350 rt_setsource(unsigned int rtableid, struct sockaddr *src) 2351 { 2352 struct ifaddr *ifa; 2353 int error; 2354 /* 2355 * If source address is 0.0.0.0 or :: 2356 * use automatic source selection 2357 */ 2358 switch(src->sa_family) { 2359 case AF_INET: 2360 if(satosin(src)->sin_addr.s_addr == INADDR_ANY) { 2361 rtable_setsource(rtableid, AF_INET, NULL); 2362 return (0); 2363 } 2364 break; 2365 #ifdef INET6 2366 case AF_INET6: 2367 if (IN6_IS_ADDR_UNSPECIFIED(&satosin6(src)->sin6_addr)) { 2368 rtable_setsource(rtableid, AF_INET6, NULL); 2369 return (0); 2370 } 2371 break; 2372 #endif 2373 default: 2374 return (EAFNOSUPPORT); 2375 } 2376 2377 KERNEL_LOCK(); 2378 /* 2379 * Check if source address is assigned to an interface in the 2380 * same rdomain 2381 */ 2382 if ((ifa = ifa_ifwithaddr(src, rtableid)) == NULL) { 2383 KERNEL_UNLOCK(); 2384 return (EINVAL); 2385 } 2386 2387 error = rtable_setsource(rtableid, src->sa_family, ifa->ifa_addr); 2388 KERNEL_UNLOCK(); 2389 2390 return (error); 2391 } 2392 2393 /* 2394 * Definitions of protocols supported in the ROUTE domain. 2395 */ 2396 2397 const struct pr_usrreqs route_usrreqs = { 2398 .pru_attach = route_attach, 2399 .pru_detach = route_detach, 2400 .pru_disconnect = route_disconnect, 2401 .pru_shutdown = route_shutdown, 2402 .pru_rcvd = route_rcvd, 2403 .pru_send = route_send, 2404 .pru_sockaddr = route_sockaddr, 2405 .pru_peeraddr = route_peeraddr, 2406 }; 2407 2408 const struct protosw routesw[] = { 2409 { 2410 .pr_type = SOCK_RAW, 2411 .pr_domain = &routedomain, 2412 .pr_flags = PR_ATOMIC|PR_ADDR|PR_WANTRCVD, 2413 .pr_ctloutput = route_ctloutput, 2414 .pr_usrreqs = &route_usrreqs, 2415 .pr_init = route_prinit, 2416 .pr_sysctl = sysctl_rtable 2417 } 2418 }; 2419 2420 const struct domain routedomain = { 2421 .dom_family = PF_ROUTE, 2422 .dom_name = "route", 2423 .dom_init = route_init, 2424 .dom_protosw = routesw, 2425 .dom_protoswNPROTOSW = &routesw[nitems(routesw)] 2426 }; 2427